INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Playing Tetris on Meshes and
Multi-Dimensional Shearsort*

Mirostaw Kutylowski' Rolf Wanka*
TR-97-029

August 1997

Abstract

Shearsort is a classical sorting algorithm working in rounds on 2-dimensional meshes
of processors. Its elementary and elegant runtime analysis can be found in various
textbooks. There is a straightforward generalization of Shearsort to multi-dimensional
meshes. As experiments turn out, it works fast. However, no method has yet been shown
strong enough to provide a tight analysis of this algorithm. In this paper, we present
an analysis of the 3-dimensional case and show that on the [x [x [-mesh, it suffices to
perform 2log ! 4 10 rounds while 2log ! + 1 rounds are necessary. Moreover, tools for
analyzing multi-dimensional Shearsort are provided.

*Accepted for presentation on the 8th International Symposium on Algorithms and Computation (ISAAC),
1997.

'Department of Mathematics and Computer Science, Paderborn University, 33095 Paderborn, Germany.
e-mail: mirekk@uni-paderborn.de. Supported by KBN grants 2 1197 91 01 and 8 S503 002 07, DFG grant Di
412/2-1, and by Volkswagen-Stiftung. A part of this work has been done when this author was affiliated with
Computer Science Institute, University of Wroctaw, Poland.

YICSI, 1947 Center Street, Berkeley, CA 94704, USA. e-mail: wanka@icsi.berkeley.edu. Supported by
DFG-SFB 376 “Massive Parallelitit,” by EU ESPRIT Project 20244 (ALCOM-IT), and by DFG Leibniz
Grant Me 872/6-1.

1 Introduction

Networks of processing elements (PUs) with multi-dimensional mesh topology have been
the subject of intensive theoretical research motivated by the fact that many realizations of
multiprocessor systems have the communication structure of a mesh. A variety of efficient
algorithms has been designed to run on such an architecture, among them many algorithms
for such a basic problem as sorting (e.g., see [7]).

In this paper, we examine multi-dimensional Shearsort, a very simple, but hard to analyze
sorting algorithm for higher-dimensional meshes that turns out to have a rich combinatorial
structure.

Mesh Architecture. The d-dimensional mgX---XmgXmq-mesh is the graph (V, F), where

V ={Plig,...,12,01] 1 ix € {1,...,my}} is the set of nodes. Two nodes Pliq,...,12,7;] and
Pliy, ... iy, 1] are connected by an edge called link if there is an s, s < d, such that i; = 7/
for j # s and |is — i’| = 1. We refer to the set {P[ig, ... 541,58, 0p_1,.-.,%1] : 8 < my} of

nodes as a row in dimension k. The [X [X [-mesh is called a cube of size [. The jth level of
the cube is the set of nodes with third index equal to j, i.e., {P[j,19,01] : 1o < 1,1y < [}.

We assume that every node of the mesh can store exactly one key. Sorting these keys is
the process of relocating them so that finally their ordering agrees with some predefined order
“<” of the nodes. The 2-dimensional Shearsort uses the snake-like order depicted in Fig. 1.
The key property of this order is that every two neighboring rows in dimension 1 are ordered
in opposite directions. For the 3-dimensional mesh, we apply a similar approach (see Fig. 1):

3-Dimensional Snake

2-Dimensional Snake

(€]

@ (b)

Figure 1: Snake-like order of (a) a 2-dimensional mesh and (b) a 3-dimensional mesh.

(1) Every level is ordered by a 2-dimensional snake-like order,
(2) every two neighboring levels are ordered in opposite directions,

(3) the nodes of level j precede all nodes of level j + 1, for every j; the first node of level
7 + 1 lies above the last node on level j.

Compare-Exchange and Oblivious Algorithms. In the design of sorting algorithms
for networks of processing units, it is reasonable to perform operations that are as simple
as possible.The reason is that complex operations may require powerful (expensive) PUs and
might be slow in practice. A compare-exchange step is such a simple operation. It is determined
by a matching M on the set of nodes, where each (P, P') € M corresponds to a link in the
network. For each (P, P") € M, if z and z’ are stored in P and P’, resp., then after performing
the operation, P stores min(z,2’) and P’ stores max(z,z’). A compare-exchange algorithm is
an algorithm consisting of compare-exchange steps.

Many sorting algorithms use routing in addition to compare-exchange steps: the contents
of the network is permuted according to a given permutation that is fixed during the network
design. That means that these permutations do not depend on the sequence of keys to be
sorted. Such algorithms are called oblivious sorting algorithms.

Previous Oblivious Sorting Algorithms on Meshes. Routing (besides compare-ex-
change steps) has been used by Schnorr and Shamir [11] to design an asymptotically time
optimal algorithm that sorts {? keys on the { X I-mesh in 3l + o(!) steps. For d-dimensional
meshes (d being a constant), Kunde [6] presented an asymptotically time optimal algorithm:
On the mg X - -+ X mi-mesh, it runs in time 2 Ef:_ll m; +mg + 0(2?21 m;). One of the mesh
architectures that has received special attention is the hypercube, i.e., the d-dimensional
2 X - - - X 2-mesh. The asymptotically fastest oblivious algorithm for the d-dimensional hyper-
cube by Plaxton [8] sorts 2¢ keys in time O(20(VI°89))_(Note that there are sorting algorithms
that work asymptotically faster, but they are not oblivious. They duplicate keys, communi-
cate more than one key per step, perform permutations depending on the inputs, and make
sometimes certain assumptions on the representation of the keys.)

Unfortunately, the low order terms and constant factors, resp., hidden in the “O”-notation
in the runtime bounds of the algorithms mentioned above are quite large. Moreover, the logical
structures of these algorithms are complicated; the algorithms spend much time on routing.
For these reasons, these algorithms are not well suited for practical implementations.

On the other hand, there are simple algorithms like Batcher’s Bitonic Sort [1] for the
d-dimensional hypercube with runtime 1d(d + 1) and a generalization of Bitonic Sort to
arbitrary meshes by Corbett and Scherson [3]. Though the runtimes of these algorithms are
not asymptotically optimal, the involved constants are very small. So the algorithms are fast
for realistic input sizes. The behavior of these algorithms is easy to analyze due to their
recursive structure allowing elegant inductive proofs.

In order to ease the implementation, periodic sorting algorithms have been considered,
i.e., algorithms repeating the same sequence of compare-exchange steps called a round. A
classical algorithm of this kind is Shearsort by Scherson, Sen, and Shamir [10, 9]. It runs on
mg X my-meshes in time (mg+ mq) - ([logmz] 4 1). In another classical paper, Dowd et al. [4]
present the periodic balanced sorting algorithm running on the d-dimensional hypercube in
d? steps. These algorithms repeat sorting of rows in various dimensions until the contents
of the network becomes sorted with respect to the snake-like order. In the worst case, both
algorithms are slower only by a factor of about 2 than the simple non-periodic methods
mentioned before.

In [2], an approach closely related to Shearsort has been implemented on the MasPar
MP-1 parallel computer. Its practical performance is able even to beat Bitonic Sort under
certain circumstances. This is an evidence that a theoretical approach must be sometimes

revised to adhere to the real world.

Multi-Dimensional Shearsort. Both Shearsort and the periodic balanced sorting algo-
rithm are special cases of a simple and elegant algorithm for arbitrary multi-dimensional
meshes with snake-like order where sorting of rows in all dimensions is repeated until the
input is sorted according to the snake-like order:

ALGORITHM. (Multi-Dimensional Shearsort) Let M be the mg X --- X m;-mesh. Shearsort
consists of rounds: each round consists of stages 1,2,...,d — 1,d. At stage 7, ¢ < d, each row
in dimension ¢ is sorted using Odd-Even Transposition Sort [5, p.241]. The direction in which
a single row is sorted agrees with the order on the row induced by the snake of the mesh (for
the 3-dimensional case see Fig. 2). The rounds are repeated until M is sorted according to

the snake-like order.
/] Dimensions:

{ 3
2
Z— %
= 7 |y s
Stage 1 Stage 2 Stage 3

Figure 2: A round of the 3-dimensional Shearsort

New Results. We present almost matching upper and lower bounds on the number of
rounds that the 3-dimensional Shearsort needs to sort on the cube.

Theorem 1 Let | € IN be arbitrary. Then the 3-dimensional Shearsort requires at most
2log! + 10 rounds on the | X [X [-mesh in the worst case.

The above bound is almost tight since there are simple inputs requiring 2|log /] 4 1 rounds
as stated in the following example (its analysis is tedious, but elementary, and therefore
omitted):

Example 2 Let | € IN be even, but not a power of 2. Let the set of nodes { P[ig, iz,1]: 1 <
13,2 < QUOgZJ} store 0’s, and let all other nodes store 1’s. Then the 3-dimensional Shearsort
needs 2|logl]| + 1 rounds to sort this input.

Theorem 1 can be generalized in many ways to arbitrary 3-dimensional meshes, but the
analysis requires more technical details (to be presented in a full version of the paper). A
generalization for higher dimensions is possible, too, but in this case we do not obtain such
tight results.

The paper is organized as follows. In Section 2, we recall some facts and make observations
on the 2-dimensional Shearsort to be applied for the 3-dimensional case. The most interesting
fact in this part is a combinatorial property called Tetris Lemma. In Section 3, we develop
techniques of projecting the contents of the cube into two dimensions and bookkeeping of
dirty rows that lead to a proof of Theorem 1.

2 Auxiliary Results on 2-Dimensional Shearsort

2.1 General Observations.

Lemma 3 (0-1 Principle [5, p. 224]) Ifa compare-exchange algorithm sorts all inputs con-
sisting solely of 0°s and 1°s, then it sorts arbitrary inputs.

Due to the 0-1 Principle, we shall mainly consider inputs consisting of 0’s and 1’s only,
also called 0-1 inputs. The 0-1 Principle can be shown by applying the following fundamental
property we shall use later, too.

Lemma 4 (Homomorphic invariance) Let h be a monotonic function. Let A be a com-
pare-exchange algorithm working on a network M and let A(Z) denote the contents of M
after executing A on input ¥. Then h(A(Z)) = A(h(Z)), for every x.

Proof. The proof is by induction on the number of compare-exchanges performed. As & is
monotonic, max(h(z),h(2')) = h(max(z,z’)) and min(h(z),h(2")) = h(min(z,z")). So the
lemma holds for a single compare-exchange operation. Let B be all compare-exchange opera-
tions of A except the last one C'. Then by the induction hypothesis h(A(Z)) = h(C(B(Z))) =
C(r(B(7))) = C(B(h(7))) = A(M(Z)). O

The next proposition is obvious, nevertheless it is extremely useful.

Lemma 5 (Permutation Trick) Assume that at a given moment of the execution of a com-
pare-exchange algorithm, the nodes of the network can be partitioned into subsets Ty, ..., T},
and that each T; is subject to a separate sorting process. Then we may arbitrarily permute the
keys inside each set T; prior to sorting them without influencing the outcome of sorting the
sets T;.

2.2 Dirty Rows and the Classical Results.

The analysis of 2-dimensional Shearsort in [10] is based on the following concept of clean and
dirty rows:

Definition 6 Let M be a (multi-dimensional) mesh. If every node of a row in dimension j
of M contains the same key s, then we call this row a clean row or in more detail an s-row.
A row containing at least two different keys is called a dirty row.

Definition 7 Let M be a 2-dimensional mesh with a 0-1 input. We say that M is h-clean,
if M contains a number of 0-rows at the bottom of M and a number of 1-rows at the top of
M, and at most h dirty rows between these two blocks of clean rows.

In order to illustrate the notions introduced, we prove the following lemma:

Lemma 8 Assume that a 2-dimensional mesh M stores a 0-1 input. If M contains k zero-
rows (1-rows), then after sorting the columns, M contains k zero-rows (1-rows) at the bottom
(top) of M. These rows remain there after any number of steps of Shearsort. So if M is
h-clean, then it remains h-clean after executing any number of rounds of Shearsort.

Proof. By the Permutation Trick, we may permute the rows of M so that the 0-rows are
placed at the bottom of M. Then during sorting a column no 0 of the k£ lowest positions in a
column can be moved. The rest follows immediately. |

The upper bound on the runtime of the 2-dimensional Shearsort follows from the following
lemma [10]:

Lemma 9 ([10]) Let a 0-1 input be given to the | x m-mesh M. Then after round t of
Shearsort, M is [1/2"]-clean.

By Lemma 9, after round [log /] the mesh is 1-clean and by Lemma 8 it will remain 1-clean
afterwards. Then it suffices to perform one additional round to sort the dirty row. Hence, the
following theorem holds:

Theorem 10 ([10]) Shearsort requires at most [logl] + 1 rounds to sort on the | X m-mesh.

Proof of Lemma 9. The proof is by induction on ¢. For ¢t = 0, it is obviously true. Let us

assume it is true for ¢. Let s be the number of rows in the block of 0-rows at the bottom of

M. After sorting the rows at round ¢+ 1, we use the Permutation Trick: we sort each pair of

rows s+t and s+ 7+ 1 columnwise, for every odd 7. Since the rows of a pair have been sorted

in opposite directions, for every pair we get at least one clean row (see Fig. 3). By Lemma 8,

while sorting the columns at round ¢ 4+ 1, the 0-rows and 1-rows are moved downwards and
1

upwards, resp. There are at most [1 - [1/2%]] = [1/2'*1] dirty rows left, hence M becomes

[1/21F1]-clean. O
[] 0's | [Ts [0s |
| 0s [Ts | [Os] Ts |
| sorting | sorting
L1 I | I |
I | I I I |
Case (a) Case (b)

Figure 3: At least one clean row is obtained from two dirty rows

Later we shall use the following variation of Lemma 9:

Lemma 11 Assume that there are p occurrences of a key u in the | X m-mesh. Then after t
rounds of Shearsort, there is a set of at most 2 [1/2'] 4+ p/m contiguous rows such that below
them all keys stored are smaller than u and above them all keys stored are greater than w.

Proof. If we replace the input keys smaller than » by 0’s and the remaining keys by 1’s, then
after round ¢ there are at most [1/2!] dirty rows. By Lemma 4, this means that in the original
mesh after round ¢ there are at most [I/2'] rows with at least one key smaller than u and
at least one key not smaller than u. Similarly, there are at most [I/2!] rows with at least
one key not greater than u and at least one key greater than u. There are at most p/m rows
containing only u’s. It follows that u may occur in at most 2 - [[/2"] 4+ p/m rows. O

2.3 The Tetris Lemma

Sorting the columns resembles the Tetris game: we hope to fill as many rows at the bottom
as possible with 0’s. Below we define “pieces” used for our “Shearsort game”.

Definition 12 (i) A segment with endpoints i1,13 in a 2-dimensional mesh is a set of
nodes of the form {P[j,i]: 1y <1 < iy} for some j. A segment is a u-segment if all its
nodes store the key u.

(ii) Let k € IN. We say that key u is k-dispersed in a 2-dimensional mesh N, if the set of
nodes of N storing u can be partitioned into at most k disjoint segments.

For a given key u, we define its canonical segments storing u on the [x m-mesh: If P[j,]
stores u and P[j,7 — 1] does not, or if 7 = 1, then a canonical segment starts at P[j,]. This
segment is as long as possible: its right endpoint is at P[j, '], where ¢/ = min{s : s > 1, P[j, 5]
does not store u}. If i’ does not exist, the endpoint is m+ 1. Obviously, the canonical segments
are disjoint and contain all u’s.

By sorting the rows of the [X m-mesh containing 0’s, 1’s and %’s the key % becomes (-
dispersed — simply each row contains at most one segment. We show that it remains [-dispersed
after sorting the columns.

Lemma 13 (Tetris Lemma) Let N be the | x m mesh.

(a) Let 0 be the minimum key stored in N. If 0 is k-dispersed in N, then sorting the columns
of N preserves this property. The endpoints of the new segments can be taken from the
set of the endpoints of the canonical segments existing before sorting the columns.

(b) Let N contain keys 0, 1 and % only and assume each row of N sorted. Then after sorting
the columns, key % is [-dispersed in N.

Proof. (a) Intuitively, (a) can be shown by induction on the number of 0-segments. Consider
Fig. 4 and inject in subfigure (b) a further 0-segment from above. No matter where this
additional segment “falls down,” the number of 0-segments cannot be increased by more than
1. We show this in a more rigorous way: Let e1,...,es be all endpoints of the original &
segments of 0’s in N with e; < ez < ... < e;. Additionally, we consider a dummy column 0
storing 1’s and put eg = 0. Let f(¢) denote the number of 0’s in the column ¢ of N. Obviously,
f is constant on each interval [e;, €;11). Let us consider the canonical 0-segments existing after
sorting the columns of N. These segments called new segments have endpoints from the set

{e1,...e5}. Indeed, since 0 is the minimum key, the 0’s in each column form a block starting
at the bottom of the column. Therefore, if a new segment has an endpoint at a column 7,
then f(7) # f(¢—1). So i must be one of the points eq, ... ,es.

It remains to show that the number of new segments does not exceed k. Let us label the
original k£ segments containing 0’s with & different labels. We label the new segments with
the same labels in the following way (see Fig. 4): Consider a j, j < s. A new segment starts
at column e;, if f(e;) > f(e; —1). If f(e;) = f(e; — 1) + ¢, then there are at least ¢ original
segments starting at e; (there were even more such segments, if there were original segments
with the left endpoint e;). The ¢ new segments starting at column e; get labels of the original

segments starting at column e;, each one receiving a different label (see Fig. 4). Since every
new segment gets one label out of £ and no label is used twice, the number of new segments
does not exceed k.

Dimensions:
Oe1bF 2

B+
CO<+E 3
positive numbers 1 positive numbers

(o o

] <«——FD C —1—>» <+— D
A B -1 E

(a) Situation before sorting (b) Labels of segments after sorting
the columns. the columns.

Figure 4: Preserving the number of 0-segments during sorting of columns

(b) We label all 0- and 1-segments in N existing before sorting the columns so that no
label is used twice. We consider a dummy column 0 (column m + 1) with 0’s (1’s) in the odd
rows and 1’s (0’s) in the even rows. Since the rows of N are sorted, at each row there is at
most one 0- or 1-segment disjoint with the first column. Such segments will be called proper
segments. Hence we need at most [labels to label the proper segments.

We consider the canonical sets of 0-segments, 1-segments and %—segments after sorting the
columns; these segments will be called the new segments. We label the new 0- and 1-segments

in a similar way as in the part (a).

We assign the labels of the new %—segments. If such a segment ends at P[i, j], then we take
the label of the new segment that has the left endpoint at P[i, j]. Because of dummy column
m+ 1, there is always such a segment on the right hand side of P[i, j]. In this way, every new
1 segment receives a label and no two %—segments receive the same label. It suffices to check

2
that at most [labels have been assigned to the new %—segments. Note that no %—segment ends

at column 0 (there are no 1’s in column 0), hence the new }-segments receive the labels from
the 0- and 1-segments with the left endpoints in the columns 2 through m. These labels are

the labels of proper segments, so there are at most [of them. |

3 Main Technical Analysis

One may try to generalize the approach of Lemma 9 of halving the number of dirty rows to
the 3-dimensional case. We may try to reduce the number of dirty rows in dimension 1. In
the 2-dimensional mesh, this number is nearly halved in each round. However, one gets into
trouble on the 3-dimensional mesh, since after sorting along dimension 1 the dirty rows inside
a level need not form a contiguous block. In an extreme case when every second row is dirty,
their number will be not reduced at all. Therefore, we also need to inspect the location of
dirty rows.

3.1 Projections of 3-Dimensional Meshes

Definition 14 Let M be a cube of size | with a 0-1 input. Let R; ; = {P[i,j,s]:1 < s <[}
denote a row in dimension 1. We consider the 2-dimensional | X [-mesh consisting of nodes

N[i, j], 1 <l,j <. Its contents is defined as follows:
(i) If R;; is a O-row (1-row), then N|[i,j] contains a zero (a one).
(i1) If R;; is a dirty row, then N[i, j] contains %

Proj(M) denotes this 2-dimensional mesh with these keys and is called the projection of M.

Note that the projection of the 3-dimensional snake is the 2-dimensional snake, i.e., if
Pli,j,s] < P[i',5', '], then N[i,5] < N[i',j']. The idea is that once R; ; becomes a clean row,
then Shearsort will move it around M as a whole row. Similar movements can be observed
in Proj(M). Hence, in order to trace the progress of the algorithm, we shall observe the
changes in Proj(M). The stages Shearsort executes on the 3-dimensional mesh M have their
counterparts on Proj(M): Sorting along dimension 2 (3) in M corresponds to sorting the
rows (columns) of Proj(M). Sorting the rows in dimension 1 in M corresponds to an empty
step on Proj(M). If A is a sequence of rounds of Shearsort on M, then let Proj(A) denote
the sequence of corresponding rounds on Proj(M). Let A(M) denote the result of executing
Aon M.

Lemma 15 Let A be a sequence of rounds of the 3-dimensional Shearsort on M. Then
Proj(A(M)) may be obtained from Proj(A)(Proj(M)) by replacing some number of %’s by
0’s and 1’s.

Proof. Obviously, it suffices to prove the lemma for the three single stages of the 3-dimensional
Shearsort. For Stage 1, it is obvious, since sorting a row in dimension 1 does not change the
fact whether a given row is dirty, hence Proj(M) does not change. For Stage 2, assume that M
contains ¢ zero-rows and j one-rows in dimension 1 at level k. Equivalently, row &k of Proj(M)
contains ¢ zeroes and j ones. While sorting the rows of Proj(M) these 0’s and 1’s are moved
into the opposite sides of row k. Stage 2 of the 3-dimensional Shearsort acts on each level of
M separately. So if we look at level k£ of M as a 2-dimensional mesh, then Stage 2 sorts the
columns of this 2-dimensional mesh. By Lemma 8, ¢ zero-rows and j one-rows will be retained
and moved into opposite sides of level £ (possibly some new clean rows emerge as a result of
sorting the columns). Afterwards Proj(M) contains at least ¢ zeroes and j ones on the sides
of row k. At these positions, all 0’s and 1’s obtained by sorting the rows of Proj(M) can be
found.

The proof for Stage 3 is similar. O

3.2 Eliminating 1’s

We shall trace the behavior of Shearsort on M by examining the contents of Proj(M). The
next lemma is a straightforward generalization of Lemma 9:

Lemma 16 Let M be a 3-dimensional mesh, whose rows in dimension 1 are sorted. If
Proj(M) contains v occurences of L’s located in s segments, then after sorting the rows

2
of M in dimension 2, there are at most 7-42-5 occurrences of %’s in Proj(M).

Proof. Let S; denote the ¢th %—segment existing immediately before sorting the rows of M in
dimension 2. Let u; be the number of nodes in 5;. As in the proof of Lemma 9, we partition
the rows in dimension 1 corresponding to the %’s in 5; into pairs, in each pair two rows sorted
in two different directions. (If u; is odd, then there is one row left.) Then inside each pair we
sort the elements along dimension 2. Thereby, as on Fig. 3, we get at least one 0- or 1-row.
Together we reduce the number of dirty rows corresponding to S; from w; to [u;/2] < u;/2+ %
Then we sort the rows of M in dimension 2. By the Permutation Trick, the result is the same
as without performing the additional steps described above. So after sorting rows in dimension

U 1 745 . O

2 the number of dirty rows in dimension 1 does not exceed 77 (% + 3) = "3

Let d; denote the number of 1’s in Proj(M) after the second stage of round ¢ of the
Shearsort algorithm is executed on the cube M of size [. Assume the %’s be s;-dispersed at
this moment. We may upper bound d; using the following lemma which depends crucially on
the Tetris Lemma:

Lemma 17 For eacht > 1, di1q < %(dt + 5¢).

Proof. By Lemma 15 the contents of Proj(M) after round ¢ may be obtained by taking
Proj(M) after sorting the rows in dimension 2 at round ¢, sorting the columns of Proj(M)
and replacing certain %’s, say r of them, by 0’s and 1’s. Before sorting the columns of Proj(M),
%is si-dispersed. By the Tetris Lemma (Lemma 13), sorting the columns of this 2-dimensional
mesh leaves the 3’s si-dispersed. The real contents of Proj(M) at this moment becomes at
most (s¢ + 7)-dispersed. Indeed, each new 0 or 1 may cut an existing segment of %’s into at
most two pieces. The number of %’s after round t equals d; — r. So by Lemma 16, we have
dip1 < %((dt_r)+3t+T): %(dt‘}'st)- O

Since there are [rows in Proj(M) and each row is sorted after performing the second stage,
1

7 is always [-dispersed in Proj(M) at this moment. Hence we get the following corollary.

Corollary 18 For eacht > 1, diyq < %(dt +1). Sodiyj < dyf2) +1 for j > 1.
3.3 Runtime Analysis

Now we have all tools to prove Theorem 1. Let Proj(M) be z;-clean after round ¢. I.e., there
are at most z (contiguous) dirty rows in Proj(M). The idea of the proof is to upper bound
z; and d; by applying Lemma 11 and Corollary 18 repeatedly. Our aim is to find a moment #’
such that 2z = O(1) and dy = O(1). Then the computation may be easily terminated in a few
rounds. For this purpose, we divide Shearsort into phases, each consisting of some number of
rounds. The trick is that during each phase the techniques used to estimate the decrease of
z¢ and d; differ a little bit. It is surprising that these estimations give such a tight result. Let

k= [Llogl].

Phase 1: 2k + 1 rounds.

Obviously, d; < I2. So by Corollary 18, diy1 < 12/2i + [. Therefore, dyg+1 < 2/. Now we
estimate zg;41. Consider Proj(M) after sorting the rows of M in dimension 2 at round k + 1.
Then there are digy1 < IV/1+ [occurrences of %in Proj(M). Let us perform &k rounds of the
2-dimensional Shearsort on this mesh. By Lemma 11, after these rounds there are at most
2[1/2’“] + V1 +1 < 3V1+ 3 rows that are above 0-tows at the bottom of the mesh and below
1-rows at the top of the mesh. By Lemma 15, it also holds for the contents of Proj(M) after
executing round 2k + 1 of 3-dimensional Shearsort on M. Hence 29541 < 3v1+ 3.

Phase 2: k£ 4+ 3 rounds.

Our goal is to achieve z; < 3. Consider Proj(M) at the beginning of Phase 2. Since log zo541 +
1 <k + 3, it suffices to perform k£ 4 3 rounds of the 2-dimensional Shearsort on Proj(M) to
sort it, hence in particular to get all %’s stored in at most 3 rows. So by Lemma 15, all %’s of
Proj(M) after round 3k + 4 are stored in at most 3 rows. By Lemma 11,

d
Zok4145 < 2];“ +2 [

29k+1 3VI
5| <6+ o
Hence by Corollary 18, dapy14j4+1 < %(d2k+1+]' + Zokt145) < ld2k+1+j + 32\—? + 3. This yields

dopsrej < 2+ 304 6. In particular dygpq < 2V + S(k +3) + 6.
As we see, at the end of Phase 2 the contents of M is sorted except for at most 3 levels.
Inside these 3 levels there are at most %ﬂ + %(k + 3) 4+ 6 dirty rows in dimension 1. Since

the number of dirty rows is small it can be reduced fast during the next phase.

Phase 3: k rounds.

By Corollary 18, we get dzpya4; < 2%d3k+4 + 3. So dagyq < 5.

Phase 4: 5 rounds.
A simple case inspection shows that 5 rounds suffice to finish sorting of M. O

References

[1] K. E. Batcher. Sorting networks and their applications. In AFIPS Conf. Proc. 32, pp.
307-314, 1968.

[2] K. Brockmann and R. Wanka. Efficient oblivious parallel sorting on the MasPar MP-1.
In Proc. 30th Hawaii International Conference on System Sciences (HICSS), Vol. 1, pp.
200208, 1997.

[3] P. F. Corbett and I. D. Scherson. Sorting in mesh connected multiprocessors. [FEFE
Transactions on Parallel and Distributed Systems 3 (1992) 626-632.

[4] M. Dowd, Y. Perl, M. Saks, and L. Rudolph. The periodic balanced sorting network.
Journal of the ACM 36 (1989) 738-757.

[5] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching
(Addison-Wesley, Reading, 1973).

6] M. Kunde. Optimal sorting on multi-dimensionally mesh-connected computers. In Proc.
g
4th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 408-419, 1987.

[7] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes (Morgan Kaufmann, San Mateo, 1992).

[8] C. G. Plaxton. A hypercubic network with nearly logarithmic depth. In Proc. 2/th ACM
Symposium on Theory of Computing (STOC), pp. 405-416, 1992.

[9] 1. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI models of computa-
tion, IFEE Transactions on Computers 38 (1989) 238-249.

10

[10] I. D. Scherson, S. Sen, and A. Shamir. Shear-sort: A true two-dimensional sorting tech-
nique for VLSI networks, in Proc. 15th IFEF International Conference on Parallel Pro-
cessing (ICPP), 1986, pp. 903-908.

[11] C. P. Schnorr and A. Shamir. An optimal sorting algorithm for mesh-connected com-

puters. In Proc. 18th ACM Symposium on Theory of Computing (STOC), pp. 255-263,
1986.

11

