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1.0 Introduction

Several models for parallel programming have been introduced in the
past. The most popular one is the message passing model. The user dis-
tributes the application over multiple processing nodes that are connected
over a network. The distributed parts of the application interact with each
other by sending messages across the network. The user has to take care
of the synchronization of all parts. He has to spent a lot of effort in parti-
tioning the application and finding an efficient placement of the parts on
the processing nodes.

One improvement to avoid the explicit message passing was the software
supported virtual shared memory. Objects of an application can be shared
among distributed processors and accessed by all of them. The accesses to
shared objects are transformed into remote accesses transparent to the user.
This helps the user to reduce explicit message passing. Still the placement
of the application was a major problem.

Another step to ease parallel programming has been the invention of SMPs
(Symmetric MultiProcessor Systems), multiprocessor machines with phys-
ical shared memory, along with a multithreaded programming model. The
user can express parallelism with multiple threads. He does not have to care
for the placement of the threads, because all threads are scheduled by the
runtime system on one machine. Instead of explicitly sending messages be-
tween threads, threads can access objects in the physically shared memory.

For a long time no solution has been available to use several linked SMPs
easily. Again, the user has to use explicit message passing or a virtual
shared memory and has to take care of the placement of its application on
the different SMPs.
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This thesis shows that load balancing with thread migration can relax the
placement problem. The idea is that all machines balance their load auto-
matically even if the initial distribution of the application has been unfavor-
able. Together with a virtual shared memory the user gets tools for an easier
parallel programming.

This thesis is organized as follows: In chapter 2 basic definitions of process-
es and threads are given and compared. Known mechanisms for process
migration are summarized in chapter 3, while mechanisms and pitfalls us-
ing thread migration are discussed in chapter 4. As the environment for
thread migration is important to choose the best migration mechanism, the
environment for this work is shown in chapter 5. In chapter 6 the implemen-
tation of the migration mechanism are discussed and in chapter 7  perfor-
mance results for applications using thread migration are shown. The work
closes with some conclusions.
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2.0 Processes and Threads

This chapter starts with the description of processes from which threads
have been derived. After this, it explains why threads have been introduced
and what the differences between threads and processes are. Finally, it
shows the benefits of using threads instead of processes.

2.1 PROCESSES

2.1.1 A process definition

Operating systems (OS) offer users an environment to run their applica-
tions. One basic concepts of an OS is the one of the process.

A definition of a pr ocess is [Tan92]:

‘A process is an instance of a program in execution.‘

This definition includes two important statements. First, a program has to
be executed to become a process. The program’s code is useless, unless it be-
comes active on a computer.

Second, there can be several processes belonging to the same program. If
one program is started concurrently several times, a new process will be
created for each start.
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The interface between a process and operating system is the process control
block (PCB). The PCB is a data structure that is used to handle the process by
the OS. The OS maintains a process table with one PCB entry per process.

The PCB contains information about the process including:

• the current state of the process
See figur e 3 on page 13.

• a unique identification of the pr ocess
• the process priority
• an area to save the registers of the processor
• pointers to allocated resources.
• pointers to the process memory

All addresses referenced by a running process are virtual addresses which are
mapped to physical addresses by the memory management unit. From the
point of view of a process there is one continuous address space, called the
virtual address space or virtual memory (VM).

The virtual address space of a process is divided into the following [Hen96]:

• Code area
The code of the program to be executed is stored in this area. The cur-
rent position in the program’s execution is marked by the program
counter.

• Global data area
The global data area is used for statically declared objects like global
variables and constants.

• Heap
The heap is used to allocate dynamic objects. Objects in the heap are
usually accessed with pointers.

• Stack:
The stack is used to allocate local variables, return values and return ad-
dresses of called functions. The stack grows and shrinks with function
calls or their return. Objects on the stack are addressed relative to the
stack pointer and are usually single variables.
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The stack and the heap reside on opposite sides of the virtual address space.
The stack can, for example in Sun Solaris, start at the higher addresses and
grow down. The heap will then start at lower addresses and will grow up.
During the process execution both run towards each other.

The process context describes a process completely. It consists of the corre-
sponding PCB and the virtual address space. For processes currently being
executed, also the content of the processor’s registers are part of the context
(hardware context). Registers are used to store variables that are often refer-
enced like loop counters, the stack pointer or the program counter, because
register accesses are very fast.

2.1.2 Handling more than one process

Modern OSs like offer a multitasking kernel. This kernel is able to handle
multiple processes concurrently. In general there are two ways scheduling
multiple processes, preemptive and non preemptive.

Figure 1: Process and its resources
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Nonpreemptive scheduling means that processes run to completion ones
they got access to the CPU. The method is used in early batch systems like
DOS and Windows 3.1. The contrasting strategy is called preemptive sched-
uling, which is used by UNIX systems and Windows NT.

Preemptive scheduling gives every process an amount of the processing
power of the computer according to its priority and the overall number of
processes. At a time only one process is running. But the scheduling algo-
rithm gives every process access to the CPU during a larger time slice. So
the user gets the impression that all processes are running concurrently.

Usually, the operating system puts one process on the CPU for one time
slice. The process will run till the end of its time slice or till one of the fol-
lowing conditions occur:

� The process has to wait for a special event, e.g. an I/O to complete.
Then the process is blocked.

� The process puts itself to sleep.
� The process terminates or it is killed.

A context switch has to take place to put the next process on the CPU. The
context of the running process has to be saved, therefore the content of all
registers are stored in the register save area of the process PCB.

After this, the register contents of the next scheduled process are placed on
the processor’s registers. The program counter is a special register that is re-
stored, too, and so the processor knows which instruction to execute next.

If we neglect that processes can have different priorities1, figure 2 shows the
basic scheduling model.

The OS takes the next runnable process out of the run queue, if it schedules
a new process. The currently running process is placed at the end of the run
queue if it is not blocked. Otherwise, it has to wait for an event before it will
be placed at the end of the run queue.

1.  Otherwise, a process with a lower priority is only allowed to run, if there are no process-
es with higher priority. This can be modeled with different queues for each priority.
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The state diagram of figure 3 shows the possible discrete states of a process
and their transitions. The transitions are also marked in figure 2.

Figure 2: Preemptive scheduling of processes
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2.1.3 Operations on processes

The OS gives processes the environment for their execution. It can per-
form certain operations to manage processes. These include:

� create a process
� destroy a process
� schedule a process
� deschedule a process
� block a process
� unblock a process
� enable interprocess communication between two processes

2.1.4 Modes of processes

A process can run in two modes with different privileges: the kernel mode
and the user mode.

These modes have hardware support on most CPUs. If a CPU is running in
the kernel mode, all instructions are allowed. In user mode the CPU forbids
some I/O and other instructions. The OS runs in the kernel mode of the
CPU, while in general applications of the users run in the user mode. A spe-
cial instruction switches the CPU from user mode to kernel mode. The con-
text of the running process is saved and the CPU is placed in kernel mode.
On the switch back, the saved context has to be restored and the execution
can continue.

A process running in kernel mode has higher privileges than a process run-
ning in user mode. All services of the OS kernel are functions that are run-
ning in kernel mode. The kernel mode was designed to protect the OS from
illegal changes of its data that would lead to crashes.

A process in user mode has no direct access to services of the kernel. If a pro-
cess running in user mode wants to read data from disk, the process has to
do a system call. A system call executes the trap instruction, that switches
the machine from user mode to kernel mode. After this trap the process be-
gins to execute a service function in kernel mode.
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2.1.5 Disadvantages of processes

A process context consists of the virtual memory area (with code, static
data, heap, stack) and a PCB (with all information about the process like
tables for signals and file I/O).

Each of them is unique for the process. There is no sharing of resources be-
tween two processes except a special memory area used for communication
and shared libraries. Even if one process spawns a child process (e.g. with
fork()), the only part that is shared is the code.

Processes have a significant overhead when switching. During the switch-
ing the register content has to be saved and the context of the next process
has to be restored. As the next process works on its own virtual memory,
large parts of the physical memory might have to be swapped. This over-
head makes task switching slow.

The only way to exchange messages between two processes is through
pipes or shared memory. Every Interprocess Communication (IPC) in-
volves a trap into the OS kernel which is also a context switch making it ex-
pensive.

One process can run on only one processor at a certain time. Although a
program might include parts, that can run independently, it is not possible
to run them in parallel on different processors within a process.

A similar problem occurs when one process is blocking. The OS takes away
the processing power from this process. Even if there are other parts of the
program, which could run independently from the blocking event, they can
not continue their execution until the event occurs.

2.2 THREADS

In the previous section we have seen that processes have several disad-
vantages. There is no effective process switching and no possibility to use
multiprocessor machines with single processes. This section introduces
threads, which do not have these disadvantages.
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2.2.1 Thread definition

In some literature threads are called l ight  weight  processes  which gives
an idea of what threads are. But this term has a special meaning in the Ac-
tive Thread library that has been used for this work and will therefore not
be used as thread definition in this thesis.

A more detailed definition is the following:

’Threads are multiple, independent, logical executable entities within a pro-
cess, all sharing the process address space, yet owning unique resources
with other threads within one process.’

The main difference to the previous sections, where only one executable en-
tity (thread) was in one process, is that now several threads are running in-
dependently in one process. Each process can be seen as virtual processor of
its threads.

The pendant to the PCB of processes for threads is the thread control block
(TCB). It contains information about:

� the thread state
� a unique identification
� pointers to the thread memory

The thread usually owns only memory for its stack. But it can access parts
of the virtual memory of the surrounding process which are shared be-
tween threads like the code area, the static data area and the heap. So two
threads can work on the same variable if it resides in the process heap. Mul-
tiple threads within one process share the process resources (see figure 4).
If one thread changes e.g. the working directory2 of the file system, this
change is visible to all other threads of the same process.

The context of a thread is given by its TCB, its stack, its register content and
also by the shared parts of the context of the surrounding process.

2.  The working directory is unique within a process.
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2.2.2 User threads and kernel thread

Similar to the state of a process there are two different types of threads:
� user threads (user space threads)
� kernel threads (kernel space threads)

The difference between both is that kernel threads are scheduled and creat-
ed directly by the OS while user threads are scheduled and created by the
thread library in the user space (see figure 5).

User threads run completely in user space of the OS and are invisible to the
OS kernel. To get access to the processor, user threads have to be associated
to an entity in the kernel space, which is visible to the OS and can be sched-
uled by the OS.

Figure 4: Threads and their resources within a process
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Kernel threads are implemented with direct access by the kernel. Each ker-
nel thread has its own schedulable entry in the kernel space. So the OS can
schedule each kernel thread within the timeslice of its process, but every
context switch includes a trap into the kernel.

Figure 5: User threads and kernel threads
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2.3 USER THREADS VS. KERNEL THREADS

All scheduling, creation and termination of user threads is done in the user
space. For kernel threads each of these operations include a system call to
trap into the kernel. This makes the execution of user threads usually faster
than the one of kernel threads except for I/O intensive applications.

A disadvantage of user threads is that a switch from one thread to another
can not be forced by a timer signal, because the thread library with its
scheduler is running in user space and can not be woken up by hardware
interrupts. User threads are non preemptive. It is only possible that each
thread itself calls an explicit switch to another thread. Kernel space threads
are scheduled by the OS kernel within the timeslice of their process. To
schedule from one kernel thread to the next one the OS has to get control
(e.g. by a timer interrupt).

A big problem for user threads are blocking system calls. If a user thread
calls a service routine of the OS kernel which blocks (I/O is blocking, page
fault), there is no possibility to switch back to the user space. As the OS ker-
nel only sees the blocking kernel space entity of the process and does not see
the entities in the user space, which are ready to run, it deschedules the
whole process. Although most system calls can be wrapped in non blocking
calls (e.g. doing polling), there are still some which are blocking (page
faults). The additional wrapping is an overhead for system calls of user
threads that reduces their performance.

If one kernel space thread blocks, it is still possible to switch to another
thread of the same process, because each thread has a entity in the kernel
space that is visible to the OS.

There is also no way of taking advantage of parallel machines like SMP’s
(Symmetric MultiProcessor Systems) with multiple user space threads. As
the OS kernel only sees one schedulable entity for one process, the OS ker-
nel schedules this entity on one processor. Using kernel threads there are
many visible entities for the OS kernel for one process. So different threads
from one process can be scheduled on different processors.

User thread packages are very flexible and portable. They can be imple-
mented on top of an existing OS that does not support threads. The OS has
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the view of a single threaded process and all managing of the user threads
is done by the thread library. But this makes them very flexible. It is easy to
implement several scheduling algorithms in the thread library in order to
customize user threads for special applications.

Table 1 summarizes the advantages and disadvantages of user and kernel
threads.
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Table 1: Users threads compared to kernel threads

User threads Kernel threads

Switching,
Creation,

Termination

+ completely in the
user space

- thread has to trap
into the OS kernel

Preemption

- user threads can not
be preempted by the
user space thread li-
brary

+ kernel threads can be
preempted by the OS

Blocking
calls

- if a system call
blocks, the whole pro-
cess will be desched-
uled

+ if a system call
blocks, the next
thread of the same
process will sched-
uled

System calls
- to avoid blocking,

system calls have to
be wrapped

+ no wrapping needed

Multi pro-
cessors

machines

- no direct use of multi-
processor machines

+ different threads of
one process can run
in parallel on several
processors

Flexible
scheduling

+ user defined schedul-
er can be used

- only the scheduler of
the OS can be used

Portability
+ user threads can be

built on top of many
existing OS

- kernel threads have
to be supported by
the OS
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2.4 THREADS VS. PROCESSES

Each process has its own full virtual address space and operating system
state. Two different processes do not share their resources (exceptions are
shown in section 2.1.5). In contrast, two threads running in the same process
share the resources of the process like the address space and open files.

The resources of a process are shown in figure 1 on page 11. Figure 4 on
page 17 shows the resources of three threads within one process. These
threads share most of the process resources with each other. Only some
parts are unique for each of the threads.

This leads to a significant performance increase while using threads. To cre-
ate a process, the memory for its virtual memory has to be reserved and the
code has to be loaded. A thread is started in a process. So it can use the pro-
cess virtual memory and the already loaded code. It just has to allocate
memory for its stack.

The context switches of threads can also be implemented significantly fast-
er. Two threads of the same process share the process resources. During a
context switch between two threads the context of the surrounding process
remains. The running thread has to save the register content on its stack and
the register content of the next thread has to be restored. When two process-
es are switched, usually a large amount of memory has to be swapped, be-
cause each process has its unique virtual memory.

Processes communicate through pipes or special shared memory areas.
These communications are system calls. Threads can use shared variables
in the process memory which are accessible without OS protection.

Lets imagine a factory as an analogy for an process. In terms of the tradition-
al single threaded process we have one employee working in the factory.
He or she has to do all tasks and to use all tools to assemble products. If we
have several employees (threads), they can share the tools and tasks. This
would reduce the time to assemble a single product and the factory would
have a higher output.

Communication within the factory (thread communication) is easy and fast,
the employees can talk directly to each other. Interactions with another fac-
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tory (interprocess communication) are not that easy, a telephone has to be
used or a letter has to be sent.

Creation of a new factory (process creation) takes a long time, but hiring a
new employee (thread creation) would be simple. An employee can easily
do the task of another employee (context switch between threads). Chang-
ing the product line of the factory (context switch between processes)
would obviously be a big effort. The tools for the old product line have to
be dismantled and other tools have to be put up.

Concluding the comparison between threads and processes, an overview
about the advantages and disadvantages of threads and processes is given
in Table 2.
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Table 2: Processes compared with threads

Process Thread

Creation

- allocate memory in
the virtual address
space

- load code

+ allocate memory for
the stack

+ code exists already

Switching

- includes loading and
storing of all process’
tables

- large amount of mem-
ory might have to be
swapped out

+ little context has to
be saved

+ only the thread stack
has to be swapped

Communi-
cation

- through pipes and
shared memory with
OS support

+ through shared mem-
ory of the process
without OS support

Synchroni-
zation

+ implicitly by pipe
communication

- explicitly by sema-
phores or other syn-
chronization objects

Multipro-
cessors

- one single threaded
process can run on
only one processor

+ multiple threads in
one process enable
the use of multipro-
cessor machines

Application
responsive-

ness

- applications appear
unresponsive to the
user while perform-
ing other functions
(e.g. WWW browser
Mosaic)

+ applications create
separate threads, so
that they have great-
er responsiveness
(e.g. WWW browser
Netscape)
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3.0 Process Migration

As processes have a longer history than threads, the first attempts of dy-
namic load balancing have been done with processes. This chapter wants
to give an overview over the basic methods, that are used.

3.1 PROCESS MIGRATION MECHANISMS

In the following the term cluster will be used often. A cluster is a set of
one or more processors that share physical memory. With this definition, a
Personal Computer, a workstation or a multiprocessor SMP will be called
a cluster.

Process migration can be described as the act of moving (migrating) a pro-
cess from one cluster to an other.

There are several problems that have to be solved to enable process migra-
tion. One problem is the process ID. The ID of the process, that should be
migrated, could already be used on the destination cluster. Consequently a
process migration system has to provide a logical process ID for all user op-
erations requiring an ID. This ID maybe different from the one used by the
OS.

If the OS uses a nonpreempitve scheduling strategy, the running process it-
self can only start its migration, because the process can not be interrupted
by the OS. Therefore the process has explicitly call a function that invokes
the migration.
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It should be assumed that both the source and the destination cluster use a
compatible processor architecture, so that the code can be used after migra-
tion without a transformation.

Basically, migrating a process from the source cluster to the destination
cluster is done in the following steps:

1. Deschedule process and save its context.3

2. Copy the process context to the destination cluster.
3. Resume the process’ execution on the destination cluster.

To restart a process, its complete context has to be copied. For processes the
context includes the virtual memory (VM). So in a straightforward way all
parts of the VM, that have been allocated, have to be copied after suspend-
ing the process.

This may become very inefficient, because the allocated parts of the VM are
usually much larger than the rest of the context (the PCB). Also, not all parts
of the VM will be referenced anymore. So the dominating cost of the process
migration is the time spent in transferring the VM.

To enhance the performance of the straightforward process migration dif-
ferent schemes to transfer the VM are used:

� Pre copying of the virtual memory (interleaving step 1 and 2):
Before the process is suspended on the source processor its complete
VM is copied to the destination cluster. During the transfer some pages
of the VM may have been changed. So these dirty pages are copied until
a certain threshold of remaining pages is reached. Then the process is
suspended and the current dirty pages are transferred.

�  Copying on reference (interleaving steps 2 and 3):
In this scheme the context of the process is copied without the VM. Af-
ter this, the process is restarted on the destination cluster. Every time
the process references a page, that does not reside in its memory, this
page is copied from the source cluster. This scheme takes care of the
fact that not all pages of the VM are actually used and copies only a
minimum of the context.

3.  If the process is running. Otherwise the context is already saved.
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The pre copying scheme wants to reduce the freeze time during migration.
The process can continue its execution during the transfer of the VM.
Theimer [The86] has shown this reduction. The main disadvantage is that
pages may be transferred more than one time and that unneeded pages are
copied.

It has been shown that the copying on reference scheme reduces the cost of
migration significantly. Zayas claims that the number of bytes exchanged
between clusters have dropped by 58.2% and the cost of message handling
has dropped by 47.8% on average using copy on reference strategies instead
of the straight forward way [Zay87].

3.2 SYSTEMS WITH PROCESS MIGRATION

There are many existing distributed systems that have process migration fa-
cilities. The straightforward VM copying scheme is used by older systems
like CHARLOTTE [Art89]. The V DISTRIBUTED SYSTEM [The86] copies
the VM before the migration. The copying on reference scheme is used by
ACCENT [Zay87] and SPRITE [Dou87].
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4.0 Thread Migration

This chapter describes migration of threads and the known problems
with it. Problems occur, because only a part of the thread context - the
part that is not shared with other threads - is copied to the destination
cluster during the thread migration. Some solutions to solve these prob-
lems will be shown.

4.1 THREAD MIGRATION MECHANISM

Some of the problems, that might occur with thread migration, are the
same as with process migration (see section 3.1). The thread migration sys-
tem has to provide a logical thread ID, because a thread with the same ID
as the thread, that shall be migrated, might already be running on the des-
tination machine.

If non preemptive threads are used, the migration can not be invoked by an
external event. Therefore running threads can only be migrated by them-
selves. Threads of the run queue can be migrated without this restriction.

Another problem is that the thread has to be restarted in a different process
after its migration to the source cluster. Therefore it is assumed that a pro-
cess for the same program has been started on the source and the destina-
tion cluster and that the code is in the same virtual memory area on both
clusters.

The basic steps to migrate a thread are the same as in the previous chapter:

1. Deschedule the thread and save its context.4

2. Copy the unique part of the thread context (stack and TCB) to the desti-
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nation cluster.
3. Resume the thread execution on the destination cluster.

In contrast to process migration where copying the process context includes
its VM, thread migration requires only the thread stack and its TCB to be
copied. All shared resources of the process remain on the source cluster. As
one result, a part of the thread context will still reside on the source cluster.
Therefore a migrated thread can only continue the execution, if it does not
access the shared resources or if it can still access the resources (e.g through
a virtual shared memory (VSM), also called distributed shared memory
(DSM5)).

Another problem is that the thread stack might not be at the same memory
location after its migration. This might be the case if the number of running
threads on both clusters is different and if the threads allocate memory for
their stacks when they are created.

To see what this means to thread migration, the following sections take a
closer look at references in the thread stack.

4.2 THE HEAP POINTER PROBLEM

After copying the thread stack to the destination cluster, pointers referenc-
ing data in the process heap are in general no longer valid. Instead of
pointing to the process heap on the source cluster they point to the pro-
cess heap on the destination cluster.

The problem can be seen in figure 6a and figure 6b. Both figures show the
virtual memory areas on the source and the destination cluster before and
after the migration of a thread. The pointer referencing data in the heap
points to an invalid memory location after copying the stack.

4.  If the thread is currently running. Otherwise the context is already saved.

5.  A distributed shared memory (DSM) is a memory area that is accessible by all clusters.
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The pointer should actually reference the same data in the heap of the
source cluster. To solve this problem, one can forbid to use the heap, but this
is not acceptable for general programming. Another solution is to provide
a virtual common heap for all clusters by a DSM/VSM. In this case every
reference to an object at a remote cluster is replaced transparently by a re-
mote access. The drawback of this solution is that the remote access might
be an expensive operation and that every heap access operation has to be
checked to distinguish local and remote accesses.
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4.3 THE STACK POINTER PROBLEM

A similar problem as in Section 4.2 may occur to pointers in the thread
stack referencing data in the stack itself. In general, it is not guaranteed
that the stack base resides at the same address on the destination cluster
after copying the stack. So these pointers become invalid.

See figure 7a and figure 7b. After copying the thread stack the reference
does not point to the object in the stack.

While the heap pointer problem can be solved with a DSM, this is not a suit-
able solution for this problem, because the memory of stack on the source
cluster can not be released and can not be reused. But more important is the
fact that all local variables of the thread reside on the stack. So every access
of a variable would include the overhead of a communication between
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source and destination cluster. This is not acceptable, because the most ref-
erenced variables in general programming are local variables, so that the
performance of the application might be reduced significantly.

In the following sections show two possible solutions are shown and their
advantages and disadvantages are discussed.

4.3.1 Pointer Manipulation

One way to get out of the trouble is to update all pointers in the stack af-
ter it has been copied to the destination cluster. The stack base addresses
on the source and the destination cluster are known. So by adding an off-
set given by the difference of the destination base address and the source
base address, the pointers remain valid on the destination cluster. Figure
8 explains this solution.
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The main problem of this solution is to find all pointers in the stack. It can
not been seen from the value of a memory cell, if it contains a stack pointer,
a heap pointer or a value variable.

Image the stack given in figure 9. There are different possibilities how this
stack could have been produced. The stack entry at address 10008 can be a
pointer referencing the data at address 10004 or it can be a variable with the
value 10004.

Although both of the above possibilities produce the same stack entries,
both stacks have to be treated differently. In the first case, the stack entry at
address 10008 has to be manipulated in the way described above, but in the
second case, all entries remain unchanged when migrated.

As the stack itself does not include enough information about which entry
has to be changed, additional information is needed. The only way to get
along, is to know the memory locations of each pointer.

Cronk et al. introduce one solution [Cro97]. They built a runtime library
that can run on top of existing languages. Their way is to register every new
initialized pointer in a list. This list entry has to be released again when the
pointer goes out of scope.

Once they have a list of all pointers, it is possible to update the stack after
copying it to the destination cluster. They just have to check for all elements
of the list, if the value of the pointer is in the range of the stack before the

10016

10012

10008

10004

10000

0

0

10004

0

123

StackAddress

Stack
grows
up

Figure 9: Given stack



34 The Stack Pointer Problem

migration. If this is the case, the pointer will be updated, otherwise it will
remain unchanged.

Another problem that can not be solved with these lists are pointers, that are
in registers. During the saving of the thread context before migrating, the
register content can not simply be pushed on top of the stack. If this hap-
pened, the pointers would be loaded unchanged into the registers of the
destination cluster while restarting the thread. The pointers may become in-
valid, because there is no entry in the list for pointers in the saved register
content.

To change pointers in registers, additional information from the compiler is
needed. If the pointer manipulation mechanism is used and if this informa-
tion is not available, pointers can not be allowed to be in registers.

4.3.2 Preventive stack reservation

In the previous section we changed all pointers, that became invalid after
migrating a thread. Now we will try the other direction. Instead of manip-
ulating the pointers, the same pointer shall be valid at the source and the
destination cluster. If this is guaranteed all pointers can remain un-
changed.

For the previous solution an offset has been added to stack referencing
pointers. All pointers are unchanged, if the offset is zero, which means that
the stack base is the same at the source and the destination cluster.

In order to achieve that all pointers retain their meaning after the migration,
the stack base should not change. The copying of the stack in this scenario
is shown in figure 10a and figure 10b. After the migration the pointer refer-
ences the right data item.

One way to achieve this, is to reserve a predefined memory area for every
thread at all clusters.
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4.3.3 The pros and cons of both methods

Both approaches introduced above have advantages and disadvantages.
To decide which of them is the suitable solution, depends on the system
used.

The pointer manipulating method is only possible with an extreme support
from the compiler. One has to know all locations of pointers both in the
stack and in registers. If this information is not available, some pointers may
become invalid after the migration.

There is also a performance disadvantage, because of the overhead for man-
aging lists with all pointer locations using the proposal of [Cro97]. There-
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fore construction and destruction of pointers is significantly slower. It also
takes more time to migrate a thread. After copying the stack, every pointer
has to be checked, if it has to be updated.

The stack reservation approach does not have this performance overhead.
It allows a faster thread execution and a faster migration. There is no need
to know all pointers, so it is not necessary to have access to compiler inter-
nals.

Its main disadvantage is that the overall number of threads has a stricter
limitation. A piece of the VM for every thread has to be reserved on all clus-
ters. This memory slot can only be used by the thread, that has the corre-
sponding logical thread ID. The slot has to be reserved on all clusters, but
the slot will only be used on one cluster at a given time. Regardless how
many clusters are used, the maximum number of threads, that can run on
all clusters concurrently, is the same and equals:

So this does not scale with an increasing number of clusters, but since the
size of the VM usually is large enough, this restriction applies in rare cases
only.

4.4 SYSTEMS USING THREAD MIGRATION

There is a lot of research going on about thread migration. Most of the ex-
isting systems work with the pre-reservation of the stack memory, be-
cause these systems can get along without compiler support.

The following system update all pointers after thread migration:
� EMERALD:

Emerald [Jul88] is a distributed object oriented language and runtime
system. It has been one of the first systems using migration. Every ob-
ject in Emerald contains a data object and a thread handling all opera-
tion on the data object. So moving one object includes the migration of
the thread. As Emerald has complete control of the programming lan-
guage, it is possible to update all pointers after the migration.

maxthreads maxmemory
stacksize

--------------------------------=
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� ARIADNE:
Ariadne [Mas95],[Mas96] is a user space thread library for parallel and
distributed clusters. It provides a user level function to update point-
ers. No details are given how Ariadne identifies the stack r eferences.
Pointer in register are not updated, so the use of register for pointers is
prohibited.

The more common approach is to reserve the same memory area for all
threads on all clusters. Systems using this method are:

� AMBER:
Amber [Cha89] is an object oriented DSM system. Objects in Amber
consist similar to Emerald of a data object and a thread that handles the
operations on the data object. Amber occupies the same address for
each object and thread on all clusters to achieve the possibility to mi-
grate threads and complex objects. It uses a so called global address
space, in which references of objects have the same meaning, regardless
to which cluster they are migrated.

� MILLIPEDE:
Millipede [Itz97] is an environment for parallel programming over dis-
tributed clusters running under Windows NT. Millipede uses kernel
threads although the migration mechanism is implemented in the user
space. Millipede provides a DSM, so that references to the heap are val-
id after the migration of a thread.

� UPVM:
UPVM [Cas94] is a thread package that supports migration for PVM
(Parallel Virtual Machine) applications. It uses User Level Processes
(ULPs) which similar to user threads. Additionally to the thread stack,
UPVM also copies a private thread heap. So space for the stack and the
heap has to be reserved on all clusters.
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5.0 Environment

We have seen that choosing the migration mechanism depends on the sys-
tem used. So this chapter will give a closer view of the thread and net-
work library that has been used in this work.

This work for this thesis has been done in the Sather group of the ICSI.
One goal was to built a thread migration mechanism for the object orient-
ed programming language Sather and its parallel extension pSather.

Another goal was to extend the thread library with a thread migration
mechanism to get an parallel C extension.

5.1 SATHER

Sather is a modern object-oriented programming language designed to be
safe and efficient. Some of its major features are strong static type check, dy-
namic dispatch, multiple inheritance, parametrized classes, iteration ab-
straction, garbage collection, and exception handling.

Sather compiles to C. A compilation of a Sather program to an executable is
divided into two steps (see figure 11):

1. Compilation of the Sather program. The output is C code.
2. Compilation of the C code with a C compiler. Linking with the C run-

time libraries.

The advantage to use a two - step compilation is the resulting portability.
Sather is currently available for several UNIX platforms and Windows NT.



pSather 39

Most of the Sather runtime system like the thread library are written in C.
Therefore the thread migration support has also been written in C as an ex-
tension of the thread library. Therefore this extended library can also be
used as parallel C extension.

5.2 PSATHER

Besides the serial language the Sather specification describes a parallel ex-
tension called pSather. In pSather the model of threads is used to express
concurrency. This is different from pure object-oriented approaches to con-
currency, e.g. the actor model [Agh86], which has been implemented by
languages like Emerald [Jul88]. The thread concept being orthogonal to the
object-oriented concept was chosen to gain efficiency. It can be seen as a
compromise between a clean design and high performance, of which many
pure object-oriented approaches are showing a lack. pSather also differs
from languages like Java, where threads are represented as first-class (user-
managed) objects. Instead, pSather threads are system-managed and han-
dled by explicit language constructs for thread creation and synchroniza-
tion. This choice is believed to lead to a more clear program structure and a
better readability of code than user-managed threads.

Sather Code

C Code

C Runtime
   library

Executable+

Figure 11: Compilation of a Sather
program
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Another compromise was made in the design of the memory model. To
support a clear and efficient way of implementing parallel algorithms, an
abstract shared memory model is offered, but in order to achieve high per-
formance the mapping of objects and threads to clusters of a distributed
platform is done explicitly by the programmer. A current approach to ab-
stract from explicit mapping is the concept of zones [Sto97] allowing the
programmer to express locality of objects and threads without explicitly
placing them.

pSather is not as portable as the serial part of Sather, since for many opera-
tion systems threads are not available and a standard interface to threads
and synchronization like the POSIX 1003.1c 1995 thread standard is not im-
plemented completely for all systems claiming to support it. Currently, im-
plementations of the pSather extension exist for shared memory and
distributed memory platforms running the Solaris operating system (in-
cluding Intel x86 platforms). These implementations are built on top of ei-
ther Solaris threads or Active Threads (see Section 5.3), a portable thread
package developed by Boris Weissman at the International Computer Sci-
ence Institute in Berkeley.

5.3 THE ACTIVE THREAD MODEL

Originally pSather used the Sun Solaris thread library. But this library of-
fers insufficient performance. An estimation of the costs of all thr ead oper-
ations leads to the result that they can be implemented much more
efficiently . Another problem was that Solaris threads are not ported to oth-
er platforms except Sun Solaris. This resulted that pSather was only avail-
able for Sun Solaris systems. Therefore the Active Thread library was
created to achieve better performance (see also section 8.1 for perfor-
mance measurements) and to be portable (Active Threads are currently
ported to SPARC, Intel 386 and higher, DEC Alpha AXP and HPPA sys-
tems).

The Active thread library (figure 12) uses so called lightweight processes
(LWP), that are kernel threads according to section 2.2.2. These threads are
the schedulable entity in the OS kernel and they are the underlying thread
layer in the kernel space. The LWPs are scheduled by the OS. On top of this
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underlying layer is the runtime system, that schedules the runnable user
threads of a queue (called run queue) within one LWP. The scheduling mod-
el is called the Two-Level  Model , because a thread can be bound to a LWP
or any number of threads are multiplexed onto some (smaller or equal)
number of LWPs. The Active Thread library uses one LWP per available
processor to enable the use of SMPs. No more than one LWP per processor
is used to avoid unnecessary scheduling of the LWPs in the kernel space.

Figure 12: The Active Thread Model on a SMP
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In this model one can think of LWPs as virtual processors for user threads.
LWPs bridge the user space and the kernel space. All user threads are
scheduled on top of a kernel thread.

Runnable user threads are stored in different run queues, that are used by the
scheduler to get the next runnable thread. There are queues for bundles of
semantically related threads (bundle queues), a queue for each LWP to
achieve better spatial locality and to bound threads to LWPs (local run
queues) and one global queue (global run queue), where unbound and unre-
lated threads are stored. Depending on the scheduling policy the different
run queues are used.

The Active Thread library offers an interfaces to:
� create a thread,
� terminate a thread,
� stop the thread execution,
� bundle semantically related threads to share the same scheduling poli-

cy,
� synchronize threads with various synchronization objects like blocking

and non blocking mutual exclusion locks and semaphores.

5.4 THE BRAHMA NETWORK INTERFACE

The Brahma network interface is based on the Active Message model de-
veloped at the University of California at Berkeley. The interface has been
extended at the ICSI and provides portable mechanisms for threads, syn-
chronization and active messages.

The Brahma library includes function calls to:
� start threads on any other cluster of the network,
� copy parts of the memory between two cluster (copying can be both

synchronous or asynchronous),
� synchronize threads on one cluster or on the complete network,
� exchange active messages between two clusters.
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As Brahma is built on top of an active message layer, it is important to un-
derstand the active message model. An active message activates a request
handler function on the cluster, that receives the message. Optionally the re-
ceiver can send a reply message, which invokes a reply handler function on
the source cluster. The complete communication circle starts with the send-
ing of a request handler function from the source cluster to the destination
cluster and ends with the invocation of a reply handler function on the
source cluster.

An active message contains of an address to the handler function and some
data. The sending thread continues its computation after sending a mes-
sage. The message will first be written into the output queue of the source
cluster. It will then be transmitted across the network and will finally be
written in the input buffer on the receiving cluster (see figure 13).

The handler function will be invoked when an executing thread on the re-
ceiving cluster checks for waiting requests in the input queue. The thread
starts the function with its arguments at the given address. After finishing
the execution of the handler, the thread returns to the interrupted compu-
tation. Communication is therefore only guaranteed when input queue is
checked frequently. Long running programs have to call explicitly a
BR_POLL() from time to t ime ,  that checks the input queue. The input
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queue is checked automatically during context switches and synchroniza-
tions.

A request handler function can explicitly call a reply function on the source
cluster. The function invocation mechanism is the same as with a request
handler. If no reply function is called explicitly, a simple acknowledge func-
tion is sent to the source cluster. An acknowledge has to be sent, because the
size of the input queue is limited. If the queue is full, sending the next re-
quest handler will lead to a loss of an active message. Therefore the number
of outstanding reply messages is counted. It will be increased sending a re-
quest handler and it will be decreased receiving a reply handler. The maxi-
mum number of outstanding reply messages is the size of an input queue.

For the same reason, request and reply calls should not been nested to avoid
a deadlock. So a request handler is not allowed to send another request mes-
sage to the calling cluster. It may only send a reply message. A reply han-
dler is not allowed to send request or reply messages.

5.5 DISTRIBUTED SHARED MEMORY (DSM)
A distributed shared memory is a mechanism allowing the user to access
data on a remote cluster without explicit communication. In other words,
the goal of a DSM system is to make communication transparent to the us-
er.

As we have seen in Section 4.2, this mechanism has to be available for
thread migration without copying the heap of the surrounding process. A
DSM is implemented in pSather and can be used to solve the heap pointer
problem after thread migration. But for the parallel C extension no support
for a DSM was available and therefore had to be built.

The next sections will show the DSM model that is used by pSather and the
one that was implemented for the parallel C extension.
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5.5.1 pSather

In pSather every heap reference is coded as a so called far pointer. Any ref-
erence to non local objects will be transformed transparent to the user into
an remote access across the network.

The way references are coded in pSather is shown in figure 14. The upper
bits are used addressing the cluster. The lower bits are used to code the
memory location of the object. The lowest bit is set if the pointer references
non local objects and is not set if the pointer references local objects. Local
objects are objects in the stack of the process that are located in higher mem-
ory areas (in this example higher than  bits). A result of using the lowest
bit to distinguish between local and remote objects is that an object has to
start at an even memory address.

This representation has some disadvantages. Before an object can be access-
ed, it has to be checked if the lowest bit is set or not. Depending on the re-
sult, the object will be accessed locally or through a remote access.

There is a trade-off between the maximum number of clusters and the mem-
ory area that can be accessed. Increasing the number of bits for encoding the
clusters would reduce the size of the DSM.

An example of an access of a remote object is the following.

1. Check the lowest bit of the reference. It is set for a remote object.
2. Decode the number of the cluster where the object resides. Decode the

memory location of the object. This memory location is locally valid on
the remote cluster. The decoding of the cluster number is a shift opera-
tion, the decoding of the memory location is a masking of the higher
bits and of the lowest bit.

3. Send a request handler to the remote cluster using the Brahma library
that reads the value of the decoded memory location.

4. Receive explicit reply handler with the value of the object.

Figure 14: References in Sather
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5.5.2 Parallel C Environment

On the C programming level, no DSM model was implemented. Therefore
thread migration would only be permitted if references from the stack to the
heap had been prohibited. But this would mean to forbid the use of dynam-
ic memory allocation and shared objects between threads, which is not ac-
ceptable for general programming.

To achieve the same capabilities as with pSather’s DSM, new data types
have been defined. This approach follows the object oriented software DSM
model of pSather or PSO [Lüb95]. Additionally to the standard C types int
and float the new types shared_int and shared_float have been written in C++.
Created objects can be shared between threads on one cluster or between
threads on all clusters. Choosing C++ allows a transparent intervention for
operations on the types and allows the linking with the existing C run time
library. An intervention is necessary for the following operations.

� Creation
During creation memory for the object is allocated in the process heap.
The pointer to this memory is encoded in the way shown in figur e 14.

� Dereferencing (the * operator)
Assigning a value to a shared object and requesting the value of a
shared object, that does not reside on the local cluster, has to be re-
placed by a remote access. The access of a remote object is done in the
same way that has been described in the previous section. If a value is
assigned to a remote object the last two steps of the description change
slightly. The request handler of step 3 has to write the value to the
memory location and the explicit reply handler of step 4 can be omit-
ted. If the shared object is local the unmasked memory location is ac-
cessed directly. The return type of *a, where a is a shared_int, is int.

� Accessing the address operator &
If the address operator & is used to access the address of a shared ob-
ject, it has to return the encoded reference. These references are allowed
to be on the thread stack during the thread migration, because these ref-
erences are globally valid. The return type of &a, where a is a
shared_int, is *int (pointer to a int value). After assigning an int* to a, the
shared object a will reference the memory location given by int*.
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It is possible to create an object on every cluster, so that all objects reference
the same data. The data will only reside on one specified cluster. To create
these global objects from a shared object a, the method
a.create_global(cluster_nr) has to be called on every cluster after the initializa-
tion of the migration library and after a shared object a has been created on
every cluster. In the given example all shared objects will reference data on
the cluster with the number cluster_nr.

If the new data types are used for dynamic memory allocation they return
references that are valid on all clusters. If a shared object referencing data
on a remote cluster is accessed, the access are transparently transformed
into a remote access. Therefore the data types enable the use of dynamic
memory allocation along with thread migration.

5.6 GLOBAL SYNCHRONIZATION OBJECTS

Working with multiple threads it becomes necessary to synchronize their
execution. One basic synchronization mechanism is a semaphore. A sema-
phore consists of a counter and mechanism that protects the exclusive ac-
cess to the counter for one thread called lock.

There are two operations on a semaphore, wait and signal. The wait opera-
tion on a semaphore checks to see if the counter is greater than 0. If so, it dec-
rements the counter and just continues. If the value is 0, the thread will be
blocked and has to wait for the semaphore. All operations on the counter
have to be protected by the lock mechanism to ensure that only one thread
per time accesses the counter.

The signal operation increments the counter of the semaphore. If threads
are waiting for this semaphore, one will be unblocked and can continue its
execution. After a signal on a semaphore with threads waiting for it the
counter is still 0. If no thread is waiting for the semaphore the counter is in-
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cremented. This can be seen as a saving of an unblocking of a thread for the
future.

A problem related to the last section is the one of semaphores in the pres-
ence of thread migration. If two threads use a local semaphore to synchro-
nize their execution it is normally not possible to migrate one of these
threads, because the migrated thread can not access the semaphore on the
other cluster. As synchronization is essential, a semaphore that is valid on
all clusters was implemented.

The address of a global semaphore is also coded in the way shown in figure
14. Accesses to remote semaphores have the additional problem that the
threads that synchronize on the semaphore can run on different clusters. If
a thread has to wait for a remote semaphore this thread has to be woken up
on its source cluster when it gets the semaphore. If a thread waits for a local
semaphore its TCB is stored in a block queue, that is assigned to every sema-
phore. When it gets the semaphore the TCB is removed out of the block
queue and is then put on the run queue to be restarted. In the remote case
the reference to the TCB has to be encoded before it can be stored in the
block queue. Otherwise it could not be determinated on which cluster a
thread has to woken up.

The following example shows the wait operation on a remote semaphore.

1. Decode the cluster number and the address of the semaphore.
2. Send a request handler to get the counter of the semaphore (other

threads are not allowed to access the semaphore after reading the
counter).

3. Receive reply handler with the value of the counter.
4.a. If the counter is smaller than 1:

Send a request handler to store a encoded reference of the TCB in the
semaphore block queue and decrement the counter.

4.b. If the counter is greater than 0:
Send a request handler to decrement the counter.

5.a. Block the thread that is waiting for the semaphore.
5.b. Continue the execution.
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The following interfaces are provided for global semaphores.
� void gl_sema_create(int count)

Create a semaphore and set counter to count.
� void gl_sema_wait(gl_sema_t *sema)

Perform a wait operation on semaphore sema.
� void gl_sema_signal(gl_sema_t *sema)

Perform a signal operation on semaphore sema.
� void gl_sema_trywait(gl_sema_t *sema)

Perform a wait operation on semaphore sema. If the semaphore can be
taken, decrement counter and continue, otherwise leave the counter un-
changed and continue without blocking.

� void make_sema_global(gl_sema_t **sema, BR_cluster_t cluster, int count)
The semaphore sema of all cluster is changed to reference a local sema-
phore on the cluster cluster. The counter of the local semaphore is set to
count. Has to be called on all clusters of the network.
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6.0 Thread Migration with
Active Threads

The previous chapters have shown the basic mechanisms for thread mi-
gration and the given environment. This chapter describes the choice of
the migration mechanism and its implementation.

6.1 CHOSEN MIGRATION MECHANISM

Section 4.3 gives two possible solutions for the stack pointer problem.
One solution is the pointer manipulation, the other one is preventive
stack reservation.

The pointer manipulation scheme of Section 4.3.1 needs detailed informa-
tion about internals of the compiler, that produces the executable. This so-
lution is not suitable for the given system. Although thread migration had
to be implemented for the programming language Sather, no access to the
needed internals has been available, because Sather uses the two step com-
pilation (see figure 11 on page 39). The executable is produced by a C com-
piler and we could not get detailed information how the compiler works
with pointers.

Therefore the only possible solution for the stack pointer problem was the
preventive stack reservation.

The disadvantage of this solution is that the maximum number of threads
is more restricted. But most applications with Active Threads will not reach
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such a huge number. Active Threads are designed for small task and hence
they get along with small stack sizes. The reservation of stack space for
10000 threads with a single stack of 8K byte results in an overall space of
78M bytes. The reservation of this space is only in the virtual memory of the
process. A reservation of the physical memory is only done when the stack
is used.

6.2 IMPLEMENTATION

A thread migration mechanism interacts with the different stages of the
thread life. This section shows how the thread migration is implemented
and which additional changes of the existing thread package had to be
done.

6.2.1 Start of the migration library

At the initialization of the migration library a pool of threads with preallo-
cated data structures for the TCBs is created. Pooling of the TCBs has the
advantage that the creation of a thread is faster than without pooling, be-
cause the time to allocate memory is saved.

After the pool creation an area for the thread stacks has to be reserved in the
virtual memory. As it has to be guaranteed that the memory locations are
the same on all clusters, the only safe way is to compare the ranges of all
clusters.

The chosen solution is to request the complete space for every thread stack
at one time. This is done with the mmap command. Mmap establishes a
mapping between the process virtual address space and a given file de-
scriptor. The file descriptor can represent open disk files or any UNIX de-
vice. When mmap is used with the special device /dev/zero, a unnamed
memory region of a given length is created, initialized to 0 and mapped in
the virtual address space of the process. The actual mapping of physical
space is only done on demand when the memory region is referenced first.
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After reserving the space in the virtual memory, all clusters have to syn-
chronize and ensure that the area is the same on all clusters. If this is the case
the area is divided into segments. Each segment is then uniquely assigned
to a thread and is used as stack.

6.2.2 Creation of a thread

The migration library offers a pool of thread with pre allocated data struc-
tures for the TCBs. To start a new thread, one has to take an element out
of the pool and set the program counter and the arguments of the called
function. The thread can then be put on the run queue and wait for its exe-
cution.

The problem with the used migration mechanism is that not every thread
can be taken out of the pool, because the thread with the same ID may al-
ready run on another cluster. Then it would not be possible to migrate this
thread, because only one thread with a certain ID is allowed to run on all
clusters.

One way to avoid this, would be to communicate across all clusters at the
start of a thread to mark used threads. This would lead to an unacceptable
overhead for every thread creation.

The better solution is to assign distinct subsets of threads to each cluster. A
cluster is only allowed to start threads of its subset. This scheme is shown
in figure 15. One can see the memory area for the thread stacks and its seg-
mentation. There are slots in this area for threads that can be started on the
cluster (three clusters are used in the example).

The information, which thread can be started, is now local and there is no
overhead of a communication. This approach restricts the number of
threads, which can be started on one cluster, more the one discussed above.
When the maximum number of threads is started on one cluster, it is not
possible to start a thread with an ID, that is assigned to another cluster but
not started.
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6.2.3 Termination of a thread

When a thread aborts on the cluster on which it has been started, nothing
different to a termination without a thread migration mechanism has to
be done. The TCB has to be put back into the thread pool.

Only if a thread aborts on a cluster different from the one started on, the
handling changes. When a thread migrates from the source cluster to the
destination cluster, the TCB is put back into the thread pool on the source
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cluster. The thread with this ID should not been used again until the com-
putation on the destination cluster finishes. Therefore the TCB has to be
marked to not be reused.

If the thread aborts on the destination cluster this mark has to be reset, be-
cause the thread can be used again. So the abortion of a thread after its mi-
gration requires one communication step.

6.2.4 Migrating a running thread

The thread migration package offers a call to migrate a running thread.
The running thread itself has to call this function, because it is nonpre-
emptive.

The migration of a running thread is divided into the following steps:

1. The thread calls the function to migrate itself.
2. The register content of the thread is saved on the stack.
3. The address of the TCB for the thread ID on the destination cluster is

requested.
4. The TCB and its stack are copied to the destination cluster.
5.a. Source: The TCB is put back into the thread pool. It is marked to not be

reused.
5.b. Destination: Thread is put on the run queue and can be restarted.

The user interface is the following:

void migrate_me(BR_cluster_t to),

where to is the cluster to which the thread shall be migrated.

6.2.5 Get a thread from another cluster

Instead of migrating a running thread, one cluster can request a runnable
thread from another cluster. The only threads, that can be migrated from
the destination cluster, are those in the run queue. It is not possible to get
a currently executing thread, because it is non preemptive, or to get
threads that are blocked.
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It is also more efficient to take a thread out of the run queue than to get a
currently running thread. The threads in the run queue are ready to be re-
started. Their register content is saved on the stack and can easily be re-
stored.

The following steps have to be done:

1. Request to find a suitable (see the following user interface) thr ead of a
run queue on the destination cluster. Get the address of the TCB and the
thread ID.

2. Take the TCB for this ID out of the local thread pool.
3. Copy the TCB and its stack to the source cluster.
4.a. Destination: The TCB is put back into the thread pool. It has to be

marked to not be reused.
4.b. Source: Put thread on a run queue.

The user interface is the following:

int migrate_to_local(BR_cluster_t from, int queue_type, int state), where:
� from is the cluster from which a thread shall be migrated,
� queue_type specifies in which queue of the Active Thr ead scheduler

shall be searched (e.g global run queue, bundle queue, see section 5.3)
� state means the state of the thread which shall be migrated (ready to

run, just initialized)

The function returns a 0 if no thread has been migrated or a 1 otherwise.
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7.0 Load Balancing

The reason for thread migration is to achieve a better overall perfor-
mance. The best performance will be achieved when the load of all clus-
ters is nearly is the same. The load should be balanced across all clusters.

Static load balancing is usually not the best choice, because the load can not
be predicted for all applications. The application can also run under a mul-
tiuser and multitasking OS. So the load of the other user on these clusters
differs and interacts with the running application.

The better way to balance the load is dynamically. Threads should migrate
away from high loaded clusters. If a thread works on remote objects, it is
better to migrate it to the cluster where the data resides.

This thread migration package wants to give a possibility to establish dy-
namic load balancing. It offers one implemented dynamic load balancing al-
gorithm. but it is flexible enough to implement different algorithms and
policies. The choice which policy to follow, should be left to the user as far
as possible.

This chapter gives an overview about what can be done and what can not
be done. The package offers calls to migrate running threads and to get
threads of a remote run queue. The abilities of both calls to establish load
balancing are given in the next sections.
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7.1 CLASSIFICATION OF LOAD BALANCING
ALGORITHMS

This thesis will follow a classification that has been intr oduced by Lüling,
Monien and Ramme [Lül91]. The given classification is very general and
covers all distributed algorithms, but it does not use too many complex
properties and points of view.

There are two basic parts in any dynamic distributed load balancing strate-
gy. One is the decision part, the other is the migration part. During the de-
cision part the decision is made whether or not to migrate. The base of the
decision can be local information (e.g. load on the current cluster) or global
information (e.g. other clusters have no work).

The actual migration is done in the migration part. After the decision to mi-
grate, the only open question is where to migrate. If the migration only in-
cludes direct neighbors of the cluster, the strategy has a local migration
space. Otherwise the strategy has global migration space.

Lüling et al. [Lül91] give a classification according to the decision base and
the migration space. It distinguishes between local and global decision and
migration activities. The initiator of the load balancing activity is also in-
cluded. The initiator of the activity can either be the sender or the receiver
of the load balancing unit.

Decision base
(local or global
information)

Migration space
(direct neighbors
or global network)

G

G

L

L LDLMi GDLMi

LDGMi GDGMi

Initiator i
i {Sender, Receiver,

Figure 16: Load Balancing Classification

     Sender and Receiver}
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7.1.1 Example Algorithms for the major Categories

After giving a scheme to classify load balancing algorithms some known
algorithms can be classified.

� LDLMSender strategy
An algorithm that uses a LDLMSender strategy, is the local random algo-
rithm. In fixed time intervals each cluster tests local information and de-
cides whether to migrate or not. On a positive decision, it sends a load
unit to a randomly chosen direct neighbor. The initiator of the load bal-
ancing activity is the sender of a load unit.

� LDGMSender strategy
If we modify the local random algorithm in the way, that the migration
space is the complete network, we get a global random algorithm. A
load unit can be sent, different to the local algorithm, to any cluster.
Again, the initiator of the load balancing activity is the sender of a load
unit.

� GDLMSender strategy
An algorithm with a GDLMSender strategy is the gradient model meth-
od. The decision is based on gradients. The gradients are vectors that
consist of load and distance information of all clusters. The local load
of every cluster is classified in discr ete states. If one cluster is in the
state of highest load, it sends a load unit to the direct neighbor, which
is on the shortest path to a cluster with the lowest load. The sender of a
load unit initiates the load balancing activity.

� GDGMReceiver strategy
In the bidding algorithm, the decision to migrate a load unit is based
on bids of clusters which are in a state with low load. Every cluster
with high load gets bids from clusters, that want to receive a load unit.
The load unit will be migrated to the cluster, that has a certain maxi-
mum distance to the sender and that sent the highest bid. The maxi-
mum distance will be increased, if the cluster gets not enough bids
during a time interval. The receiver is the initiator of the load unit in
this algorithm.
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7.2 LOAD BALANCING WITH THREAD MIGRATION

The thread migration package offers two mechanisms to migrate threads.
Different kinds of algorithms can be implemented with each of them. The
next two sections will give their classification corr esponding to the
scheme described in Section 7.1.

7.2.1 Migrating Running Threads

The main restriction concerning the migration of running threads, is that
the threads can not be preempted. So the thread itself is the only one to
start the migration. It is the sender of a load unit.

The only possibility to balance the load with a running thread is that the
thread calls explicitly a function, that decides whether or not to migrate. A
good choice to call such a decision function is before a thread explicitly
gives up its execution to another thread. The state of the running thread has
to be saved regardless of the decision, if the thread should be migrated or
not.

The basis of the decision is left to the user. The user has the freedom to im-
plement its own decision function, that can work with local or global infor-
mation. Various policies can be pursued. The implementation of a decision
function is very easy. In the first part the function has to check some condi-
tions. In the second part a migrate_me(to) is called or not based on the con-
ditions of part one.

Reasons why a running thread should be migrated are:
� The load of the current cluster is high.
� The thread is working on data on a remote cluster. It may be better to

reduce the network communications and migrate the thread to the re-
mote cluster. It is very easy to determine if a data object resides on a re-
mote cluster. Sather offers a explicit instruction to ask whether or not
an object is local.
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7.2.2 Migrating threads from a remote run queue

This mechanism does not have the restriction that only the thread, that is
to be migrated, itself can initialize the migration. Any thread, that is in a
run queue can be chosen. The decision which thread will be taken from
which run queue is left to the user and can be specified in the user inter-
face of migrate_to_local(from,queue_type,state). One policy could be to
choose a thread, that has been initialized, but never ran on the processor.
The used part of the stack of these threads are small, so that the migration
costs are low.

One good point to decide to migrate a remote thread is when all run queues
on the local cluster are empty. If one can migrate a thread, the load of a re-
mote cluster will be lower and the overall execution time may be reduced.If
it is not possible to migrate a thread from a remote cluster, because its run
queue is also empty, the overhead for the communication does not matter.
This method is known as work stealing [Blu94].

An interface to enable work stealing to balance the load dynamically has
been implemented. It includes the two functions:

• void enable_work_stealing(int queue_type, int state),
to enable the load balancing, where queue_type specifies in which queue
of the Active Thread scheduler shall be searched (e.g global run queue,
bundle queue, see section 5.3) and state means the state of the thread
which shall be migrated (ready to run, just initialized),

� void disable_work_stealing(),
to disable the load balancing.

7.2.3 Thread mechanisms classified

The last two sections summarized the abilities of the thread migration
mechanisms for load balancing. This section classifies them in the scheme
of Section 7.1.

A running thread can only be migrated by itself. So it is the initiator of the
load balancing activity that sends a load unit to a remote cluster. The deci-
sion base can be local information or global information. It is possible to
send threads to any cluster in the network.
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The second mechanism migrates threads from remote clusters to the local
one. The initiator of the activity is the receiver of a load unit. The decision
base can again be local or global information. Threads from all clusters of
the network can be migrated.

Figure 17 classifies both mechanisms. Any mechanism covers the complete
matrix for a given initiator. So using both mechanisms enables the imple-
mentation of any load balancing algorithm that can be classified with the
used scheme.
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8.0 Performance Results and
Examples

In this chapter performance measurements of the thread migration sys-
tem are presented. It starts with the Active Thread library and continues
with the communication network and the network library. To make esti-
mations if a thread migration is effective, an analytical derivation is given
in the fourth section. The third section summarizes the times of the thread
migration primitives. The chapter finishes with speedups, that applica-
tions have achieved when they used dynamic load balancing based on
thread migration.

8.1 ACTIVE THREADS

The design goal for Active Threads was to build a system for high-perfor-
mance fine-grained pr ogramming. Fine grained programming helps to:

� express the logical concurrency of an application,
� port applications, because they are not very sensitive to the number of

available processors,
� achieve better load balancing. The greater the number of available par-

allel tasks the higher the probability that processors are busy.

It is only possible to achieve good performance with multithreaded pro-
grams, if the overhead of the thread management is small. Commercial
thread packages only offer threads, that are just lighter weighted processes.
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The user has still to spend some thoughts choosing a reasonable partition-
ing of the application.

Most of the thread system overhead comes from:
� thread creation
� thread synchronization
� extra memory usage

Figure 18 compares times for several thread operations of Active Threads to
times of commercial systems. The following operations are measured:

� thread create
thread creation

� null thread
entire runtime of a thread that performs a null call from creation to ter-
mination

� context switch
context switch between two threads

� uncontested mutex6

successful lock operation on a mutex without blocking
� uncontested semaphore

successful wait operation on a semaphore without blocking
� mutex try

non blocking try operation to lock a mutex that fails
� semaphore try

non blocking try operation to get a semaphore that fails
� mutex ping-pong

repeatedly synchronization of two threads on with a mutex
� semaphore ping-pong

repeatedly synchronization of two threads on with a semaphore

Active Threads perform significantly better. E.g. the thread creation or the
entire runtime of a thread from creation to termination (null thread) is or-
ders of magnitude faster. Some of the times are summarized in table 3. Ac-
tive Threads are compared on a 4 CPU SPARCstation 20 with Sun Solaris

6.  A mutex is a synchronization object.
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(version 2.5) threads and with Ariadne (see section 4.4). Ariadne is a user
thread package recently developed at the Purdue University [Mas96] that
supports thread migration and offers the same flexibility and portability as
Active Threads. Compared to Solaris threads both Ariadne and Active
Threads are significant faster. But Active Threads are still a factor of 3 to 10
faster than Ariadne.
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Figure 18: Active Threads versus proprietary thread
system (measurements done by Boris Weissman)
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8.2 COMMUNICATION NETWORK

Section 6.2.4 and section 6.2.5 showed the steps to migrate threads. Basi-
cally they are:

� Save the thread context (only for running threads)
� Send the logical ID and copy the TCB to the destination cluster
� Copy the thread stack

The previous section has shown the costs of Active Thread operations. The
other important cost factor migrating threads is the performance of the
communication network.

The cluster used for this measurements have been connected by a Myrinet
network. Myrinet is a Gigabit-per-second network. It is based on technolo-
gy used for packet communication and switching within parallel super-
computers. Its characteristics are high bandwidth (up to 11 Mbyte/s
between UNIX processes) and low latency (20 microseconds for short-pack-
et transfer between UNIX processes) [Pak97].

The Myrinet was used with the Brahma library (see section 5.4). Brahma
offers two interfaces to copy data between clusters: get and store. Store
copies data from the local cluster to a remote clusters, get reads data on a
remote cluster and copies it to the local cluster. The times to transfer an

.

Table 3: Comparisons with other systems, times in microseconds
(measurements done by Boris Weissman

Operation Solaris
Threads

Ariadne
Active

Threads

null thread 1715 40 14

thread create 1620 35 3.5

context switch 30 15 5.5
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amount of data in the range of usual thread stack sizes are given for both
interfaces in figure 19. Storing of data is more efficient, because the get is
implemented as a store called on the remote cluster.

The times to copy data are orders of magnitude higher than the times for
thread operations. It can therefore be expected that the costs of thread mi-
gration are closely related to the size of the thread stack, because the trans-
fer time of the stack will dominate the time to migrate a thread.

8.3 THREAD MIGRATION PRIMITIVES

All measurements of thread migration times have been done on three
SPARCstation 10, each with 4 hypersparc CPUs. The workstations were
connected by a Myrinet network interface that is described in the previ-
ous section.

Figure 19: Performance of the Myrinet communication
network
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The times to migrate threads with the two interfaces given in section 6.2.4
and section 6.2.5 have been measured in the following way:

� Migrate the currently running thread:
A thread has been started on one cluster that called migrate_me(to) in a
way that the thread migrated ongoing to the next cluster of the net-
work. The roundtrip across 3 clusters has been repeated 20000 times.

� Migrate a thread to the local cluster:
1000 threads have been started on one cluster. After this all clusters of
the network synchronized. Another cluster migrated all threads to it-
self.

The measurements of the migration costs prove the assumption that the
time for the stack copying is dominating the migration costs. This can be
seen in figure 20 and figure 21. Both figures show the times for thread mi-
gration and corresponding time transmitting the thread stack. The curves of
the migration times nearly runs parallel to the curves of the transmission
times. The offset between both curves is the time for thread operations and
for one communication step.

Figure 20: Get a thread from a remote cluster
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Running threads can be migrated faster than threads from the run queue of
a remote cluster, although the context of the running thread has to be saved
before its migration. This is related to the different times to get or to store
data between two clusters (see figure 19). It shows that the migration time
is dominated by the transmission time of the thread stack.

Table 4 summarizes the time measurements of thread creation and thread
migration and compares the thread migration times with the Ariadne sys-
tem [Mas96]. The absolute times for thread migration with Ariadne and Ac-
tive Threads are not directly comparable, because the times are dominated
by the transfer time of the thread stack. The extreme difference of both times
is therefore related to the used network technology. The times of thread mi-
gration without stack transfer times with Active Threads are half the times
of the Ariadne system, although the Ariadne times have been measured on
SPARCstation 5 that is usually faster than a SPARCstation 10. Another re-
markable point is that migrating an Active Thread is more than 3 times fast-
er than the thread creation of the Sun Solaris thread library. This
comparison shows the efficient implementation of the migration primitives.

Figure 21: Migrate a running thread
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8.4 MORE EFFECTIVE WITH THREAD MIGRATION

The question if an application gains a speedup migrating a thread de-
pends on two things: the thread execution time and the time to migrate a
thread.

This section gives a more detailed derivation of the question when a thread
migration will be worth-while. The following symbols will be used (see also
figure 22):

First the overall execution time of the application on one cluster is the sum
of the execution times of its threads

(EQ 1)

i. stack size: 800 bytes
ii. stack size: 1432 bytes
iii.On a Sun SPARCstation 5

Table 4: Migration and related times on a Sun Sparcstation 10

Operation Active
Threads

Ariadne Solaris 2.5

thread creation 3.5 us 11 us 1620 us

thread migration 582 usi 11 310 usii iii -

thread migration without
transfer time of the stack

250 us 510 us iii -

T i execution time of the application on cluster i=

T'i execution time after migration=

T ij execution time of thread j on cluster i=

T'ij execution time of thread j after migration from cluster i=

TM time to  migrate a thread=

T i T ij

j 1=

N

∑=
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After a migration of thread n from cluster j to cluster i, the execution time of
the application on both clusters changed. After migration we get:

. (EQ 2)

Without loss of generality it is assumed that . The condition that
thread migration reduces the overall execution time of the application is

. (EQ 3)

This lead to the equation system

, (EQ 4)
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e
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Figure 22: Execution time of an application on two clusters
before and after migration
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that can be reduced to

. (EQ 5)

The equitations above include two statements. says that the execu-
tion time of the thread that will we migrated should be greater than the mi-
gration time. This is obvious, because the migration time has to be added to
the execution time of the application on both clusters.

The second statement is . It says that a thread shall only be mi-
grated if the load unbalance between the two clusters is high enough. The
difference between the execution time on both clusters has to be greater
than the migration time and the execution time of the thread together.

From the analytical derivation we get a lower limit when migration will
gain a speedup. The execution time of the thread has to be greater than the
migration time. We also get a statement how unbalanced both clusters have
to be.

8.5 LOAD BALANCING EXAMPLE

Equation 5 of the previous section gives a hint if a thread migration is ef-
fective to balance the load dynamically between two clusters. We mea-
sured the times for thread migration in section 8.3. The only open
parameters are the execution times of the threads. But these execution
times can not be predicted in the general case. Anyway, if we had the exe-
cution times, it would be more effective to balance the load statically plac-
ing all threads explicitly. Therefore an application used as example for
load balancing based on thread migration should have a dynamic behav-
ior during its run time.

The application chosen was adaptive quadrature. Adaptive quadrature is a
flexible scheme for numerical integration. Classical schemes subdivide the
domain of the integral into equal-sized subintervals and perform numerical
integration like the Simpson rule on each subinterval. The results are com-
bined to yield the required accuracy. In contrast to the classical scheme

TM T jn+ T j T i–<

TM T
�

jn<

TM T
�

jn<

TM T jn+ T j Ti–<
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adaptive integration subdivides the domain ongoing in as many subinter-
vals as necessary to obtain a given accuracy.

The problem is to compute an estimate P, so that

A recursive algorithm for adaptive integration is given in code example a).

Adaptive quadrature has a dynamic behavior. Depending on the given ac-
curacy and the function to integrate a different number of integration steps
have to be made. The way to distribute the computational tasks was to di-
vide the domain at the beginning in equal-sized subintervals and to start a
thread to calculate each subinterval (see code example b). As result we got
threads with differing execution times that could not be predicted in ad-
vance. This example was chosen as a representative for the class of prob-
lems that can be expressed using threads with differing execution times.

All threads have initially been started on one cluster. This is the worst case
for load balancing, because the load is totally unbalanced at the beginning.
The intention was that other clusters could migrate some load units and re-
duce the overall execution time. The other clusters followed a simple load
balancing policy, called work stealing [Blu94] (see section 7.2.2). If one clus-

a) Recursive algo-
rithm for adaptive
quadrature

void ad_quad(float *result, float a, float b, float err)
{
   float res_left, res_right, res_one, res_two, diff,middle, step;

   middle = (a+b)/2;
   step = b - a;

   res_one = 0.5 * step * (function(a) + function(b));
   res_two = 0.25 * step * (function(a) + 2*function(middle)+
                                         function(b));
   diff = res_two - res_one;

   if(fabs(diff) < res_two)
   {
      /* Simpson rule */
      *result = res_two + diff/3;
   }
   else
   {
      ad_quad(&res_left,a,middle,err/2);
      ad_quad(&res_right,middle,b,err/2);
      *result = res_left + res_right;
   }
}

P f x( ) xd
a

b∫– δ for a small and positiveδ.,<
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ter ran out of work, it tried to migrate a thread from the cluster, where all
threads have been started. This is a LDGM strategy initiated by the receiver.
The decision (processor has no work) is local, but the source cluster can be
any cluster of the network.

The following pictures show the performance for different functions and
different number of CPUs per cluster. In figure 23 the function

 was integrated over the domain 0 - 2 with
an accuracy of 0.00001. The execution times and speedups up to 4 processor
are for a single cluster without dynamic load balancing. The execution
times for 8 and 12 processors are measured with the work stealing load bal-
ancing strategy. The execution times increase with a higher number of cre-
ated threads. The reason for this is obvious. The function has distinct areas,
where many adaptive integration steps and where only few steps have to
be done to achieve the same accuracy. The higher the number of threads the

b) Distributing the work

Input:
� r_border,l_border =

domain of the integral
� error = accuracy
� nr_threads = number

of threads

Output:
� result[0] = result of

the integration

    shared_float *result;
    float a,b,step;
    int i;

    step = (r_border-l_border)/((float)nr_threads);
    error  = error/((float)nr_threads);
    result = new shared_float[nr_threads];
    semaphore = (gl_sema_t**)
                         at_malloc(nr_threads*sizeof(gl_sema_t*));
    for(i=0;i<nr_threads;i++)
    {
      semaphore[i] = gl_sema_create(0);
    }
    a = l_border;
    b = l_border + step;
    for(i=0;i<nr_threads;i++)
    {
      at_migration_create_5(at_get_focus(),AT_UNBOUND,
                                                ad_quad, (result_ptr+i),
                                                a,b,error,(semaphore+i));
      a = b;
      b += step;
    }
    for(i=0;i<nr_threads;i++)
    {
      gl_sema_wait(semaphore[i]);
    }
    for(i=1;i<nr_threads;i++)
    {
      result[0] = result[0] + result[i];
    }

10 1 0.00001 1000 20 x⋅( )sin⋅+( )⁄( )sin⋅
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greater the probability to migrate threads with small execution times, so
that the ratio between migration and execution time is not balanced.

An other example can be seen in figure 24. This time the function
 was integrated over the do-

main]0;2[. This time only one processor per cluster was used. On the bor-
ders of the domain the number of recursive integration steps increases. The
execution times of the created threads are therefore varying a lot.

Figure 25 shows an example, where all threads have nearly the same com-
putational work (the function  was integrated). This avoids the
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migration of threads with small computational work and should show the
best possible speedups. It can be seen that the maximum speedups nearly
reach the number of processors used.

The work stealing strategy helps to gain speedups for applications. On the
other hand it can produce an overhead, if threads are requested from a clus-
ter on which all processors are busy and on which no additional threads are
in the run queue. The request will not lead to a migration of a thread, but
the ongoing execution is interrupted during the handling of the request.
The network handling is therefore overhead for the overall execution time
of the application.
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In order to measure this overhead the adaptive quadrature was started ini-
tially with 4 threads on a 4 processor cluster. Two other clusters tried to
steal threads unsuccessfully from the first cluster. Figure 26 shows the over-
head of execution times with work stealing to the execution time without
work stealing expressed as a percentage. The overhead was measured with
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different numbers of integration steps between the next handling of a re-
quest to migrate a thread. The overhead is smaller than 5% for a reasonable
ratio of integration steps to network handling greater than 100. For the pre-
vious examples a ratio of 100000 has been used. Therefore the work stealing
strategy does not produce a significant overhead when used in a situation
with unfavorable load distribution.

Speedups could be achieved in all examples, although the initial distribu-
tion of the load could not be more unbalanced. This leads to the conclusion
that thread migration with Active Threads is suitable to balance the load of
applications that have dynamic run time behavior.

Even if no application has been used that created threads dynamically dur-
ing the run time, the method is also applicable for applications of that class.
The method just considers the current load of the clusters and does not
make any assumptions about the creation time of a thread.

The examples show that the presented method can be used to balance the
load of badly placed applications with dynamic run time behavior. Further
it can be used to avoid explicit placement. All threads of the application can
be started on one cluster and the load will be automatically balanced. This
makes applications more portable, because the application can dynamically
adapt to changing number of clusters and does not have to be rewritten. It
can also be used without the risk to produce a significant overhead when
the load balancing algorithm can not successfully migrate threads.
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9.0 Conclusions

This thesis introduced thread migration as a tool to ease parallel program-
ming with multiple SMPs connected by fast networks. Simple dynamic
load balancing strategies have been implemented that automatically mi-
grate threads between cluster.

It has been shown that applications could improve their performance using
a very simple load balancing strategy. Even for the worst initial distribution
of the application, applications gained speedup up to the number of overall
processors used. The improvements could be achieved for different prob-
lems and different numbers of processors.

These performance measurements show that load balancing eases the
placement problem of parallel applications on multiple SMPs. If the initial
distribution of the application is unfavorable, the unbalanced load can be
balanced effectively. Even further, applications do not have to care for the
placement. Speedups are achieved if all threads of the application are start-
ed on one cluster.

Active Threads offer a flexible event handler mechanism that makes it pos-
sible to implement even more flexible load balancing policies with thread
migration than the one used in this work. This might gain in further im-
provements. One can think of migrating bundles of semantically related
threads. One can also implement mechanisms to migrate data to improve
the locality of the execution.
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