
���������	��
��������
����	�����	������� ������������� �������� ��!���

"$#$%'&)(+*�,$-.*�/102-�354)056�7 -8*:9�;�;)4=<+*�/?>@*�A *�B$C'(ED�A 7 FHG'/?,�7IDJ#$%'&�;$%LK@"�"M#�NO4QP8RS"$;�TU9L%WVMK #2"�R'V)4=XZY\[�P8R]"$;�TJ9L%'VZK &�9�N$%

Active Threads: an Extensible and
Portable Light-Weight Thread System

Boris Weissman

TR-97-036
September 1997

Abstract

This document describes a portable light-weight thread runtime system for uni- and multiprocessors
targeted at irregular applications. Unlike most other thread packages, which utilize hard-coded scheduling
policies, Active Threads provides a general mechanism for building data structure specific thread schedulers
and for composing multiple scheduling policies within a single application. This allows modules developed
separately to retain their scheduling policies when used together in a single application. Flexible scheduling
policies can exploit the temporal and spatial locality inherent in many applications.

In spite of the added flexibility, the Active Threads API is close to that of more conventional thread
packages. Simple synchronization is achieved by standard mutexes, semaphores, and condition variables
while more powerful parallel constructs can be easily built from threads, thread bundles (collections of
threads with similar properties such as schedulers) and user-defined synchronization objects.

Active Threads can be used directly by application and library writers or as a virtual machine target for
compilers for parallel languages. The package is retargeted by porting the Active Threads Portability Inter-
face that includes only eight primitives. Active Threads has been ported to several hardware platforms in-
cluding SPARC, Intel i386 and higher, DEC Alpha AXP, HPPA and outperformed vendor provided thread
packages by as much as orders of magnitude. A typical thread context switch cost is on the order of dozens
of instructions and is only an order of magnitude more expensive than a function call. This document pre-
sents an involved performance analysis and comparisons with other commercial and research parallel runt-
imes.

Active Threads are used as a compilation target for Sather, a parallel object-oriented language under de-
velopment at ICSI. Active Threads are also being used as a base for a distributed extension of C++ that sup-
ports thread migration.

2 Active Threads: an Extensible and Portable Light-Weight Thread System

Table of Contents 3

1 Introduction 5
1.1 Multithreading Issues . 5
1.2 Prior Work . 7

2 Active Threads: Motivation and Goals 10
2.1 Fine-Grain Parallel Programming . 10
2.2 Locality Effects . 11
2.3 Parallel Module Composition . 12
2.4 Design Goals . 13

3 Active Threads: The Model 14
3.1 Overall Architecture . 14
3.2 Threads . 16
3.3 Thread Bundles . 18
3.4 Scheduling . 20

Event Mechanism. 21
Scheduling policies . 25

3.5 Synchronization Objects . 25

4 Programming Example 26
4.1 Example of API Usage: Vector-Matrix Multiplication 26
4.2 Memory-Conscious Thread Scheduling and Performance 27

5 Implementation 30
5.1 Overview . 30
5.2 Active Threads Kernel . 31

Processor Dispatch Queues . 32
5.3 Synchronization Objects . 33
5.4 Extensible Bundle Schedulers . 34
5.5 Memory Management . 36
5.6 Machine-Dependent Layer: Portability . 37

Portability Interface . 37

6 Functionality Comparisons 39

7 Microbenchmarks 41

8 Performance Studies 44
8.1 Sorts . 44

Scheduler Customization . 44
Performance . 45
Performance Impact of the Memory Hierarchy Levels 47
Memory Usage. 48
Memory-Conscious Scheduling and Memory Access Patterns 50
Memory-Conscious Scheduling and Portable Performance 52

8.2 Conservative Manufacturing Simulations . 54
8.3 The Splash-2 Suite . 57

9 Conclusions 59

4 Table of Contents

APPENDIX: ACTIVE THREADS API 61

Blocking Mutual Exclusion Locks. 64
Readers/Writer Locks . 64
Blocking Semaphores . 65
Blocking Barrier. 66
Condition Variables . 66
Spinning Mutual Exclusion Locks. 67
Hybrid Implementation of Blocking Mutual Exclusion Locks 67

REFERENCES 69

1 INTRODUCTION

Threads are gaining widespread use as a vehicle to express parallelism on multiproces-
sors and to improve the structure of uniprocessor applications. Although threads have
only recently entered mainstream computing, the concept of multithreading is hardly
new. The ideas behind modern thread packages can be traced back to late 60s and early
70s. As early as 1968, Dijkstra showed how cooperating threads could be coordinated by
communication at specific points [1 1]. Programming languages, such as Concurrent Pas-
cal [18] addressed similar issues in mid-70s. However, it was not until the 90s that multi-
threading started to gain wider acceptance. While in 1991 no commercial operating
system provided support for multithreading, in 1997 it is available in some form on most
platforms. It is not surprising that the acceptance of the multithreaded model coincides
with the emergence of relatively cheap symmetric multiprocessors. Multithreading can
exploit the newly available processing power [28].

Many modern operating systems and programming languages provide some support for
threads. Emerging platform independent thread standards such as POSIX 1003.4a (recently
renumbered POSIX.1c) [23] are supported by multiple vendors. Still, most proprietary
thread systems remain too heavy-weight for fine-grain parallel programming.

Active Threads is a portable light-weight thread package for uni- and multiprocessors
that promotes compositional software development. It can be used both directly as a
thread library or as a virtual machine for compilers for parallel languages. Active
Threads were designed to facilitate portable encapsulation of thread scheduling policies
while preserving high efficiency and temporal and spatial locality .

This document is organized as following. The remainder of this section discusses the basic
multithreading issues and gives a short survey of related work. Section 2 presents Active
Threads’ main goals. Section 3 introduces the Active Threads programming model and ar-
chitecture. Section 4 presents a simple example that uses the Active Threads API and dis-
cusses relevant scheduling and locality issues. Section 5 discusses implementation and
portability issues. Section 6 compares the functionality of Active Threads with that of other
parallel runtime systems. Section 7 compares Active Threads performance on a set of
benchmarks with that of several commercial and research thread systems. Section 8 pro-
vides a detailed performance study of several Active Threads applications and compares
their performance with the implementations based on other parallel runtime systems. The
full Active Threads API is presented in the Appendix.

1.1 Multithreading Issues

Operating systems are responsible for the creation and scheduling of processes. The allo-
cation of hardware resources to processes is also controlled by the OS. However, multi-
threading within a process could be performed either by the operating system or by user-
level code. There are some trade-offs between kernel-level and user-level thread manage-
ment.

Benefits of user-level threads:

6 Introduction

• Performance. Basic thread operations are performed entirely at the user-level and need
not incur the kernel trap overhead. The available fast thread primitives make it possi-
ble to express fine-grain parallelism naturally pr esent in many application domains. If
thread primitives are expensive, applications must be restructured (if possible) to re-
duce the number of threads and the amount of synchronization. Such restructuring
may result in increased data structure complexity because features that are naturally
expressible with threads will be implemented in data structures.

• Flexibility. User-level threads can be customized on a per-application basis. They need
not be overly general, while kernel threads must provide an array of services to satis-
fy all common uses.

• Simplicity. Since user-level threads are easy to extend, the basic thread system need
not be complex. For instance, very few threaded applications actually require thread
preemption enforced by many kernel-level thread systems. Thread preemption com-
plicates a thread system and has strongly negative performance implications [2].

• Compositionality. User-level threads could be pushed one step further and customized
on a per-data structure rather than a per-application basis. Data structures and their
associated thread policies can be bundled up in modules and accessed concurrently
by applications. Kernel threads, on the other hand, must provide a general scheduling
policy with the priority scheduling that utilizes a single global priority space being
most common across modern operating systems. Since kernel-level threads are inher-
ently non-extensible, the scheduling policy must be general enough to satisfy most
needs. Global priorities hinder encapsulation of modules and development of parallel
libraries.

• Portability. Applications using user-level threads to implement parallelism can be port-
ed by retargeting the underlying thread package. User-level threads can be imple-
mented even for platforms with no operating system support for mutithreading. The
semantics of kernel-level threads as well as thread system interfaces usually varies
across different operating systems. Applications relying on platform dependent ker-
nel threads are harder to port.

These characteristics of user-level threads make them a natural compilation target for par-
allel programming languages. Language support makes thread creation, synchronization,
and thread pattern reuse easy. Fine-grain parallelism naturally present in many applica-
tions can be expressed by powerful programming language constructs. Moreover, fine-
grain threads may be necessary to achieve high absolute performance. While cumulative
thread creation and synchronization overhead grows with the number of threads, the ab-
solute performance of an application may improve in a more fine-grained implementation.
For instance, section 8.1 examines a case for which more threads means higher perfor-
mance while coarser grain thread solution delivers better speedups over the corresponding
serial case, but inferior absolute performance.

Fine parallel granularity is essential for expressing the semantics of many parallel applica-
tions in the most natural way, but it places severe performance constraints on the imple-
mentation of the runtime thread system. The thread granularity and trade-offs between
thread granularity and performance are further discussed in Section 2.1.

Introduction 7

Despite all the benefits, user-level threads are not entirely adequate for I/O bound appli-
cations. Kernel threads can be a better choice for I/O intensive applications on most mod-
ern operating systems. The benefits of kernel-level threads include:

� I/O and other kernel calls. Kernel threads usually perform better in a few important cas-
es (such as GUI or file servers) when kernel intervention is necessary [1]. When a
thread traps to the kernel or blocks (for instance, because of a page fault), the OS can
reschedule another thread. User-level threads blocking inside the OS kernel keep the
processor that can otherwise perform other useful work.

� Uniformity. Localizing thread operations in the kernel makes thread system interfaces
and implementations less volatile. This, in turn, can facilitate creation of “standard”
tools such as debuggers, linkers, etc. [2].

It is important to note that the inability of the user-level threads to perform well in the pres-
ence of I/O and other OS kernel activity is not inherent in the user-level thread model. It is
merely an artifact of the inadequate support of the modern operating systems for user-level
multithreading. Poor performance of the user-level threads is a consequence of the lack of
feedback from the OS kernel. Several solutions that bridge the gap between the OS kernel
activity and user-level thread scheduling were proposed. Marsh, et al. suggested the use of
software interrupts and shared OS kernel/user-level thread schedulers data structures to
communicate the kernel events to user-level thread schedulers [34]. Anderson et al. offered
a scheduler activation mechanism as a better abstraction than kernel threads to support user-
level management of parallelism [1]. Research prototypes for both solutions were built
[1][34] and showed that efficient user-level multithreading is possible in the presence of I/
O activity. However, mainstream OS currently provide no support for cooperation be-
tween user-level threads and the OS kernel.

The performance of kernel threads, on the other hand, is inherently worse than that of user-
level threads. The main reason is the kernel trap overhead for all thread operations. This
aspect of kernel threads is explored in depth in [1].

While no mainstream commercial operating system currently fully supports the kernel
feedback mechanisms, Sun Microsystems announced that Solaris 2.6 (to be released in late
1997) will include scheduler activations [55].

1.2 Prior Work

Many modern multiprocessing operating systems such as Solaris [42][47], Mach [12] and
Windows NT [10] support kernel threads. Since the performance of kernel-level threads is
usually at least an order of magnitude worse than that of user-level threads, user threads
have been implemented on top of kernel threads in many systems: CThreads for Mach [12],
WorkCrews for Topaz [63], Solaris Threads for Solaris OS [47].

Different aspects of user-level thread systems have been explored in the literature. PRES-
TO [3], a system from the University of Washington, emphasized the value of an object-
oriented design for a thread system. PRESTO came with a preemptive scheduler, but the

8 Introduction

user could replace it with an application-specific scheduler . The same applied to synchro-
nization objects. Later versions of PRESTO tried to exploit locality by preferentially
scheduling threads that previously ran on a particular CPU over threads that executed
elsewhere, although no attempt was made to use the semantics of thread operations for
locality based scheduling.

Although the Berkeley Threaded Abstract Machine (TAM) [9][46][13] did not provide a
general-purpose thread system, it explored some locality aspects of thread-scheduling on
distributed architectures. TAM was designed as a compiler substrate for lenient (non-
strict) programming languages. In the TAM model, a program is a collection of codeblocks,
where each codeblock consists of possibly several nonblocking threads. Threads are re-
stricted: a thread is a sequence of instructions with no jumps or synchronization points;
synchronization occurs only at the top of a thread All threads in a codeblock run to com-
pletion and the last thread to run, schedules the next codeblock to execute. This scheduling
policy enhances locality by concentrating on a single frame that binds logically related
threads together as long as possible. A TAM based implementation of Id90 (a strongly-
typed functional language), demonstrated performance about an order of magnitude high-
er than LISP and an order of magnitude lower than C on a single processor [9].

Lazy Threads [14][15], a follow-up project to TAM, concentrated on reducing the overhead
of a parallel call while preserving the generality of threads. Similar to TAM, Lazy Threads
is a compiler substrate - it relies heavily on compiler optimizations and cannot be used di-
rectly as a parallel library. However, unlike TAM, Lazy Threads supports blocking threads.
The central idea is to specialize the representation of a parallel call so that it can be executed
as a parallel-ready sequential call. In cases when parallelism is excessive and threads do
not block this results in parallel call overheads close to those of sequential calls. Blocking
of a child thread leads to the creation of a new thread for a parent. The system relies on the
compiler support for non-standard call/return sequences. The default sequential execu-
tion of threads is motivated by the experience with the non-strict functional language Id90
which showed that the majority of potentially parallel calls can run sequentially. The sys-
tem was implemented on the CM5 and a single processor SPARCstation.

StackThreads [56][57] attempts to reduce the thread creation overhead by allocating the ac-
tivation frame for a new thread first on the stack and moving it to the heap if the thread
blocks. Similar to Lazy Threads, non-blocking threads incur little overhead. All calls, se-
quential and parallel, use the same representation. This somewhat increases the direct
function call/return overhead for the general case. The system was implemented on a sin-
gle processor and required compiler support.

In a similar effort to drastically reduce thread creation overhead, many other researchers
have turned to simpler parallel models. Leapfrogging [64] restricts the behavior of the pro-
gram in an attempt to reduce the cost of futures in functional languages. The technique as-
sumes that futures do not create other futures (which can be thought of as child threads),
unless they directly depend on their values. This guaranteed dependency allows the runt-
ime system to avoid creation of new stacks for all threads. A single worker thread can be

Introduction 9

used to evaluate several futures in the presence of a linear dependency. The semantic re-
striction that enables leapfrogging reduces the usefulness of this technique for explicitly
parallel object-oriented languages which generally support very expressive threads and
synchronization constructs.

In an another attempt to reduce the thread creation overhead, many runtime systems re-
stricted the semantics of threads even further by supporting only non-blocking threadlets
that, once started, run to completion (Filaments [30], Cilk [5][6], Multipol [66]). Although
non-blocking threadlets do provide low thread creation overhead and generally do not re-
quire memory for thread stacks, they are not adequate in their expressiveness to be easily
adapted as a compilation target for most modern explicitly parallel object-oriented lan-
guages (including Java, Ada, CC++, and the locally designed language Sather). Using non-
blocking threads requires shifting to a radically different programming style, such as con-
tinuation passing or implicitly parallel functional programming.

Other relevant systems providing parallel programming with threads include Ariadne
[35][36] and Mthreads [48]. Ariadne is a general-purpose portable thread system from Pur-
due University that achieves portability by building on top of C library setjmp/longjmp
primitives. It is similar in functionality to proprietary systems such as Solaris Threads, but
provides portability across different hardware platforms. Detailed performance compari-
sons between Ariadne and Active threads are offered in section 7. Ariadne makes no at-
tempt to use the memory hierarchy for thread scheduling.

Mthreads is a user-level thread library for Convex SPP developed at the University of Er-
langen-Nurnberg, Germany. The project explored the space of affinity-based scheduling
for the Convex SPP 1000 machine (NUMA architecture). It was shown that using runtime
cache miss rate information for thread scheduling can have a positive performance impact.
All examined scheduling policies used runtime cache misses rather than user annotations
for thread scheduling.

QuickThreads [27] provided a set of techniques and tools for building portable user-level
thread packages. It defined a low-level layer for portable thread systems. The design and
implementation of the Active Threads portability interface was influenced by the ideas and
implementation issues explored in [27].

Active Threads has many common features with the thread systems listed above. For in-
stance, applications using other thread packages can usually be mechanically converted to
Active Threads. However, there are also important differences. Most of these differences
stem from the two distinct goals of Active Threads: to be an efficient portable compilation
target for parallel-object oriented languages and to provide good abstractions for building
compositional parallel libraries.

10 Active Threads: Motivation and Goals

2 ACTIVE THREADS: MOTIVATION AND GOALS

The Active Threads system was designed to facilitate high-performance fine-grained
platform-independent parallel programming; to enable applications to take advantage of
the memory hierarchy of modern machines; to make possible modular and composition-
al development and performance profiling of thr eaded software components.

2.1 Fine-Grain Parallel Programming

Many existing parallel languages support fine-grain parallelism. These languages en-
courage the user to express all the parallelism naturally present in the problem. The de-
gree of parallelism could be quite high, dynamic, and independent of the actual number
of processors. On the data-parallel side, languages like NESL [4] and HPF [21] provide
constructs to express fine-grain nested data parallelism. Contr ol-parallel languages such
as CC++ [7], Cilk [5], and Sather [16][49] provide powerful control mechanisms for ex-
pressing fine-grained task parallelism.

There are several reasons for the popularity of languages that encourage the fine-grained
parallel programming style:

� Expressiveness. A natural parallel decomposition of a program maps directly onto the
threaded implementation. The implementation reflects the problem’s logical concur-
rency rather than a particular hardware architecture. This generally improves the ap-
plication structure.

� Portability. Fine-grained parallel programs are not very sensitive to the number of
available processors. A fine-grained thr eaded application can even dynamically adapt
to the changing number of processors. The details of such adaptation can be hidden
in the implementation of the thread runtime system and need not be exposed to the
programmer.

� Transparent Load balancing. The greater the total number of available parallel tasks the
higher the probability that at any given time all available processors are busy. The
task of load balancing is essentially off-loaded onto to the thread runtime system. The
runtime may migrate threads between processors to avoid idle time. Coarse-grained
applications, on the other hand, must perform explicit load balancing on the level of
data structures.

� Encapsulation of parallelism. If the underlying system can effectively support large num-
ber (even millions) of threads, parallel patterns can be easily encapsulated in reusable
modules with low performance overhead.

� Communications. Distributed systems with user-level communications such as Sather
can use fine-grained thr eads to mask communications latency. A thread initiates com-
munication and blocks. Another thread is scheduled to run in its place. The initial
thread is rescheduled when the necessary remote data is obtained. A similar tech-
nique can be used for threads that perform I/O, but this requires a feedback from the
OS kernel.

Active Threads: Motivation and Goals 11

In practice, the degree of parallelism that can be effectively used by applications is limited
by the thread system overhead. The performance penalties of fine-grained multithreading
come from several sources:

� Thread creation overhead.
� Thread synchronization overhead.
� Cache reload overhead.
� Extra memory usage.

The effectiveness of the thread operations such as the thread creation and context switch
effectively determines the granularity of parallel applications. The caching effects are
somewhat more subtle and are examined more closely in the following section.

2.2 Locality Effects

An executing thread must get its working set into a processor’s cache. The shorter time the
threads execute and the more threads block and get rescheduled, the greater the relative
cost of such cache reload. For coarse-grain, long-running threads, the cost of building up
the cache state is amortized over the entire thread’s lifetime. Short lived threads or threads
that do not execute long enough before relinquishing the processor suffer from caching ef-
fects to a greater degree. Furthermore, the actual caching behavior is highly dynamic and
application dependent. The hope for finding a single thread scheduling strategy that will
yield good results for all applications is hardly justified. Moreover, applications that are
not structured around a single computational kernel are likely to exhibit different behavior
with respect to cache at different execution stages.

Finding good thread scheduling strategies is hard because several seemingly conflicting
goals must be achieved simultaneously. For instance, to achieve load balance, all threads
in the applications can be placed in a central thread repository organized as a FIFO work
queue. This guarantees that no processor is idle as long as the central work queue in non-
empty. However, this solution is not scalable (due to contention for the single central
queue) and usually exhibits poor behavior with respect to cache reuse. If cache reuse is cho-
sen as a main scheduling objective, some processors may be left idle intentionally in the
hope to reduce the total number of cache misses. Markatos et. al coined a term memory-con-
scious scheduling (MCS) for such scheduling policies that try to reduce the overhead of load-
ing data into local memory or cache [32].

The research literature exhibits somewhat contradictory evidence of the relative impor-
tance of load balancing vs. memory-conscious scheduling. Early work on thread schedul-
ing focused almost exclusively on the goal of load balancing. For example, in the process
control policy by Tucker and Gupta [60] and the early versions of PRESTO [3], a single cen-
tral FIFO queue was used for thread scheduling. A more recent work by Thekkath and Eg-
gers [58] also stated that load balancing was a critical performance factor while memory-
conscious scheduling had no positive effect on execution time of fourteen coarse- and me-
dium-grain parallel applications used in the simulation. On the other hand, the work by

12 Active Threads: Motivation and Goals

Markatos and LeBlanc [32] observed significant improvements (40-60%) due to MCS on a
real shared memory platform for several fairly fine-grained parallel applications and ker-
nels. In both studies, each application was structured around a single parallel task such as
constructing and traversing a tree.

We believe that the overall application performance is influenced by the interplay of thread
granularity, load balancing, and memory locality effects. While for coarser thread granu-
larity load balancing may be a determining factor, as thread granularity increases, locality
issues gain greater importance. Recent architecture trends suggest that processors are get-
ting faster at higher rate than memories, and hence the crossover point at which locality
effects become predominant will be observed for coarser thread granularity on future ar-
chitectures than currently.

Active Threads provides a general scheduling mechanism that enables rapid prototyping
and implementation of different load balancing and memory-conscious scheduling poli-
cies. Different policies can be composed in a single application. Various data structures and
parallel control patterns may require different scheduling policies. Such policies can be im-
plemented, profiled, and distributed together with the software modules.

2.3 Parallel Module Composition

Despite overall advancements in creating efficient pr ogramming methodologies, high-
performance parallel applications are usually developed from scratch and tuned to par-
ticular computer architectures. Unlike the serial case, object-oriented techniques alone
cannot achieve software encapsulation, code reuse, and compositionality of high-perfor-
mance multithreaded parallel code. Load balancing, synchronization and locality effects
get in the away of parallel module composition. Explicit coding for load balancing and
locality violates software encapsulation and hinders software maintainability, extensibili-
ty, and portability. However, because parallel programming is inherently harder than se-
rial, parallel pattern encapsulation and reuse is especially desirable from the
methodological as well as the practical prospective.

Active Threads offers fine-grained multithreading with system support for modular soft-
ware development as an efficient platform-independent general-purpose parallel pro-
gramming paradigm. The system support is necessary to relieve the programmer from the
bulk of the work associated with locality maintenance, load balancing, portability and per-
formance predictability across different hardware platforms. System services are also nec-
essary to enable separate development and profiling of parallel modules with predictable
effects of module composition. Since it is generally impossible to foresee all software mod-
ule needs, we envision a system providing such services based upon a general mechanism
that can support multiple implementation policies.

The Active Threads system intends to help the user reconcile often conflicting goals of
having a clean modular design while preserving portable performance at acceptable lev-
els. This is achieved by providing fast, platform-independent thread primitives and a
general scheduling mechanism capable of supporting multiple extensible (and possibly

Active Threads: Motivation and Goals 13

concurrent) scheduling policies. The granularity of threads and scheduling can be dictat-
ed by the application semantics rather than the existing implementation of threads and
schedulers. Fast thread primitives including thread creation and synchronization pro-
vide for a fine-grained multithr eading programming style. For instance, in Active
Threads, thread creation and context switch time are only about an order of magnitude
more expensive than a null function call on many hardware platforms. A general thread
scheduling mechanism enables rapid prototyping with the following performance tun-
ing of scheduling policies for different data structures and application stages.

It has been suggested earlier that, in theory, the compiler may elect different thread sched-
uling policies in different portions of the program [9] and different library modules may
benefit from custom thread scheduling [27]. However, we are not aware of any practical
and portable fine-grain general-purpose thread system that makes this possible on modern
symmetric multiprocessors while preserving the inherent temporal and spatial locality.
The Active Threads package was designed to fulfill these needs.

2.4 Design Goals

The Active Threads design fulfills the following goals:

1. High Performance Fine-Grain Multithreading

Efficiency of thread primitives. Fine-grain parallel programming imposes restrictions on
the runtime system overhead. Section 7 shows that it is possible to perform a thread context
switch in just a few dozen instructions on a wide range of modern architectures. Resched-
uling overhead must be equally low to keep threads light weight. Similar constraints apply
to thread creation and synchronization operations.

Memory-conscious scheduling.Vast improvements in the microprocessor performance of
the last decade were not matched by a corresponding speedup in memory and interconnec-
tion network latencies. Achieving peak performance on the modern architectures is possi-
ble only when the memory hierarchy and placement of threads and data are taken into
account. The Active Threads scheduling mechanism was designed to support co-locating
threads with their data. Different scheduling policies can be used for experiments with dif-
ferent co-location strategies. Active Threads supports the implementation of static, dynam-
ic, and feedback based placement policies.

2. Enabling Compositional Scheduling

Separating scheduling mechanism and policies. Unlike most thread systems, which pro-
vide either a single scheduling policy or a fixed set of scheduling policies, Active Threads
provide a general mechanism that allows the coexistence of any number different schedul-
ing policies. Different policies can be developed on a per data structure or module basis.
Active Threads captures the dynamic structure of the evolving parallel computation and al-
lows one to schedule threads in a way that reflects this structure. This could be of particular
benefit to frequently occurring parallel patterns: nested parallel loops that span all or sub-
sets of processors, collections of cooperating threads working towards achieving a common
goal, etc. Active Threads allows us to reason about and specify the behavior of such pat-
terns locally and implement these patterns using the most suitable data structures and

14 Active Threads: The Model

scheduling policies. Any implementation of scheduling policies that provides a set of event
handlers for the events generated by the scheduling mechanism can be used in any Active
Threads application. This mechanism enables modular development, modular performance
profiling, and extensibility of parallel applications.

The majority of existing commercial thread systems either employ a single global priority-
based thread scheduling policy or allow a fixed set of thread scheduling classes as in the
POSIX standard [23]. Several research systems such as PRESTO [3] and Synthesis [37]
targeted the adaptation of scheduling policies for applications needs. PRESTO, a user-level
thread system, allowed the user to replace the default round-robin scheduler with a more
suitable one. Synthesis provided a round-robin scheduler for kernel threads that could adap-
tively adjust the CPU quantum allocated for different threads based upon the thread’s I/O
rate. However, the compositionality aspect of thread scheduling remains largely unex-
plored.

3. Programmability

Simplicity. Active Threads are a general purpose C library that can be used directly or as a
compilation target for parallel languages. In spite of many innovative features, Active
Threads interfaces were intentionally kept similar to more conventional thread packages.
Synchronization is achieved by way of familiar synchronization objects such as spinlocks,
mutexes, semaphores, and condition variables. Synchronization objects with unusual se-
mantics can be added to the system.

Portability. Portability was among the initial goals for Active Threads. Active Threads
were built to fulfill the need for a portable light-weight threaded compilation target for
Sather, a parallel object-oriented language under development at ICSI. Active Threads are
ported to new platforms by porting the Active Threads Portability interface which includes
only eight primitives (section 5.6) - usually under a hundred lines of C and assembly. Ac-
tive Threads currently runs on a number of uni- and multiprocessors includingSPARC, In-
tel i386 and higher, DEC Alpha AXP and HPPA. Several more porting efforts are in
progress.

3 ACTIVE THREADS: THE MODEL

3.1 Overall Architecture

The major Active Threads components are shown in Figure 1. Active Threads provides the
user with the following abstractions:

� threads
� thread bundles
� virtual processors
� synchronization objects

Active Threads: The Model 15

Threads are units of (potentially parallel) execution that share an address space and other
system resources. Groups of logically related threads are organized into thread bundles, or
simply bundles. Threads in the same bundle share a common thread scheduler. For instance,
a parallel loop statement, common in many parallel languages, can be implemented as a
bundle of threads. At any time a bundle is associated with a single scheduler.

Active Threads hide hardware dependent variables such as the number of CPUs from the
user. Instead, the user is provided with a virtual processor abstraction. At the application
level, threads can be scheduled to run on virtual processors. The number of available vir-
tual processors is limited only by the word size of the underlying architecture. Users are
encouraged to schedule threads that are likely to use the same data to run on the same vir-
tual processor. Such data dependent scheduling annotations are likely to produce substan-
tial performance benefits (section 7). This functionality can also be used to implement high-
level programming language abstractions such as zones [51] intended to capture locality
patterns in a portable manner using user annotations. No precise knowledge of the mem-
ory hierarchy is necessary for such scheduling decisions, although some information about
the underlying hardware may lead to even greater speedups.

Figure 1: Active Threads Architecture

Hardware

OS kernel

runtime

Customized
schedulers

Virtual
processors

kernel thread processor virtual processor bundle

ACTIVE thread SCHEDULED thread BLOCKED thread

context switch / thread startup
synchronization, stack management...

Processor thread
dispatch buffers

User
layer

Active Threads

(light-weight processes)

16 Active Threads: The Model

Virtual processors are multiplexed over available physical processors. All mapping and
load balancing details are hidden from the application programmer. However, if needed,
the application can influence these decisions by supplying customized schedulers. Active
Threads provides a library of various schedulers that can be freely used or extended by the
application. The same application can benefit from different thread scheduling policies in
different parts or even change a scheduling policy dynamically.

The Active Threads runtime provides basic thread services: thread initialization, start-up
and context switch, thread stack management, synchronization primitives such as different
locks and semaphores. The runtime is also responsible for keeping processor thread dis-
patch buffers non-empty to avoid processor idle time.

The Active Threads runtime also deals with various OS specific issues such as the creation
and management of kernel threads (lwps in Sun terminology [47]or tasks in NT [10]) or oth-
er entities supported by the OS kernel (for example, scheduler activations [1]). Active
Threads can also run on top of proprietary user-space thread packages. Much of the runt-
ime is machine independent. Hardware dependent services are captured in the Active
Threads Machine-Dependent Layer. Active Threads are ported to new platforms by retar-
geting the Portability Interface of the Machine-Dependent Layer. Current ports include the
following uni- and multi- processors: SPARC, Intel i386 and higher, DEC Alpha AXP and
HPPA.

The details necessary for programming with Active Threads are given in sections 3.2
through 3.3.

3.2 Threads

Active Threads are lightweight, non-preemptive, user-level threads with conventional
thread semantics: threads are units of execution that share a process address space. Each
thread maintains a set of registers including a program counter and a stack that stores
the thread’s local variables. Threads share all other process resources. There is no en-
forced protection between threads of the same process.

A thread can be in one of the following states: INITIATED, RUNNABLE, SCHEDULED,
ACTIVE, BLOCKED, and DEAD. The state transitions and operations that cause these
transitions are shown in Figure 2.

A thread is created by the Active Thread runtime in an INITIATED state. It is then passed
to its bundle for scheduling. A thread in the INITIATED state has all information necessary
to start execution (such as an entry point and arguments), however it may need to acquire
some additional resources for thread startup. For instance, threads in the INITIATED state
may be stackless if the scheduling policy uses lazy stack allocation on thread startup rather
than thread creation. Such threads may also have thread private storage unallocated.

Active Threads: The Model 17

Threads in the RUNNABLE state are entirely managed by their bundles and can be freely
scheduled for execution by the associated bundles. In general, a user-supplied scheduling
algorithm can select a subset of threads in the RUNNABLE state and schedule them for ex-
ecution causing the transition from the RUNNABLE to SCHEDULED state.

Threads in the SCHEDULED state are no longer accessible to the bundles. They act as a
work pool for (physical) processors and are kept in special dispatch buffers. Note that there
may be many more SCHEDULED threads than processors. When a processor becomes
idle, it dispatches one of the SCHEDULED threads for execution. An executing thread is
said to be in the ACTIVE state.

An executing (ACTIVE) thread can yield execution to another thread, block on a synchro-
nization object or terminate. BLOCKED threads are sleeping on the synchronization ob-
jects such as mutexes, semaphores, or condition variables until the respective
synchronization objects are sent special unblocking signals. After unblocking, a thread be-
comes RUNNABLE and is passed to its bundle for scheduling. Active Threads also sup-
ports user-defined events that, when triggered by the thread in the ACTIVE state, cause a
transition to the RUNNABLE state; however the thread is not passed to its bundle. Instead,
it is passed to a user-defined event handler. This functionality allows, for instance, to write
a thread to a persistent store. It is also used to facilitate migration of threads between SMPs
in a distributed system [65].

Threads become DEAD after they terminate or explicitly execute at_exit. Table 1 summa-
rizes the Active Threads states and transitions.

Figure 2: Active Threads State Transitions

RUNNABLE

ACTIVE

SCHEDULED

DEADBLOCKED

abort, terminate

dispatch

block

unblock
yield

INITIATEDcreate
schedule

finalize

18 Active Threads: The Model

Thread state transitions in Active Threads are not radically different from those of other
user-level threads packages, such as Solaris Threads [47]. However, the scheduling event
mechanism that implements state transitions is a unique feature of Active Threads. So is
binding groups of logically related threads together and associating a potentially user-de-
fined scheduler with each thread group.

3.3 Thread Bundles

Thread concurrency and synchronization patterns in many parallel applications are not
random. The object-oriented paradigm captures and reuses such recurring patterns espe-
cially well. Our experience with Sather, a parallel thread-based object-oriented language
[16][49][50], as well as other empirical evidence for non object-oriented parallel languages
[9] show that both substantial temporal and spatial locality exists among collections of log-
ically related threads. Exposing thread scheduling decisions to the compiler or a parallel
library allows us to exploit common locality patterns in order to minimize negative effects
at all levels of the memory hierarchy. Bundles and processor affinity annotations for
threads take advantage of such temporal and spatial locality.

We define a thread bundle as a collection of semantically related threads with common prop-
erties. All threads in a bundle share the same scheduling policy. Scheduling policies for dif-
ferent bundles can be completely independent from each other. A single application may
create thread bundles with different scheduling policies such as FIFO, LIFO, priority, pro-
cessor affinity scheduling, etc. Moreover, a scheduling policy for a bundle is not fixed and
can potentially change dynamically.

A thread bundle is created to perform some parallel operation. There may be arbitrary de-
pendencies among the threads in a bundle or among threads in different bundles. Howev-
er, since a bundle expresses a parallel operation, threads in the same bundle are more likely
to depend on each other than on threads in other bundles.

Threads in a bundle can be in different states: INITIATED, RUNNABLE, ACTIVE,
BLOCKED, and SCHEDULED. Figure 3 shows a snapshot of a bundle with threads in
various states.

State Semantics

INITIATED created threads, but possibly missing some resources (i.e. stack or local store)

RUNNABLE managed by different schedulers; can be scheduled for execution

SCHEDULED threads in cpu dispatch queues, no longer accessible to schedulers

ACTIVE executing threads

BLOCKED threads sleeping on synchronization objects

DEAD threads after termination, or an explicit call to at_exit()

Table 1: Active Threads states.

Active Threads: The Model 19

When a new thread is created, its bundle is always specified. Thus, at any given time, all
threads in the system belong to some bundles. A bundle plays a role of a handle for a col-
lection of threads and performs scheduling for this collection.

Any running thread can create a new thread bundle at any time. In Figure 4, running
threads create new bundles (left), which results in a dynamic bundle hierarchy, called a

bundle activation tree (right).

Thread bundles form a runtime (dynamic) hierarchy. A thread creating a new thread or a
bundle does not need to block. Therefore, an Active Threads application unfolds like a tree,
not as a stack. The bundle activation tree diagram of Figure 4 displays only bundles and
each node in the diagram could be thought of as a logical unit of a parallel computation.

Bundles are a simple mechanism to communicate the logical structure of the evolving com-
putation to the Active Threads runtime. At some point, threads in the bundle must be
mapped onto the physical processors. Per bundle schedulers deal with such mapping and
the associated scheduling decisions.

Grouping related threads into bundles leads to two kinds of scheduling decisions:
� scheduling of threads in a bundles
� scheduling of different bundles in a bundle activation tree

Figure 3: Bundle with threads in different states

Figure 4: Creation of new bundles (left) and the resulting bundle activation tree (right)

ACTIVE SCHEDULED

RUNNABLE BLOCKED

20 Active Threads: The Model

3.4 Scheduling

To achieve high performance, Active Threads are designed to be user-level and non-pre-
emptive. Negative performance implications of thread preemption are discussed in [2]
and [27]. User-level thread operations provide for greater flexibility and higher perfor-
mance than kernel-level thread management [2].

There are several main reasons for performance degradation from multithreading:
� The overhead of a context switch, which generally involves saving and reloading a

portion of a register file.
� Rescheduling overhead due to consulting the scheduler data structures and identify-

ing the next thread to run.
� Scheduling implications in the presence of dependencies between threads. For in-

stance, it is common for parallel applications to use busy-waiting on some condition.
If the thread that signals the condition is not scheduled immediately, other threads
that depend on it end up busy-waiting and tying up processors.

� Memory locality effects. If assigning threads to processors is done with no regard for
cache contents, problems of several sorts arise. An unblocked thread can be sched-
uled to run on a processor that does not cache that thread’s data. Even if the thread is
rescheduled to run on the same processor as before blocking, intervening threads may
have corrupted some of the cached state. Alternatively, logically related threads using
the same data may execute concurrently on different processors causing large bus traf-
fic due to cache invalidation and false sharing.

� In multiprogramming systems, especially with high loads, the last two problems are
aggravated by the OS intervention to multiplex different processes over a fixed num-
ber of processors.

Active Threads addresses most of these problems. The context switch overhead is on the
order of a few dozen instructions for all supported platforms. A flexible scheduling event
mechanism allows us to build and tune a variety of schedulers for particular data struc-
tures. This lowers the rescheduling overhead and enables thread scheduling that respects
thread dependencies. The busy-waiting problem is addressed by blocking and two-phase
synchronization objects supplied by Active Threads. Two-phase synchronization involves
spinning on the lock for some duration before blocking. Furthermore, the Active Threads
events and runtime provide services necessary to implement a variety of schedulers that
facilitate cache reuse.

Unlike most thread management systems, there is no fixed scheduling policy for Active
Threads. Instead, Active Threads supports a general scheduling event mechanism that
enables many different extensible scheduling policies. Each bundle can implement its
own scheduling policy independent of the rest of the system. The policy is implemented
by the bundle scheduler. The Active Threads scheduling mechanism defines interfaces to
which all such schedulers must conform. The Active Threads distribution comes with a
library of common schedulers which can be easily extended to fulfill unfor eseen needs.

Active Threads: The Model 21

Event Mechanism

Active Threads provides no hard-coded scheduling policy. Instead, it supports a general
mechanism upon which different specialized scheduling policies can be built.

All thread scheduling decisions are made by the bundle to which the thread belongs. The
bundle is free to maintain any scheduling data structures that fit most closely the semantics
of the thread group. Such an architecture enables the coexistence of various scheduling pol-
icies within a single application and facilitates the encapsulation of thread scheduling. A
parallel library module is envisioned as consisting of data structure sources and the asso-
ciated schedulers used together.

Different susbsytems communicate with bundles by vectoring scheduling events. Bundles
encapsulate all aspects of scheduling and must provide event handlers for all scheduling
events. There are no restrictions on the implementation of such event handlers.

The relationship between bundles and other subsystems as well as the direction of the
event flow are shown in Figure 5.

All events are partitioned into two groups: internal Active Threads events and external (us-
er-defined) events. Internal events deal with common thread operations: thread creation,
termination, blocking, unblocking, dispatching by the processor, etc. External events facil-
itate the implementation of less common and more specialized thread operations such as
thread migration in distributed systems or committing threads to a persistent store. In this
section, we will concentrate on the internal events. The details of how new Active Threads
events can be defined to implement thread migration in a network of SMPs as well as an
involved performance analysis of thread migration are given in [65].

All internal events, their logical origins and a short description of the information they pro-
vide to the thread bundle are given in Table 2

Figure 5: Scheduling events in Active Threads

bundle synch.
objects

Network

Active Threads kernel

Machine-dependent layer

blocked,
unblocked

started,
terminated

processor
idle

external
(user-defined)

events

Application layer

22 Active Threads: The Model

Normally, threads in the ACTIVE (executing) state continue running until they block on
synchronization objects, yield execution or terminate. When one of these conditions occurs,
the runtime performs the associated action which involves only a limited number of steps.
For instance, when a thread blocks or yields, the thread needs to be stopped and its context
needs to be saved in the thread control block. This involves saving the contents of a portion
of a register file in a place provided by the thread data structure. Which registers need sav-
ing varies across different architectures and compiler parameter passing conventions.
When a thread terminates, associated data structures such as the thread control block and
stack are returned by the runtime to corresponding pools that it maintains. After the ele-
mentary thread operations are completed, a thread event that contains a thread handle is
dispatched to an appropriate bundle.

In practice, the thread created and thread unblocked events can be handled by a single handler.
Schedulers that choose to implement lazy stack allocation to reduce overall memory con-
sumption can use the thread started event to create a thread’s stack on thread startup rather
than thread creation (we will show in later sections that this may substantially reduce max-
imum memory requirements). Unless a bundle wants to keep an exact account of which
threads are blocked and running, it can supply a null thread blocked and thread terminated
event handlers. Bundles implementing standard eager stack allocation may also supply a
null thread started event handler. In most of our experiments, bundles provided distinct
event handlers for only four events: thread created, bundle created, bundle terminated and pro-
cessor idle. Lazy stack allocation adds a handler for the thread started event. All scheduling
event handlers are necessary to implement complex scheduling policies such as priority
scheduling with aging.

As one example of the use of scheduling events, Figure 6 illustrates what happens when a
thread blocks on the synchronization objects and later unblocks.

thread created (kernel) informs about creation of a new thread.

thread started (kernel) informs about thread start-up; enables lazy
stack allocation policies.

thread terminated (kernel) informs about thread termination.

thread blocked (synch. object) informs about thread blocking on a synchroni-
zation object

thread unblocked (synch.objects) informs about thread unblocking.

bundle created (kernel) informs about creation of a new child bundle.

bundle terminated (kernel) informs about termination of a child bundle.

processor idle (kernel) requests more threads for dispatching by the
idle processor.

Table 2: Internal events.

Active Threads: The Model 23

Figure 6 is simplified in several minor respects - for instance, kernel threads are not even
displayed - but it captures the essence of the Active Threads event mechanism. At time 1 a
thread executing on virtual processor 1 blocks. A thread blocked event is generated to com-
municate this information to the bundle. As the figure shows, the physical processor exe-
cuting a blocking thread has an empty thread dispatch buffer. When a thread blocks, a
physical processor becomes idle and an idle event is vectored to the bundle to request more
work.

At time 2, the bundle has processed both events. Internal bundle scheduler data structures
have been updated to reflect blocking of a thread. In response to an idle event, a bundle se-
lects an available thread in the RUNNABLE state for execution on virtual processor 2. The
selected thread switches to the SCHEDULED state as shown in Figure 6 for time 2. It is sub-
sequently dispatched by the idle physical processor to become ACTIVE.

Figure 6: Example of a scheduler event mechanism

Processors

Virtual
Processors

User
layer

Dispatch

scheduler

blocked/
idle

scheduler

scheduler

unblocked

schedulerUser
layer

Virtual
Processors

Dispatch

Processors

time 1 time 2

time 3 time 4

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

ACTIVE SCHEDULED RUNNABLE BLOCKED

Queues

Queues

24 Active Threads: The Model

At time 3, a synchronization object receives a signal and unblocks the previously blocked
thread. A thread unblocked event is generated by the Active Threads runtime and gets for-
warded to the bundle of the unblocking thread. The bundle updates the associated data
structures to reflect that the thread is unblocked. The unblocked thread becomes RUNNA-
BLE (time 4).

Our example in Figure 6 was simplified for clarity. In the example, only a single bundle is
shown. There may be many concurrent bundles utilizing different schedulers. This creates
no ambiguity with respect to thread and bundle events. Since there is a unique mapping
from threads and bundles to their parent bundle in the activation tree, thread and bundle
events are forwarded to such parent bundles. However, when a processor becomes idle, it
needs to select a destination bundle for an idle event. One way to solve this problem is to
always forward idle events to the root of the bundle activation tree and then rely on bundle
to propagate the event to the right place in a tree. For large activation trees, the overhead
of such propagation (which may involve the traversal of the entire bundle activation tree
in some order) can easily surpass the actual context switch time and become a scheduling
bottleneck.

For this reason, we have chosen a solution similar to that used in TAM [9][46][13] for non-
blocking threads. In TAM, all threads are organized in groups called code blocks. A runt-
ime representation of a code block is called an activation. Activations form a tree hierarchy
not unlike that of the bundle activation tree in Active Threads. There may be many activa-
tions present in the system, but a processor can execute threads only from resident activa-
tions. The compiler explicitly emits code to make activations resident. Once an activation
becomes resident, it remains so until all its threads terminate. This is an exceptionally good
model that promotes locality for lenient programming languages with unblocking under-
lying threads. We have extended these ideas to provide a mechanism that supports sched-
uling of blocking threads.

At any moment, a unique bundle is said to have the execution focus. Active Threads API
provides a primitive for setting and obtaining a value of a focus bundle. Whenever proces-
sors become idle, they send idle events to the bundle with the focus. Similar to a resident
activation in TAM, a focus bundle serves as a work producer for physical processors. How-
ever, in Active Threads, scheduling does not need to be centralized physically. It is up to
the focus bundle to schedule more threads or to propagate the idle event up or down the
bundle activation tree. In the presence of enough parallelism, a single bundle will be allo-
cated all resources. Simple schedulers that facilitate cache reuse can be used in such set-
tings. When a single bundle cannot keep all processors running, a more complex protocol
needs to be followed to propagate scheduling requests to other parts of the bundle activa-
tion tree. Such organization allows the implementation of scheduling with different degree
of centralization: from completely centralized with all threads managed by a single bundle
to a completely distributed. Section 5.4 provides some code examples that illustrates these
points.

Active Threads: The Model 25

The scheduling event mechanism is somewhat reminiscent of the scheduler activations
mechanism intended to bridge the gap between user level threads and OS kernel in the
presence of I/O [1]. Active Threads events, however, fulfill different goals - transparent
composition of lightweight schedulers that may take advantage of temporal and spatial lo-
cality.

Scheduling policies

While Active Threads provides a general scheduling mechanism, bundles implement dif-
ferent scheduling policies. Although no restrictions are imposed on the algorithms and
data structures used to implement scheduling policies, the following general principles
were set forth to guide the design and implementation of standard bundle schedulers
distributed with Active Threads.

� Using locality information. Regardless of the scheduling details, bundle are encour-
aged to use thread affinity information.

� Minimizing rescheduling overhead. Fine-grain parallel programming imposes re-
strictions on system overhead. It is possible to perform a thread context switch in just
a few dozen instructions on a wide range of modern architectures (section 7). Re-
scheduling overhead must be equally low to keep threads lightweight.

� Minimizing hot spots. Scheduler data structures should be carefully chosen to avoid
hot spots. Contention for access to common resources will have a negative impact on
fine-grain parallel applications.

The Active Threads distribution comes with library of commonly used schedulers (sec-
tion 5.4).

3.5 Synchronization Objects

The Active Threads scheduling events mechanism enables creation of synchronization ob-
jects with different synchronization policies. Many commonly used synchronization ob-
jects are provided by the Active Threads library:

� spinlocks: simple, snooping and exponential back-off
� mutexes (two-phase blocking mutual exclusion locks)
� reader/writer locks
� semaphores
� condition variables

Active Threads also supports atomic acquisition of sets of locks. Full interfaces for the syn-
chronization objects supported by the Active Threads library are presented in the Appen-
dix. Performance and implementation issues in atomic acquisition of sets of locks in Active
Threads are explored in [43]

26 Programming Example

While many common synchronization patterns are captured in the Active Threads library,
the scheduling event mechanism supports some unforeseen extensions. For instance, a bar-
rier lock is not supported directly by Active Threads, but could be easily implemented us-
ing scheduler events.

4 PROGRAMMING EXAMPLE

This section presents a simple programming example that emphasizes the importance of
preserving temporal and spatial locality for performance. The example is very simple yet
it is capable of illustrating many concepts presented in the previous section. However, it
should not be perceived as a tuned algorithm that exploits locality to the fullest. Better
CPU utilization could be achieved by various blocking strategies at different levels of
memory hierarchy, but similar ideas apply even to more complex and efficient implemen-
tations.

Section 4.1 examines a simple parallel version of vector-matrix multiplication to illustrate
the Active Threads API. Section 4.2 shows how a minimal change to the naive implemen-
tation that takes into account spatial locality can have substantial performance implica-
tions.

4.1 Example of API Usage: Vector-Matrix Multiplication

We have selected vector-matrix multiplication to illustrate the Active Threads API. There
are several reason for this choice:

� Simplicity.
� Natural decomposition into fine-grain units of computation that can be performed in

parallel. Threads are a natural way to express this decomposition. This also allows the
implementation to avoid dependencies on the number of physical processors.

� Fine-grain parallelism imposes strict performance constraints on the implementation
of the underlying parallel runtime system. Thread management overhead limits the
granularity of parallelism and to achieve speedups, key thread operations must be ex-
tremely lightweight.

� In spite of its simplicity, the problem illustrates the benefits of exploiting spatial and
temporal locality.

A segment of code that implements simple parallel vector-matrix multiplication is shown
in Figure 7.

Programming Example 27

The computation naturally decomposes into dot products of the input vector and matrix
columns. A separate thread is created for each such dot product. New threads are added
to the currently active bundle. The AT_UNBOUND annotation specifies that a thread has
no affinity for any processor. A simple semaphore is used to signal completion of dot prod-
ucts to the parent thread. The parent thread is blocked on the semaphore until all dot prod-
ucts have terminated and the resulting vector is fully computed.

Code in Figure 7 is fairly straightforward and can be mechanically converted to use, for in-
stance, POSIX or Solaris threads instead of Active Threads.

4.2 Memory-Conscious Thread Scheduling and Performance

The code segment in Figure 7 is extremely simple, but it fails to address memory locality
issues. In particular, it displays very poor spatial locality. Data items that are located close
in space are accessed by different threads. As a result, the parallel version has a speedup
of about 3 on the 8 processor Sun Enterprise 5000 (each processor is a 167Mhz UltraSPARC-
1). While better speedups could be achieved by parallelizing a different (serial) algorithm
tuned to memory hierarchy, simple processor affinity annotations allow us to obtain simi-
lar results without increasing code complexity.

/* Multiply vector ‘v[rows]’ by matrix ‘m[rows][cols]’ and keep the result in ‘r[cols]’ */
void vxm(float *v, float *mat, float *r, int rows, int cols){

int i,col;
at_sema_t *sema = at_create_sema(0); /* semaphore signaling completion */
/* create a thread for each vector - matrix column product */
for(col=0; col<cols; col++){

/* create an unbound thread and attach it to a bundle with execution focus */
at_create_6(at_get_focus(), AT_UNBOUND, vxcol, v, mat+col, rows, cols, &r[col],

sema);
}
/* Wait until all dot products terminate */
for(i=0; i<cols; i++) at_sema_wait(sema);
am_sema_destroy(sema);

}

/* compute a dot product of vector v[n] and column ‘col’ of matrix mat */
/* The column is specified by a pointer to the first element e1 and ‘stride’ */
void vxcol(float *v, float *e1, int n, int stride, float *res, at_sema_t *sema){

int i;
*res =0;
for(i=0; i<n; i++)

res += v[i]*(*(e1+stride*i));
at_sema_signal(sema); /* signal completion */

}

Figure 7: Vector-matrix multiplication

28 Programming Example

First, we examine some problems of our naive implementation. Consider a thread that
multiplies vector by matrix column . A physical processor that executes this thread will
end up loading column of matrix in its cache. For simplicity, we consider only the case

of a single level cache. All issues considered here apply to architectures with multiple level
caches. We also assume that all necessary data fits in cache entirely.

Figure 8 displays the portion of matrix m that ends up in cache of the considered processor
by the time the dot product thread terminates. Caches of modern machines are usually or-
ganized as some number of cache lines with cache lines of 32 or 64 bytes being fairly com-
mon. The entire line is loaded into cache on reference to a matrix element. On the
muliprocessor, this can be in conflict with work partitioning and thread scheduling. The
naive implementation of matrix-vector multiplication suffers from such a conflict.

The failure to take memory hierarchy into account results in the following problems:
� The total number of cache misses necessary to load data increases. For example, a

thread that computes a dot product of vector and matrix column can execute on
any processor and will most likely load column j+1 into cache again (it is already in
cache of our original processor).

� There are additional misses due to false sharing. For instance, if threads that use col-
umns and execute concurrently, a thread storing a dot product result in

causes cache invalidation for the processor that computes . Invalidation
happens even though the processors do not write to the same location.

� Extensive cache traffic due to the avalanche of cache misses saturates the bus and im-
poses a limit on the number of processors that can be used effectively. For instance, in-
creasing the number of processors beyond 5 for our naive implementation is of little
benefit. A saturated bus simply cannot supply enough data to keep all pr ocessors run-
ning efficiently . The speedup curve stabilizes at around 3 even if we keep increasing
the number of processors (Figure 10).

Figure 8: Vector-matrix multiplication and cache effects

v j
j m

v

m j

=

r[j]

cache line

v j 1+

j j 1+
r j[] r j 1+[]

Programming Example 29

The virtual processor annotation mechanism of Active Threads allows the user to eliminate
most of excess cache traffic in a simple and portable manner. Minimal modifications to the
original vector-matrix multiplication deliver competitive performance even for our naive
fine-grain threaded implementation. An updated version is shown in Figure 9 with added
lines marked /* new */.

This version creates a new bundle that supports scheduling with respect to virtual proces-
sor annotations. Threads that access neighbor columns of the input matrix m are scheduled
to run on the same virtual processor. The Active Threads runtime takes care of mapping
virtual processors to physical processors and load balancing. Figure 10 presents perfor-
mance results of the original and modified versions. Replacing the thread scheduler leads
to significant performance gains and much higher speedups.

/* Multiply vector ‘v[rows]’ by matrix ‘m[rows][cols]’ and keep the result in ‘r[cols]’ */
void vxm(float *v, float *mat], float *r, int rows, int cols]){

int i,col;
at_sema_t *sema = at_create_sema(0); /* semaphore signaling completion */
at_bundle_t *bundle = at_mcs_bundle_create(); /* new */
/* create a thread for each vector - matrix column product */
for(col=0; col<cols; col++){

int vproc = col/64; /*new */
/* create an unbound thread and attach it to a bundle with execution focus */
at_create_6(bundle, vproc, vxcol, v, mat+col, rows, cols, &r[col],

sema); /*modified */
}
/* Wait until all dot products terminate */
for(i=0; i<cols; i++) at_sema_wait(sema);
am_sema_destroy(sema);
at_bundle_destroy(bundle); /* new */

}

Figure 9: Vector-matrix multiplication with processor affinity annotations

Figure 10: Vector-matrix multiplication performance

0 1 2 3 4 5 6 7 8 9
Processors

0.00

0.05

0.10

0.15

0.20

0.25

T
im

e
(s

ec
)

Unbound Threads
Affinity Annotations

0 1 2 3 4 5 6 7 8 9
Processors

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
pe

ed
up

Unbound Threads
Affinity Annotations

30 Implementation

5 IMPLEMENTATION

5.1 Overview

The Active Threads system consists of five main units: Active Threads Kernel, Synchroniza-
tion Objects, Schedulers, Memory Management, and Machine-Dependent Layer. Active
Threads units and relationships between them are shown in Figure 11.

All subsystems other than the machine-dependent layer are platform independent. The
Active Threads kernel provides the basic thread interface: thread creation and termination,
thread startup and concurrent execution. Active Threads synchronization objects capture
different synchronization patterns such as spinning and blocking mutual exclusion, read-
er/writer locks, counting semaphores, condition variables, etc. New kinds of synchroniza-
tion objects can be added with other system units intact. Bundles implement different
kinds of scheduling policies for collections of threads. As in the case of synchronization ob-
jects, new kinds of schedulers can be added to the system with no modification to other
subsystems. The memory management unit provides parallel memory management for all
internal purposes. The machine-dependent unit captures all architectural dependencies.

We now discuss the Active Threads susbsytems in more detail.

Figure 11: Active Threads Subsystems

Machine-Dependent Layer

Application Interface

Active Threads
Kernel

Bundles

Memory
Management

Synchronization
Objects

thread/bundle
events

(schedulers)
schedule

thread
events

create/destroy

block requests

Implementation 31

5.2 Active Threads Kernel

The kernel unit provides facilities for thread and bundle creation, termination, startup,
context switch, and thread stack allocation. The kernel unit is the only Active Threads
unit that communicates with the machine-dependent layer to request the low-level archi-
tecture specific services. All other Active Thr eads subsystems rely on the kernel for basic
thread operations.

Each thread’s state information is stored in the thread context block. The register state on con-
text switch is stored on the thread stack. The pointer to this area is in the thread context
block. The context block also keeps other miscellaneous thread information and a pointer
to a thread bundle.

Each thread has a unique id which can be obtained by calling at_self(). Each thread runs
with its own stack. Thread context block and stack allocation and deallocation are handled
by the memory management unit. However, the binding of threads to stacks is performed
by the bundle. The time of such binding may vary. We will show in section 8.1 that late
binding of threads to stacks can significantly reduce overall memory requirements. Bun-
dles may choose to implement different binding policies.

Thread affinity information stored in the context block is used by bundles that support lo-
cality scheduling to influence the assignment of threads to physical processors.

When a thread is created, the kernel obtains a fresh thread context block from the memory
management unit, initializes it and vectors a thread created event to an appropriate bundle.
When a thread is scheduled to run for the first time, a thread started event is forwarded to
the bundle. If the bundle implements lazy stack allocation, a thread is bound to a stack by
the thread created event handler. On thread termination, the kernel vectors a thread terminat-
ed event to the thread’s bundle. Similar events are associated with bundle creation and ter-
mination operations. The Active Threads kernel is also responsible for generating processor
idle events when processors run out of work.

Figure 12: Thread context block.

id
register store (sp)
stack origin
thread affinity
parent bundle
arguments
function entry

stack

bundleContext block

...

32 Implementation

Processor Dispatch Queues

The Active Thread kernel maintains thread dispatch queues (or buffers) for each processor.
Bundles deposit threads in the dispatch queues in response to scheduling events.

Normally, when a thread blocks, the associated processor picks up a runnable thread at the
head of a its dispatch queue. The code executed on behalf of the new thread (getting the
thread from the dispatch queue) is executed using the stack of the blocking queue to avoid
an extra context switch. The alternative of using a special scheduling thread for this pur-
pose imposes an extra context switch to a scheduling thread that consults the dispatch buff-
er for each thread blocking operation.

If the dispatch queue is empty, an idle event is generated. If the bundle that handles this
event deposits some thread in the dispatch buffer, the context switch completes as above.
However, if the dispatch buffer remains empty, as a final resort, dispatch buffers of other
processors are consulted.

Finally, if no new threads can be obtained, a special service thread wakes up. It is respon-
sible for requesting more work by vectoring processor idle events to the active bundle. As
long as the dispatch buffers are kept non-empty, the service threads are asleep. A service
threads only wakes up when a processor is idle and no new threads are scheduled in re-
sponse to the processor idle event. In the current implementation, the service thread keeps
control over the processor even if no scheduled threads are available. We plan to amend
this situation by releasing the processor in the future versions of Active Threads to improve
throughputs in multiprogramming environments. Another related extension is either
switching to a new thread or releasing a processor when a currently active thread is
blocked in the OS kernel on I/O. However, this requires support services from the OS ker-
nel such as scheduler activations [1].

Figure 13: Processor dispatch queues

service
current

service
current

processor private
structure

processor private
structure

dispatch
queue

dispatch
queue

cpu cpu

Implementation 33

Unlike other threads systems such as PRESTO [3], Active Threads does not use a special
scheduler thread to manage context switches and rescheduling. As mentioned earlier, such
architecture requires an additional context switch to the scheduler thread for each blocking
operation. Instead, Active Threads implements the concept of a preswitch [27]. After the old
thread is blocked, the processor switches to the stack of a new thread and dispatches the
thread blocked event to the active bundle. The bundle may run some code on behalf of the
old thread in the stack of the new thread and the extra context switch is avoided.

The Active Thread kernel also makes sure the new thread indeed has a stack. A race con-
dition may arise when a lazy stack allocation policy is used. If the new thread is scheduled
to run for the first time, the kernel vectors a thread started event to the active bundle. Any
valid bundle implementation must guarantee that after this event is handled, a stack for
the new thread has been created. Some examples of lazy stack allocation are given in sec-
tion 5.4.

A processor private structure (shown in Figure 13) is allocated per processor and is used to
keep pointers to the context blocks of the currently active thread and the service thread for
that processor. The processor private structure also contains some other miscellaneous
processor specific information. Locating a processor private structure by the cpu may
present a problem if the processor does not support at least one word of private memory.
Since each processor uses a different private structure, pointers to such structures cannot
be located in the ordinary RAM - different processors share text and data segments and
will inadvertently share the private structure. On many architectures the problem is re-
solved by using processor-specific memory. For instance, the SPARC architecture [52] re-
serves a global register g7 as processor-private storage. The SPARC parameter passing
convention ensures that compilers and operating systems do not use this register - it is in-
tended to be controlled exclusively by the thread system [47]. If a processor does not sup-
port any private storage, the current value of a stack pointer can be used to infer the
location of the processor private storage (section 5.6).

5.3 Synchronization Objects

Active Threads currently provides several kinds of synchronization objects:
� spinlocks: simple, snooping and exponential back-off
� blocking (two-phase) mutual exclusion locks
� blocking reader/writer locks
� counting semaphores
� barriers
� condition variables

The APIs of the above synchronization objects are presented in the Appendix. The stan-
dard Active Threads synchronization objects have conventional semantics and essentially
match or supersede the functionality of POSIX or Solaris Threads.

34 Implementation

New kinds of synchronization objects can be added with no modification to other function-
al units. To illustrate the flexibility of the Active Threads event mechanism and extensibil-
ity of synchronization objects, we present the code for the mutex unlock operation (Figure
14)

Synchronization objects are free to use any representation for queued sleeping threads.
Synchronization objects communicate with the rest of the system by vectoring scheduling
events to bundles and calling the kernel-provided at_block() primitive to safely block run-
ning threads. In Figure 14, sleeping threads are kept in a simple FIFO queue. If the queue
is non-empty, the thread at the head of the sleeping queue is removed and a thread un-
blocked event is generated to inform the thread’s bundle. Figure 15 illustrates how a bundle
that supports a simple FIFO policy catches this event and immediately schedules the un-
blocking thread for execution. More complex priority-based mutual exclusion locks can be
implemented by selecting the appropriate representation for the sleeping queues and mod-
ifying the selection criteria.

5.4 Extensible Bundle Schedulers

An Active Thread bundle must implement event handlers for all eight internal scheduling
events (section 3.4). No restrictions are placed on the bundle internals. The implementa-
tions are free to select the best data structures possible to implement the scheduler. For in-
stance, if the number of threads is known statically (or even dynamically at bundle creation

void at_mutex_unlock(at_mutex_t *m){
at_thread_t *t=NULL;
at_bundle_t *b;
AT_SPINLOCK_LOCK(m->slck); /* protect sleeping queue updates */
m->owner = NULL; /* clear the mutex */
if(m->sleepers){ /* select a thread to wake up, if any */

t = m->sleepers;
m->sleepers = t->next;

}
AT_SPINLOCK_UNLOCK(m->slck);
if(t){

b = t->bundle;
/* dispatch a “thread unblocked” event to bundle b*/
AT_EVENT(b, thread_unblocked, t);

}
return;

}

Figure 14: Mutex unlock operation.

void thread_unblocked(at_bundle_t *b, at_thread_t *t) {
/* a simple event handler for bundle ‘b’ that just schedules the thread */

at_schedule(t);
}

Figure 15: A simple thread unblocked event handler.

Implementation 35

time), the scheduler may keep threads in an array to minimize rescheduling overhead. In
simple dynamic cases, a linked list may be sufficient. However, to implement priority
scheduling, more complex (and expensive) data structures such as priority queues are
used. In general, the least expensive bundle that fully implements the desired functionality
should be chosen.

The Active Threads package (version 1.2) is distributed with a library of bundles that im-
plement the following commonly used schedulers:

� FIFO
� FIFO with memory-conscious scheduling (MCS)
� FIFO with lazy thread stack allocation
� FIFO with lazy stack allocation and MCS
� LIFO
� LIFO with MCS
� LIFO with lazy thread stack allocation
� LIFO with lazy stack allocation and MCS

We plan to extend the library by adding several non-preemptive priority-based schedul-
ers. We also intend to add bundles that can utilize the hardware performance counters
present in many modern architectures [54][41].

To illustrate how easily new bundles can be created and added to the system, we will
show how a simple FIFO bundle can be modified to implement a lazy thr ead stack alloca-
tion policy. The benefits of the lazy stack allocation will be demonstrated in section 8.1.
Lazy task creation has been discussed in the literature and some language runtime sys-
tems are exclusively based on this strategy [38][14][15]. Lazy stack allocation is some-
what similar to these systems in that many threads can potentially execute using a single
physical stack.

A bundle that implements FIFO scheduling with lazy stack allocation shares most sched-
uling event handlers with a simple FIFO bundle. Only the thread created and thread started
event handlers are different.

/* thread created event handler */
void fifo_thread_created(at_bundle_t *b, at_thread_t *t){

at_create_stack(t); /* Allocate a new thread stack */
at_create_local(t); /* Create thread local storage if needed */

/* add to the internally kept FIFO list*/
fifo_bundle_add_thread(b, t);

}

/* thread started handler - nothing to do */
void fifo_thread_started(at_bundle_t *b, at_thread_t *t){
}

Figure 16: Original FIFO event handlers

36 Implementation

Figure 16 presents the original code for the two event handlers. The handlers are extremely
simple. The thread created handler first allocates a stack and thread-local memory for a new-
ly created thread. This is done by calling the corresponding functions provided by the Ac-
tive Threads kernel interface. Then, the thread is added to the queue maintained by the
FIFO bundle. The enqueued thread is fully initialized and is ready for execution. The thread
started event handler remains empty.

Figure 17 shows how the original code is modified to obtain lazy stack allocation seman-
tics. All that is different is that the new stack and thread local memory are allocated at
thread startup rather than the thread creation time.

We will show in section 8 that lazy allocation can dramatically reduce run time and mem-
ory requirements. For instance, for non-blocking threads and a lazy stack allocation policy,
the total number of used physical stacks is never greater than the number of processors.

5.5 Memory Management

To decrease allocation latencies, Active Threads provides extensive pooling for all allocat-
ed entities: thread context blocks, stacks, synchronization objects, etc. A single parallel
pool data structure is used in all cases, however different pool instances are created for
different kinds of objects. Because Active Threads internally uses s fixed set of objects
with statically known sizes, we can achieve lower allocation latencies by not resorting to
general purpose allocators [51].

A parallel pool utilized by Active Threads satisfies all allocation requests. It maintains local
pools organized as linked lists for each cpu. Normally, when a processor requests a new
object, the request is satisfied from a local pool transparently to other processors. Similarly,
objects that are no longer needed are returned to the local pools of the cpus where they
were used last. Local pools are implemented as LIFO queues to maximize cache reuse - ob-
jects at the head of the queues are likely to be cached by processors that issue allocation re-
quests.

/* thread created event handler */
void fifo_lazy_thread_created(at_bundle_t *b, at_thread_t *t){

/* stack and thread local memory are allocated at thread startup */
/* simply enqueue the new thread on the bundle thread list*/
fifo_lazy_bundle_add_thread(b, t);

}

/* thread started handler - has to allocate the stack and local memory */
void fifo_lazy_thread_started(at_bundle_t *b, at_thread_t *t){

at_create_stack(t); /* Allocate a new thread stack */
at_create_local(t); /* Create thread local storage if needed */

}

Figure 17: FIFO with lazy stack allocation

Implementation 37

If a request cannot be satisfied from a local pool, other processors’ pools are examined. If a
pool with a sufficiently large number of objects is found, half of its elements are transferred
to an empty pool. Finally, if no such pools are available, a new chunk of objects is allocated.

The parallel pool data structure currently performs no attempt to pad allocated objects in
order to eliminate cache traffic to avoid multiple objects spanning cache lines. Such opti-
mization may be of particular importance for synchronization objects and will be added in
future releases.

5.6 Machine-Dependent Layer: Portability

The machine-dependent layer hides the hardware details of modern multiprocessors.
The Active Threads kernel never addresses the underlying hardware directly: all needed
services are performed by the machine-dependent layer. Porting Active Threads to a dif-
ferent architecture involves only retargeting the machine-dependent layer. The machine-
dependent layer is ported by implementing the Active Threads Portability Interface on
the intended platforms.

Portability Interface

Active Threads has been ported to a variety of platforms including SPARC and Intel i386
and higher running Solaris, DEC Alpha AXP running OSF and HPPA running HPUX.
The implementations of the Portability Interface are on the order of a hundred C and as-
sembly lines and were performed in a matter of days.

Primitive Semantics
initialize initialize the machine-dependent sub-

system
a few dozen C
lines

has-private-storage? true if the platform supports a single
word of a processor-private storage

1 C line

start light-weight process start a new light-weight process exe-
cuting a scheduling loop

a dozen C lines

light-weight process set private set a single word of light-weight pro-
cess specific storage

1-3 assembly
lines

light-weight process get private obtain a word of a light-weight private
storage

1-3 assembly
lines

read-and-modify,
memory value

an atomic memory read and modify
operation and a memory value after
modification.

a few assembly
lines

number of physical processors return the number of currently avail-
able physical processors

a dozen C lines

thread context switch switch between two thread contexts.
Involves stopping the thread, and sav-
ing and reloading registers.

a few dozen
assembly lines

thread initialize initialize the stopped thread’s context
with a function address and argu-
ments.

a few assembly
lines

Table 3: Active Threads Portability Interface

38 Implementation

The initialize primitive is guaranteed to be called by the Active Threads runtime before any
other Portability Interface primitives are invoked. The has-private-storage macro is set if the
platform supports at least one word of private per-processor private storage. On machines
with per-processor private memory, it could be used to store the address of a processor-
specific data structure that contains different data on different processors. The details of
such data structures were described earlier in section 5. Among other things, processor pri-
vate structures contain a handle for a currently executing thread.

On machines that support processor private storage, setting and obtaining the private data
can be done very efficiently - it only involves a single load or store instruction. For instance,
the SPARC architecture [52] reserves a global register g7 as processor-private storage. The
SPARC parameter passing convention ensures that compilers and operating systems do
not use it for other purposes [47]. The benefits of processor private storage for threaded
parallel runtime systems are father discussed in [27].

If the architecure does not support per-processor memory, Active Threads uses the content
of the stack pointer to obtain a handle for processor-specific data structures as shown in
Figure 18.

The idea is to always align thread stacks on the stack size boundary. For instance, in Figure
18, the base of a stack of size 0x1000 is at address 0x21000. A handle of a per processor stor-
age (or even the processor private data structure) can be placed immediately following the
stack. Then, given any valid value of a running thread’s stack pointer, we can simply and
efficiently compute the address of a processor private handle:

(sp&~stack_size)+stack_size+word_size.

The implementation of the context switch is based on the earlier work by David Keppel
[27]. The context switch is done in just a few dozen instructions on all supported architec-
tures.

Figure 18: Using the stack pointer to find processor-specific data structures.

Thread stack

stack base: 0x21000

current sp: 0x21196

handle for
private
storage

end of stack: 0x22000

Functionality Comparisons 39

6 FUNCTIONALITY COMPARISONS

In this section, we compare the functionality of Active Threads with that of the three
commercial general-purpose thread systems, the POSIX Threads standard and the Java
Threads specification. The purpose of this comparison is to demonstrate that while Ac-
tive Threads has somewhat distinct goals from the general-purpose commercial thread
packages and delivers substantially higher performance, Active Threads is comparable
in expressiveness of basic thread operations with the other systems. In addition, Active
Threads provides a unique array of services not found anywhere else.Table 4 is partially
based on [28] and [40].

In Table 4, “yes” means that the functionality is directly supported by the thread system.
“buildable” means that the functionality, although not directly supported by the system,
can be easily constructed. “difficult” means that although it may be possible to construct
the desired functionality, it may be very labor-intensive with possibly negative perfor-
mance implications. It may not be possibly to build all the desired functionality. “impos-
sible” means the functionality cannot be constructed by relying on the system provided
primitives [28].

Functionality Solaris
Threads

POSIX
Threads

NT
Threads

OS/2
Threads

Java
Threads

Active
Threads

user/
kernel level

user user or
kernel

kernel kernel user or
kernel

user

time-slicing possible possible yes yes undecided no

scheduling global
priority

several
classes

global
priority

global
priority

global
priority

composi-
tional

scheduling
extensibility

difficult difficult difficult difficult difficult yes

synchronization
extensibility

difficult difficult difficult difficult difficult yes

mutexes yes yes yes yes buildable yes

semaphores yes yes yes yes buildable yes

R/W locks yes buildable buildable buildable buildable yes

condition
variables

yes yes impossible impossible yes yes

multi-object syn-
chronization

difficult difficult yes yes difficult yes

thread suspension yes impossible yes impossible yes no

thread-specific
data

yes yes yes difficult buildable yes

thread signals yes yes n/a n/a n/a n/a

no compiler
changes required

yes yes no yes n/a yes

portability unknown n/a unknown unknown n/a yes

Table 4: Thread systems functionality.

40 Functionality Comparisons

Both NT and OS/2 provide kernel-level threads. The POSIX specification allows both user-
level and kernel-level implementations. There is a trend to base Java Threads on the native
threads provided by the platforms and hence there are kernel-level and user-level imple-
mentations of Java Threads.

Both Solaris and POSIX Threads provide time-slicing for special kinds of scheduling class-
es, while the default behavior does not involve preemption. The Java language specifica-
tions is ambiguous about time-slicing in Java Threads. Some implementations of Java
Threads, such as the NT version are time-sliced, while most implementations for Unix plat-
forms are not.

Active Threads does not support time-slicing because of performance and portability im-
plications. Negative performance implications of time-slicing are well known [2][27].
Time-slicing also introduces a dependency on the OS kernel for a timer interrupt signal to
initiate a context switch, which presents a portability challenge.

Most thread systems provide a single scheduling policy based on global priorities. For in-
stance, Java Threads support only 10 different priorities [40]. POSIX threads can be config-
ured to use one of the several predefined scheduling policies such as priority or FIFO.
Active Threads is the only system that provides compositional scheduling with many ex-
tensible scheduling policies. No other thread systems provide a mechanism for addition of
new scheduling policies. In some cases, the desired functionality can be achieved by build-
ing a new scheduler on top of a system provided priority scheduler with the help of syn-
chronization objects. This approach is both complex and unlikely to yield good
performance.

Similarly, Active Threads is the only system with extensible synchronization objects. In all
other systems, new synchronization objects can only be built on top of the provided prim-
itive objects such as mutexes, semaphores, etc. Neither NT nor OS/2 implements condition
variables and they are rather difficult to implement from the primitives provided.

Active Threads provides high-performance multi-object synchronization such as conjunc-
tive acquisition of locks, including reader/writer locks. Neither Solaris, POSIX, nor Java
Threads supports this functionality. The efficient deadlock-free implementation of atomic
multi-object synchronization is rather tricky [43], yet multi-object synchronization is criti-
cal for instance for object-oriented libraries and systems.

Not even user-level thread systems are free of dependencies on the underlying operating
systems. For instance, Solaris Threads relies on Solaris for several signals specifically de-
signed for time-slicing. The linker is also modified to recognize threaded applications and
link them with special “thread safe” C libraries instead of the standard ones. OS/2 contains
a built-in interdependency between threads and windows and a system-wide limit of 256
threads! NT threads require compiler changes and in general threaded code cannot be
compiled by any compiler.

Microbenchmarks 41

Both NT and Solaris Threads run on several hardware platforms such as SPARC and x86
for Solaris, x86, ALPHA, and HPPA for NT. The implementation details are, in general, not
disclosed, and it is hard to determine how much code is reused in different implementa-
tions. Java achieves portability by providing the user with a very narrow interface and re-
lying on native thread systems for different implementations. Active Threads are ported
by implementing the Portability Interface on the intended platform - usually several hun-
dred lines of code.

7 MICROBENCHMARKS

We have measured the performance of Active Threads on a variety of hardware platforms:
different models of SPARC symmetric multiprocessors, Intel Pentium Pro, DEC Alpha
AXP, HPPA 1.1 (Table 5).

Thread creation overhead as presented in Table 5 includes thread stack allocation. Thread
creation overhead with lazy stack allocation is somewhat smaller. For comparison, a null
procedure call on the UltraSPARC-1 takes 0.75µs when register window overflow occurs
and 0.08µs without window overflow.1 Thread creation overhead is almost as expensive as
null function call with a window overflow and only about an order of magnitude more ex-
pensive than a null call that does not cause a window overflow.

Performance of Active Threads relative to vendor thread packages is shown in Figure
19.This comparison is important since “native” thread systems are usually chosen as com-
pilation targets for concurrent object-oriented languages.

The benchmark operations are the following.

1. gcc v2.7.1, compiled with -O2

Operation UltraSPARC-
1, 167 Mhz

Intel Pentium-
Pro, 200Mhz

DEC Alpha
AXP 250Mhz

HPPA 9000/
755, 99Mhz

thread create 1.3 1.4 1.0 2.0

null thread 5.6 4.4 2.9 7.2

context switch 1.7 1.5 1.1 3.0

uncontested mutex 0.4 0.5 0.3 1.0

uncontested sema. 0.4 0.5 0.3 1.0

mutex try 0.2 0.2 0.1 0.3

semaphore try 0.2 0.2 0.1 0.3

mutex ping-pong 6.0 3.4 2.9 7.9

sema. ping-pong 6.0 3.7 2.8 8.5

Table 5: Performance of Active Threads on different platforms, µs

42 Microbenchmarks

� The thread create operation causes a creation of a new thread, including allocation of a
thread stack. It does not include context switch time and execution of a newly created
thread.

� The null thread benchmark measures the entire runtime of thread that performs a null
call from creation to termination.

� Context switch time is measured by having a thread yield execution to another thread.
� Uncontested mutex and uncontested semaphore benchmarks time mutex lock and sema-

phore wait operations in the absence of contention.
� Mutex and semaphore try benchmarks measure the overhead of the corresponding

non-blocking operations.
� Mutex and semaphore ping-pong operations repeatedly synchronize two threads with

one another in a manner similar to that used to measure synchronization cost of So-
laris Threads in [42]. Ping-pong timings include synchronization of two threads. Per
thread synchronization overhead as reported in [42] is exactly one half of the reported
numbers.

Figure 19: Active Threads vs. proprietary thread systems.

UltraSPARC−1, 167Mhz

T
im

e,
 µ

s.

thread create

null
thread

context switch

uncont. m
utex

uncont. s
ema

mutex
try

semaphore try

mutex ping−pong

sema. ping−pong
10−1

100

101

102

103

Solaris 2.5
Active Threads

Pentium Pro, 200Mhz

T
im

e,
 µ

s.

thread create

null
thread

context switch

uncont. m
utex

uncont. s
ema

mutex
try

semaphore try

mutex ping−pong

sema. ping−pong
10−1

100

101

102

103

POSIX (Sun)
Active Threads

DEC Alpha AXP, 250Mhz

T
im

e,
 µ

s.

thread create

null
thread

context switch

uncont. m
utex

uncont. s
ema

mutex
try

semaphore try

mutex ping−pong

sema. ping−pong
10−1

100

101

102

103

OSF1 DCE
Active Threads

HPPA 9000/755, 99 MHZ
T

im
e,

 µ
s.

thread create

null
thread

context switch

uncont. m
utex

uncont. s
ema

mutex
try

semaphore try

mutex ping−pong

sema. ping−pong
10−1

100

101

102

103

HP−UX,10.20 DCE
Active Threads

Microbenchmarks 43

We have repeated the above measurements on different platforms using the “native” user-
level thread packages bundled with proprietary operating systems: Solaris Threads on the
SPARC platforms, the Sun Microsystems implementation of POSIX threads on Intel Pen-
tiumPro, OSF DCE and HPUX DCE threads on DEC Alpha and HPPA platforms respec-
tively. In all benchmarks, Active Threads substantially outperformed vendor-supplied
threads packages (Figure 19).

We also compare Active Threads with Ariadne, a portable light-weight thread package re-
cently developed at Purdue University [35][36]. For the purposes of this comparison, mea-
surements were performed on the same platform as the ones reported in [35], a 4cpu
SPARCstation 20. For a reference, performance of Solaris Threads under Solaris 2.5 is also
presented. Similar to [35], average times over 1000 operations are reported.

The null thread2 operation involves the creation and immediate execution of a null thread,
with control returning to the caller. Thread create is the same as discussed previously - it is
simply the overhead incurred by the parent thread before it can continue. Synchronization
time is measured by synchronizing two threads repeatedly with each other [36]. It is simi-
lar to a semaphore ping-pong operation.

Large creation times for Solaris Threads were observed for default invocation of thr_create.
By default, the thread stack creation and management are performed by Solaris Threads.
This includes setting up “red zones” of unmapped pages following the thread stacks. So-
laris Threads perform significantly better if preallocated stacks are provided for thread cre-
ation primitives. For instance, the null thread and thread create operations take 136 and 58 us
respectively for preallocated stacks.

Active Threads performs significantly better than Ariadne. Ariadne achieves portability
for context switches through the use of the setjmp/longjmp mechanism provided by the C
library. This usually requires saving values of all registers. However, depending on the pa-
rameter passing convention, only a relatively small number of registers actually needs sav-
ing. For instance, the SPARC calling convention prohibits passing parameters in floating
point registers. Across a function call, either a caller must save its live floating point regis-
ters, or the callee must save the ones it is going to use and restore them before returning. If
the blocking operation is implemented as a function call, the compiler must emit code to

2. Solaris and Active Threads timings include creation of new stacks while reported Ariadne numbers are for pre-
allocated stacks.

Operation Solaris Threads Ariadne Active Threads

null thread 1715 40 14

thread create 1620 35 3.5

context switch 30 15 4.3

synchronization 43 20 9

Table 6: Comparisons with other systems, microseconds. SPARCstation 20.

44 Performance Studies

ensure that all used floating point registers are saved and restored correctly across this call.
Thus, the context switch code should not be concerned with saving the 32 floating-point
registers since the used registers must be already spilled to memory by the code emitted
by the compiler. Similarly, only a portion of global registers needs saving.

Active Threads achieves portability for context switches by retargeting a small but critical
portion of the code that may be written in assembly. The actual implementation is based
on earlier work by David Keppel [27]. Machine dependent code is usually only a few dozen
instructions. Such specialization results in superior performance of Active Threads relative
to Ariadne and Solaris Threads.

8 PERFORMANCE STUDIES

This section examines the performance of several Active Threads based applications:
� two kinds of sorts: parallel mergesort and quicksort
� conservative manufacturing simulations
� SPLASH-2 suite applications

Locality issues receive special consideration. For some applications, performance compar-
isons of several versions based on different runtime systems (Active Threads, POSIX, and
Cilk) are performed.

8.1 Sorts

Scheduler Customization

To quantify the benefits of customized schedulers, we have implemented and measur ed
performance of two fairly simple parallel applications: quicksort that switches to bubble
sort for leaf nodes and mergesort that switches to insertion sort for leafs. There are obvi-
ous similarities between the two applications: both are recursive with recursive invoca-
tions being natural units of parallel work. Both implementations employ a fairly fine-
grain decomposition - separate threads are created for each recursive subdivision of the
input. When the size of input falls below a threshold level, both applications switch to el-
ementary sorts. However, there are also important differences. Quicksort does
some processing of the input before splitting it up and passing the two pieces to child
threads. Mergesort, on the other hand, evenly divides the input between the child
threads and does some processing (merges the lists) after child threads terminate. At
each recursive level, mergesort splits the work into two equal parts while quicksort gen-
erates unequal work units. Our implementation of quicksort uses an array based repre-

O n2()

Performance Studies 45

sentation while mergesort deals with the linked list representation. These differences
allow us to investigate the influence of affinity annotations in somewhat dif ferent con-
texts.

The same application sources were compiled and linked with several different thread
schedulers:

� FIFO
� FIFO with MCS (memory-conscious scheduling)
� FIFO with lazy thread stack allocation
� FIFO with lazy stack allocation and MCS
� LIFO
� LIFO with MCS
� LIFO with lazy thread stack allocation
� LIFO with lazy stack allocation and MCS

In all cases, threads were organized in a single bundle. In fact, the only difference between
the cases was the nature of the bundle.

The FIFO scheduler uses a simple bundle that keeps threads in a queue and satisfies the
processors’s requests for threads in the FIFO order without regard for data locality. This is
similar to the scheduling policies of many modern thread packages. FIFO with MCS uses
processor affinity annotations to push threads, as they are created, onto the processor local
dispatch queues. The annotations reflect the fact that child and parent threads usually
work on the same data and should be scheduled to run on the same processor, if possible.
We have also investigated the effects of lazy stack allocations on the two scheduling poli-
cies described above.

Finally, we have repeated all experiments, but replaced FIFO-based schedulers with LIFO-
based schedulers.

Performance

Figure 20 and Figure 21 present performance measurements for mergesort and quicksort
respectively obtained on the Sun Enterprise 5000 with eight 167Mhz UltraSPARC-1 proces-
sors. Mergesort sorted a linked list of 100,000 records and quicksort worked on the array
of 100,000 records. Both sorts switch to elementary sorts when input size falls below 10.

In the figures, the performance of schedulers with and without MCS is represented by the
lines of the same type. The top lines correspond to run times measured for unmodified base
schedulers such as LIFO or FIFO and the bottom lines of the same type represent the be-
havior of the same schedulers with MCS. This allows us to reason about the relative impor-
tance of the cache locality issues for different kinds of base schedulers.

46 Performance Studies

Several lessons can be learned from the figures. First, the details of thread scheduling are
indeed important for fine-grained multithreaded applications. For instance, by departing
from the standard FIFO policy, we can speed up mergesort by a factor of 6 on the 8cpu
E5000. Secondly, FIFO schedulers (and related round-robin schedulers) which are in many

Figure 20: Mergesort performance. 100,000 elements, leaf size 10.

Figure 21: Quicksort performance. 100,000 elements, leaf size 10.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

processors

T
im

e,
 s

ec

FIFO

FIFO + MCS

LAZY FIFO

LAZY FIFO + MCS

LIFO

LIFO + MCS

LAZY LIFO

LAZY LIFO + MCS

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

processors

T
im

e,
 s

ec

FIFO

FIFO + MCS

LAZY FIFO

LAZY FIFO + MCS

LIFO

LIFO + MCS

LAZY LIFO

LAZY LIFO + MCS

Performance Studies 47

cases the single scheduling policy supported by thread systems, are not suitable for tree
structured computations. These computations, for instance, include all branch-and-bound
applications. Round-robin scheduling is an important scheduling class and may be un-
avoidable, for example to ensure that no GUI thread starves indefinitely, however it is
hardly appropriate as the only scheduling policy.

The figures suggests that a LIFO scheduler has significant impact on the performance of
both mergesort and quicksort. LIFO thread scheduling may be thought of as executing the
tree roughly in the depth-first order. This results in a smaller number of runnable threads
at each point in time than the FIFO scheduling (FIFO roughly corresponds to a breadth-first
execution of a tree). As we will see shortly, fewer threads in the runnable state require less
memory for stacks. Reduced stack and memory management overhead explains why the
version of mergesort utilizing LIFO thread scheduling performs much better than the orig-
inal FIFO based implementation.

Adding lazy stack allocation improves performance for similar reasons. It also adds an ad-
ditional locality benefit. If stacks are allocated at thread startup, stacks from recently termi-
nated threads are recycled. Such stacks are more likely to be already cached by the
processor.

Combining various scheduling policies with MCS also had a significant performance im-
pact. In the figures, curves corresponding to scheduling policies different only in the pres-
ence or absence of MCS use the same line types. We will investigate the effects of MCS for
applications displaying different memory access patterns further in the following sections.

Performance Impact of the Memory Hierarchy Levels

While moving from FIFO to LAZY FIFO and from FIFO to FIFO+MCS we achieve better
performance by exploiting different levels of the memory hierarchy. The LAZY FIFO ver-
sion outperforms our original FIFO based version because of the virtual memory effects.
LAZY FIFO is characterized by reduced memory usage due to better thread stack reuse.
Such reduction results in significantly fewer page faults and associated OS trap handling
overhead. Figure 22 repeats the runtime curves for quicksort using FIFO, LAZY FIFO and
FIFO+MCS schedulers. The right part of Figure 22 presents the number of page faults for
the three considered scheduling policies.

Better performance of LAZY FIFO relative to FIFO is mostly due to a significantly smaller
number of page faults encountered by the LAZY FIFO version. However, better perfor-
mance of FIFO+MCS scheduler relative to the original FIFO scheduler is due to somewhat
more subtle cache effects. As Figure 22 shows, FIFO and FIFO+MCS versions incur roughly
the same number of page faults. However, FIFO+MCS version reuses the individual pro-
cessor’s cache significantly better. In the quicksort context, cache effects turn out to be more
important than the virtual memory effects and FIFO+MCS version outperforms the LAZY
FIFO version in spite of the higher memory usage.

48 Performance Studies

Memory Usage

The fine-grained multithreading programming style encourages creation of many more
runnable threads than physical processors to keep all processors busy. Unless the threads
are scheduled carefully, parallel execution may require much more memory than sequen-
tial execution. In fact, memory is one of the factors effectively limiting the degree of multi-
threading. It is not unusual for programs that create many threads to run out of virtual
memory, not just physical memory. For such programs, memory usage is no longer just a
performance factor - these programs simply cannot execute without additional hardware.

Figure 23 and Figure 24 show the maximum memory usage of mergesort and quicksort re-
spectively under all considered scheduling policies. The space performance correlates well
with the time performance considered earlier. A combination of LIFO and MCS that sup-
ports lazy stack allocation is not only the fastest, but also requires an order of magnitude
less memory necessary for the FIFO version of mergesort and only a third of memory nec-
essary for the FIFO version of quicksort. Better absolute time performance of lazy schedul-
ers is largely explained by its better memory performance relative to schedulers that use
eager thread stack allocation. Greater memory consumption increases the absolute over-
head of memory management. This is due both to the overhead of maintaining the internal
state of the memory allocator and the increased number of page faults.

As expected, lazy thread stack allocation significantly reduces the memory requirements.
LIFO scheduling is also beneficial for memory utilization. The FIFO policy, on the other
hand, places a high burden on memory resources. FIFO is equivalent to executing the task
tree in a roughly breadth-first order. In fact, it is exactly the breadth-first order in a unipro-
cessor case. The breadth-first execution order is the worst possible policy with respect to
memory consumption. In the case of breadth-first execution, the maximum memory re-
quirement is determined by the size of the entire task tree since all created threads are alive
at some execution point. The memory requirements for FIFO scheduling decreases some-
what as the number of processors increases. This happens because the breadth-first execu-

Figure 22: Quicksort: performance effects of the memory hierarchy levels: page faults vs. cache

1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

processors

T
im

e,
 s

ec

FIFO
LAZY FIFO
FIFO + MCS

1 2 3 4 5 6 7 8
0

5000

10000

15000

processors

P
ag

e
fa

ul
ts

FIFO
LAZY FIFO
FIFO + MCS

Performance Studies 49

Figure 23: Mergesort: maximum memory requirement. 100,000 elements, leaf size 10.

Figure 24: Quicksort: maximum memory requirement. 100,000 elements, leaf size 10.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

↓
Input data size

processors

M
ax

 m
em

or
y,

 M
b

FIFO

FIFO + MCS

LAZY FIFO

LAZY FIFO + MCS

LIFO

LIFO + MCS

LAZY LIFO

LAZY LIFO + MCS

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

↑
Input data size

processors

M
ax

 m
em

or
y,

 M
b

FIFO

FIFO + MCS

LAZY FIFO

LAZY FIFO + MCS

LIFO

LIFO + MCS

LAZY LIFO

LAZY LIFO + MCS

50 Performance Studies

tion order gets relaxed. The greater the number of processors, the larger the departure from
the breadth-first evaluation order. Quicksort subdivides tasks into subtasks of different
sizes (the sizes are determined by the pivot element). In the parallel case, tasks are picked
up by the processors and processed as they are created. New child tasks are created as par-
ent tasks are processed and this may depart farther from the depth-first order.

A combination of lazy LIFO scheduling with MCS significantly reduces the maximum
memory requirement and makes the memory overhead due to multithreading relatively
small (about 10% of the input data size for mergesort and 20% of the input size for quick-
sort). The overhead increases somewhat with the number of processors because it is deter-
mined by the number of tasks in the execution tree between the running threads and the
root. The greater the number of processors, the greater the number of running threads and
consequently the number of tasks on the paths from the running tasks in the execution tree.
In the case of a balanced tree, the number of such outstanding tasks is the same order as
the number of leafs. Hence, in this case, the maximum memory requirement grows linearly
with the number of processors.

Memory-Conscious Scheduling and Memory Access Patterns

Our sorting examples provide a good testbed for the analysis of the MCS impact on ap-
plications with different memory access patterns. To illustrate the issue, we consider
quicksort from the memory access pattern standpoint. Quicksort switches to simple bub-
ble sort whenever input size falls below a threshold. Bubble sort uses comparisons
and exchanges for input of size . Even if we assume that in the absence of MCS, the
first access to an element is always a cache miss, once it is loaded into cache, bubble sort
performs operations on this element. For large leaf sizes , a penalty of the initial
cache miss is amortized over a large number of operations. Thus, by varying the size of
leaf nodes, we can change the overall memory access pattern from very irregular - a few
operations performed on each element for small leafs - to very regular for large leafs.

The left part of Figure 25 shows how the overall performance of quicksort depends on
the leaf size in the presence and absence of memory-conscious scheduling (the base algo-
rithm is LIFO). The right part of Figure 25 displays how the benefits of MCS depend on
the regularity of memory access patterns. The size of input was fixed at 2,000,000 records
while the leaf size was varied from 5 to 150.

As expected, the benefits of memory-conscious scheduling are the largest for very small
leafs since this corresponds to highly irregular memory access patterns. The relative speed-
up due to MCS falls for large leafs because of the amortization effects of cache misses. As
mentioned earlier, once an element is loaded in cache, it is used in operations. The
larger the leaf size , the less the relative effects of the initial miss. For instance, given the
memory access latency of 50 cycles for our Sun Enterprise 5000 and assuming that exactly

 operations are performed once an element is loaded into cache, the overhead of a single
miss is cycles per operation for leaves of size 5 and only cycles per op-
eration for leaves of size 100. More fine-grained threads suffer from locality mismanage-
ment to a greater degree because they simply do not execute long enough before blocking
or termination to amortize the cache miss overhead.

O n2()
n

O n() n

O n()
n

n
50
5
------ 10= 50

100
--------- 0.5=

Performance Studies 51

The above argument suggests that the speedups should be greater for larger leaves, which
is indeed the case (Figure 26). However, it is a well established fact that serial quicksort per-
forms the best for mid-range leaf sizes [44]. As we see in Figure 25, this is also the case for
our simple parallel version. What is especially interesting is that memory-conscious sched-
uling brings significant improvements even for mid range leaf sizes that yield optimal
overall performance.

The quicksort example illustrates the well known fact that speedups are not always the best
measure of overall performance.

Figure 25: Memory-conscious scheduling and different access patterns. 8cpu Enterprise 5000.

Figure 26: Quicksort: speedup curves for different leaf sizes.

0 20 40 60 80 100 120 140

Leaf Size

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

T
im

e
(s

ec
)

LIFO+MCS
LIFO

0 20 40 60 80 100 120 140
Leaf Size

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
up

s
du

e
to

 M
C

S
 (

tim
es

)

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

processors

S
pe

ed
up

Leaf size 10
Leaf size 20
Leaf size 50
Leaf size 100
Leaf size 250

52 Performance Studies

Figure 25 suggests that the highest performance of a parallel version of quicksort is
achieved for mid-range leaf sizes: from 40 to 60. However, Figure 26 demonstrates that the
highest speedup is observed for larger leaf sizes. The speedups in Figure 26 are computed
relative to true serial versions with corresponding leaf sizes in which thread creations were
replaced with direct calls to the quicksort routine and thread synchronization was re-
moved. As a result, threaded versions on a single processor have speedups somewhat less
than one due to thread creation and synchronization overhead absent in a true serial im-
plementation. As the leaf size increases, thread creation overhead gets amortized over the
time necessary for the elementary sorts to sort larger leaves. The speedup curves asymp-
totically approach a perfect straight line with the increasing leaf size. However, the highest
overall performance is achieved for leaf size 50 which corresponds to a solid line curve in
Figure 26.

To illustrate scalability of Active Threads applications and the low overhead of thread cre-
ation, we present the total number of created threads and runtimes as function of leaf sizes
in Figure 27. For instance, our quicksort implementation creates 1,392,931 threads to sort
2,000,000 elements with the leaf size set to 5.

Memory-Conscious Scheduling and Portable Performance

The performance measurements of the previous sections indicate that customized sched-
ulers exploiting memory locality can yield significant benefits. This is especially r elevant
for applications with irregular memory access patterns. Since we used no specific infor-
mation about the underlying hardware, we expect that the discussed techniques have a
performance impact over a range of platforms with different memory hierarchy organiza-
tions.

Figure 27: Quicksort: number of threads and performance.

0 50 100 150
0

0.5

1

1.5

number of threads

Leaf size

N
um

be
r

of
 th

re
ad

s
(m

ill
io

ns
)

time T
im

e
(s

ec
)

0

5

10

15

Performance Studies 53

To illustrate the portable nature of memory-conscious scheduling in Active Threads, we
have repeated the original quicksort and mergesort experiments on a SparcStation 10 with
4 Ross 50Mhz HyperSparc processors. The two considered platforms have quite different
memory hierarchy architectures. Each processor of our model of Enterprise 5000 is a
167Mhz UltraSPARC-I with 16KB of direct mapped write-through on-chip cache and 1MB
of external cache organized in 64 byte lines. External cache access consumes only three cy-
cles and returns 16 bytes of data per cycle. Memory access latency is 50 cycles if the word
is not cached by another processor and 80 cycles otherwise. Multiple accesses to external
cache are pipelined [61][62]. In contrast, each Ross HyperSparc processor has only 256K of
L1 cache with 32 byte lines.

Figure 28: Quicksort (top) and mergesort (bottom) on 4cpu Ross HyperSparc. 100,000 elements,
leaf size 10.

1 2 3 4
1

2

3

4

5

6

7

Processors

T
im

e,
 s

ec

Quicksort

FIFO
LAZY LIFO+MCS

1 2 3 4
0

5

10

15

20

25

30

Processors

M
ax

. m
em

or
y.

 M
b

↑
Input data size

Quicksort

FIFO
LAZY LIFO+MCS

1 2 3 4

2

4

6

8

10

12

Processors

T
im

e,
 s

ec

Mergesort

FIFO
LAZY LIFO+MCS

1 2 3 4
0

20

40

60

80

Processors

M
ax

. m
em

or
y.

 M
b

↓
Input data size

Mergesort

FIFO
LAZY LIFO+MCS

54 Performance Studies

Despite the differences, our scheduling techniques achieved significant performance im-
provements for a 4 cpu SparcStation 10. For instance, a version of mergesort with a lazy
LIFO+MCS scheduler runs about an order of magnitude faster and needs about an order
of magnitude less memory than the one with a simple FIFO scheduler (Figure 28.) Timings
were measured for exactly the same applications and data sets as the ones used on the En-
terprise 5000, with no tuning for a different memory hierarchy.

8.2 Conservative Manufacturing Simulations3

The objective of this study is to evaluate how parallel and distributed simulations tech-
niques can be applied in a virtual factory simulation [25]. The simulations include the
modeling of manufacturing and business processes, and communications network in a
production plant. Such a simulation environment will allow one to model and analyze
the effects of different system configurations and contr ol policies on actual system perfor-
mance. The initial focus is on the Singapore electronics industry.

In this section, we describe performance results for a parallel discrete event simulation
(PDES) of a simplified, but generic version of a manufacturing process, such as that found
in the semiconductor wafer manufacturing. In a PDES, a physical process is modeled by a
logical process (LP), and events in the physical system are simulated by communications be-
tween LPs using timestamped messages. An LP may not always receive messages with in-
creasing timestamps, but, in order to correctly simulate the physical system, it must
process the messages in the global timestemp order. In a conservative approach, an LP can
make progress only when the causality is preserved. In an optimistic approach, an LP is
allowed to proceed with the simulation as far forward as possible. However, if the viola-
tion of causality is detected, an LP has to roll back in the simulation time.

We now turn to performance of the conservative simulations implemented based on three
different parallel libraries:

� A Sun implementation of the POSIX Thread standard [23].
� Cilk (MIT), a non-blocking atomic thread library with provably good scheduling and

load balancing mechanism [5].
� Active Threads

3. Applications considered in this section have been designed and implemented at the Gintic Institute of Manu-
facturing Technology and the School of Applied Science in Nanyang Technological University, Singapore. The
data has been generously provided by Chu-Cheow Lim and Yoke-Hean Low of Gintic and used with their per-
mission.

Performance Studies 55

.

A detailed account of advantages and disadvantages of the considered systems for conser-
vative discrete simulations and a full description of the simulation algorithm and data
structures are presented in [29]. Both Active Threads and POSIX were quite well suited for
the simulations (and, in fact, shared most of the implementation code).

In all experiments, each thread simulates a certain number of LPs. The timings for the dif-
ferent numbers of LPs per thread (50, 300, and 600) are given in Figure 29. Each logical pro-
cessor handles incoming events and the figure reflects the running time as a function of the
event handling interval. The top row corresponds to the timings obtained on the Sun En-
terprise 3000 with four 250Mhz UltraSPARC-2 cpus. The bottom row represents the mea-
surements obtained on the Sun Enterprise 5000 with eight 167Mhz UltraSPARC-1 cpus.

Four different implementations of the simulations have been built: a true sequential imple-
mentation free of any thread and synchronization calls and parallel implementations based
on POSIX threads, Active Threads, and Cilk threads. As Figure 29 shows, the Active
Threads implementation substantially outperforms all others and displays good speedups

Figure 29: Performance of conservative event simulations on 4 CPU Sun Enterprise 3000 (top row)
and 8 CPU Sun Enterprise 5000 (bottom row).

0 20 40 60
0

50

100
50 LPs per thread

tim
e,

 s
: S

un
 E

30
00

0 20 40 60
0

50

100
300 LPs per thread

0 20 40 60
0

50

100
600 LPs per thread

0 20 40 60
0

50

100

150

200

LP handling time, us

tim
e,

 s
: S

un
 E

50
00

0 20 40 60
0

50

100

150

LP handling time, us
0 20 40 60

0

50

100

150

LP handling time, us

Active Threads
Cilk
POSIX
Sequential

56 Performance Studies

even for the shortest event handling times. The difference between Active Threads and the
other system is particularly evident for more fine-grained cases (50 LPs per thread, short
event handling interval). It is instructive that Active Threads performs significantly better
than Cilk, a celebrated runtime from MIT with non-blocking threadlets and explicit contin-
uations.

No attempt to improve Active Threads performance by using locality scheduling has been
done since even the base Active Threads implementation displays substantially higher per-
formance that the other parallel runtime systems [29].

Figure 30 demonstrates how different implementations scale with increasing the number
of processors. The speedups in this figure are computed with respect to the 1 processor per-
formance (rather than a true sequential implementation), since we are mostly interested in
relative scalability of different implementations

.

Figure 30: Scalability of different parallel runtime systems.

0 1 2 3 4 5
0

1

2

3

4

5
50 LPs per thread

S
pe

ed
up

: S
un

 E
30

00

0 1 2 3 4 5
0

1

2

3

4

5
300 LPs per thread

0 1 2 3 4 5
0

1

2

3

4

5
600 LPs per thread

0 2 4 6 8 10
0

2

4

6

8

10

S
pe

ed
up

: S
un

 E
50

00

processors
0 2 4 6 8 10

0

2

4

6

8

10

processors
0 2 4 6 8 10

0

2

4

6

8

10

processors

Active Threads
Cilk
Posix

Performance Studies 57

Active Threads display fairly good scalability on both considered architectures for all
thread granularities. Other systems display speedups only for coarse-grain threads. Active
Threads speedups drop somewhat on the 8cpu Sun Enterprise 5000 for coarse-grain
threads because load balancing is done at coarser granularities and with only few threads
available, processor idle time increases (threads may block to satisfy the simulation causal-
ity requirement). However, in general, the speedup curves for Active Threads are much
less sensitive to variations in thread granularity.

This comparison study used a simple manufacturing process model. Various aspects of a
virtual factory model, including business processes, manufacturing and communications
network are currently being integrated into the simulations.

8.3 The Splash-2 Suite

To test the robustness of Active Threads and to demonstrate flexibility, we have ported
the SPLASH-2 (Stanford ParalleL Applications for SHared memory) applications suite to
Active Threads. SPLASH-2 [45][67] applications are scientific and engineering pr ograms
representing various fields: astr onomy, oceanography, computer graphics, numerical
analysis, etc. The SPLASH-2 suite was designed to provide parallel programs for the
evaluation of architectural ideas and trade-offs. Detailed simulation studies of the
SPLASH-2 programs on small and medium size symmetric multiprocessors are repre-
sented in [67]. A. Tucker [59] performed experimental analysis of the older version of the
SPLASH suite on a four processor SGI PowerStation.

Barnes uses Barnes-Hut hierarchical N-body method to simulate the interaction of a
system of bodies in three dimensions over a number of time steps.

FMM uses the adaptive Fast Multipole Method to simulate the interaction in two di-
mensions

Ocean studies large-scale ocean movements based on eddy and boundary currents.
Two implementations are provided (1) non-contiguous partition allocation
and (20) contiguous partition allocation. More information about the differenc-
es in the implementations could be found in [67].

Radiosity computes the distribution of light in a rendered scene using the iterative hier-
archical diffuse radiosity method.

Raytrace uses ray tracing to render a three dimensional scene.

Volrend renders a three-dimensional volume using a ray casting technique.

Water-Nsquared evaluates forces and potentials over time in a system of water molecules using
an algorithm.

Water-sp solves the same problem using a more efficient algorithm by imposing a
uniform 3-D grid of cells on the problem domain.

Table 7: SPLASH-2 applications

O n2()

O n()

58 Performance Studies

The SPLASH-2 suite consists of a mixture of complete applications and short computation-
al kernels. SPLASH-2 currently includes eight complete applications. Short descriptions of
these applications are given in Table 7.

The SPLASH applications use PARMACS, a collection of macros designed at the Argonne
National Lab to implement parallelism [31][19]. PARMACS is a public domain interface
that deals with basic parallel operations: starting parallel execution, synchronization, mes-
sage passing, safe memory management, etc. A version of PARMACS based on Active
Threads was implemented. This automatically achieves portability of programs using
PARMACS (including SPLASH) across all platforms supported by Active Threads, which
extends portability of the SPLASH suite. The Stanford SPLASH distribution comes with
PARMACS macros only for Encore Multimax, SGI 4D/240, and Alliant FX/8.

Figure 31 shows speedups displayed by the SPLASH-2 applications on the 8 cpu Sun
E5000. All measurements were performed using the standard input sets distributed with
the SPLASH application suite.

Figure 31: Performance of SPLASH-2 applications on 8 cpu Enterprise 5000.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

processors

sp
ee

du
p

Barnes
FMM

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

processors

sp
ee

du
p

Radiosity
Raytrace
Volrend

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

processors

sp
ee

du
p

Ocean, cont.
Ocean, ncont

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

processors

sp
ee

du
p

Water, nsqr
Water, spatial

Conclusions 59

All applications in the suite display fairly good speedups. This correlates well with the sim-
ulation results computed for a perfect memory system [67]. Previous simulation studies
showed that the most important working sets should fit in large modern second level cach-
es. In particular, simulations showed that for a 32 node machine all working sets fit inside
1Mb caches with most fitting in 256K caches [67]. Moreover, the same study suggests that
the size of the largest working set is proportional to for most SPLASH applications,
where is the data set size and is the number of processors. The exceptions are Radi-
osity, Raytrace, and Water_Nsquared whose larger working sets do not directly depend on
the number of processors. Hence, we can expect that all working sets fit in the 1Mb external
caches of the eight processor Enterprise 5000.

With regard to the lightweight thread model, SPLASH applications are not very challeng-
ing. All applications are coarse-grained with the number of threads matching the number
of processors. Such design favors spinning synchronization objects since no benefit could
be gained from thread blocking (in the absence of multiprogramming.) Some SPLASH ap-
plications are already tuned to improve data locality. Most use sophisticated data struc-
tures for load balancing. While this makes such applications less sensitive to the
implementation of the underlying thread and synchronization mechanism, it duplicates
functionality already provided by the thread runtime systems.

Speedups displayed in Table 31 leave little room for improvement. In the previous study
by A. Tucker, traces from an older version of SPLASH were collected on a four processors
SGI PowerStation 4D/340 with 64K L1 cache and 256K L2 cache [59]. The study showed
that even if all caches are flushed at the end of each dispatch interval, potential perfor-
mance loss is only 10-20% for most applications. Since Sun Enterprise 5000 has a much big-
ger L2 cache, even potential cache losses should be quite small. In short, SPLASH
applications are too coarse-grained and too tuned for any further significant performance
improvements due to memory-conscious thread scheduling.

9 CONCLUSIONS

Active Threads is a flexible general-purpose threads package that supports fine-grained
parallel programming across a variety of hardware platforms. The system was designed
to promote compositional software development while preserving high efficiency . Active
Threads’ support for flexible extensible scheduling allows software modules to be used
together with the associated scheduling policies. Negative locality effects whose relative
importance increases for fine-grained thr eads are addressed through custom schedulers
that can exploit the memory hierarchy.

DS
P

DS P

60 Conclusions

Active Threads can be used directly by the application and library developers or as a vir-
tual machine for compilers for parallel languages. For instance, Active Threads is a compi-
lation target for Sather4, a parallel object-oriented language under development at the
International Computer Science Institute. Active Threads are also being used as a base for
a threaded distributed extension of C++ that supports thread migration [22].

The Active Threads system is fully implemented an runs on several hardware platforms
including SPARC, Intel 386 and higher, DEC Alpha AXP and HPPA. Active Threads sub-
stantially outperforms vendor-supplied thread systems on all these platforms.

Ongoing work seeks to exploit hardware performance counters that become more com-
mon on modern architectures [54] to dynamically guide thread placement. This could be
achieved by extending the library of Active Threads schedulers. No modifications to the
system itself are necessary. Such functionality is critical for highly irregular applications
for which thread placement annotations are difficult or impossible.

4. Currently distributed Sather 1.2 (November 1997) is based on Active Threads and can be downloaded from
http://www.icsi.berkeley.edu/~sather

Appendix: Active Threads API 61

Appendix: Active Threads
API

 Basic Types

at_thread_t

Active Threads thread type

at_bundle_t

Active Threads bundle type

at_mutex_t

Blocking mutual exclusion lock

at_rw_t

Multiple readers, single writer lock

at_sema_t

Blocking semaphore

at_barrier_t

Blocking barrier

at_cond_t

Condition variable

at_spinlock_t

Spinning mutual exclusion lock (the current implementation first spins on a
local copy to minimize bus traffic)

at_hybridlock_t

A hybrid implementation of a mutual exclusion lock. This is essentially a
two-phase mutual exclusion lock that combines spinning with blocking. The
semantics is the same as at_mutex_t, but the calling thread may spin for a
while before blocking. The current implementation uses an exponential back-
off policy for the spinning interval.

62 Appendix: Active Threads API

at_userf_x_t

where x is currently between 0 and 6. A type for a user function used in
thread creation. A function takes x arguments of type at_word_t.

at_word_t

A type that maps to a word size entity of the underlying architecture. There
is no requirement for the number of bits.

 Scheduler types

typedef struct at_scheduler {
void (*thread_created)(at_bundle_t *b, at_thread_t *t);
void (*thread_terminated)(at_bundle_t *b, at_thread_t *t);
 void (*thread_started)(at_bundle_t *b, at_thread_t *t);
 void (*thread_blocked)(at_bundle_t *b, at_thread_t *t);
 void (*thread_unblocked)(at_bundle_t *b, at_thread_t *t);
 void (*bundle_created)(at_bundle_t *parent, at_bundle_t *b);
 void (*bundle_terminated)(at_bundle_t *parent, at_bundle_t *b);
 void (*processor_idle)(at_bundle_t *b, int proc);
} at_scheduler_t;

This is the only type that a user-supplied scheduler must implement to ex-
tend the Active Thread scheduling library. Any scheduler implementation
must provide event handlers with the above interfaces for the eight events
vectored by the Active Threads runtime: thread created, thread terminated,
thread started, thread blocked, thread unblocked, bundle created, bundle ter-
minated and processor idle. Active Threads imposes no restrictions on inter-
nals of scheduler data structures.

 Basic Thread Operations

at_thread_t *at_create_x(at_bundle_t *b, int affinity, at_userf_x_t *func, at_word_t arg0,...)

Create a new thread of control that will execute a user supplied function func
with the supplied arguments. The current implementation supports up to 6
arguments. The thread is added to a specified bundle b. If b supports locality-
based scheduling, affinity may be used as a virtual processor affinity annota-
tion for a thread. All schedulers that implement some form of locality-based
scheduling must accept a full range of virtual processors. AT_UNBOUND
can be used if the bundle does not support affinity scheduling, or if the
thread does not intend to take advantage of it.

void at_yield()

yield execution to another thread.

void at_exit()

terminate the calling thread

Appendix: Active Threads API 63

at_thread_t *at_self()

return a pointer to the thread structure of a calling thread

void at_setlocal(void* addr)

set the local memory base address for the currently running thread to a speci-
fied value

void *at_getlocal()

get the local memory base address for the currently running thread

void at_stop()

stop execution of any new threads until a call to at_continue(). Threads in
progress are not affected until they block or terminate.

void at_continue()

resume thread execution

int at_get_affinity()

return virtual processor affinity of a calling thr ead.

void at_set_affinity(int vproc)

Changes the affinity of a calling thr ead to a specified virtual pr ocessor. This
is conceptually equivalent to thread blocking and resuming on a physical
processor to which a specified virtual pr ocessor is mapped.

void at_create_local(at_thread_t *t)

creates a new local storage of the size specified at Active thr ead initialization
for a thread t. Can be used, for instance, to implementing a lazy allocation
policy.

void at_destroy_local(at_thread_t *t)

returns thread’s local storage to a pool maintained by Active Threads.

void at_create_stack(at_thread_t *t)

creates a new thread stack for a specified thr ead.

at_destroy_stack(at_thread_t *t)

returns a supplied thread’s stack to a pool of stacks maintained by the Active
Threads runtime.

 Bundle Operations

at_bundle_t *at_bundle_create(at_bundlle_t *parent, int type)

create a new bundle of a specified type as a child of a parent bundle.

64 Appendix: Active Threads API

void *at_bundle_destroy(at_bundle_t *b)

destroy the bundle which is no longer needed. No threads must be attached
to the bundle.

at_bundle_t* at_get_focus()

obtain a bundle that has a current execution focus. A bundle with a focus ob-
tains all events that the Active Threads runtime vectors to thread schedulers.
It may handle them or pass them up or down the bundle activation tree for
handling.

void at_set_focus(at_bundle_t *b)

set execution focus to a supplied bundle b.

 Synchronization Objects

Blocking Mutual Exclusion Locks
at_mutex_t* at_mutex_create()

create a new mutual exclusion lock

void at_mutex_init(at_mutex_t *m)

initialize (possibly statically allocated) mutex. Mutex is initialized to the un-
locked state

void at_mutex_destroy(at_mutex_t *mutex)

the destroy the mutex which is no longer needed

void at_mutex_lock(at_mutex_t *mutex)

lock the mutex pointer to by mutex. If the mutex is already locked, the calling
thread blocks until the mutex becomes available.

void at_mutex_unlock(at_mutex_t *mutex)

unlock the mutex pointed to by mutex.

int at_mutex_trylock(at_mutex_t *mutex)

attempt to lock the mutex. If successful, locks the mutex and returns 1, other-
wise returns 0.

Readers/Writer Locks
at_rw_t* at_rw_create()

create a multiple reader, single writer lock (in the unlocked state).

void at_rw_init(at_rw_t *rw)

initialize (possibly statically allocated) readers/writer lock. The lock is initial-
ized to the unlocked state.

Appendix: Active Threads API 65

void at_rw_destroy(at_rw_t *rw)

destroy the readers/writer lock

void at_rw_rd_lock(at_rw_t *rw)

Acquire a read lock on the readers/writer lock. If rw is already locked for
writing, the calling thread blocks until the writer lock is released. Many
threads can acquire the reader lock of rw at the same time.

int at_rw_rd_trylock(at_rw_t *rw)

Attempt to acquire a read lock on rw. Returns 1 if the lock is acquired, 0 other-
wise.

void at_rw_wr_lock(at_rw_t *rw)

Acquire a write lock on the readers/writer lock. If rw is already locked for ei-
ther reading or writing, the calling thread blocks until all readers or the writ-
er release the lock. Only a single thread can hold a write lock of rw at any
time.

int at_rw_wr_trylock(at_rw_t *rw)

Attempt to acquire a write lock on rw. Returns 1 if the lock is acquired, 0 oth-
erwise.

void at_rw_rd_unlock(at_rw_t *rw)

unlock the read lock of the readers/writer lock pointed to by rw.

void at_rw_wr_unlock(at_rw_t *rw)

unlock the write lock of the readers/writer lock pointed to by rw.

Blocking Semaphores
at_sema_t *at_sema_create(int count)

create a counting semaphore and set it to a specified value. count must be
non-negative.

void at_sema_init(at_sema_t *s, int count)

initialize (possibly statically allocated) semaphore to ‘count’

void at_sema_destroy(at_sema_t *sema)

destroy a counting semaphore

void at_sema_wait(at_sema_t *sema)

a calling thread may proceed only if the value of the semaphore is currently
greater than 0. If the semaphore value is positive, it is decremented and the
calling thread continues. Otherwise, the calling thread blocks until the sema-
phore counter becomes positive.

66 Appendix: Active Threads API

int at_sema_trywait(at_sema_t *sema)

a nonblocking version of the previous call. If the semaphore counter is posi-
tive, its semantics is equivalent to that of at_sema_wait, but it also returns 1.
Otherwise, it returns 0 and does not change the semaphore counter.

void at_sema_signal(at_sema_t *sema)

increment the count of a semaphore. If prior to the call, the value of sema was
0, and there were threads blocked on the semaphore, one of them is un-
blocked and allowed to return from its call to at_sema_wait().

Blocking Barrier
at_barrier_t *at_barrier_create(int size)

create a barrier object that becomes “open” when size threads try to enter it.
As long as the number of such threads is below size, the threads are all
blocked on the barrier.

void at_barrier_init(at_barrier_t *barrier, int size)

initialize a (possibly statically allocated) barrier to size.

void at_barrier_destroy(at_barrier_t *barrier)

destroy a barrier object.

void at_barrier_enter(at_barrier_t *barrier)

If the number of threads that have reached a barrier (including the calling
thread) is ‘size’ (specified during barrier initialization), all thr eads sleeping
on a barrier are unblocked. Otherwise, the calling thread blocks on the barri-
er.

Condition Variables

Condition variables enable threads to block until an arbitrary condition is sat-
isfied. The condition must always be tested under the pr otection of a mutex.
When the condition is false, the thread blocks on the condition variable by
calling at_cond_wait() and mutex is released by for the thread by the Active
Threads runtime. Blocking on the condition variable and releasing the mutex
is atomic. Any thread that changes the condition can signal the condition
variable the change by calling at_cond_signal(or at_cond_broadcast()

at_cond_t *at_cond_create()

create a new condition variable

void at_cond_init(at_cond_t *c)

initialize (possibly statically allocated) condition variable

void at_cond_destory(at_cond_t *c)

destroy a condition variable

Appendix: Active Threads API 67

void at_cond_wait(at_cond_t *c, at_mutex_t *mx)

atomically releases the mutex pointed to by “mx” and causes the calling
thread to block on the condition variable pointe to by “c”. The blocked
thread may be subsequently awaken by at_cond_signal() or
at_cond_broadcast(). Any change of the associated condition must be reeval-
uated after a signal unblock a thread.

void at_cond_signal(at_cond_t *c)

unblocks one thread that is blocked on the condition variable pointed to by
“c”

void at_cond_broadcast(at_cond_t *c);

unlcoks all threads that are blocked on the condition variable pointed to by
“c”

Spinning Mutual Exclusion Locks
AT_SPINLOCK_DEC(s)

declare a spinlock. Spinlocks don’t need to be explicitly created or deleted,
but they do need to be explicitly initialized before use. The special type
at_spinlock_t may be used for declarations or typedefs, but
BR_SPINLOCK_DEC is preferred when possible.

AT_SPINLOCK_INIT(s)

initialize the spinlock

AT_SPINLOCK_LOCK(x)

lock the spinlock. This may trigger busy-waiting if the spinlock is already
locked by another thread. The current implementation first waits on a local
cached copy of a spinlock to minimize the bus traffic

AT_SPINLOCK_UNLOCK(x)

unlock the spinlock. If prior to the call there were threads busy waiting on
the spinlock, a single thread is allowed to acquire the spinlock and return
from a call to AT_SPINLOCK_LOCK()

AT_SPINLOCK_TRY(x)

a non-blocking version. If successful, lock the spinlock and returns 1, other-
wise returns 0.

Hybrid Implementation of Blocking Mutual Exclusion Locks

The semantics of hybridlocks is equivalent to that of mutual exclusion locks (but differ-
ent from that of spinlocks!). Hybridlock perform some busy-waiting if the lock is already
locked in an attempt to avoid a context switch. If the lock remains locked, a calling
thread eventually blocks. The current implementation uses an exponential back-off wait-
ing policy for the spinning phase.

68 Appendix: Active Threads API

AT_HYBRIDLOCK_DEC(s)
AT_HYBRIDLOCK_INIT(s)
AT_HYBRIDLOCK_LOCK(x)
AT_HYBRIDLOCK_UNLOCK(x)
AT_HYBRIDLOCK_TRY(x)

 Miscellaneous

void at_init(unsigned int concurrency, unsigned int stack_size, unsigned int local_size)

initialize the Active Threads package. Use specified concurr ency level, stack
size and local storage size. Concurrency is between 1 and the number of
physical processors.

void at_do_when_idle(void (*func)())

register a function to be called when a processor is out of work and there are
no work thread to run. This could be used, for example, to periodically ser-
vice the network or perform incremental garbage collection.

int at_ncpus()

returns the number of physical processors

int at_vproc()

returns the current virtual processor number, or -1 if the thread is unbound.
Could be thought of as an alias for at_get_affinity(). The virtual pr ocessor
number has no relation to the physical processor number. When a thread is
created, it can be assigned to a virtual processor. If the bundle supports mem-
ory-conscious scheduling (default does not), it will try to run threads bound
to the same virtual cpu to run on the same physical cpu. Virtual processor
numbers can be arbitrary large.

int at_cpu()

returns the physical processor on which the calling thread is executing

References 69

References

[1] T. E. Anderson, B. N. Berhad, E. D. Lazowska, H. M. Levy, Scheduler
Activations: Effective Kernel Support for the User-Level Management of
Parallelism. ACM Trans. Comput. Systems 10(1), Feb. 1992

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, H. M. Levy, Thread
Management for Shared Memory Multiprocessors. To appear, Handbook for
Computer Science. Also available from http://http.cs.Berkeley.EDU/~tea.

[3] B. N. Bershad. The Presto User Manual. October 1991. Available from http://
www.cs.washington.edu/research/compiler/papers.d/presto.html

[4] G. E. Blelloch, S. Chattejee, J. C. Hardwick, J. Sipelstein, and M. Zagha,
Implementation of a Portable Nested Data-Parallel Language. Journal of
Parallel and Distributed Computing, 21(1):4-14, April 1994.

[5] R. D. Blumofe, C. E. Leiserson, Scheduling Multithreaded Computations by
Work Stealing. 35th Annual IEEE Conference on Foundations of Computer Science
(FOCS94), Santa Fe, New Mexico, November 1994.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
J. Zhou. Cilk: An Efficient Multithreaded Runtime System, Journal of Parallel
and Distributed Computing, Vol. 37. No 1, August 1996. pp 55-69.

[7] K. M. Chandy, C. Kesselman, Compositional C++: Compositional Parallel
Programming. In Proc. 5th International Workshop on Languages and Compilers for
Parallel Computing, pp124-144, New Haven, CT, August 1992.

[8] D. E. Culler, Managing Parallelism and Resources in Scientific Dataflow
Programs. Technical Report 446, MIT Lab for Comp. Sci. March 1990.

[9] D. E. Culler, A. Sah, K. E. Schauser. Fine-grain Parallelism with Minimal
Hardware Support: A Compiler-Controlled Threaded Abstract Machine.
Fourth Internatonal Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, Ca, April 1991.

[10] H. Custer, Inside Windows NT, pp. 94-100. Microsoft Press, 1993

70 References

[11] E. W. Dijkstra, Cooperating Sequential Processes. Programming Languages, pp.
43-112. Academic Press, 1968.

[12] R. Draves, E. Cooper, C Threads. Technical Report. CMU-CS-88-154. School of
Computer Science, Carnegie Mellon University, June 1988.

[13] S. C. Goldstein, The Implementation of a Threaded Abstract Machine.
Technical Report?, University of California at Berkeley. May 1994.

[14] S. C. Goldstein, D. E. Culler, K. E. Schauser, Lazy Threads, Stacklets, and
Synchronizers: Enabling primitives for compiling parallel languages.
Technical Report, University of California at Berkeley, 1995.

[15] S. C. Goldstein, K. E. Schauser, D. E. Culler, Lazy Threads: Implementing a
Fast Parallel Call. Journal of Parallel and Distributed Computing, Vol. 37. No 1,
August 1996. pp. 5-20.

[16] B. Gomes, D. P. Stotamire, B. Weissman, and H. Klawitter, Sather 1.1 Language
Essentials. International Computer Science Institute. Available at http://
www.icsi.berkeley.edu/~sather/Documentation/LanguageDescription/
contents.html.

[17] R. H. Halstead. Mutilisp: A Language for Concurrent Symbolic
Computation. ACM Transactions on Programming Languages and Systems,
7(4):501-538, October 1985.

[18] B. Hansen, The Programming Language Concurrent Pascal. IEEE Transactions
on Software Engineering 1(2):199-207 (Jun 1975)

[19] R. Hempel, The ANL/GMD Macros (PARMACS) in FORTRAN for Portable
Parallel Programming using the Message Passing Programming Model.
User’s Guide and Reference Manual. Version 5.1. Gesellschaft fur
Mathematik and Datenverarbeitung mbH. November 1991.

[20] J. M. D. Hill. Installation and User Guide for the Oxford BSP toolset (v1.1)
implementation of BSPlib. Oxford Parallel Computing Laboratory, Oxford
University. June 1997.

[21] High Performance Fortran Forum. High Performance Fortran Language
Specification , May 1993.

[22] M. Holtkamp, Thread Migration with Active Threads. International
Computer Science Institute, Technical Report 1997, TR97-038

[23] The Institute of Electrical and Electronics Engineers. Portable Operating
System Interface (POSIX) - Part 1: Amendment 2: Threads Extensions [C
Language]. POSIX P1003.4a/D7. April, 1993

[24] Intel Architecture Software Developer’s Manual. Volume 2: Instruction Set
Reference. Intel Corporation, Order Number 243191. January 1997

References 71

[25] S. Jain. Virtual Factory Framework: A Key Enabler for Agile Manufacturing.
1995 INRIA/IEEE Symposium on Emerging Technologies and Factory Animation.
Paris, October 1995. Vol. 1, pp. 247-258, IEEE Computer Society Press, Los
Alamitos, CA.

[26] D. Keppel, Register Windows and User-Space Threads on the SPARC.
Department of Computer Science and Engineering, University of Washington.
Technical Report UWCSE 91-08-01, August 1991.

[27] D. Keppel, Tools and Techniques for Building Fast Portable Threads
Packages. University of Washington, Technical Report UWCSE 93-05-06.

[28] B. Lewis, D. J. Berg, Threads Primer. A Guide to Multithreaded
Programming. p. 1. Sun Soft Press 1996.

[29] C. C. Lim, Y. H. Low, W. Cai, W. Hsu, S. Y. Huang. An Empirical Comparison
of Runtime Systems for Conservative Parallel Simulation. Submitted to the
2nd Workshop on Runtime Systems for Parallel Programming (RTSPP), in
conjunction with the 12th International Parallel Processing Symposium (IPPS/
SPDP 1998), March 1998.

[30] D. K. Lowenthal, V. W. Freeh, G. R. Andrews. Using Fine-Grain Threads and
Run-Time Decision Making in Parallel Computing, Journal of Parallel and
Distributed Computing, Vol. 37. No 1, August 1996. pp 41-54

[31] E. Lusk, et al. Portable Programs for Parallel Processors. Holt, Rinehart and
Winston, Inc; New York, 1987.

[32] E. P. Markatos, T. J. LeBlank, Locality-Based Scheduling for Shared-Memory
Multiprocessors. Institute of Computer Science, Creete Greece, FORTH-ICS/
TR-094. Also appears in Zomaya (Ed.) Current and Future Threands in Parallel
and Distributed Computing. World Sceintifc Publishing, 1994.

[33] E. P. Markatos, How Architecture Evolution Influences the Scheduling
Discipline used in Shared-Memory Multiprocessors. Parallel Computing 1993.

[34] B. D. Marsh, T. J. LeBlanc, M. L. Scott, E. P. Markatos, First-Class User-Level
Threads. 13th ACM Symposium on Operating Systems Principles, October 1991.

[35] E. Mascarenhas, V. Rego, Migrant Threads on Process Farms: Parallel
Programming with Ariadne. Technical Report TR95-081. Department of
Computer Sceinces, Purdue University. Decmber 1995.

[36] E. Mascarenhas, V. Rego, Ariadne: Architecure of a Portable Threads System
Supporting Thread Migration. Software - Practice and Experience, VOL. 26(3),
327-356 (March 1996)

[37] H. Massalin. C. Pu, Threads and Input/Output in the Synthesis Kernel. 12th
ACM Symposium on Oerating Systems Principles, December 1989, pp. 191-201.

72 References

[38] E. Mohr, D. A. Kranz, R. H. Halstead, Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs. IEEE Transactions on Parallel
and Distributed Systems, 1990.

[39] D. Nussbaum, Run-Time Thread Management for Large-Scale Distributed-
Memory Multiprocessors. Ph.D. Thesis. MIT, 1993

[40] S. Oaks, H. Wong, Java Threads. O’Reilly, 1997.

[41] Pentium Pro Family Developer’s Manual. Volume 3: Operating System
Writer’s Guide. Intel Corporation, Order Number 242692. December 1995.

[42] M. L. Powell, S. R. Kleinman, S. Barton, D. Shah, D. Stein, M. Weeks. SunOS
5.0 Multithreaded Architecture. A White Paper. Sun Microsystems, 1991.

[43] J. W. Quittek, B. Weissman, Efficient Extensible Synchronization in Sather . To
appear in The 1997 International Scientific Computing in Object-Oriented Parallel
Environments Conference (ISCOPE ‘97). December 1997.

[44] R. Sedgewick, Algorithms. Addison-Wesley, 1988.

[45] J. P. Singh, W. D. Weber, A. Gupta, SPLASH: Standford Parallel Applications
for Shared Memory. Computer Architecure News, 20(1):5-44, March 1922.

[46] K. E. Schauser, D. E. Culler, T. v. Eiken. Compiler-Controlled Multithreading
for Lenient Parallel Languages. FPCA ‘91 Conference on Functional
Programming Languages and Computer Architecture, Aug. 1991, Springer Verlag.

[47] D. Stein, D. Shah, Implementing Lightweight Threads. Summer ‘92 USENIX,
San Antonio, Tx

[48] M. Steckermeier, F. Belosa, Using Locality Information in User-level
Scheduling. TR-95-14. Computer Science Department, IMMD IV. University of
Erlangen-Nurnberg, Germany.

[49] D. P. Stoutamire, S. Omohundro. Sather 1.1 Specification. International
Computer Science Institute, Berkeley Ca. Technical Report TR-96-012.

[50] D. P. Stoutamire, M. Kennel, Sather Revised: A High-Performance Free
Alternative to C++. Computers in Physics, Vol. 9, No. 5, Sep/Oct 1995 pp. 519-
524.

[51] D. P. Stoutamire, Zones: Portable, Modular Expressions of Locality. Ph.D.
Thesis. University of California at Berkeley, 1997.

[52] The SPARC Architecture Manual. Version 8. SPARC International, Inc.,
Prentice Hall, 1992

[53] The SPARC Architecture Manual. Version 9. Eds. D. L. Weaver, T. Germond.
SPARC International Inc., Prentic Hall, 1994

[54] Sun Microelectronics. UltraSPARC User’s Manual, 1996.

References 73

[55] Sun Microsystems. Products and Solutions: Solaris Products. An on-line
document: http://www.sun.com/solaris/new/index.html.

[56] K Taura, S. Matsuoka, A. Yonezawa. StackThreads: an abstract machine for
scheduling fine-grain threads on stock CPUs. Theory and Practice of Parallel
Programming. International Workshop ‘97. Proceedings, pp. 121-136, Springer-
Verlag, Berlin/New York, 1995.

[57] K. Taura, A. Yonezawa, Fine-grain Multithreading with Minimal Compiler
Support - A Cost Effective Approach to Implementing Efficient
Multithreading Languages. ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation (PLDI), pp. 320-333. Las Vegas, June 1997.

[58] R. Thekkath, S. J. Eggers, Impact of Sharing-Based Thread Placement on
Multithreaded Architectures. In Proc. of the 21st Annual International
Symposium on Computer Architecture. Chicago, IL, April 1994. IEEE Computer
Society Press, 1994.

[59] A. Tucker, Efficient Scheduling on Multiprogrammed Shared-Memory
Multiprocessors. Ph.D. Dissertation. Stanford University, December 1993.

[60] A. Tucker, A. Gupta, Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors, The 12th Symposium on
Operating Systems Principles, pp. 159-166, December 1989.

[61] The UltraSPARC Processor - Technology, White Paper. Available from
www.sun.com

[62] The Ultra Enterprise 1 and 2 Server Architecture. Technical White Paper. Sun
Microsystems, April 1996.

[63] M. Vandevoorde, E. Roberts, WorkCrews; An Abstraction for Controlling
Parallelism. Int. J. Parallel Program. 17, 4 (Aug. 1988), 347-366.

[64] D. B. Wagner, B. G. Calder. Leapfrogging: a portable technique for
implementing efficient futures. SIGPLAN Notices, pp. 208-217, July 1993.

[65] B. Weissman, B. Gomes, J. W. Quittek, M. Holtkamp, Efficient Fine-Grain
Thread Migration with Active Threads. Submitted to the 12th International
Parallel Processing Symposium and 9th Symposium on Parallel and Distributed
Processing (IPPS/SPDP 1998)

[66] C. Wen, S. Chakrabarti, E. Deprit, A. Krishnamurthy, K. Yelick. Runtime
Support for Portable Distributed Data Structures, Workshop on Languages,
Compilers, and Runtime Systems for Scalable Computers, May 1995.

[67] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, The SPLASH-2 Programs:
Characterization and Methodological Considerations. 22nd Annual
International Symposium on Computer Architecture, pp 24-36, June 1995

74 References

75

A
ACTIVE 16, 17, 18, 22, 23
Active Threads

architecture of 14
basic services 16
bundles 30, 34–??
context switch in 20
design goals 13
kernel 30
machine-dependent layer 30, 37–39
memory management 30, 36–37
microbenchmarks 41–44

context switch 42

null thread 42

ping-pong 42

thread create 42

try 42

uncontested mutex 42
model of 14
Portability Interface 37
portability. See machine-dependent layer
state transitions 16
states of threads 16
synchronization objects 30, 33–34

Alliant FX/8 58
Anderson 7
Ariadne 9, 43, 44
at_block 34
at_bundle_create 63
at_bundle_destroy 64
at_bundle_t 61
at_cond_broadcast 67
at_cond_create 66
at_cond_destory 66
at_cond_init 66
at_cond_signal 67
at_cond_t 61
at_cond_wait 67
at_continue 63
at_cpu 68
at_create_local 63
at_create_stack 63
at_create_x 62
at_destroy_local 63
at_destroy_stack 63
at_do_when_idle 68
at_exit 17, 62
at_get_affinity 63
at_get_focus 64
at_getlocal 63
AT_HYBRIDLOCK_DEC 68
AT_HYBRIDLOCK_INIT 68
AT_HYBRIDLOCK_LOCK 68
at_hybridlock_t 61
AT_HYBRIDLOCK_TRY 68

76

AT_HYBRIDLOCK_UNLOCK 68
at_init 68
at_mutex_create 64
at_mutex_destroy 64, 65
at_mutex_init 64
at_mutex_lock 64, 65
at_mutex_t 61
at_mutex_trylock 64
at_mutex_unlock 64, 65
at_ncpus 68
at_scheduler 62
at_self 63
at_sema_create 65, 66
at_sema_destory 65, 66
at_sema_init 65, 66
at_sema_signal 66
at_sema_t 61
at_sema_trywait 66
at_sema_wait 65, 66
at_set_affinity 63
at_set_focus 64
at_setlocal 63
AT_SPINLOCK_DEC 67
AT_SPINLOCK_INIT 67
AT_SPINLOCK_LOCK 67
at_spinlock_t 61
AT_SPINLOCK_TRY 67
AT_SPINLOCK_UNLOCK 67
at_stop 63
at_thread_t 61
at_userf_x_t 62
at_vproc 68
at_word_t 62
at_yield 62

B
BLOCKED 16, 18
bundle 15, 18

hierarchy of 19
scheduler of 15

bundle created event 22
bundle terminated event 22

C
CC++ 10
Cilk 10
compositionality

difficulty of 12
in Active Threads 13

concurrency
degree of 10

Concurrent Pascal 5
condition variables 33
context switch

penalty of 20
Convex SPP 1000 9
CThreads 7

77

D
data segment 33
DEAD 16, 17
DEC Alpha AX 16
DEC Alpha AXP 14, 37, 41
Dijkstra 5
dispatch queue 32

E
Eggers 11
Encore Multimax 58
external events 21

F
FIFO 45
FIFO+MCS 47
fine-grained multithreading 12

performance penalties 11
fine-grained parallelism 10, 12

benefits of 10
focus 24

G
GUI 47
Gupt 11

H
has-private-storage 37, 38
HPF 10
HPPA 14, 16, 37, 41
HPUX 37
HPUX DCE threads 43
HyperSparc 53

I
I/O 14, 25, 32
ICSI 14
initialize 37, 38
INITIATED 16, 17
Intel i386 14, 16, 37
Intel Pentium Pro 41
internal events 21

K
Keppel 44
Keppel, David 38
kernel threads 7

and I/O 7
benefits of 7
in modern OS 7
performance of 7

L
LAZY FIFO 47
LeBlanc 12
LIFO 45

78

LIFO+MCS 54
light-weight process get private 37
light-weight process set private 37
load balance 11, 12
locality 11, 12, 20

and threads 11
importance of 11
spatial 18
temporal 18

lwp 16

M
Mach 7
Machine-Dependent Layer 16
Markatos 12
Marsh 7
MCS 11, 13, 45, 47
Memory Access Patterns 50
memory-conscious scheduling. See MCS
mergesort 50–54
Mthreads 9
multithreading. See threads
mutex 33

N
NESL 10
number of physical processors 37

O
OSF 37
OSF DCE threads 43

P
parallel pool 36
parallelism

degree of 10
PARMACS 58
Portability Interface 16
Portable Performance 52
POSIX 14
POSIX threads 43
PRESTO 11, 14, 33
Presto 7
preswitch 33
process control policy 11
processor idle event 22, 31
processor private structure 33
processor-private storage 38
Programmability 14
Purdue University 9

Q
quicksort 44–54
QuickThreads 9

R
RAM 33

79

read-and-modify 37
red zones 43
RUNNABLE 16, 17, 18, 23

S
S. Jain 71
Sather 10, 18
scheduler 33
scheduler activations 7, 16
scheduling 12, 18

compositionality of 12
policies of 18

scheduling events 20, 21–??
Sedgewick 72
semaphore 33
service thread 32
setjmp/longjmp 9
SGI 4D/24 58
SGI PowerStation 57
software interrupts 7
Solaris 7, 37
Solaris Thread 44
Solaris Threads 7, 9, 18, 43
SPARC 14, 16, 33, 37, 38, 41
spinlock 33
SPLASH 57–??
SPLASH-2 59
start light-weight process 37
STOPPED 16, 17, 18, 23
Sun Microsystems 7, 16
Synthesis 14

T
TAM 8, 24

activations in 24
codeblocks in 8

tasks 16
text segment 33
Thekkath 11
thread blocked event 22
thread bundle. See bundle
thread context switch 37
thread created event 22, 31
thread initialize 37
thread migration 21
thread started event 22, 31
thread terminated event 22
thread unblocked event 22, 34
Threaded Abstract Machine, See TAM
threads

acceptance of 5
granularity of 12
history of 5
in Active Threads 15
kernel-level 7
non-preemptive 16
POSIX standard 5, 14

80

user level 5
Topaz 7
Tucker 11, 57
two-phase synchronization 20

U
UltraSPARC 41
University of Erlangen-Nurnberg 9
University of Washington 7
user-level threads 5

and I/O 7
benefits of 5
in programming languages 6

V
virtual processor 15, 16

W
Windows NT 7, 16
WorkCrews 7

Z
zones 15

