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Abstract
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1 Introduction

Active networks allow protocol processng code to be loaded into network nodes at run-time. Based
on an identifier in ead padcket header, a spedfic pieceof code is invoked as the padet travels
troughthe node. The main advantage of adive networks is the flexibility compared to traditional
networks. It is very easy to implement a new protocol, to remove arors in network software, or
even to provide spedfic processngjust for the duration of one session.

In traditional networks such as the Internet or proprietary networks, applicaion-spedfic processng
isonly dore in the end systems; the transfer protocols are the same for all applications. For exam-
ple, the IP protocol in the Internet is enabling many diff erent applicaions, and at the transport layer
there ae two major protocols. TCP and UDP. Traditional applicaions sich as e-mail, file transfer,
remote login, and retwork news could be mapped to this snall set of protocols. All transmissons
were point-to-point, and consequently it made sense to doappli cation-spedfic processngin the end
nodes only.

The next generation of networks will have to hande a much larger variety of applicaion traffic:
audio, video, workflows, and many more. Many o them inherently require multicast. In order to
suppat large numbers of recevers worldwide the multi cast function will have to be provided in al
network nodes. Such anoce is aready much more complex than a traditional router: it must hande
padket dugicdion, group address management, dynamic joining and leaving d group members,
and perhaps aso QoS-based multicast routing. The anount of processng required for ead incom-
ing padket isincreased considerably, and so is network management overhead. New signaling func-
tionality for multimedia includes resource reservation, QoS-based routing and stream-spedfic
padket filtering. New architedures and protocols are being designed and implemented at a much
faster rate than ever. Thus an adive network architedure all owing the fast deployment of new pro-
tocols and strean-spedfic processngin internal network nodes eans very desirable.

The propaosed transition from traditional data networks charaderized by the passve transport of data
towards adive networks alowing the network to perform computations on the data can be com-
pared to the transition from procedural programming to oljed-oriented programming. While the
former programming style dealy separates the nations of data and operations, objed-oriented lan-
guages combine these by introducing the concepts of classes, objeds and methods. In current net-
works padkets are passve antities carying data. From a router’s point of view the payload has no
semantics, it is just a sequence of bits. An interpretation of the data is only performed by the gopli-
cdions at the end nodks. This prevents a network from performing content- related adions, such as
droppng B-frames, but not I-frames of an MPEG video in the case of network congestion. We
clam that network performance ca be improved in many ways if the semantics of the data is made
avail able to the internal nodes. The ladk of knowledge prevents intermediate nodes from performing
context-specific adions on the padkets. This is a mgor obstade for introducing more intelligence
into the network.

The main idea of adive networksisto enable the network to perform context-specific computations
on the datain the padcets. Thus padets are transformed into dbjeds including operations to be per-
formed on them. In doing so, padkets are cnwverted from passve dunks of datato olgeds with spe-
cific semantics. The nodes of the network now neal to have the means to exeaute the semantic ac-
tions. Thisrequires computational power beyondthat off ered by current nodes.
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But active networks also have inherent drawbacks. Since a node loads and executes foreign code at
run-time there is a serious security exposure (the Trojan Horse problem). Also, since the run-time
code must be portable, it will typically be less efficient than code written and compiled specifically
for the hardware of a node. And the resource management problem within the nodes becomes much
harder: It is possible that the code loaded for one application stream competes with the code for an-
other simultaneous application stream for buffer space, CPU cycles, etc. We will discuss these is-
suesin detail when we present the ANTS and MO active network architectures.

The main goal of our work is to gain practical experience with two major active network systems,
the ANTS system developed at MIT [WGT98] and the MO system developed in Switzerland
[Tsch97]. We have installed both systems on a network of Sun workstations, and we have imple-
mented two experimental multicast protocols on each system. Both protocols inherently require
processing within the internal nodes of a network and are thus good examples for our purpose. The
first protocol is a robust audio protocol, adding a link-specific degree of redundancy to an audio
packet stream, depending on the observed transmission quality. The second protocol transmits a
layered, rate-adaptive multicast video stream. Here the idea is to optimize link load in the multicast
tree by only forwarding as much of the video bit rate as at least one of the downstream receivers
needs.

The remainder of this paper is structured as follows. In Section 2 we present the ANTS and MO ar-
chitectures in detail. Section 3 introduces the two protocol examples and their implementation. In
Section 4 we discuss architectural insights, compare the performance of the two protocols on both
systems, and report the lessons we learned. Section 5 presents related work, and Section 6 con-
cludes the paper.

2 ANTSand MO: Two Architectures for Active Networks

ANTS (Active Network Toolkit System) is atoolkit for prototyping active network applications. It
was developed by the TNS group at MIT [WGT98]. The description of the architecture and the code
used in our project are based on the release of September 1997. ANTS is a distributed system run-
ning in user space on top of UDP. It is programmed in Java.

MO (M-zero) was designed and implemented by Ch. Tschudin [Tsch93][Tsch97]. Its purpose is to
provide a testbed for mobile code, with applications in networking and distributed systems. The MO
prototype runs on workstations over UDP, Ethernet or seria lines. It is programmed in the MO lan-
guage, which has a flavor similar to Postscript.

In principle active network architectures can be classified into those where each packet carries its
own code, to be executed as it passes an active node, and those where code is cached in a node and
only loaded on demand. MO fallsinto thefirst class, ANTS into the second.

In the layered network model the active network layer replaces the IP layer, i.e. handles the proc-
essing and forwarding of datagrams at layer 3. But since layer 3 is usually in the OS kernel, and
kernel programming is quite tricky, the active network prototypes run in user space on top of com-
munication sockets.



2.1 TheANTS Architecture

Themain purpose of ANTS isto enable an easy development and deployment of network protocols.
The nodesin ANTS are cdled active nodes. Instead of passve padkets ANTS has capsules which
trigger spedfic processng when passng an adive node. The pieceof code to be exeauted is identi-
fied by areferenceto the forwarding routine in the header field.

In ANTS code is loaded on demand by a sequence of capsules cdled a code group, a colledion o
related capsule types whose forwarding routines are transferred as a unit by the ade distribution
system. A protocol is a olledion of related code groups that are treaed as a single unit of protec-
tion bythe adive nodes.

2.1.1 Node Structure

An adive noce in ANTS has two cadies, a mwde cate storing Java byte ade, and a‘node cabe
storing dhta. In addition it has a dasscd routing table that indicaes the next hop to be taken to
read a destination nod. When a cgsule arives at a node the channel thread picks it up and proc-
essesit until completion. Capsules have the right to spawn their own threads. The evaluate method
of the dassof which the cgsule objed is an instance is exeauted. Usualy it performs ome proc-
essng onthe casule' s content and forwards it to another node or delivers it to an application. New
cgpsules of the same protocol can also be generated and injeded into the network. The structure of
an adive noce is gown in Figure 1. For a more detailed description the reader is referred to
[WGT98].
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Figure 1: The structure of an ANTS node

All protocol code is written in Java using the ANTS API. An instance of the dassnode represents
the locd runtime for an adive node. This classoffers srvices that can be used during the process-
ing d acgosule: accessto the routing table, a cade for soft-states and registration of ANTS proto-
cols.

2.1.2 Packet Structure

As mentioned abowve, padkets are cdled capsulesin ANTS. The structure of a cgsule is very sm-
ple: It caries an identifier for its protocol and particular cgpsule type within that protocol, source
and cestination address the remaining resource aedits, the aldressof the previous adive node, and
appli cation-spedfic data. Hencethereislittl e overhead.

4



The ANTS Java API provides the astrad class Capsule for this representation, and user-defined
cgpsule types must be subclasses of this class The semantics of a capsule is determined by the
method evaluate. It is cdled upa arrival of the cgsule & an adive node. Thus an application class
must provide an implementation o this method.

In ANTS seriaizaion and deseriaizaion methods must be implemented, i.e., a bit stream repre-
sentation d the casul€’ s data structure must be defined by the programmer.

2.1.3 Dynamic Code Management

The ade representation in ANTS is the Java byte mde format. If the code required by a capsule is
foundinthe mde cadie, it is exeauted. If nat, the adive node generates arequest capsule, sendsit to
the upstream neighba and waits for the code groupto be downloaded into the code cade. Oncethe
code isthere, it wakes up deguing cgpsule threads, and they exeaute the mde. The rationale behind
this concept isthat at least the originator of a cgsule shoud have the mde required for its process-
ing. Thus new code is injeded into the network by the gplicaion that creded the capsule. The
loading is performed with a spedalized network clasdoader. Code is removed from the cate a-
cording to the LRU principle.

2.1.4 Resource Management

Controlli ng the resources of an adive noceisthe basisfor guaranteeng quality of service In ANTS
eat cgpsule cariesaTime-To-Live (TTL) field initialized at credion time. The value is deaeased
every time anode puts data into the cate, generates a new capsule, or upon transfer to another
node. Capsules with a negative TTL value ae discaded. A cgpsule caand accessits own TTL
field; this is an example where seaurity is based on an implicit feaure of the programming lan-
guage. If a casule spawns a dild cgpsule the remaining TTL is distributed over the two. There is
no constraint on the size of the data put into the cade by a cgsule. Furthermore, there is no restric-
tion onthe processng time for eat capsule.

2.1.5 Security

Seaurity is a very criticd issue in adive networks snce foreign and unknavn code is exeauted in

the nodes. One of the founditions for the seaurity in ANTS lies in the Java system itself. Using a

high-level programming language with well defined accessrules has many advantages:

» Capsules can ony be manipulated throughthe puldic interfaceprovided.

* Theservicesan adive node offers are dso clealy defined and canna be changed by a casule.

* Esentia methods can be dedared final such that subclasses canna re-implement them.

* The Javavirtual madine performs byte wde verificaionto chedk whether the code comes from
a compiler conforming to the language spedficaion.

* The concept of the seaurity manager of Java can be used to tailor the accesof the cgosules to
the services of anock.

But adive networks introduce other seaurity risks which canna be handled in a such a straight-

forward manner. An example is protocol spoding. To prevent thisthe ANTS system implements a

clever seaurity chedk: eat cgpsule caries an identifier of its protocol and particular cgpsule type.

The identifier is based onafingerprint of the protocol code: it is computed as a hash function over

the cde itself. Thus the probability of a capsule invoking the wrong peceof code is negligible.

Some agpeds such as name orflicts gill have to be solved in the ANTS system.



2.2 The MO Architecture

What is a capsule in the ANTS architectures is called a messenger in the MO system: Messengers
are programs exchanged between MO nodes. Messengers were proposed as a replacement of the
classical message exchange paradigm used in networks today; they favor an entirely instruction-
based way of communication. The MO environment is an implementation of this approach. It con-
tinues to serve as an exploration tool for finding the minimal services an active node should pro-
vide, and as a programming environment where instruction-based communications can be studied
for active networking, distributed operating systems and distributed artificial intelligence.

2.21 Node Structure

Basically there are only four major elements insde an MO node: concurrent messenger threads, a
shared memory area, a Ssmple synchronization mechanism (thread queues), and channels towards
neighboring MO nodes (see Figure 2).
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Figure 2: The structure of an MO node

On arrival, each messenger is executed by an independent and anonymous thread of control. These
threads have their own private memory space and are fully protected from each other - they have no
identifier under which they could be addressed. Messenger threads can coordinate their activities
through the shared memory area where they can deposit arbitrary data structures under self-chosen
names o that other threads can access them. Thread queues are a way to serialize the execution of
threads in order to avoid race conditions but can also be used for more general signaling purposes.
Channels enable messenger threads to send new messenger packets to neighboring nodes: in the ba-
sic model routing functionality is not provided, so MO nodes only talk to neighbors. The current MO
implementation maps messenger transmission to UDP, Ethernet or serial line communications. For
the multicast applications we describe in this paper we have added support for an ANTS-like net-
work with routing tables at the messenger level.

2.2.2 Packet Structure

MO packets have a very simple format: a header, a code payload and an optional data payload. The
header contains a version field, length information and a checksum that covers the header and the



code but not the data. Padkets with an invalid chedksum are simply dropped which is consistent
with the unreli able datagram semantics of the MO channels.

A mesenger's code field contains the program that the MO patform will exeaute. Messenger code
is written in a PostScript-like language, the MO language. It is a high-level language that inherits
from PostScript the main concepts of operand, dictionary and exeaution stak as well as the main
data manipulation and flow control operators. It ladks everything related to rendering fonts and im-
ages. The MO language dso departs from PostScript with resped to the messenger- spedfic opera
tors and a few new data types as well as the syntax. Most standard operators have single-letter
names (which the programmer can easily redefine) that can be put badk to bad, yielding compad
programs (very similar to bytecode). The MO interpreter itself iswrittenin C.

2.2.3 Dynamic Code Management

MO deliberately has no explicit code cading a code loading functionality. The basic exeaution
model smply assumes that code is ipped with every messenger. This works quite well for small
protocols where the @mde is only afew hunded bytes long For more important code sizes messen-
gers implement their own cading method by storing the de in the shared memory area of anode
under a chasen name (usualy some randam key, but this could also be the ade's MD5 fingerprint):
subsequent messengers just cary this reference insde a minimal instruction sequence that looks up
the stored code and exeautes it. Note that a wde deployment scheme can be implemented at the
mesenger level. Such schemes can aso be shared with ather messenger-based applicaions. This,
however, requires sme agreements abou the way the code pieces are internall y organized, the way
it shoud be distributed (prefetching a on-demand, best-eff ort or reliable), and the palicy how long
it shoud remain in the store (i.e., who will pay for its gorage). The paint of view of the MO design-
ersisthat it isimpossble to devise adynamic code management scheme that suits all needs, so ore
better exploits the full flexibility of mohile mde.

2.2.4 Resource Management

Eadh MO node manages its interna resources independent of other nodes. MO relies on an ecn-
omy-based model of resource dlocaion: al resources have price tags which depend a the node's
adual load for a given resource, but also onthe demand and off er from the running threads. Mes-
senger threads are charged for their adivities. When they run out of money they are silently re-
moved from the system. On arrival, eadcy messenger thread oltains an acourt with some start
money. Theamourt is aufficient to do some exploration inside the node and eventually send ou an-
other messenger.

Acoourts are dso used for controlli ng the number of entries inside the shared memory area Each
entry must be "sponsored” by an acoun: by default this is the acourt of the threal creding the
entry, but messengers can also add spornsoring ac@urts to entries they did nat creae. Periodicdly,
the system charges the sporsoring acaouns depending onthe anournt of shared data space they
sporsor. If for an entry there is insufficient money left on its sporsoring acourts, the entry is re-
moved. This sponsoring model implementsin fad a user controllable ‘memory deca/’ or ‘soft state’
medhanism.

225 Security

In MO, emphasis is put on bulding seaurity with messengers instead of providing rich services at
the system level. There is no authenticaion between MO nodes, nor has a messenger some identity
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attached to it that would allow authentication. Safety-related questions on resource consumption
have to be handled by controlling the flow of money. Messengers can effectively protect themselves
against other messengers by having full control on which information they pass on to others in
which way. Messengers cannot be killed by others smply because there are no thread handles or
identifiers - the only way that the anonymous threads can interact is via the shared memory area and
the synchronization mechanisms where in both cases a thread can control the degree of involvement
and risk it is willing to accept. Access control for node-specific system resources is controlled by
some agreement between a messenger and the system (e.g., a password). What MO does provide are
some basic cryptographic operators that can be invoked by a messenger. Currently these are DES
and the MD5 hash function.

2.3 Summary of Featuresof ANTS and MO
We summarize the most important features of ANTS and MO in Table 1.

Table 1. Summary of the main features of ANTS and MO

ANTS

MO

Runtime Environment

Java Virtua Machine

MO interpreter

Installation Requir e-
ments

JDK 1.0 or higher

BSD or SVR4 UNIX, ANSI-C

Programming L anguage

Java

MO

Link Layer

UbP

UDP, Ethernet, serid lines

Code Distribution

system-supported, separated from nor-
mal capsules, codeis cached

each messenger carriesit code, cache
can be implemented by messenger

Lifetime of capsule/msgr | user-defined TTL potentially unlimited

Procreation limits decrementing TTL for creating new none. new start money on arrival,
capsule money can be pooled

Cache usage decrementing TTL for entering data | oad-dependent prices

Cache removal policy

user-specified TTL, LRU replacement
policy

sponsoring of entries determines
lifetime

CPU cycles

no control

limited by available money

Protection against for-
bidden actions

based on Java security mechanisms

based on MO interpreter

Protection against code
spoofing

viafingerprint, hashed over the code

messengers carry their own code; no
further system support

3 Two Protocol Examples

In this section we introduce two protocols for multimedia streams that we will use to demonstrate
the usefulness of active networks. We have implemented both of them with ANTS and MO. The
first protocol, Robust Multicast Audio, is an example of how the performance and efficiency of an
existing protocol can be improved by adding application-specific compute power to internal nodes.
The second, Layered Multicast Video, is an example of how active networks technology enables the
quick development and deployment of a new protocol that optimizes network-internal bandwidth
usage in multicast trees. Both applications involve continuous media, and both use the same muilti-
cast algorithms.

3.1 An Active Multicast Protocol

Our multicast tree management is based on the algorithm provided with [WGT98]. It uses two types
of active packets (from now on we will use the term active packet as a common way to refer to cap-
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sules or messengers): subscribe active packets and multicast active packets. The subscribe active
packets are sent periodically by the receivers towards the sender of the group they wish to join. Un-
like [WGT98] we accumulate subscribe packets in intermediate nodes to avoid a subscribe implo-
sion problem at the sender. These active packets install forwarding pointers in the nodes they trav-
erse. These pointers are removed if they are not refreshed on time. The multicast active packets
carry the real multicast data. They are routed along the distribution tree built by the subscribe active
packets. The multicast implementation is thus based on the soft-state concept. Similar to [WGT98]
we have not implemented an optimal tree routing algorithm; QoS-based multicast tree routing is
beyond the scope of this paper. The paths of these active packets are shown in Figure 3.

Active packets types:

,,,,,,,,,, —  Multicast

~
~
~
~
~
\::

Figure 3: Multicast packet forwarding in an active node

-+ SQubscribe

3.2 Robust Multicast Audio

The first protocol we have implemented is Robust Multicast Audio (RMA). It is a protocol for im-
proved-quality multicast audio transmission over best-effort networks, based on an encoder/decoder
developed by M. Isenburg and H. Chorduraat ICSI [1se97]. The encoding is based on wavelets, and
the system is caled WAR (Wavelet Audio Radio). In our protocol, the link between the audio
server and each audio client is subdivided into several point-to-point links internal to the active
network. On each internal link, the audio stream only carries the amount of redundancy optimal for
the loss currently observed on that link. On an incoming link the active node reconstructs the origi-
nal data, on the outgoing links it adds the appropriate amount of redundancy. Figure 4 illustrates the
link-dependent redundancy in the RMA protocol.

Compared to the classical end-to-end solution one of the advantages of this protocol is that it pro-
vides better performance since the losses on each internal link are recovered independently and thus
do not add up. Another advantage is that redundancy is only added on those internal links where it
is actually required, leading to a more efficient global use of the network resources than end-to-end
redundancy.

The implementation of the RMA protocol uses three types of active packets. the audio active pack-
ets that carry the audio data, the redundancy request active packets that inform the active nodes
about the losses on the internal point-to-point links, and the audio subscribe active packets that are
used for multicast group subscription. The audio active packets are grouped in sequences, each con-
ssting of N + R active packets, where N is the number of original audio packets and R the number
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of redundancy packets added for internal link i. An active node waits until al the active packets
belonging to a particular sequence have arrived. If losses occurred it reconstructs as many of the N
original packets as possible. Before sending the packets on each of the outgoing links the node adds
the appropriate amount of redundancy for that particular link. Each active node is instructed to
monitor the losses in the incoming data stream and transmits this monitored value to the upstream
node, using a redundancy request active packet. This packet will adjust the amount of redundancy
added on that link in the future. Figure 4 shows the paths of these active packets and the algorithm
executed at the active nodes.

Active packets types:
— Audio
- * Audio Subscribe
> Redundancy Request
R, - Redundancy onlink i

Li-Lossesonlinki

m
/ % \ N + Rz
/ - o N N L
/ ) \ Audio
K m ', active packets
! \
\
/ @‘ | Redundancy
N+Ri-L 1, W N  Redundancy | | Request (L2)
\ — \
Audio | 8 audio  Generator | I
active packets'| M packets ) ! m |
\ ‘ A - | N+Rs_
Y : | S /" Audio
Redundancy | | m /' active packets
Request (L 1 ) \\ : | //
AN L max /,’ Redundancy
s (L2,Ls) L Request (L 3)

Figure 4: Link-dependent redundancy in the RMA protocol

In order to avoid modifying the original WAR application programs we integrated them into the ac-
tive network through gateways. The client gateway is an application attached to an active node that
provides a server interface for its communication with the WAR client. The server gateway plays
the same role at the other end of the link, providing the interface to the WAR server. Thisis shown
in Figure 5.
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Figure 5: Gateways for the RMA protocol

The protedion scheme used in ou implementation is based on adding redundancy to a group of
padkets and waiting for al padets of a sequence d ead adive noce for recvery, i.e. it isa dass-
cd forward error corredion (FEC) scheme. The redundancy generated in our current version is
based ona smple XOR scheme; a more sophisticaed adaptive redundancy could also be eaily im-
plemented [LBET93]. A mgjor advantage of radio broadcast is that delay is not a criticd fador: a
signal that arrives with afew seconds delay can till be said to be red-time sincethere is not imme-
diate feedbadk from the recaver to the sender. This posshility of introducing delays allows to ac-
cumulate several seconds of encoded audio signa at the sender and make its transmisson more ro-
bust by adding redundancy. In the original WAR system this redundancy is added at the end nodk;
in ou protocol it is added at the intermediate adive nodes.

It would be very easy to replacethe FEC scheme by an ARQ retransmisgon scheme and experiment
with a variety of algorithms, measuring delays, throughpus etc. Since the nodes are adive we can
even exchange algorithms at runtime, a major advantage over passve networks. For example we
could use ARQ when the link delay is very short, and FEC otherwise.

3.3 Layered Multicast Video

The second potocol we have implemented on top of the two adive network systems is a layered,
rate-adaptive multi cast video protocol. One of the main problems of today’s MBonre is that it cannat
satisfy diverging requirements of a heterogeneous st of recevers becaise the multicast padket
stream is transmitted to all recavers at the same rate and in the same format. In a typicd multicast
session some users might have high-spead end systems and high-speed accessto the network while
others might have low-end PCs and ISDN or modem conredions. If the transmisson rate of the
sourceis high considerable bandwidth is wasted onlinks to low-speed recavers. If it islow high
spead end systems will experience low quality. It is desirable to set up a multicast treewith the op-
timal dataratesfor all recavers. Thisisill ustrated in Figure 6.

Our layered multicast video system off ers a solution to this problem. The video is encoded in multi-
ple layers such that layer O provides aminimum quality stream and ead layer i+1 adds more quality
to layer i. Each adive node participating in the multicast sesson uncrstands the requirements of its
subtrees and forwards only the crrespondng video layers downstream. With adive signaling padk-
ets the nodes inform their upstream neighbas: the layers they wish to receve ae the maximum re-
quired by their subtrees and the locd application (see Figure 6). The adive nodes filter out layer
padkets at runtime acording to thisrule.
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Figure 6: Distribution treefor layered multi cast

The layered video encoder/decoder we have used to test this protocol is the Scdable Video Codec
developed by W. Tan and A. Zakhor [TCZ96]. It is based on subband coding, a non-standard but
very efficient video coding techndogy [TZ94]. Each padket in the encoded strean caries a layer
identifier; the data in ead padket belongs to ore layer only. Thus the filteringin ou adive nodesis
very simple: we can throw away entire padets if their datais not needed dowvnstrean. As a onse-
guenceour adive filter code isvery efficient.

The integration of thistod with the adive network has been dore in the same way as for the robust
multicast audio protocal, i.e., using gateways for the interfacebetween the tod and the adive net-
work. We use the same multicast tree mechanism: subscribe adive padkets to inform upstrean
neighbas abou the layers needed, and video multicast adive padets to carry the video data down-
stream. Bandwidth requirements are also implemented as soft-state, i.e. they time out and must be
refreshed if still needed.

In the video application the flexibility of adive networks would also allow us to add enhancements
to the protocol. For example, in a loss/ network environment we muld add redundancy to proted
the data, giving a higher priority to the most important pieces of data by adding more redundancy to
the lower layer padckets. Thiswould be similar to ICSI’ s Priority Encoding Transmisson (PET) ap-
proach [AL96] but adapted for layered video and implemented hgp-by-hop rather than end-to-end.

We will now illustrate the mde the programmer has to write for ead o the two adive network
systems. As an example we present the routine that filters the video multicast adive padets at run-
time. Figure 7 shows the Java ade runningin an ANTS adive node. As explained abowe this code
pieceis part of a protocal; it is downloaded on demand from the upstrean neighba and caded.
Figure 8 shows the MO code running in an MO adive node. This code is nt with ead subscribe
mesenger, extraded and then exeauted in alocd tread.
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publ i c bool ean eval uat e(Node n) {
int |ayersRequested = O;

Vi deoMul ticastinfo vinci = n.getCache().get(group, target);
if (vnei !'= null) { /1 Am | interested in this se ssion?
if (vnei.links !'= null) /1 Do | have sons?
for (int i =0; i <vnti.links.length; i++) { // processeach outg. link
| ayersRequested = vnti.links[i].layers;
if (layer < | ayersRequested) /1 deliver only if interested
n. rout eFor Node(this, vnti.links[i].address);

/| if attached application is interested in layer: deliver
if ((app = n.getApplication()) !'= null && app.getlLayers() > |ayer)
n. del i ver ToApp(this, dpt);

return true,

}
Figure 7: Code of avideo multicast capsulein ANTS

# MO code for the central multicast dispatch loop for layered video
# ( using the long operator and variable names)

# variables:
# leveldict # dict with the downstream clients' requested layers
#  outdict # dict with message queues to store new payloads

# on the operand stack (growing downwards):
#  the payload to be multicast
#  the payload's layer number
| evel di ct copy { # loop over all clients
2 index gt { # if client request > layer number then:
outdict 1 index get get the client's message queue
1 neg 4 index put append the current payload to it

HHHFHHF

0 setqueuestate wakeup the client's downlink procedure
H else:
pop skip this client
} ifel se
} loop

Figure 8: Code of avideo multicast messenger in MO

4 Experimental Results and L essons L earned

The implementation of the two multicast protocols with the two active network systems was a very
interesting experience. It provided us with concrete insights into the practical consequences of ar-
chitectural decisions and enabled usto evaluate the performance.

4.1  Architectural Comparison

ANTS and MO are similar in their basic approach to active networking. However they differ in sev-
eral major architectural aspects such as programming language, application programmer interface
and execution model which we will discussin the following.

4.1.1 Language

The programming language used in ANTS is Java. Although capsules are processed in the same ad-
dress space, an application programmer does not need not worry about uncontrolled manipulation of
capsules. capsulesin a node are objects that can only be manipulated by the public methods defined
in the class. Developing an ANTS application is relatively easy because a user only has to write
subclasses for given classes. Since development tools for Java are abundant, local testing and de-
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buggngiswell suppated. The Java skill baseisincreasing very quickly which all ows protocol de-
velopers to concentrate on the protocol logic rather than new language ancepts.

MO onthe other hand predates Jva. PostScript had proven to be asuccessul portability techndogy.
It is therefore quite logicd to extend the gproach of communicating with a printer or a screen to
communicaion protocols in general. MO, like Java, is based onan interpreter which also suppats
multit hreading. Compared to Java the code written in MO is harder to understand, and the PostScript
skill base is much smaller.

MO aso has the disadvantage of not being objed-oriented; in recent yeas objed orientation has
proven to be a powerful software engineaing paradigm. On the other hand the programmer has
more flexibility in MO; for example dynamic code aedion for compresson a encryption purposes
iseasier.

4.1.2 Application Programmer Interface

A considerable alvantage of ANTS is that applicaions can be written in Java and then exeaute in
the same environment with the adive network functionality: The applicaion beames an ANTS
node. The MO patform looks more like arouter. The fad that the appli cation code and the code for
the adive network nodes can be written in the same programming language avoids an “impedance
mismatch' at the programming level; it aso avoids time-consuming and error-prone data represen-
tation transformations. For the video multicast application, the MO implementation used three dif-
ferent languages. MO for the multicast protocol, C to implement the gateway between the eisting
video software and Tcl/Tk to add agraphicd user interface

4.1.3 Execution Mode

Both systems foll ow the same model in that upan arrival of an adive padet the correspondng code
is exeauted. MO creaes an independent thread for ead incoming adive padket to perform this proc-
essng, thereby providing different address paces. In ANTS there is (by default) a single thread
cdled ChannelThread which is used by all cgpsules. This has a disadvantage: if the processng d a
cgpsule takes alongtime (or even worse, an infinite loop occurs) the noce is blocked, and incoming
cgpsules may be lost due to bufer overflow. It is up to the capsule programmer to spawn his/her
own threads $oud the expeded processng time be long For our video applicaion the processng
load was very low, so no rew thread was creaed. In the audio applicaion athread was not creaed
for every cgpsule, but only for cdculating the redundancy. This flexibility proved to be very useful
in the ANTS applicaions. We observe atrade-off between better performance and the danger of
blocking processes.

4.2 Packet Structure

ANTS and MO rely on user-defined serialization, and in both cases it is easy to get things wrong
The ANTS API provides procedures to concaenate portable bit representation d simple base types.
This proprietary approach shoud be replacel by the Java 1.1 seridizaion padkage. MO provides a
procedure for turning any smple data type into an MO code string that is able to reaede the en-
coded value. Serializing a sequence of smple values typicdly consists of concaenating the mde
strings: after exeauting the full string al values will be found on the operand stack.

It is an open question whether fragmentation of large adive padkets shoud be under the control of
the programmer. In our experiments we did not have the problem of limitsin the size of an adive
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padket: al ANTS cgpsules and MO messengers fitted into a single UDP padket, which was the
transport medhanism we used. Doing the same with Ethernet would na have been passble with
ANTS because some wde cgsules would have been too large.

4.3  Dynamic Code Management

A magjor difference between ANTS and MO is their respedive gproac to code distribution and
cading. ANTS provides a ade-on-demand mecdhanism and implements a code follows the path of
the capsule pdicy. This has the advantage that the programmer does not have to program the code
distributionfor ead new protocol. MO has no system suppat for this: ead messenger must contain
the mde it wants to exeaute. Messengers can implement their own code cating mechanism if de-
sired.

MO's flexibility proved useful for the two multi cast appli caions that we implemented. The upstream
subscribe messengers that crede the multicast tree aie dso resporsible for code distribution; they
install the code for the dient-spedfic delivery of multicast messengers. The downstrean multicast
mesengers consist of avery small lookuproutine (12 bytes) for invoking this preinstalled code. In
our opinion it is an open question whether code distribution by the sender or code distribution by
the recaver is better for arecever-oriented multi cast scheme.

This is an example of how the cde distribution medanism provided by ANTS and MO influenced
our protocol implementations. Because MO daes not come with a standard code distribution proto-
col, no code-on-demand functionality is used: code is distributed in every subscribe which helps to
keep the multicast messengers snall. Because ANTS provides a mnvenient default code distribu-
tion medhanism, no attempts were made to implement code install ation for downstrean flows by
upstrean capsules. The difference in the code distribution philosophy is also visble & another
level: because ANTS impases that code exeautable by a cgsule belongs to the same protocol it is
not possble to have leares push their proprietary delivery methodinto an alrealy existing multi cast
tree All possble "‘methods have to be known at protocol registration time. In MO thisisnot an is-
sue, dthoughsome alditional effort would be necessary for seauring the interadions between mul-
ticast messengers and code ingtall ed by upstream padets.

4.4  Resource Management

In bah architedures resource management is a subjed for further study. In ANTS amost al criticd
resources are not covered yet. CPU time, for example, can na be bound thread spawning is not
monitored, bandwidth is not taken into ac@urt, nor is the amount of memory grabbed by a casule.
The handing of resource aedits is smple; operations like storing dita in the node cate dways
cost one unit, regardless of the current memory and cade utili zation. In MO the resources CPU
time, bandwidth, thread creaion and memory usage (locd to athread aswell as $hared memory) are
all monitored. Resource usage @sts a price depending onthe adual |oad for that resource

A first differenceisthat ANTS uses a fixed-price model whereas MO uses |oad-dependent pricing.
The fixed-price model has the advantages of predictable st and lower overhead whereas the vari-
able-price model has the alvantages of signaling the load and money-based priorities. In bah mod-
elsit remainsunclea how the initial amourts of money are assgned to the gplications creding the
adive padkets.
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45  Security

The main problems for a secure execution environment in an active node are:
to provide a separate execution space for each active packet,

to control the allowable actions performed during packet processing,

to load the code securely over a public network,

to identify the code to be used for an incoming active packet, and

to identify the producer of an active packet.

agrodE

For problem 1 both systems provide separate execution spaces for each active packet. The only se-
curity exposure is the cache or shared memory in a node. Packets would have to guess the keys gen-
erated by other packetsin order to intrude.

To solve problem 2 ANTS provides its own security manager based on the Java security model to
restrict allowable operations. It is not necessary to restrict operations explicitly in MO because the
language only provides allowable operations (no file /0, etc.).

There are no concepts to solve problem 3 in ANTS; in its current version it ships the code over the
network in plain format. In MO it is up to the programmer to encrypt the code.

For problem 4 ANTS uses fingerprints computed over the byte code to prevent code spoofing. In
MO there is no such protection for messengers.

To deal with problem 5 each ANTS capsule has a source address that cannot be changed from
within the ANTS system. In MO there is deliberately no source address field in messengers.

4.6  Runtime Efficiency

We evauated the performance of our protocols in terms of throughput and overhead. Because
ANTS and MO are active network nodes running at the application level, their performance cannot
be compared with the performance of an active or passive network running at the network layer.
The purpose of our performance tests was to gain insight into the impact of the processing required
by our protocols. We compared the relative performance of the two active network systems, and our
measurements gave us hints how an active node reacts to changing processing requirements.

We ran most of our experiments on a single 10 Mbps Ethernet segment using Sun SPARC5 work-
stations under Solaris 2.5. In those cases where the Ethernet became the bottleneck we used a 155
Mbps ATM network. The Java version was JDK 1.1 without a JT compiler. The experimental
setup consisted of a workstation generating packets, an intermediate workstation routing these
packets, and a third workstation receiving them and making the measurements. We wanted to
measure the maximum throughput the intermediate active node could route. In this scenario we
tested both of our multicast protocols. we measured the maximum throughput that an active node
could route with less than 0.1% losses. The results are shown in Table 2. The generation of packets
at the source was done with bursts of packets with intervals of 20 ms between them. In the audio
protocol we enforced the active node to always add 50% X OR redundancy in order to evaluate the
impact of the redundancy computation (the throughput given in Table 2 includes these redundancy
packets).
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Table 2: Measurements for video/audio active packets

Throughput [pkts/s] ANTS | MO
Video (1324 bytes/pkt) 133 195
Audio (1090 bytes/pkt) 100 155

In order to better understand the decrease in throughput due to active network technology we also
implemented small application programs that forwarded UDP packets with the same payload
through the network. We did that in C and in Java. We aso wrote versions of a protocol for ANTS
and MO that only forwarded packets without any further processing. The measurement results are
shown in Table 3. We see that MO provides a better throughput than ANTS. Thisis mainly due to
the programming language used to implement the interpreter: C in the case of MO, Javain the case
of ANTS. However MO pays a higher price for performing computations on the active packets in
the node. This can be observed from the fact that its throughput decreases considerably in the full
video and audio protocols. It should be noted that the MO node ran with resource management en-
abled while the ANTS node had virtually none.

Table 3: Measurements for packet forwarding

Throughput [pkts/s| C C Java ANTS MO
ATM Ethernet | Ethernet | Ethernet | Ethernet

Payload 1324 bytes 1000 400 200 166 360

Payload 1090 bytes 1100 500 200 166 360

Active networking introduces two types of overhead: code shipping and additional header fields.
For our protocols the size of the code to be shipped was 800 bytes in MO and between 1600 and
4000 bytesin ANTS. However, since the code is shipped infrequently (in ANTS it is loaded at the
beginning of the session, in MO it is sent with every subscribe capsule), thisis not much of a burden
to the network.

The overhead carried with each active packet was 68 bytesin ANTS (al of them in the header) and
32 bytesin MO (20 bytes in the header and 12 bytes of code). Considering that the data payload is
1090 bytes in the audio and 1324 bytes in the video this overhead is minimal.

4.7  Code Size and Reusability

The size of the code we had to write was relatively small. Table 4 gives an overview for the ANTS
and MO implementations.

Viewing the network as a distributed programming system introduces the software engineering as-
pect into protocol development. In designing our two applications we found that they have a lot in
common, therefore code could be shared. Since both protocols are multicast protocols, the multi-
casting algorithm could be separated and the corresponding code reused.
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Table 4: Code sizes (in lines of code)

ANTS MO
Capsule Gateway User Inter- M essenger Gateway User Inter-
code (total) code (client face code (total) code (client face
in Java and server) in Java inMO and server) inTcl/Tk
in Java inC
Audio 500 280 450 170 460
M ulticast
Video 260 150 280 170 600 70
M ulticast

The use of Javain ANTS made reuse of the multicast code very easy: A genera multicast capsule
class was implemented and refined for both applications. This would even allow us to experiment
with different multicast protocols by just plugging in the new classes. It would also be possible to
reuse a multicast class developed by athird party in our applications, as long as this class adhered to
afixed interface. We expect to see special APIs for protocol development in active networks in the
future. These will make it even easier to develop and exchange new applications.

5 Related Work

The term active network is relatively young, but quite a few groups are aready working on the
topic. Good overviews of active network projects can be found in [Ten97] and [Mun97].

There are many similarities between active networks and mobile agent systems (mobile code). A
good overview of mobile agent projects can be found in [RP97]. The main difference is that active
networks use the concepts for network layer processing whereas mobile agent systems run as appli-
cation programs. Both have dynamic code deployment, caching, resource control and many other
components on common.

In the area of multimedia communications the idea of media scaling and media filtering has found
some attention in recent years although the algorithms and protocols proposed for it have never
made their way into network products. For example a media scaling mechanism for MPEG video
could be the dynamic adjustment of the quantization parameter at the encoding site as a function of
the QoS parameters of alink. An example for media scaling can be found in [KW95], and filtering
mechanisms are described in [Y MH96].

The RSV P protocol is designed to carry resource reservation packets in the Internet. The protocol
itself does not specify what resources it deals with. The designers explicitly mention the inclusion
of packet filtersinto the data path of an IP stream at each network node; al packets passing through
a particular filter share a particular resource [ZDE93, BZE96]. In principle RSVP could be used to
pipe an incoming packet stream through a video layer filter very similar to ours. However, the dif-
ference to our system would be that with RSV P, the code for the filters has to be installed in all
routers beforehand. RSV P can only turn it on or off for a particular IP packet stream; there is no
way to dynamically load filter code. Thus the overall design is much less flexible than ours. In a
recent paper R. Wittmann and M. Zitterbart propose an active network extension to RSVP [WZ97].
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In his dissertation S. McCanne of UC Berkeley explicitly addresses the composition and transmis-
sion of a layered video stream for multicast networks [McC96]. McCanne has developed his own
layered video encoding scheme, based on a combination of DCT and wavelets (unlike the subband
coding used in our experiments, see [TCZ96][TZ94]). His system was designed for operation over
multicast 1P, without special code in the routers. His key idea is to transmit the different layers of
video to different multicast groups; the more groups a user joins, the better his video quality will be.
An advantage of this approach is that the internal network nodes can be normal multicast I P routers,
forwarding the packets according to their group addresses. But the fact that the senders and receiv-
ers have to use multiple IP groups for asingle logical video stream is not very clean conceptually; a
group should be a set of nodes interested in a particular content and not a set of nodes receiving a
particular layer of avideo stream. For example, as a consequence of the multi-group encoding, the
session directory sdr will contain several entries for the same transmission, one for each layer of
video, and the receivers have to deal with that. Another problem is that too little semantics are
known to the internal nodes. For example, with the subband coding of [TCZ96], if the packets for
layer n are lost on alink, all packets of higher layers can be discarded downstream as useless, but
the multi-group scheme is unable to handle such an optimization.

Some researchers oppose to the use of active network technology in the main data path; they claim
that dynamically loadable code can never be efficient enough. In [Bra97] B. Braden describes a sig-
naling protocol based on active network technology; for signaling the code efficiency is not as criti-
ca as for the data path. Using active packets for network diagnostics, monitoring and auto-
configuration is proposed in [JP97].

6 Conclusions

We have successfully implemented a robust audio multicast protocol and a layered video multicast
protocol with the two active network systems ANTS and MO. It was surprisingly easy to get the
code to work; al four implementations were done within four weeks by a team of three people.
Runtime efficiency was much better than expected, but more detailed experimental results are still
needed.

Our main conclusion from the comparison between ANTS and MO is that there is a tradeoff be-
tween performance and other aspects such as security and resource management. The MO architec-
ture pays more attention than ANTS to the latter aspects but also receives a higher penalty for proc-
essing at the nodes. Another issue is the programming language: ANTS obtains portability and se-
curity facilities from Java but also pays a higher price in performance due to Java. We observed that
performance was sufficient to carry multimedia data streams.

From our performance measurements we conclude that active network technology can be used not
only for signaling protocols or network management but also in the data path of novel application
protocols as long as the operations to be performed on each active packet remain simple.

With the Java language in the ANTS system, the network is programmed in the same way as the
application; this will allow to implement future network applications in an integrated manner, with
part of the code running in internal nodes and other parts in the end systems. We consider this to be
a powerful new programming paradigm for networked applications
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The @de deployment medhanism in MO is more flexible than the * code foll ows the path of the ca-
sule’ mechanism of ANTS. For the implementation of recever-spedfic filters in the multicast tree
this proved to be an advantage.

We observe that multicast protocols are good candidates for adive network techndogy. Compared
to pant-to-point protocols they inherently require more processng in internal nodes. For example it
is easy to implement reliable multi cast protocols with adive networks.

We do nd exped adive network techndogy to completely replace &isting high-performance im-
plementations of protocols guch as clasgcd IP or multicast IP. But we can imagine arouter archi-
tedure where dasscd padet streans are handed by passve wde a usual; for applicaion-spedfic
protocol processng a experimental protocols the router would have a seaure *sandbox for loadable
code.
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