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Abstract

We investigated spectral subtraction (SS) and harmonic sieving (HS) techniques
as preprocessing for J-RASTA processing to achieve more robust feature extrac-
tion for automatic speech recognition. We confirmed that spectral subtraction im-
proved J-RASTA processing, and showed that harmonic sieving additively improved
J-RASTA+S5S. We investigated the performance with the Bellcore isolated digits task
corrupted with car noise (additive noise) and linear distortion filter (convolutional
noise). The J-RASTA+SS+HS system reduces the word error rate by 39% given
pitch estimated from clean speech, and 35% given pitch estimated from corrupted
speech. The system was also tested with several kind of noises from the NOISEX92
database; each noise sample was added with speech for a resulting of 0dB signal to
noise ratio. SS significantly reduced word error rate for all type of noises (white noise
39%, pink noise 51%, car noise 78%, tank noise 59%, and machine gun noise 19%).
Given correct pitch, HS additively reduced the word error rate for the first three
noises (white noise 7%, pink noise 16%, and car noise 17%).
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Chapter 1

Introduction

Robustness of automatic speech recognition (ASR) systems under adverse environmental
conditions is crucial for real applications, and various approaches have been proposed. One
of the major schemes is noise modeling. The modeled noise is generally used to compensate
the input signal, or to adapt the recognizer itself to the noisy environment. One well known
parametric noise modeling for ASR is the parallel model combination (PMC) technique
[1, 2]. Given a sample of background noise for training the model, it works very well
with an HMM system. A non-parametric noise compensation, spectral subtraction (SS), is
widely used in many speech applications. Although it requires estimation of the background
noise and ad hoc spectral operations such as flooring, it has two merits: fewer assumption
about the noise than a parametric model, and potential use as a preprocessing step to other
methods. In fact, SS improves PMC+HMM systems in highly noisy environments [3].

An enhancement of dynamic features of the speech signal is another approach for robust
feature extraction. The enhancement consequentially suppresses quai-stational background
noise. Cepstral mean subtraction (CMS) and RASTA processing [4] are well known as robust
feature extraction techniques that enhance dynamic features of speech. These techniques
effectively remove the spectral distortion (i.e., convolutional noise), which typically are
introduced by the transmission channel (microphones, telephone lines, etc..). J-RASTA !
[5] processing addresses the convolutional noise and additive noise. J-RASTA balances the
effect of convolutional noise with that of additive noise, and reduces both of them based
on the signal to noise ratio (SNR). J-RASTA is very robust in some adverse environments
[4]. However, since it is a trade-off between two kind of effects, it can not compensate for
both of them completely. In other words, it could improve the robustness of J-RASTA to
compensate the spectrum before J-RASTA in linear or logarithmic domains.

Separation of speech from noisy signals based on typical structures of speech such as
harmonic structure have been investigated, especially in speech enhancement [6, 7, 8, 9]. Tt is
another way to compensate the corrupted speech. The possibility of improving ASR systems
has been suggested, but has not been evaluated with ASR very much. We apply a harmonic
sieving technique (HS) and a spectral subtraction (SS) technique as preprocessing of J-
RASTA feature extraction. This improves robustness of J-RASTA processing, especially
for speech with both additive & convolutional or with high additive noise.

'J-RASTA is sometimes referred to as “LinLog-RASTA”



Chapter 2

Methods

2.1 J-RASTA processing

In this section we briefly review J-RASTA processing. We assume the observation signal
y(t) as follows:

y(t) = h(t) * (2(t) + d(?))
where z(t) is a pure speech signal, d(t) is additive noise, and h(t) is convolutional noise.

In the logarithmic magnitude spectral domain, we can linearly separate the convolutional
noise as follows:

logY(w) = log H(w) + log( X (w) + D(w)) (2.1)

Since power spectrum of convolutional noise in the real world such as communication channel
distortion is changes relatively slowly in comparison to speech, we can remove the first term
“log H(w)” in equation (2.1) by high pass filtering. In Log-RASTA processing, the following
band-pass filter is applied to the logarithmic magnitude spectrum (i.e., log Y (w)). This band
pass filter also suppresses the rapid spectral change which is unseen in speech signal.

Q42713 9,4

=0.1z*
R(z) = 0.12" 1— 009821

Then, we can extract a term “log( X (w)+ D(w))”, which is affected by additive noise D(w).
In the power spectral domain, we can linearly separate speech which is only affected by
convolutional noise.

Y(w)=Hw)X(w)+ H(w)D(w) (2.2)

By using the same scheme of Log-RASTA processing, we can reduce the additive noise
(i.e., H(w)D(w)) which changes relatively slowly or rapidly, but the output is affected by
convolutional noise and additive noise which comes through the filter R(w).

Two issues come up in this case. One is that we need to reduce both additive and
convolutional noise in the same time. The other is the noise which comes through R(w) in
equation (2.2).

J-RASTA processing is a solution of the former problem. It balances the effects of
equation (2.1) and equation (2.2) by mapping the input spectrum as follows:

X(w)=mn(1+ JX(w))



J is set to be close to zero if additive noise is dominant, otherwise J should be a larger
value to suppress convolutional noise. In other words, convolutional noise is more reduced
when when J is set to larger value, because in this case X'(w) is log-like.

Though J-RASTA works well for both additive and convolutional noise, the scheme of
J-RASTA is a trade-off of reduction of errors due to convolutional noise and additive noise.
It is still difficult for J-RASTA to suppress both of them in the case that both convolutional
and additive noise have large effects. Thus, it is expected that spectral compensation in the
linear domain or in the logarithmic domain before J-RASTA processing could improve the
robustness, especially in very adverse environments.

2.2 Spectral Subtraction (SS)

Spectral subtraction (SS) is widely used for additive noise suppression [10, 3, 11]. Because
of its simplicity, SS is easy to use for noise suppression and it can work well as frontend
processing with another feature extraction technique. The parallel model combination tech-
nique, which has been shown to make HMM ASR systems more robust, is also improved by
spectral subtraction in highly noisy environments [3]. Similarly, we use the SS as prepro-
cessing for J-RASTA in order to improve the robustness.

The scheme of spectral subtraction we use is defined as follows

Yis(w) = max(Y (w) — aN(w), Y (w)) (2.3)

where N(w) is estimated noise, a is an over-estimation factor, and f is a flooring factor.
It is essential to estimate the background noise N(w) for the spectral subtraction tech-
nique. We estimated it based on the distribution of power spectral magnitude for each
frequency band [12, 13]. Tt is assumed that the occurrence of very high amplitude spectra
are relatively rare, and they come from the speech signal. The spectral amplitude that is
most frequently observed is taken as a mean of noise power at that frequency. The esti-
mated noise is also used to calculate the signal to noise ratio(SNR) to determine the J value

of J-RASTA processing [12].

2.3 Harmonic Sieving (HS)

Harmonic structure is one of the most obvious features of the speech signal. However, in
most ASR systems, this is smoothed out in order to reduce the variability of the speech
spectrum. On the other hand, the harmonic structure has been investigated and used in
speech enhancement, speech separation, and computational auditory scene analysis [6, 7, 8,
9]. These techniques can be effective for robust speech recognition, but they are not often
evaluated in ASR system with real noise.

We assume that the speech signal in the voiced region exists only in the harmonic
structure. With this assumption, we can improve the signal to noise ratio by sieving out
the harmonic structure from the mixture of voiced speech and back ground noise. In order
to separate out the harmonic structure, we used the method of so called “adaptive comb
filtering” as follows:



A(t, A(t, f) is a part of the harmonic structure
i, f):{ (t.f) (A(t,f) isap ) (24)

0 (otherwise)

where A(, f) is the magnitude spectrum of voiced speech at frequency f on time t.

We can perform this scheme by using pitch detection and voiced-unvoiced detection.
Many such algorithms have been investigated in the last few decades; there is a good
summary in [14]. We used the subharmonic summation algorithm (SHS) [15] for pitch
and voiced /unvoiced detection. In the SHS algorithm, each frame is analyzed by means of
the discrete Fourier transform (DFT). The spectra are weighted (higher weight for lower
frequency), and resampled in the logarithmic frequency domain with interpolation. Then,
the pitch frequency is estimated as the frequency which maximizes the summation of the
modified power spectrum on the harmonic structure as follows:

N

o = argmax(30 W(HA() (25)

n=1

where N is a integer value which is originally set to 15, A(f) is the magnitude spectrum

denoted by DFT, and W(f) is a weight function which reduces the influence of higher

frequency spectral components. Instead of taking a maximum value in equation (2.5), we

can estimate the pitch frequency from the lattice of the summation by using dynamic time

warping [16]. We used the “post editing” algorithm to refine the accuracy of pitch frequency.
The equation (2.4) is rewritten with the output from SHS as follows:

A(n, k) (Ly(n, k) < C,V(n)>0.5)

Fin k) = { 0 (otherwise) (2.6)

where

Ly(ns k) = [k = L(Lfp(n))]
I,(f) = argmin;(iFs /N — f)

where A(n, k) is the kth frequency bin of N point DIFT magnitude spectrum of frame n,
I,(n, k) is the number of frequency bins from k to the closest frequency bin that belongs
to a harmonic. f,(n) is a pitch frequency and V(n) is a voicing confidence at time n; they
are calculated by SHS. V(n) takes a value between 0 to 1 and A(n) is likely voiced when
V(n) is closer to 1. C'is a constant which determines the number of frequency bins for each
harmonic frequency. I,(f) is a frequency index which is closest to the frequency f. The [
is an integer value greater than 1, and it is chosen so that I,(/f,(n)) is close to k.

The quantity [ f,(n) represents the harmonic structure. The [ should be limited to less
than [, because pitch estimation causes too large an error in harmonic estimation for
large [.

Harmonic sieving may cause undesirable spectral distortion in higher frequencies be-
cause, as seen in human speech spectrograms, harmonic structure often looses its salient
shape at higher frequencies. In order to control the distortion, the maximum frequency of
sieving range should be limited not only by /,,,, but also by absolute frequency f,,4. Thus,



the harmonic sieving will performed from pitch frequency f, to L(f,)f,. Where L(f,) is
defined as follows:

L(fp) = min(lmaxa fmax/fp)

The equation (2.6) is illustrated in Figure 2.1, which shows DFT spectrograms of word
“eight”; a) clean speech, b) speech with +0dB additive noise, and c) harmonically sieved
noisy speech (same as (b)). In this example, pitch and voiced/unvoiced variables (i.e.
fp(n),V(n)) were derived from clean speech.

(a) Clean speech

DFT index

10 20 30 40 50 60
frame
(b) Noisy speech (+0db additive noise)

DFT index

10 20 30 40 50 60
frame
(c) Harmonics sieved noisy speech (+0db additive noise)

DFT index

Figure 2.1: Spectrograms of word “eight”. (a) Clean speech, (b) Noisy speech (4+0dB
additive noise), (¢) Harmonically sieved noisy speech(l,q = 8,C = 1).

Figure 2.2 shows the spectrogram in the lower frequency region at frame 20 in figure 2.1.
It is seen in the noisy spectrum (dotted line) compared with clean spectrum (dashed line)
that the frequency regions in between harmonics are filled with noises, while the harmonics
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Figure 2.2: Spectrum of clean(solid line), noisy(dotted line), and harmonically sieved noisy
speech(asterisk marks).

themselves aren’t affected by noise very much. The star marks on the figure show the
harmonically sieved noisy speech based on the pitch frequency derived from clean speech.
It is seen that, given correct pitch frequency, the sieving process reserve the spectral peaks
of the vowel and suppress the noise corrupted region.

In order to compensate the spectrum in higher frequency regions and harmonics, we
combine harmonic sieving (equation 2.6) and spectral subtraction (equation 2.3). They are
very easily done as follows:

Ass(n, k) (Iy(n, k) < C,V(n) > 0.5)

Fas(n k) = { 0 (otherwise) (2.7)

Ags(n, k) = max(A(n, k) — aN(n, k), A(n, k)) (2.8)
where N(n,k) is a estimated noise at kth frequency bin of nth frame. Figure 2.3 shows

same spectrogram as shown figure 2.2 but it is preprocessed by the spectral subtraction.

(c) Harmonically sieved noisy speech with SS (+0db additive noise)

DFT index

10 20 30 40 50 60
frame

Figure 2.3: Spectrograms of word “eight”, Noisy speech (+0dB) additive noise, processed
by SS before HS.



Chapter 3

Experiments

3.1 Database

We used an isolated digits database that has been made available by Bellcore. This

database has 13 words in the vocabulary: “one”, “two”, “three”, “four”, “five”, “six”,

“seven”, “eight”, “nine”, “zero”, “oh”, “yes”, and “no”. They were spoken by 209 speakers
through various telephone lines. Since this database is relatively small, we used a “jack-
knife method” using 200 speakers (150848 frames), which was divided into four pieces. In
each experiment, utterances from 50 speakers were used for testing and the remaining 150
speakers’ utterances were used for training. The word error rate reported here is the average
of the four experiments.

Noise was added to the clean speech from the digits database. The speech was also
filtered to introduce spectral distortion for testing in both additive and convolutional noise
environments. The noise source for all experiments except the one reported in section
3.5.2 was car noise, which was recorded! over the cellular telephone from a 1978 Volvo 225
running at 55 miles/hour on the freeway with the windows closed.

3.2 The ASR system

The figure 3.1 shows an outline of the ASR system used in our experiments. The feature
vector extracted from speech signal is passed to a multi layer perceptron to calculate the
a posteriori probability of each phone (56 phones). The phone probabilities are decoded
into word probabilities by a Viterbi decoder with lexical and grammar information. Since
our task is isolated word recognition, we use a word pair grammar which just assumes a
connection from beginning silence to words and from words to ending silence.

3.3 Signal Processing

The speech signal is divided into 25 msec width frames every 10 msec. The spectral sub-
traction (“SS”) module and harmonic sieving (“HS”) module is attached between the DFT
and auditory filter bank of RASTA processing as depicted in figure 3.2. The auditory filter

!By Hynek Hermansky
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Figure 3.1: The speech recognition system.

is good for smoothing the spectrum which is sieved by HS process. Since the input signal
is filtered with a hamming window, and RASTA performs a 256 point FF'T for the 25 msec
(200 sample) input, the DF'T frequency resolution is degraded by more than a factor of two.
Therefore, the width of the “teeth” of a comb filter for HS (i.e., C' in equation (2.6)) is set
to 1 so that 3 frequency bins are sieved for each frequency in the harmonic structure.

Spectrd |/

Subtraction
Harmonics

Sieving

Conventional RASTA processing

Auditory
Filter

Figure 3.2: J-RASTA processing with spectral subtraction and harmonic sieving module.

3.4 Results

3.4.1 RASTA with Spectral Subtraction

Table 3.1 shows the word error rate for Log-RASTA processing and J-RASTA processing
with/without SS. The SS significantly improves the word error rate with J-RASTA pro-
cessing in the 0dB additive noise environment. In the case of 5dB, J-RASTA is slightly
better than J-RASTA with SS, but SS also reduces the word error rate for 5dB additive
and convolutional noise. For lower noise, SS does not effect J-RASTA processing. Although
S5 also improves the result with LogRASTA processing, it still inferior to that of J-RASTA
processing. These results show that J-RASTA and SS compensate each other, and SS im-
proves the performance in some very adverse environments. The effective but crude spectral
compensation of SS might be smoothed by J-RASTA processing.

11



Train Test clean +10dB +10dB 4+5dB +5dB 4+0dB
Filtered Filtered

LogRASTA | LogRASTA 2.2 37.3 66.0

LogRASTA + SS 2.5 31.6 32.0 46.9 47.1 51.8

J-RASTA JRASTA 2.4 10.0 15.6 18.9 25.4 43.7

JRASTA + SS 2.3 9.8 14.2 19.6 24.3 30.5

Table 3.1: Word error rate of LogRASTA, J-RASTA, LogRASTA with S5, and J-RASTA
with SS (a = 1.0, =0.1).

3.4.2 Effect of flooring factor and overestimation factor

The word error rate for several SS parameters are shown in figure 3.3. Although higher
a is effective for 0dB additive noise (solid line), it makes results worse than conventional
J-RASTA processing for additive and convolutional noise (dashed line). A typical value for
£ is 0.1 in the [3, 11], but the word error rate is slightly reduced (less than 7%) by tuning
B to 0.3. This might be overtuning to the noise we used.

Word error rate for various |
max
———————————————— © J-RASTA (+0db) 5
ol [ e © J-RASTA (+0db)

Word error rate [%)]
w
®

sor G\th\e/e J-RASTA + SS(+0db)

Word error rate [%]

J-RASTA + SS(+0db)

28 P * J-RASTA (+5db & Filtered)
. AT RSy ——
r | J-RASTA + SS
*********** + Y Ritera) (+5db & Filtered)
24 . . . . . . 20 . . . . .
1 15 2 25 3 35 4 0 0.1 0.2 0.3 0.4 0.5
Over estimation factor (a) Flooring factor (B)

Figure 3.3: Word error rate for various SS parameters (o and ). § was fixed to 0.1 in the
left graph, and o was fixed to 1.0 in the right graph.

3.5 J-RASTA with Spectral Subtraction and Harmonic Siev-
ing
In this section, we show the experimental results of J-RASTA processing with SS and HS

(i.e., equation 2.7). The parameters for spectral subtraction (a,f) are fixed at 1.0,0.1
respectively.

12



3.5.1 Potential Performance of Harmonic Sieving

First, we derived the pitch frequency from clean speech signal to see the potential of har-
monic sieving given correct information?.

As mentioned in Section 2.3, the number of harmonics to be sieved (i.e. l,,45) should be
limited in order to control the expansion of error of pitch estimation. The word error rate
for different l,,,, is plotted in Figure 3.4. The graph shows that [, is necessary. With

Word error rate for various |
max

0db

without |
max

0db

5db & filtered

without |
max

Word error rate
N
~

P *5db & Filtered

25 x
24+ ///
/*/
23+ _*
¥
P I et A ‘
4 6 8 10 12 14 16 18

Figure 3.4: Word accuracy according to /4, (+0dB additive noise).

the relevant [,,,,, The word error rate is reduced by 14% for 0dB additive noise and 20%
for 5dB additive and filtered noise when [, is 8.

In order to see the relationship of the average pitch of each utterance to word error rate,
we rearranged results from figure 3.4 according to the average pitch, as shown in Table
3.2. The asterisk mark points to the best result of each column. Higher /,,,, achieves the
best result for a lower average pitch, and the best [,,,,, is getting lower for a higher average
pitch. These results imply the existence of maximum harmonic sieving frequency (i.e., fraz
) between 600 Hz to 1100 Hz. Thus, we calculated several word error rates according to
Sfmaz- The results are depicted in figure 3.5. The word error rate is slightly improved with
fmaz around 1000 Hz.

3.5.2 Actual performance

In order to evaluate the actual performance of J-RASTA+SS+HS with real estimated pitch,
we ran the SHS over the actual input instead of clean speech then used the output for HS.
The results are displayed in Table 3.3. In the experiment, the parameters of SS (a,f)
and HS (lyaz, frmax) were set to optimal values from previous sections; (1.0,0.1),(8,1000)

2 Although the pitch derived from clean speech also includes errors of around 1% [15], we assume here
that it is correct.
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Average Pitch (Low-High) [Hz]

Imax || 60-80 80-100 100-120 120-140 140-160 160-180 180-200 200-220
5 28.0 26.7 25.2 26.2 *25.4 *36.0 29.2 *29.9

7 25.8 25.6 23.3 *23.6 *25.4 36.8 *28.8 32.5

8 23.5 24.1 *22.6 24.1 26.3 36.2 30.0 32.5

9| *22.1  *23.8 23.3 24.6 27.8 38.4 30.7 32.5
10 || *22.1 24.1 23.9 25.6 28.4 38.4 32.6 35.1
13 || *22.1 25.6 26.9 29.2 29.6 40.6 31.8 35.1
15 23.2 26.0 27.5 29.2 30.5 40.1 31.8 35.1
inf 28.6 28.7 28.2 29.7 30.5 41.1 33.0 35.1

Table 3.2: Word error rate according to average pitch for each utterance.

Word error rate according to f
max
291
0db

28

0db

without f M
max

Word error rate [%]
N
[62)

5db &fitered. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ =%
without f

20l max* o

5db & Filtered

21 I I I I I I I I I I
400 500 600 700 800 900 1000 1100 1200 1300 1400

f_[Hz]

max

Figure 3.5: Word error rate according to frqz-

14




respectively. The word error rate of J-RASTA and J-RASTA+SS are also displayed again
for comparison. The parenthesized number is reduction of error compared with J-RASTA. Tt
can be seen that HS still improves the J-RASTA+SS, even with a realistic pitch estimation
error.

clean 10dB 10dB  5dB 5dB 0dB
Filtered Filtered
J-RASTA 24 100 15.6 18.9 25.4 43.7
J-RASTA+SS 2.3 9.8 14.2 19.6 24.3 30.5
(4.2) (2.0) (9.0) (-3.7) (4.3) (30.2)
J-RASTA+S55+HS 2.4 9.6 13.7 18.3 22.2 26.2
with correct pitch (0.0) (4.0) (12.2)  (3.2) (12.6) (40.0)
J-RASTA+S55+HS 2.4 9.8 13.8 18.4 23.1 28.5
with estimated pitch | (0.0) (2.0) (11.6)  (2.6) (9.1) (34.8)

Table 3.3: Word error rate and percent reduction of error compared to J-RASTA based on
pitch estimation with actual input or clean speech (v = 1.0, 8 = 0.1, [0z = 8, finaz = 1000).

We also compared the performances of J-RASTA, J-RASTA+S5S, and J-RASTA+SS+HS
in several noise environments using the NOISEX-92 database [17]. We used white noise,
pink noise, car noise (Volvo), machine gun noise, and Leopard 2 military vehicle noise. Each
noise was added to the speech signal with a 0dB SNR. The SNR was calculated based on
the energy only over the speech segment. The parameters of SS and HS a, 8, L4z, frnar Was
set to 1.0,0.1,8,1000 respectively. The car noise is real recorded noise, but its spectrum
does not change so frequently, and most of energy is concentrated low frequency region:
it is similar to pink noise. The spectrum of noise from Leopard also has its peak at low
frequency but the magnitude of the peak is relatively variable over time. Machine gun noise
is impulsive noise, so it has a non-stationary wide band spectrum.

White Pink Volvo Leo Mac
J-RASTA 739 703 45.0 71.6 38.4
J-RASTA+SS 44.8  34.4 9.8 29.2 31.1
J-RASTA+SS+HS 41.8 28.6 8.1 323 31.3
with correct pitch
J-RASTA+SS+HS 43.9 34.0 8.7 54.7 329
with estimated pitch

Table 3.4: Performance of J-RASTA, J-RASTA+SS, and J-RASTA+SS+HS system in
several noise environments.” White” is white noise, “Pink” is pink noise, “Volvo” is car
noise, “Leo” is Leopard 2 military vehicle noise, and “Mac” is machin gun noise.

15



Chapter 4

Discussion

The robustness of J-RASTA processing was significantly improved by spectral subtraction,
especially in very adverse environments. Furthermore, SS didn’t cause bad effects in clean
speech or in speech added with lower noise. It might be explained that J-RASTA, which
is very flexible but limited in robustness, compensates the SS which is effective but crude.
As seen in the experiments with several kind of noises (table 3.4), SS also significantly
reduces the error rate for narrow band and quai-stational noise (White, Pink, Volvo, Leo).
For wide-band non-stationary noise (i.e., machine gun), it gave a relatively small reduction,
because the noise estimator of SS didn’t follow the rapid change of the background noise.
However, the J-RASTA result for this noise is relatively better than that for other noises.
It is understood that RASTA filter suppresses the rapidly changing noise as well.

The error reduction rate for 10db or 5db additive noise with convolutional noise are
relatively high. It appears that J-RASTA took an active part in convolutional noise, because
additive noises are suppressed by SS and HS.

In our experiments, the flooring parameter of SS was set to 0.1 instead of the 0.3 we had
in section 3.4.2 as optimal for noise we used. The optimal parameter improved the results!
only for the noise used in the tuning, but it makes the results worse for another noises from
NOISE-X database. We concluded that the value was overtuned.

Although the error reduction rate of J-RASTA+SS5+HS compared to J-RASTA+SS was
degraded by a factor of two by using realistic pitch estimation (i.e., SHS) instead of correct
pitch, harmonic sieving additively improves the performance. More robust pitch estimation
or harmonic structure estimation algorithms are needed to derive the full performance.
There are many pitch estimation algorithms, and some may be more robust than SHS.
AMPEX(auditory model-based pitch extractor) [18] is another candidate we are considering.
We obtained the AMPEX program, but we didn’t use it due to time limitations. For
harmonic structure estimation, a spectrogram which shows sharp harmonic structure is
investigated in [19]. It could be useful for our approach.

Even though the correct pitch is given, the reduction of error by the HS scheme is
not extremely large. Two reasons have been considered. First, the signal compensation
of HS only covers voiced speech. Non-speech and consonants, which are usually more
degraded by noise than voiced speech, are not handled. Since the remaining spectrum

We didn’t report them.
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after HS should correlate closely with background noise, it can be worthwhile to use it for
signal compensation for non-voiced regions. The other reason is that, in this study, we
just used the fact that harmonic structure has a comb like shape in the frequency domain.
More relevant restricted filtering, for instance the temporal filtering for each tooth of the
harmonic structure, may improve the robustness.
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Chapter 5

Summary and Conclusion

5.1 Summary

We proposed and evaluated J-RASTA processing with spectral subtraction (J-RASTA+SS)
and J-RASTA+SS with harmonic sieving (J-RASTA+SS+HS) using pitch estimation and a
voiced /unvoiced decision algorithm. We confirmed that SS improved J-RASTA processing,
and that the word error rate was effectively reduced compare to conventional J-RASTA
processing in higher noise environments (30% reduction of error in 0db additive noise).

J-RASTA+SS+HS was also evaluated. The parameter to control the HS (140, fraz)
was investigated to find an optimal value for our implementation. With these parameters,
the harmonic sieving additively improved the performance for some type of noises. (14% of
reduction of error given correct pitch, 7% given estimated pitch).

J-RASTA, J-RASTA+SS, and J-RASTA+SS+HS were also evaluated in various noise
environments. SS significantly improved the performance. Given correct pitch estimation,
HS additively reduced the error rate for white noise (7%) and narrow-band low-frequency
noises, i.e. pink noise (16%), car noise (17%). It didn’t reduce the error rate for non-
stationary noises (Leopard noise, machine gun noise). When the pitch was estimated from
noisy input, the reduction in word error rate was degraded. In the case of white noise, pink
noise, and car noise the reduction in error rate was 2%, 1.2%, and 11%, respectively. For
the last two non-stationary noises, it became worse for Leopard noise (—=87%), and machine
gun noise (—5%).

5.2 Conclusion

The robustness of J-RASTA processing is significantly improved by spectral subtraction.
The noise reduction by harmonic sieving additively improve the performance for narrow
band low-frequency noises such as pink noise and car noise. It is expected that good pitch
estimation helps not only providing linguistic information but also improving the robustness
of ASR system against the background noise.
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