
���������	��
��������
����	�����	������� ������������� �������� ��!���

"$#$%'&)(+*�,$-.*�/102-�354)056�7 -8*:9�;�;)4=<+*�/?>@*�A *�B$C'(ED�A 7 FHG'/?,�7IDJ#$%'&�;$%LK@"�"M#�NO4QP8RS"$;�TU9L%WVMK #2"�R'V)4=XZY\[�P8R]"$;�TJ9L%'VZK &�9�N$%

A Performance Evaluation of Fine-
Grain Thread Migration with Active

Threads

Boris Weissman, Benedict Gomes, Jürgen W. Quittek,
Michael Holtkamp1

TR-97-054
December 1997

1.  Technical University of Hamburg-Harburg, Germany

Abstract

Thread migration is established as a mechanism for achieving dynamic load sharing and data lo-
cality. However, migration has not been used with fine-grained parallelism due to the relatively
high overheads associated with thread and messaging packages. This paper describes a high per-
formance thread migration system for fine-grained parallelism, implemented with user level
threads and user level messages. The thread system supports an extensible event mechanism
which permits an efficient interface between the thread and messaging systems without compro-
mising the modularity of either. Migration is supported by user level primitives; applications
may implement different migration policies on top of the migration interface provided. The sys-
tem is portable and can be used directly by application and library writers or serve as a compila-
tion target for parallel programming languages. Detailed performance metrics are presented to
evaluate the system. The system runs on a cluster of SMPs and the performance obtained is or-
ders of magnitude better than other reported measurements2.

2.  A shorter version of this report is accepted by IPPS/SPDP98



December 16, 1997 2

1 INTRODUCTION

In recent years, the multi-threaded programming model has grown increasingly popular,
propelled in part by the increasing availability of shared memory multi-processors (SMPs).
Programming languages make use of the threaded model both for expressiveness (particu-
larly in graphical user interfaces) and to exploit the parallelism available on an SMP. The
convenience of the threaded model arises from the ease of sharing data between threads,
and from the availability of automatic load balancing since threads, once blocked, may con-
tinue to execute on any available processor.

In a hybrid distributed system, where the nodes consist of SMPs, it becomes necessary
to either provide a mixture of programming styles or to extend a traditional distributed or
shared memory programming style. Given these choices, extending the powerful and rela-
tively simple (compared to message passing) threaded programming model to a distributed
system is appealing. To fully support the threaded programming model in a distributed en-
vironment it is necessary to support (a) a from of distributed shared memory to permit the
sharing of data between non-local threads and (b) thread migration to achieve the relatively
transparent load balancing available on shared memory systems. A limited form of compu-
tation migration is to permit thread creation on remote clusters. However, migration after
creation may be necessary in order to achieve load balance while retaining the simplicity
of the natural threaded model, particularly with long running threads.

Why not threads? Poor Performance!

A major problem with using the threaded model for fine-grained concurrency is perfor-
mance. While most modern thread packages are adequate for medium grained concurrency,
the overhead costs are unacceptable for fine-grained parallelism. For instance, thread cre-
ation using Solaris threads on our SPARCstation 10 system takes 1 to 10 milliseconds; the
median thread lifetimes for our application are of the same order. The performance of
thread migration, which is necessary for load balance in the threaded model, is also affected
by the thread system overheads. In an effort to avoid these overheads, while maintaining
some of the benefits of threads, many researchers have turned to simpler, non-blocking
threadlets (Filaments [LFA96], Cilk [BJK+96], Multipol [WCD+95]).

Why not threadlets?

Though non-blocking threadlets do provide high performance, they are not adequate in
their expressiveness for most modern explicitly parallel object-oriented languages (includ-
ing Java, Ada, CC++ and locally designed language, pSather [SO96] [QW97]) which make
use of blocking threads. Using non-blocking threadlets requires shifting to a radically dif-
ferent programming style, such as continuation passing or implicitly parallel functional
programming.

Why is thread performance poor?

There are several reasons for the poor performance of commercial thread packages. Kernel
level threads, as found in NT [ISW97] involve expensive kernel traps [Ber91]. Even the
user level thread packages available commercially have high thread creation costs; they ap-
pear to be targeted at medium grained parallelism, particularly in applications such as user
interfaces where expressiveness rather than performance is the central issue.



December 16, 1997 3

Why is migration performance poor?

In addition to the problems of commercial thread packages, the performance of thread mi-
gration depends on the communication system. Many migration systems make use of ker-
nel traps for either the thread system [ISW97] or for the communication system [MR96]
[NM97]. Performance also depends on the degree of integration between the thread and
communication systems. Nexus [FKT+96] presents an interface to a combined thread and
communication systems; however, it makes use of off-the-shelf thread and communication
components. A third potential reason for the poor performance of thread migration is the
pointer fixing after migration that is performed by systems such as Ariadne [MR96] - see
Section 3.1.

Improving Performance

We demonstrate a user level thread package, Active Threads, that achieves high perfor-
mance with low overheads for thread creation and other thread operations. Thread creation
overheads are comparable to threadlets overheads. We also utilize user level messaging,
with support for concurrent access to the network interface. A novel feature of the thread
package is an extensible event mechanism that permits a close integration between the
thread and message passing systems. The system provides primitives for thread migration,
but does not dictate a particular thread migration policy. We demonstrate this flexibility by
exploring the effect of different policies on several applications.

In summary, this paper makes the following contributions:

• A fine-grained thread migration system with user level threads and messaging. High per-
formance is achieved on a cluster of symmetric multiprocessors using a low-cost com-
modity network (Myrinet).

• An extensible thread event mechanism that permits the flexible and efficient integration
of independent thread and communication systems.

• Detailed performance metrics for thread migration, and the ability to compare the effects
of different migration policies on application performance. Since the thread migration
system is completely at the user level, operating system dependencies are eliminated,
permitting a better comparison of underlying costs.

An underlying shared address space using global pointers is assumed. We provide two
different examples of such systems; others are possible and the thread package is not tied
to any particular implementation.

An implementation of thread migration involves four basic components, each of which
involves design decisions

• The transfer of thread local data. (Section 3.1)

• The access of global data. (Section 3.2)

• The thread system (Section 4).

• The messaging system (Section 5).
After describing the system components, we describe micro-benchmarks that measure

basic thread performance and compare these results with existing systems. We then go on
to describe the use of thread migration in a multi-threaded version of the ‘grep’ utility. We
demonstrate the impact of several different simple thread migration policies; in particular
we consider the significant improvement in performance that may be achieved by using mi-



December 16, 1997 4

gration to improve data locality. We also describe similar results on a function integration
application.

2 THE MIGRATION INTERFACE

Thread migration is triggered by one of the following calls into the thread package. The re-
turn value of each call is a code indicating success or failure.

The first argument of each call refers to the thread bundle (each thread is associated
with a thread bundle, described in more detail in Section 4). The interface allows either
pushing work to or stealing (i.e. pulling) work from other nodes. The general calls, steal
and push, have variants that permit the more exact specification of which thread to migrate.
In a push, a thread may elect to either push itself or to push any available (i.e. runnable)
thread to the destination node. The steal calls may elect to either steal any available work
or to steal data from a particular other node. In addition to the above calls, which are syn-
chronous, asynchronous versions are also provided.

3 TRANSFERRING STATE

In order to effectively move a thread to a different processor, it is necessary for the trans-
ferred thread to correctly access all related data and resources. All data that is local to the
thread (the stack and any thread-local heap) may be copied to the destination processor.
However, a problem may arise, since the addresses on the target processor may be different
from the original addresses and internal pointers may no longer be valid. Furthermore, data
that is not globally replicated or transferred along with the thread will not exist on the des-
tination node (see Figure 1).

3.1  Thread Local Data

Two approaches may be used to handle local pointers when threads are migrated. In the first
approach, local pointer values may change after the thread has been migrated, and local
pointers must be updated after migration. The second approach is to partition the address
space such that local pointers may maintain the same values after migration.

In order to update pointer values after migration it is necessary to register stack point-
ers. If registration is left to the programmer, pernicious bugs can arise due to errors in reg-
istration. A more basic issue is that it is frequently impossible to identify and correctly
update pointers that have been stored in registers, unless a great deal of compiler and lan-
guage level support is provided. The resulting system is consequently limited to a particular

int steal(bundle_t b);
Steal a thread from any other node.

int steal_from(bundle_t b, node_t from);
Steal a thread from the node ‘from’.

int push(bundle_t b, node_t to);
Push any other blocked thread to the node ‘to’

int push_self(bundle_t b, node_t to);
Push the current thread to the node ‘to’



December 16, 1997 5

language and compiler system. Ariadne [MR96] requires user registration but provides no
solution to handling registers as pointed out in [ISW97]. Emerald [JLHB88] is a full
fledged system, with compiler and even kernel level support. Even with the necessary com-
piler support, updating pointers will exact a certain run-time penalty over and above the
cost of moving the thread data.

Since we were interested in a portable, high performance system, we chose the alter-
nate approach of storing the thread local data at the same location in the address space on
the destination node, so that no local pointers need be updated. A pre-defined area of the
virtual memory space is reserved for each thread stack on all nodes. This is essentially the
same approach as used by Millipede [ISW97], Amber [CAL+89] and UPVM [CKO+94].
Indeed, Amber as a successor system to Emerald, chose this approach for similar reasons
[CAL+89]. Using this approach, the total number of threads is limited by the address space
available on a single node and does not scale with the number of nodes. However, with the
increasing availability of processors with 64 bit address spaces, or on smaller sized clusters,
this limitation is not a serious issue. Note that the limitation is the virtual address space of
a single processor, not the physical memory present, as claimed in [CHM97].

We considered, but have not yet implemented, two possible improvements to this
scheme that would reduce the memory requirements. Instead of mapping a large thread
stack area, it is possible to - incrementally map memory segments, as needed. A probabi-
listic approach that avoids pre-allocating memory addresses would be to only permit mi-
gration onto those clusters where the necessary portion of the address space is currently
available

3.2  Shared Data

In addition to thread local data i.e. the stack and the local heap, a thread may also access
data that is shared between multiple threads. Examples of such shared data include resourc-
es located on a particular machine and global synchronization objects.

After a thread has migrated, if pointers to this shared state are to still be valid, it is nec-

Figure 1: Transferring thread data

Source VM

�����������
�����������
�����������

HEAP

Reserved
Stack

Reserved
Stack

�����������
�����������
�����������
�����������
�����������
�����������

Value

HEAP

Reserved
Stack

Reserved
Stack

Value

Global Ptr
Local Ptr

Destination VM



December 16, 1997 6

essary for the pointers to indicate the nodes on which the data resides. A simple approach
is to adopt the same partitioning of the global address space mentioned in the previous sec-
tion. References to non-local data will result in a trap, which can either forward the refer-
ence to the proper location or transfer the required data.

Another approach is to use global pointers, which create the illusion of a shared ad-
dress space. Global pointers, which are commonly used in parallel languages, usually en-
code the node location in the unused bits of a standard pointer. Global pointers incur a
certain overhead whenever they are dereferenced, even when the data is locally available
since the location of the data must be ascertained before dereferencing. Hence, it is desir-
able to avoid the use of global pointers where possible such as when accessing thread local
data, as described in the previous section.

In the parallel language pSather (which uses Active Threads as a compilation target),
the node location is encoded in the unused high bits of the address [Fle97]. In the C++
based library [Hol97] we implemented a set of classes encapsulating global pointers. They
hide access to global pointers by pointer overloading and offer a shared variable program-
ming model for designated data types.

Though the thread migration system described here requires a shared address space, it
does not depend on any particular implementation.

4 THE THREAD SYSTEM

Active Threads is a general-purpose portable and extensible light-weight thread package
for uni- and multiprocessors targeted at irregular applications. Active Threads is capable of
handling millions of threads on a variety of hardware platforms. Unlike most other thread
packages, which utilize hard-coded scheduling policies, Active Threads provides a general
mechanism for building data structure specific thread schedulers and for composing multi-
ple scheduling policies within a single application. This allows modules developed sepa-
rately to retain their scheduling policies when used together in a single application. Flexible
scheduling policies can exploit the temporal and spatial locality inherent in many applica-
tions. The extensibility and flexibility of the scheduling mechanism enables easy integra-
tion of the thread system with other systems such as high-performance network interfaces
and garbage collection. Such interoperability is not commonly supported by general-pur-
pose thread packages.

The details of the Active Threads architecture, and API are given in [Wei97]. In this
section, we concentrate on the aspects of the Active Threads organization that enable us to
integrate threads with communications, efficiently implement thread migration primitives
and to freely experiment with different migration policies.

4.1  Threads and bundles

Active Threads supports general-purpose blocking threads.Threads are units of (potential-
ly parallel) execution that share the address space and other system resources. Each thread
maintains a set of registers including a program counter, a stack that stores the thread’s lo-
cal variables and a small thread heap also calledthread local storage (TLS).

Groups of logically related threads with common properties are organized intothread
bundles, or simply bundles. All threads in a bundle share the same scheduling policy.
Scheduling policies for different thread bundles can be completely independent from each



December 16, 1997 7

other. A single application may create thread bundles with different scheduling policies
such as FIFO, LIFO, priority, processor affinity scheduling, etc. Moreover, a scheduling
policy for a bundle is not fixed and can change dynamically. While bundles were mainly
designed to enable compositional development of parallel software and encapsulate sched-
uling policies together with other module resources, bundles and the associated scheduling
event mechanism have proved to be an excellent abstraction to enable fine-grained thread
mobility in distributed environments.

Each thread’s state information is encapsulated in the thread context block (TCB). On
context switch, the register state is stored at the top of the thread stack. A pointer to this
area is kept the thread context block. The context block also keeps other miscellaneous
thread information and a pointer to a thread bundle.

We now turn to the Active Threads scheduling mechanism.

4.2  Event Mechanism

Active Threads provides no hard-coded scheduling policy. Instead, it supports a general
mechanism upon which different specialized scheduling policies can be built.

All thread scheduling decisions are made by the bundle to which the thread belongs.
The bundle is free to maintain any scheduling data structures that fit most closely the se-
mantics of the thread group.

Different susbsytems communicate with bundles by vectoringscheduling events. Bun-
dles encapsulate all aspects of scheduling and must provide event handlers for all schedul-
ing events. There are no restrictions on the implementation of such event handlers.

The relationship between bundles and other subsystems as well as the direction of the
event flow are shown in Figure 2.

All events are partitioned into two groups: internal Active Threads events and external
(user-defined) events. Internal events deal with common thread operations: thread creation,
termination, blocking, unblocking, dispatching by the processor, etc. All internal events,
their logical origins and a short description of the information they provide to the thread
bundle are given in Table 13.

Figure 2: Scheduling events in Active Threads

thread created
(kernel)

informs about creation of a new thread.

Table 1: Internal events

bundle synch.
objects

Network

Active Threads kernel

Machine-dependent layer

blocked,
unblocked

started,
terminated

processor
idle

external
(user-defined)

events

Application layer



December 16, 1997 8

A bundle encapsulates all scheduling decisions for a group of logically related threads.
The system is extensible: new scheduling policies are implemented by extending the bun-
dle library. New synchronization objects can be added transparently to the rest of the sys-
tem - synchronization objects may have arbitrary semantics; the event mechanism provides
the interface for communication with the rest of the system. Active Threads are distributed
with a variety of commonly used synchronization objects: spinning and blocking mutual
exclusion locks, semaphores, reader/writer locks, and general condition variables. [Wei97]

Active Threads bundles can be combined into hierarchies and events can be forwarded
between bundles. For instance, if a bundle that received a processor idle event does not
have any runnable threads, it can forward the event to some other bundle or bundles. More
details on the scheduling event mechanism and examples can be found in [Wei97].

A user can also define events logically originating outside Active Threads and register
event handlers for these events. For instance, such events can be used to check the network
for incoming messages whenever a processor becomes available or to perform a unit of gar-
bage collection when all processors in the node are idle. This functionality can be also used
to implement thread migration transparently to the rest of the thread system.

4.3  Scheduling Policies

An Active Threads bundle must implement event handlers for all eight internal events. No
restrictions are placed on the bundle internals. The implementations are free to select the
best data structures possible to implement the scheduler. For instance, if the number of
threads is known statically (or even dynamically at bundle creation time), the scheduler
may keep threads in an array to minimize rescheduling overhead. In simple dynamic cases,
a linked list may be sufficient. However, to implement priority scheduling, more complex
(and expensive) data structures such as priority queues are used. In general, the least expen-
sive bundle that fully implements the desired functionality should be chosen. Active
Threads are distributed with a library of bundles that support commonly used scheduling

3.  “kernel” as used in the table means Active Threads kernel rather than OS kernel.

thread started
(kernel)

informs about thread start-up; enables
lazy stack allocation policies.

thread terminated
(kernel)

informs about thread termination.

thread blocked
(synch. object)

informs about thread blocking on a
synchronization object

thread unblocked
(synch.objects)

informs about thread unblocking.

bundle created
(kernel)

informs about creation of a new child
bundle.

bundle terminated
(kernel)

informs about termination of a child
bundle.

processor idle
(kernel)

requests more threads for dispatching
by the idle processor.

Table 1: Internal events



December 16, 1997 9

policies such as FIFO, LIFO, lazy stack allocation, etc. Some bundles in the library try to
minimize cache misses and bus traffic by exploiting processor locality information for
thread scheduling.

5 COMMUNICATIONS

Aside from context switching times, the other major overhead involved in thread migration
arises from the system overhead of most messaging systems. Much of the overhead is
caused by repeated copying of messages to and from buffers located in the OS kernel ad-
dress space. The Active Message approach [vCGS92] eliminates much of the system over-
head by handing control of the delivered message directly to a user-level message handler.
Although the thread migration mechanism described in the following section does not rely
exclusively on the communications style of Active Messages, user-level management of
communications is indispensable for achieving low migration latencies and high through-
puts. We have implemented a variant of the Berkeley Active Message communications sys-
tem that supports the general Active Message communications style [vCGS92], but also
extends the Active Message interface and functionality in several important ways.

Active message communication consists of matching request and reply operations,
each of which invoke their respective handlers. In general, message handlers must be non-
blocking functions that do not trigger any additional messages with one exception; request
handlers may send at most one reply to the requesting node.

The active message system, as originally conceived and available in the current Ber-
keley distribution, was not designed to run on multi-threaded SMPs. Multi-threading raises
the possibility of contention for the network device; consequently, all accesses to the mes-
saging system must be properly protected.

Much of the overhead involved in a message transfer (i.e. the message packaging) is
actually incurred on the host processor. Therefore, on an SMP it is possible to increase the
message throughput by performing the message packaging in parallel on the processors of
the SMP.

Another extension of Active Messages functionality deals with the kinds of operations
allowed in the remote handlers. Active Message handlers are non-blocking and complex
protocols must be implemented in applications to achieve the desired functionality. For in-
stance, it is not straightforward to use primitive active messages to gain an access to a re-
mote resource shared by several threads. Other researchers have pointed out similar
problems with restricted handler functionality [FKT96].

Our communication system retains the Active Messages programming style and high
performance. In addition, it provides the following features that enable closer integration
of communications with threads and synchronization:

• Support for networks of symmetric multiprocessors; all communication operations can
be executed concurrently. Since it is possible to parallelize the message processing that
occurs off the network interface, the message throughput can actually be improved in
concurrent contexts.

• Support for remote thread creation. As advocated by Nexus [FKT96], we support two
kinds of remote handlers - threaded and non-threaded. Threaded handlers create a new
remote thread and immediately send a message acknowledgment; the resulting thread is
free to initiate other communications requests or bulk transfer operations, block, allocate



December 16, 1997 10

memory, etc. Due to the low thread creation overheads in Active Threads (section 7), the
cost of threaded handlers is very close to that of non-threaded handlers. The non-thread-
ed handlers are the original Active Message style handlers and incur no performance
penalty.

The performance of the message system is strongly affected by the processor performance.
On our system, which consists of the network of 50 MHz HyperSPARCs with 4 processors
per node, a one way latency for a message with a payload of 5 words is around 17µs. A bulk
transfer of 1K takes 560µs and is mostly constrained by the host processor and I/O bus
speed rather than the network interface.

6 THREAD MIGRATION MECHANISM

We view thread migration as a natural extension of thread scheduling for a single (possibly
multiprocessing) node to a distributed environment. Migration is implemented by defining
new bundles that are extended with special user-defined migration events. This enables
seamless integration of migration with other thread subsystems. Migration happens trans-
parently to other thread activities and bundles and threads that do not support migration
need not be concerned with any new and unforeseen effects. Different migration policies
are implemented by defining new bundles and can coexist in a single application. Though
the mechanism is general, we show (Section 7) that we pay a very small price for this gen-
erality. In fact, thread migration in Active Threads outperforms other systems with hard-
coded migration policies by orders of magnitude in some cases.

To show the universality of the event-driven approach, we will consider an example of
a thread relocating itself to a different node. To enable any existing bundle to support this
functionality, only two new user-defined events need be added:

1. outgoing event; this event is generated by the Active Threads kernel on behalf of the
user thread after the thread is safely stopped and its context is saved. The reference to
the thread’s TCB is forwarded to the bundle. The event is handled by the user-defined
outgoing event handler which is responsible for all operations associated with the
transfer of the thread’s state over the network.

2. incoming event; generated externally to the thread system by the network message
handler on message arrival. The incoming event handler is responsible for interpreting
and unpacking the message, allocating a new TCB on the destination node, etc. Hav-
ing finished these auxiliary operations, the event handler adds the arrived thread to the
bundle’s internal scheduling data structures.

Figure 3 captures the essence of the underlying mechanism.
At time 1, a user thread executing on node 1 callsat_push_self(bundle, 2). The Active

Threads kernel stops the calling thread and saves its register state in a predefined area (at
the top of the thread’s stack). It then dispatches anoutgoing thread event on behalf of the
stopped thread to the corresponding bundle.

At time 2, theoutgoing event handler catches the event vectored by the kernel. As an
optimization, the handler may pack all the pieces of the thread’s state such as its TCB,
thread-local storage (TLS), and the thread stack into a contiguous area (our implementation
performs this optimization). The handler then initiates the network transfer by handing the



December 16, 1997 11

message over to the network interface (NI).
At time 3, the incoming message handler of the destination node pulls the thread’s state

off the network and dispatches anincoming event to the destination bundle. Theincoming
event handler unpacks the message, obtains a new TCB from the thread system, initializes
it with the proper values and adds a new thread to the bundle’s internal scheduling data
structures. The last step can be performed, for example, by dispatching athread unblocked
event for a newly arrived thread.

Finally, at time 4, the Active Threads kernel detects that one of the processors of node
2 becomes idle and dispatches aprocessor idle event. At this point, the newly arrived thread
is indistinguishable from all other threads in the same bundle. It is handed over to the Ac-
tive Threads kernel for dispatching on the idle processor.

The other primitives in the thread migration interface are handled analogously. For
push(), the first step is simplified since the migrating thread is already stopped. Different
versions ofsteal(), initiate migration by sending a message to the thread supplier node first.
The subsequent steps are the same as forpush().

7 MICROBENCHMARKS

In the following section we present microbenchmarks that measure the performance of the
thread migration system. We start by presenting the performance profile of the underlying
thread system on a variety of modern platform. We then briefly discuss the organization of
our NOW. We then present a detailed performance analysis of our thread migration system
in terms or the following parameters:

• point-to-point latency

• initiating node overhead

• thread migration throughput

Figure 3: Events and thread migration.

bundle

handler

Active Threads kernel

event

application layer

NI

bundle

handler

Active Threads kernel

application layer

NI NI

message
handler

Active Threads kernel

event
“incoming”

“outgoing”

Active Threads kernel

“idle”
event

bundle

bundle

application layer

dispatch
NI

network

1

2

4

3

Node 1 Node 2

handler



December 16, 1997 12

7.1  Threads and synchronization

We have measured the performance of Active Threads on a variety of hardware platforms:
different models of SPARC symmetric multiprocessors, Intel Pentium Pro, DEC Alpha
AXP, and HPPA 1.1. Performance measurements for Active Threads primitives on some
of these platforms are shown in Table 2.

The presented thread creation overhead includes thread stack allocation. Thread cre-
ation overhead with lazy stack allocation is somewhat smaller. In comparison, a null pro-
cedure call on the 167Mhz UltraSPARC-1 takes 0.75µs when register window overflow
occurs and 0.08µs without window overflow.4 Thus, thread creation overhead is almost as
expensive as null function call with window overflow and only about an order of magnitude
more expensive than a null call that does not cause a window overflow.

A brief description of the semantics of thread operations used in the benchmarks fol-
lows. The reported results are obtained by averaging over 1,000,000 executions of each op-
eration.

• thread create - creation of a new thread, including stack allocation, but excluding context
switch to the newly created thread.

• null thread - creation, execution, and termination of a thread whose body is a single null
function.

• Context switch time is measured by having a thread yield execution to another thread.

• Uncontested mutex anduncontested semaphore - cost of mutex lock and semaphore wait
operations in the absence of contention.

• Mutex and semaphoretry - cost of possibly unsuccessful synchronization.

• Mutex and semaphore ping-pong operations repeatedly synchronize two threads with
one another in a manner similar to that used to measure the synchronization cost of So-
laris Threads in [PKBS+91]. Ping-pong timings include the cost of synchronizing two
threads. Another related metric, per-thread synchronization overhead, as reported in

4.  gcc v2.7.1, compiled with -O2

Operation

U
ltr

aS
PA

R
C

-1
,

16
7 

M
hz

In
te

l P
en

tiu
m

P
ro

,
20

0M
hz

D
E

C
 A

lp
ha

 A
X

P
25

0M
hz

H
P

PA
 9

00
0/

75
5,

99
M

hz

thread create 1.3 1.4 1.0 2.0
null thread 5.6 4.4 2.9 7.2
context switch 1.7 1.5 1.1 3.0
uncontested mutex 0.4 0.5 0.3 1.0
uncontested sema. 0.4 0.5 0.3 1.0
mutex try 0.2 0.2 0.1 0.3
semaphore try 0.2 0.2 0.1 0.3
mutex ping-pong 6.0 3.4 2.9 7.9
sema. ping-pong 6.0 3.7 2.8 8.5

Table 2: Cost of thread and synchronization operations in Active Threads,µs.



December 16, 1997 13

[PKBS+91], is exactly one half of the reported numbers.

A detailed comparison of the thread and synchronization performance of Active Threads
and other modern research and commercial thread systems is given in [Wei97].

7.2  Thread Migration

Our main platform is a cluster of SPARCstation-10 workstations connected together by

Myrinet [BCF+95]. Each workstation has four 50 Mhz HyperSPARC processors. The
Myrinet NI is an I/O card that plugs into the standard SBus. It contains a 32-bit RISC
“LANai” network processor, DMA engines, and local memory (SRAM). The NI’s memory
is mapped into the user process address space and can be accessed through load/stores to
mapped main memory addresses. The Myrinet network consists of crossbar switches with
eight bidirectional ports that can be linked into arbitrary topologies. The network is con-
structed of low-cost off-the-shelf commercial hardware that is readily available for a vari-
ety of architectures. Figure 5 shows the configuration of each node of our network.

The costs of different thread migration operations for this network configuration are
presented in Figure 4. All graphs reflect an average over 1,000 migrations.

Point-to-point time for a push operation includes blocking a thread on a source node,
transferring its state to the destination and unblocking there to resume execution. It was

Figure 4: Migration latency and overhead in Active Threads.

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

Stack size, Kb

T
im

e,
 µ

s

Node−to−node time

push          
steal         
stack transfer

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

Stack size, Kb
T

im
e,

 µ
s

Initiating node overhead

push 
steal

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

Stack size, Kb

T
hr

ea
ds

/s
ec

Thread migration throughput

push 
steal

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

Stack size, Kb

T
hr

ea
ds

/s
ec

Steal throughput (from 2 sources)

steal



December 16, 1997 14

measured by having a thread repeatedly ping-pong between a pair of nodes. A similar mea-
surement for a steal operation involves thread chains: a stolen thread initiates the next steal
upon arrival after it has unblocked on the destination node. Both measurements present
wall clock time elapsed from operation initiation to completion obtained with the help of a
high-resolution nanosecond hardware timer. As the figure shows, both costs are heavily
dominated by the transfer time of the active portion of the stack (the stack size is designated
by the horizontal axis in all the graphs). The steal operation is slightly more expensive than
the push operation - the destination node must send a message to the source (actually, it cre-
ates a very lightweight thread remotely) to set up and initiate the DMA of the source node
network interface.

Migrating a null thread (a stack of 112 bytes for SPARC v8 and gcc 2.7.1) to a remote
node takes 150µs, while pushing a thread with an active (used) stack of 1Kb takes 630µs.

While point-to-point times are important measures of thread migration performance,
many load balancing strategies avoid paying the full price by initiating migration early
while the processors are still busy. Thus, in the case of push, the cost of migration can be
reduced to the fairly small overhead needed to initiate the transfer. The source node then
resumes the computation while the thread transfer is still in progress. The push overhead is
dominated by the copying of the thread state to SRAM of the network processor in order to
enable the network DMA. This copy overhead is, in turn, determined by the speed of the I/
O bus and grows linear as the active thread stack size increases.

The overhead for a thread steal consists of two parts - the steal initiation on the request-
ing node and the service overhead on the remote node. The former is fixed and fairly small
- only 8µs on our system. The latter is exactly the thread push overhead.

On our system, thread migration overheads are at least an order of magnitude lower
than full point-to-point latencies for medium size stacks. For instance, the push overhead
for a null thread is 40µs and the overhead for a thread with an active stack size of 1Kb is
only 52µs.

For applications with small tasks, but highly dynamic and unpredictable loads, fre-
quent thread migration may be necessary and throughput rather than latency can be the key
factor. The migration throughput may also affect the programming style as well as applica-
tion design. For instance, a single producer/multiple consumer pattern is well known for its
simplicity and may be adequate to capture the semantics of many applications. However,
designating a single node as a producer imposes a bandwidth constraint on the system in

Figure 5: The structure of a processing node.

cpu cpu cpu cpu

memory

network processor

NI

DMASRAM

proc

Node

network

I/O BusMemory Bus



December 16, 1997 15

order to keep all the consumers busy.
From Figure 4, it is evident that Active Threads achieves a fairly high throughput, on

the order of thousands of threads per second for small to medium thread stack sizes. Steal
throughput is lower than push throughput, in particular for light-weight threads. This is due
to the cost of the initiating message, the effect of which is amortized as the thread stack
grows in size.

The last graph of Figure 4 demonstrates the scalability of our implementation. The
throughput for small threads is essentially doubled when a node starts prefetching from two
sources simultaneously.

7.3  Comparisons with other systems

It is hard to directly compare the performance of systems that support thread migration be-
cause of hardware differences such as processor and network speeds and the structure of
memory hierarchy. Reported performance parameters also vary. Still, we find it instructive
to list the performance characteristics of several recent thread migration systems, along
with the hardware characteristics of each system.

The numbers in Table 3 warrant some explanation. In terms of pure processing power,
Active Threads run on a relatively modest distributed platform - all the other systems em-
ploy hardware with the clock speed at least several times faster than our 50Mhz SPARCs-
tation-10s. Unlike previous systems, threads are migrated between symmetric
multiprocessors with additional protection cost. Our preliminary experiments on a Sun En-
terprise 5000 demonstrate latencies reduced by a factor of 3.

Millipede [ISW97] reports the “average latency” of thread migration to be 70ms; how-
ever, the average thread stack size is not specified. In our own experiments, the average ac-
tive stack size of a migrating thread was between 1K and 2K.

The PM2 [NM97] latencies are for thread migration between processes on a single 1
processor DEC ALPHA workstation using PVM for interprocess communications.

Both overhead and point-to-point latencies for Active Threads are presented in Table
3. In contrast to the other systems, Active Threads supports thread operations as well as
communication at the user level. This allows us to keep operation overheads small, relative
to the full operation latency. The overhead on other systems, although not reported, must
account for most of the point-to-point latencies: Ariadne [MR96] traps to the OS kernel for
TCP/IP communications; Millipede is based on kernel-level threads and must trap to the
kernel for most thread operations; PM2 traps to the kernel for interprocess communication.
As a result, Active Threads latencies are at least an order of magnitude lower than those of
the other systems while the migration overhead can be several orders of magnitude lower.

System null 1K 2K

Ariadne (SS5, Ethernet) 11ms 14ms

Millipede (Pentium/fast Ethernet)2ms ?70ms?

PM2 (ALPHA/1 processor) 2.2ms

ActiveThreads
(SPARCstation-10/Myrinet)

40µs
150µs

52µs
630µs

68µs
1.1ms

Table 3: Migration time on various systems as function of thread stack size.



December 16, 1997 16

8 APPLICATION STUDIES

We have implemented several non-trivial threaded applications that rely on thread migra-
tion for load balancing as well as to improve locality. The aim of these experiments is to
illustrate the performance of our thread migration system and its ability to utilize different
migration policies rather then designing new migration heuristics.

8.1  at_grep

The first application is a threaded version of “grep”, a standard Unix utility for regular ex-
pression-based search. It is based on a version of grep by Ron Winacott5. “at_grep” sup-
ports the full functionality of “grep”. It also supports several additional features such as the
recursive traversal of directories.

We start by describing the thread structure of at_grep and then examine how different
migration policies can be used by this application.

The basic structure of at_grep is quite simple6: it parses the input regular expression
and arguments and then starts a recursive search over the directory tree. Matches are printed
as the search continues.

There are two basic types of threads:search threads andcascade threads. A search
thread is created for each non-directory file found while descending the directory tree. Such
a thread searches a single file and outputs the result. A cascade thread is created whenever
the search comes across a new directory. Cascade threads are essentially producer threads
- they call into the OS kernel to obtain the directory information structure and then create
search threads for files in the directory and new cascade threads for subdirectories. If we
view the thread creation tree, the interior nodes of the tree are cascade threads while the leaf
nodes are search threads. Graphically, the relationship between directories, files, and dif-
ferent kinds of threads is shown in Figure 6.

The figure displays a snapshot of at_grep execution with the root of the Active Threads
source tree passed as an argument. It shows the mapping between the two kinds of threads

5.  The original sources are available from Sun Microsystems at http://www.sun.com/workshop/sig/threads/apps.html
6.  The original version used Solaris threads which have a large thread creation overhead and a complex work-bag structure
was used to avoid thread creation. With the much lower thread creation overhead of Active Threads, this complexity was
no longer necessary and was eliminated

Figure 6: Thread structure of at_grep.

search cascade



December 16, 1997 17

and files and directories.
Since the thread creation and management overhead in Active Threads is low, no at-

tempt was made to influence the scheduling between the search and cascade threads in the
SMP implementation. In all our experiments, this simple design resulted in close to linear
speedups on stand-alone SMPs.

Steal-based migration policy

We recompiled our application for the distributed platform. The sources remained essen-
tially unmodified - a single line change to a thread creation primitive designated search
threads as migratable and points where migration was most desirable were marked. In the
absence of any user migration specifications, Active Threads employ a simple thread steal-
ing policy - whenever a processor is idle it tries to steal work from any remote node which
has available work. The termination condition is detected when nodes have no threads and
there are no pending network messages.

These minimal changes resulted in a fairly competitive distributed implementation of
grep. Figure 7 presents the speedup due to thread stealing for the command “at_grep mutex”
invoked on the Active Threads source tree7.

In Figure 7, the effect of each additional multiprocessor on performance is indicated
by shading the corresponding area under the speedup curve.

Since the search threads are leaves of the thread tree, they generate no additional work
after migration. Cascade threads, on the other hand, generate more work and will therefore
keep the recipient busy for longer. The program was therefore modified to designate cas-
cade threads rather than the search threads as migratable. This version still relies on the de-
fault Active Threads stealing policy for migration. Although this change means potentially
greater load imbalance since sharing of tasks is performed at coarser granularity, all our tri-
al runs resulted in better performance as shown in Figure 7. Migrating cascade threads re-
duces the total number of migrated threads - once a thread is migrated, it generates more
work for a new home node. We will shortly see that despite the fair amount of I/O, at_grep
threads are short lived. Therefore, reducing the total migration overhead proved beneficial
in spite of the potentially greater load imbalance.

7.  Roughly 400 files in 50 dir ectories

Figure 7: at_grep and thread stealing

0 4 8 12
0

2

4

6

8

10

12

Processors

S
pe

ed
up

 

steal cascade threads
steal search threads 



December 16, 1997 18

Push-based migration policy

To illustrate the flexibility of the Active Threads migration interface and to possibly
achieve even greater performance, we next investigated taking direct control over thread
migration from the runtime system by inserting explicit thread push calls.

Two heuristics were investigated:

1. naive round-robin - a single node serves as a producer, all other nodes are consumers.
The producer node finds files, creates threads and pushes them to other nodes in a
round-robin fashion.

2. simple load-balancing - similar to the above policy, but the producer node keeps track
of the load of other nodes by recording the file sizes and destination nodes for all pre-
viously pushed search threads.

Figure 8 demonstrates the performance of at_grep under both push heuristics. While
the load-balancing heuristic resulted in performance close to that of the best stealing heu-
ristics, no further improvement was obtained. While simple, our load-balancing policy
could be improved at the cost of introducing extra complexity. Instead of exploring this av-
enue, we have chosen to exploit the file location information to guide thread migration.

Figure 8: at_grep and thread push policies.

Figure 9: Effects of locality-guided thread migration.

0 4 8 12
0

2

4

6

8

10

12

Processors

S
pe

ed
up

 

search threads (load−balance)
search threads (naive)       

0 4 8 12
0

10

20

30

40

50

60

Processors

T
im

e,
 s

ec
 

locality migration
steal directories 

0 4 8 12
0

5

10

15

20

25

Processors

S
pe

ed
up

 

locality migration
steal directories 



December 16, 1997 19

Locality-guided migration

All the multiprocessors in our network have local disks. While searching through several
home directories or large file repositories that span multiple disks, grep routinely examines
files located remotely. In fact, we feel that most applications of grep in a networking envi-
ronment follow this pattern. Exploiting file location information for thread migration so as
to perform search locally to data results in significant performance gains.

We have modified the push-based version to exploit file location information. The ba-
sic structure of the application remains unchanged. The search and cascade threads are cre-
ated for files and directories as was done previously. However, if after start-up the search
or cascade thread determines that data resides on a remote workstation, it pushes itself to
that machine.

Figure 9 compares performance of the locality guided policy with that of the best steal-
ing policy. Using file location information to guide thread migration resulted in significant
performance improvements. We observed super-linear speedups while searching through
large distributed source repositories. This is possible since, in the single processor case,
most of data resides remotely while in the distributed case most data is read from the local
disks.

Figure 9 also presents the absolute time in seconds for our trial runs of at_grep. A com-
bination of thread migration with file location information allowed us to keep grep as an
interactive tool even for fairly extensive searches. For instance, in our experiments, single
processor execution takes almost a minute, while a distributed locality-guided execution
takes about 2 seconds for the same inputs and patterns. In the case of grep, this reflects a
qualitative step from batch to interactive mode.

Thread granularity and migration

Figure 10 shows the thread lifetime distribution for two cases: a) data lives on the local

disk, b) data lives remotely. The histograms cover 95% of all thread lifetimes. The threads
are quite fine-grained in both the local and remote cases, though the median remote latency
(9.97 ms) is more than twice as high as the median local latency (3.98 ms). This reflects the
cost of going over the network to service a disk access.

Figure 10: Thread lifetime distribution for at_grep.

0 5 10 15 20 25 30
0

10

20

30

40

50

Time, ms

N
um

be
r 

of
 th

re
ad

s

Thread Lifetime (local files)

0 10 20 30 40 50 60
0

10

20

30

40

50

Time, ms

N
um

be
r 

of
 th

re
ad

s

Thread Lifetime (remote files)



December 16, 1997 20

It is clear that the cost of migration must be significantly lower than the average thread
life-time in order to make thread migration worthwhile. In fact, with any of the other thread
migration systems listed in Section 7.3, thread migration may not produce useful results for
this example8. Since the granularity at which thread migration is useful is determined by
the thread migration overhead, high-performance migration can have a qualitative effect on
the programming style needed to exploit migration.

8.2  Adaptive Quadrature

The second application is adaptive quadrature, a method used for numerical integration.
The value of integral

(1)

is computed within a given error tolerance. The domain  is divided into a set of
subdomains  with . According to the Simpson rule,  is
approximated by :

(2)

Now, the tolerance requirement  is met, if

(3)

holds and if the requirement specified in [MS75] holds for derivatives of.

For adaptive quadrature the domain  is recursively split into subdomains until (3)
holds. A split operation divides a domain into two subdomains of equal size. Our multi-
threaded implementation with threads initially divides  into  subdomains of equal
size. Each threads integrates in one of these subdomains and the final result is the sum of
all thread’s results.

As with at_grep, the thread lifetime of this application varies significantly, because the

8.  On the faster processors used in those systems, thread lifetimes would be even lower.

Figure 11: Adaptive Quadrature: speedup

f x( ) xd
a

b

∫ I f( )=

ET a b,[ ]
xi xi 1+,[ ] a x0 x1 … xn< < < b= = I f( )

A f( )

A f( ) 1
6
--- xi xi 1––( ) f xi 1–( ) 4 f

xi 1– xi+

2
-------------------- 

  f xi( )+ +
i 1=

n

∑=

I f( ) A f( )– ET<

i∀ : 4 f
xi 1– xi+

2
-------------------- 

  f xi 1–( )– f xi( )– 2ET
xi xi 1––

b a–
-------------------<

f

1 4 8 12
1

2

3

4

5

6

7

8

9

10

Processors

S
pe

ed
up

 

a b,[ ]

n a b,[ ] n
f



December 16, 1997 21

number of required split steps per thread depends on local properties of. The lifetime
could be predicted, but in general prediction is as expensive as the integration itself. With
all threads being independent, an arbitrary initial distribution is possible. All threads are
created on the same cluster and distribution is accomplished using only thread migration
initiated by the stealing mechanism. Thus, the programmer’s job is greatly simplified as
compared to using explicit distribution. Figure 11 shows the application speedup, while
Figure 12 shows the speedup with respect to the degree of parallelism of the adaptive
quadrature algorithm (n). All integrations were made over the domain  with

.

9 CONCLUSIONS

We have demonstrated a thread migration system which achieves high performance by
closely integrating user level threads with user level messaging. No compiler level support
is necessary for pointer identification, resulting in a portable system that may be used for
application programming or as a compilation target. The thread system defines an extensi-
ble event mechanism which permits a close integration between the thread and messaging
systems, while maintaining the modularity of both components.

We have also defined a set of performance metrics, that make a clear distinction be-
tween the latency and the overhead of migration. Our micro-benchmarks indicate that the
system is at least an order of magnitude better than existing systems. The performance
would be further improved on more modern hardware with the faster processors available
today.

The migration system is implemented as a set of library calls that move threads, inde-
pendent of any migration policy. We use the application at_grep to explore the effect of dif-
ferent migration policies, particularly locality based scheduling. The applications
demonstrate that high performance is obtained for both the irregular, fine-grained applica-
tions (grep and adaptive quadrature) that we investigated.

Active Threads were used as a compilation target for Sather, an explicitly parallel ob-
ject-oriented language, and for a distributed extension of C++.

Figure 12: Runtime and speedup for integration of  by adaptive quadrature.

0 200 400 600
100

200

300

400

500

n

T
im

e,
 s

ec
 

1 node (4 procs)  
2 nodes (8 procs) 
3 nodes (12 procs)

0 200 400 600
2

4

6

8

10

12

n

sp
ee

du
p 

1 node (4 procs)  
2 nodes (8 procs) 
3 nodes (12 procs)

f x( ) 10
1

0.00001 1000 20x( )sin⋅+
----------------------------------------------------------------- 

 sin⋅=

f

0 2, ](
ET 0.00001=



December 16, 1997 22

REFERENCES

BCF+95 Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov. N. Seizovic, and Wen-King Su. Myrinet :  A Gigabit-per-second Local
Area Network. in IEEE Micro, 15(1), February 1995.

Ber91 Brian N. Bershad.The Presto User Manual. Oct 91. Available from:
www.cs.washington.edu/research/compiler/papers.d/presto.html

BJK+96 Robert D. Blumofe, Cristopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Juli Zhou. Cilk :  An Effc ient  Mult i threaded Runtime
System , in Journal of Parallel and Distributed Computing, Vol. 37. No 1, August 1996.
pp 55-69.

CAL89 Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, Richard J.
Littlefield. The Amber System:  Paral le l  Programming on a  Network of
Mult iprocessors , in ACM Symposium on Operating System Priciples, December 1989

CHM97 David Cronk, Matthew Haines, Piyush Mehrotra. Thread Migrat ion in the
Presence  o f  Pointers , to appear in: Proceedings of the Mini_track on Multithreaded
Systems, 30th Hawaii International Conference on System Science, January 1997

CKO+94 Jeremy Casa, Ravi Konuru, Steve W. Otto, Robert Prouty, Jonathan Walpole. Adaptive
Migrat ion systems for  PVM , in Proceedings of  Supercomputing ‘94, pp 390 - 399,
Washington D.C., November 1994

FKT+96 Ian Foster, Carl Kesselman, Steven Tuecke. The Nexus Approach to  Integrat ing
Multithreading and Communicat ion , in ournal of Parallel and Distributed
Computing, Vol. 37. No 1, August 1996. pp 70-82.

GSD96 Seth Copen Godlstein, Klaus Erik Schauser, Dvaid E. Culler. Lazy Threads:
Implementing a  Fast  Paral le l  Cal l , in Journal of Parallel and Distributed
Computing, Vol. 37. No 1, August 1996. pp 5-20.

Hol97 Michael Holtkamp. Thread Migration with Active Threads. International Computer
Science Institute Technical Report TR-97-038.

ISW97 Ayal Itzkovitz, Assaf Schuster, Lea Wolfovich. Thread Migrat ion and i ts
Applicat ions in Distr ibuted Shared Memory Systems,  to appear in: The Journal
of Systems and Software, 1997

LFA96 David K. Lowenthal, Vincent W. Freeh, Gregory R. Andrews. Using Fine-Grain
Threads and Run-Time Decis ion Making in Paral le l  Computing, in Journal of
Parallel and Distributed Computing, Vol. 37. No 1, August 1996. pp 41-54

JLHB88 Eric Jul, Henry Levy, Norman Hutchinson, Andrew Black. Fine-Grained Mobil i ty
in the  Emerald System , in: ACM Transactions on Computer Systems, Vol. 6, No. 1,
pp 109 - 133, February 1988

MR96 Edward Mascarenhas, Vermon Rego. Ariadne:  Architecure  o f  a  Portable  Threads
System Support ing Thread Migrat ion , in Software - Practice and Experience, Vol
26(3), pp 327 - 356, March 1996

MS75 M.A. Malcolm, R.B. Simpso. Local versus Global Strategies for Adaptive Quadrature, ACM
Trans. on Mathematical Software 1(2), pp. 129-146, 1975.

NM97 R. Namyst and J. Mehaut. PM2: Parallel Multithreaded Machine. A computing environment
for distributed architectures. www.fifl.fr/~nemyst/pm2.html

PKBS+91 M.L. Powell, S.R. Kleiman, S. Barton, D. Shah, D. Stein and M. Weeks. Solaris SunOS5.0
Multithread Architecture. White paper from Sun Microsystems, Mountain View, CA.



December 16, 1997 23

QW97 Jürgen W. Quittek, Boris Weissman. Efficient Extensible Synchronization in Sather. To
appear in The 1997 International Scientific Computing in Object-Oriented Parallel
Environments Conference (ISCOPE ‘97), Decmber 1997.

SO96 D. Stoutamire and S. Omohundro. The Sather 1.1 Specification. International Computer
Science Institute Technical Report TR-96-012.

vCGS92 T. von Eichen, D. Culler, S. Golstein and E. Schauser. Active Messages: a mechanism for
integrated communication and computation, in Proceedings of the 19th International
Conference on Computer Architecture 1992.

WCD+95 Chih-Po Wen, Soumen Chakrabarti, Etienne Deprit, Arvind Krishnamurthy, Katherine
Yelick. Runtime Support for Portable Distributed Data Structures, in Workshop on
Languages, Compilers, and Runtime Systems for Scalable Computers, May 1995.

Wei97 Boris Weissman. Active Threads: an Extensible and Portable Light-Weight Thread System.
International Computer Science Institute Technical Report TR-97-036



December 16, 1997 24


