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Abstract

The polynomial time algorithm of Lenstra, Lenstra, and Lovasz [17] for factoring
integer polynomials and variants thereof have been widely used to show that various
computational problems in number theory have polynomial time solutions. Among
them is the problem of factoring polynomials over algebraic number fields, which is
used itself as a major subroutine for several other algorithms. Although a theoretical
breakthrough, algorithms based on factorization of polynomials over number fields
are notoriously slow and hard to implement, with running times ranging between
O(n'**%) and O(n'®*®) depending on which variant of the lattice basis reduction is
used. Here, n is an upper bound for the maximum of the degrees and the bit-lengths
of the coefficients of the polynomials involved. On the other hand, in many situations
one does not need the full power of factorization, so one may ask whether there exist
faster algorithms in these cases.

In this paper we develop more efficient Monte Carlo algorithms to decide certain
properties of roots of integer polynomials, without factoring them. Such problems
arise, e.g., when solving systems of algebraic equations. OQur methods applied to this
situation give thus information about the solutions of such systems of equations.

Assuming the validity of the Extended Riemann Hypothesis, our algorithms run
in time O(n®®) in worst case, though they usually terminate much faster if the
input polynomials do not have the properties the algorithm is testing. Besides this
substantial improvement in the running time, our algorithms have the advantage of
being conceptually easy. Their building blocks are gcd-computations in polynomial
rings over finite fields, and primality tests for integers. However, despite the simplicity



of our algorithms, their analysis is involved and uses tools from algebraic and analytic
number theory.

Our methods yield polynomial time algorithms even in cases where the factoriza-
tion method does not. We exhibit such an example by showing that the language
consisting of pairs (g, m) where ¢ is a monic irreducible polynomial such that all its
roots are integral linear combinations of mth roots of unity, is in co-RP. Currently,
we do not know of any deterministic polynomial time algorithm to decide this prob-
lem, even if we assume the validity of the Extended Riemann Hypothesis. We will
also show that computing the minimal m such that (g, m) belongs to this language is
intractable by means of present methods: we prove that this problem is polynomial
time equivalent to that of computing the largest square free divisor of an integer.
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1 Introduction

Suppose you are given an irreducible integer polynomial ¢, and you are asked to decide
whether ¢ is normal, i.e., whether all the roots of ¢ can be written as rational linear com-
binations of powers of one of the roots. A situation where such a problem might arise
is, e.g., when solving a system of algebraic equations which is known to have only finitely
many solutions: standard methods based on elimination theory yield a univariate polyno-
mial with the property that all coordinates of all the solutions to that system are zeros of
that polynomial. Once one knows that this polynomial is normal, one can try to express
all of its roots as rational linear combinations of powers of one of the roots, say «. This
might be advantageous, when one wants to have all the roots of g to a high precision: in
this case, one only needs to find a good approximation to a, and plug this new value into
the formulas for the other roots.

The normality problem can be decided in polynomial time, by using factorization of
polynomials over algebraic number fields [8, 15, 16, 13]: one factors g € K[T], where
K = Q[z]/(g) is the field generated by a root of g over @. In this case, one also obtains
representations for the roots as rational linear combinations of powers of the root T mod
g(z)of gin K.

This algorithm is very elegant, but quite slow, and hard to implement: Assuming that
the bit-length of the coefficients and the degrees of the polynomials are simultaneously
bounded by n, (an assumption we will adapt in the sequel) the factorization algorithms
cited above have cost O(n'®). This makes the problem hard even for small input sizes.
(One may be able to reduce this to O(n'?) using faster versions of the LLL-algorithm due
to Schonhage [23]; however, we did not find an explicit reference to such an improvement
in the literature.)

Suppose now that we are given a pool of irreducible integer polynomials, from which
we want to extract one that is normal, and in that case, to compute the roots of that
polynomial as rational linear combinations of powers of one of the roots. Of course, we
don’t want to spend too much time on polynomials which turn out to be non-normal at the
end of the lengthy factorization algorithm. Assuming that the pool contains much more
non-normal than normal polynomials, we would thus need a substantially faster algorithm
to quickly sort out the non-normal polynomials, and to pass on a normal polynomial to
the factorization module as soon as one is found. The algorithm could also have a constant
error probability, if only it does not mistakenly identify a non-normal polynomial as normal.

Such a “normality test” is the prototype of decision problems for which we will develop
fast Monte Carlo algorithms in this paper. These algorithms are part of a larger body
of research motivated by a question posed by B. Sturmfels: given an integer polynomial
with Abelian Galois group, design an efficient algorithm that expresses the roots of the
polynomial as radical expressions.

In the sequel let ¢ and h be monic irreducible integer polynomials, and let K, and L be
fields generated by a root of g and h, respectively. We say that K is normal (or Galois), if
g is normal. We will develop Monte Carlo algorithms for the following decision problems:

(1) Is K normal?

(2) If K is normal, is K C L?



(3) Is K an Abelian extension of Q7
(4) Is K a cyclic extension of Q7

All these problems can be solved in deterministic polynomial time using factorization of
polynomials over number fields: for example, to decide Problem (3), one can factor g over
K. Each zero of g yields an automorphism of K fixing @. One can test in polynomial time
whether these automorphisms commute.

Factorization of polynomials yields often much more information than is needed in a
specific situation. So, one might ask whether there are problems for which the factorization
method does not lead to a polynomial time algorithm, while our method does. In fact, the
answer to this question is positive: we will design a fast Monte Carlo algorithm for deciding
whether the field K lies in the cyclotomic field Q((,,) generated over Q by a primitive mth
root of unity (,:

(5) Is K a subfield of Q(()?

Note that m contributes only logarithmically to the input size of this problem. The reason
why factorization methods do not help here is that the mth cyclotomic polynomial can
have a (dense) representation of exponential size in log(m). In fact, we do not know of any
deterministic polynomial time algorithm for deciding the above problem.

The deterministic versions to problems (1)—(4) above all Tun in time O(n'®) (or O(n'?)),
while our Monte Carlo algorithms use only O(n%#) time for problems (1), (2), (4), and even
(5), if we assume the validity of the Extended Riemann Hypothesis (ERH). Our algorithm
for Problem (3) uses O(n'%t®) time. However, if we assume that the bit-length of the
coefficients of the polynomial defining K is polylogarithmic in the degree n, our algorithm
uses O(n®*¢) time, while factorization algorithms are uneffected by this assumption.

Besides this major improvement in running time, our algorithms are conceptually eas-
ier than their deterministic counterparts, and enjoy the main advantages of randomized
algorithms in general. Their building blocks are gcd computations in polynomial rings over
finite fields and primality testing of integers, both theoretically and practically well under-
stood tasks. (For the latter to be doable in polynomial time, we will assume the validity of
ERH.)

As in other randomized algorithms, we will also use the concept of a “witness.” For
example, we will show in Section 5 that any prime p not dividing the discriminant of g such
that ¢ mod p has irreducible factors of different degrees is a witness for the non-normality
of g. We will proceed by showing that if g is not normal, then at least an O(1/n)-fraction
of all primes is a witness for the non-normality of g. To obtain an effective algorithm from
results of this type, we prove in Section 4 the Witness-Lemma which is our main theoretical
tool for analyzing our algorithms. It gives a quantitative version of the above mentioned
density result.

Our algorithms for the other four problems are very similar to the normality test, and
also use the Witness-Lemma for their analysis.

The solutions for problems (1), (2), (3), (5) are RP-algorithms, while the solution to
Problem (4) is a BPP-algorithm. A speed up of all of these algorithms by a factor of n can
be obtained by working with numbers whose primality is assured only up to some degree
of certainty, on the cost of turning the RP-algorithms into BPP-algorithms. We will show



how to do that in the example of the normality test only, since the other tests can be
handled similarly.

The paper is organized as follows: In Section 3 we will introduce some basic facts
from algebraic number theory. Section 4 contains the Witness Lemma, the main tool for
analyzing the error probability of our algorithms. It estimates from below the number of
rational primes among positive integers less than or equal to some number &, which have
a prescribed decomposition pattern in a normal field L. The estimate is based on k£ and
the size of a certain subset of the Galois group of L. The proof of this lemma uses tools
from analytic number theory, like effective versions of the Chebotarev Theorem [12, 22],
and Odlyzko’s bound on the discriminant of number fields [21].

In sections 5-9 we proceed with the description and analysis of our algorithms. Sec-
tion 10 contains a hardness result: we show that computing the smallest m such that
K C Q((n) is as hard as computing the largest square-free divisor of an integer. The only
known algorithms for the latter problem are about as costly as factorization of integers. This
shows that the problem of computing a minimal m with the above property is, according
to current results, computationally hard.

2 Notation and Elementary Facts

The cost measure of our algorithms will be the bit-complexity, and we will use the “soft
0” notation to ignore logarithmic factors: g = O(n) means that g = O(n(logn)*) for some
constant £. For the analysis of our algorithms we will use some well known results gathered
in this section. The reader can consult [5, Chapters 2 and 3] for a discussion of these topics
and further references.

Throughout the paper we will use the following notation: log will denote the logarithm to
the basis 2, In is the natural logarithm, disc(g) denotes the absolute value of the discriminant
of the polynomial ¢, Lo (g) is the maximum of the absolute values of the coefficients of g,
A(g) denotes In(Lo(g)), Ok is the ring of integers of the number field K, and Q((,,) denotes
the cyclotomic field generated over @ by a primitive mth root of unity.

Using the Schénhage-Strassen algorithm, addition, subtraction, multiplication, and the
remainder of the division of an {-bit integer and a k-bit integer can be computed with @(u)
operations, where p is the maximum of £ and k. The same is true for computing the greatest
common divisor (gcd) of an £-bit and a k-bit integer. In particular, each arithmetic operation
in the finite field F,, p a prime, has cost @(log(p)). Addition, subtraction, multiplication,
and the remainder of the division of polynomials of degree at most n over FF, all have
cost O(nlog(p)). Computing the ged of polynomials of degree at most n over T, has cost
O(nlog(p)). In particular, one can compute ged(g, 2”—z) over I, in time O(n log(p)?): using
repeated squaring one computes 2 — xz mod g with @(nlog(p)) operations, and performs a
gcd-computation. A polynomial f of degree n over F, can be tested on squarefreeness in
time O(nlog(p)), as one has to compute the ged of f and its derivative.

The distinct degree factorization (DDF) of a squarefree polynomial f over I, is a set
of pairs (g,d), where g is the product of all monic irreducible factors of f of degree d.
If f has degree at most n, its DDF can be computed with O(n?log(p) + nlog(p)?) [10,
Algorithm 3.1].



For an integer polynomial ¢ we denote by L. (g) the maximum of the absolute values
of the coefficients of ¢, and by A(g) the quantity In(L..(g)). If g has degree n, then the
absolute value of its discriminant is bounded above by Leo ()"~ (n+1)(*=1/253%/2 hence
In(disc(g)) < 2n(In(n) + A(g)). (The bound for the discriminant is obtained by applying
the Hadamard inequality to the Sylvester matrix.)

Finally, we mention that, assuming the Extended Riemann Hypothesis (ERH), one can
deterministically decide primality of an integer m in time O(log(m)*) using, e.g., Miller’s
primality testing algorithm [19].

3 Decomposition of Primes and the Frobenius Automor-
phism

Let L be a Galois number field with group GG. Let p € Z be a prime unramified in L. Denote

by B a prime divisor of p in L. Then there exists a unique o € G, called the Frobenius
L/Q
B
Oy, of integers of L. (See, e.g., [11, pp. 125-130].) This automorphism is the link to the
Effective Chebotarev Density Theorem which will allow us to obtain quantitative estimates

about the number of primes in a given interval which have a certain decomposition behavior.
Let

automorphism of P and denoted by ( ) such that o(z) = 2P mod P for all z in the ring

Frobyr(p) := {U ed ‘ d a prime divisor B of p in L such that o = <L/TQ) }

For 7 € G we have <TL(—{£§Q;) =T (L;#@) 771 hence Frobr(p) = Cl(o) for any o € Froby(p),

where Cl(o) denotes the conjugacy class of ¢ in G.

The Frobenius automorphism gives information about the decomposition of p in the
following way: the order of (Lm@) equals the residue class degree of . But we can use this
automorphism to obtain information on the decomposition behavior of primes even in the
case of a non-normal subfield of L. Let K C L be an extension of number fields where L
is normal with Galois group G = Gal(L/Q). Let U be the subgroup of G which fixes K
elementwise, and let o € . The subgroup (o) acts via right multiplication on the right
cosets Ut of G by U. The orbits of this action are called cycles. The length of a cycle is the
length of the corresponding orbit. Denote by fi,... fs the lengths of the different cycles of
the action of (o) on the cosets of G by U. We will use the following proposition to study
the decomposition of a prime p in K with the help of Frobz(p).

Proposition 1. Let K C L be an extension of number fields. Let I. be normal, and p be a
prime unramified in L and let o € Froby,(p). Denote by f1,...fs the lengths of the different
cycles of the action of (o) on the cosets of G by U. Then p is the product of s prime divisors
in K of degrees fi,...fs.

ProoF. See [11, Proposition 2.7]. O

We call the list [fy,..., fs] the decomposition pattern of p in K. We call such a de-
composition pattern homogeneous, if f; = f; for 1 < 4,57 < s, and call it inhomogeneous
otherwise. The proposition shows that the decomposition pattern of an unramified prime



depends only on Frobz(p). How can we compute decomposition patterns? This is done by
means of the following classical result due to Dedekind (see, e.g. [9, Th. 4.8.13]).

Fact 2. Suppose K is a number field given by g. Let p be a prime not dividing disc(g).
Then pOk has a decomposition pOx = p1 ---ps with prime ideals p; of Ok of degree f; if
and only if there exist irreducible polynomials g1, ..., gs € F,[X] with g mod p = g1 ---gs of
degrees f1,..., fs, respectively.

We say that a separable polynomial h € F,[z], has a homogeneous factorization pat-
tern, if all its irreducible factors have the same degree; otherwise we say that A has an
inhomogeneous factorization pattern.

4 The Witness Lemma

This section contains the main lemma used in the analysis of the randomized algorithms
in the next sections. Let M be a number field and denote by L its normal closure. Let G
denote the Galois group of L over @. Let W be a subset of GG closed under conjugation. In
our applications W will be a subset of GG such that all p with Frobz(p) C W are witnesses
for some property of M, e.g., not being normal. The basic structure of our algorithms is as
follows: we randomly select an integer p between 1 and a number m depending on the field
M. If p is prime, we test whether Frobz(p) C W. If so, we know that M has the desired
property, e.g., is not normal. If not, the algorithm tells us that M probably does not have
the desired property. To analyze the error probability of such an algorithm, we need to
know

mw(z) = #{p€P|p<z, punramified in L, Frobr(p) C W}.

A celebrated theorem of Chebotarev [6] states that asymptotically, as z goes to infinity,
w(z) ~ (#W/#G)z/In(z). In this section we will be interested in quantitative versions
of this result for bounded z.

Lemma 3. Let M be a number field, L be its normal closure, and denote by d the discrim-
inant of L. Assuming FRH, there exist effectively computable absolute constants ay, as,
and ag such that if © > agIn(|d|)*?, then

W ,
mw(e) 2 a3 f:ﬁG hlf:c)'

One may take aq = 5/2, ay = (13000)*!, and as = 7/10.

Proor. We may suppose that M # Q since the number 7(z) of primes less than or equal
to z is lower bounded by z/In(z) for z > 17, see [1, Th. 8.8.1].

Effective versions of Chebotarev due to Lagarias and Odlyzko [12], and Oesterlé [22]
give

ﬂw(.r) > #W

> T (Lite) = Va@Ind)) + min(a)).



where m = [L : Q], d is the discriminant of L, and Li(z) = [; dr/7 is the logarithmic
integral. From Odlyzko’s bound on discriminants [21, pp. 381, (1.13)] we deduce that
m < (254 4 In(]d]))/20 < 131In(|d|), since L # Q. It follows that

Tw(z) > i—vg(m(x) — 13v/ZIn(|d]) In(2)).

Let a7 :=5/2, ag := (13000)*'. Then the above inequality shows that for z > ayIn(|d|)*
we have

mw(z) > %(Li(x) - 13\/5111(56)(56/%)1/“1).

Noting that \/z/In?(z) > z'/*1/100 for 2 > 2, we deduce that

(o) 2 22 (L) - )

It is easily verified that Li(z) > 4z/(5In(z)) for > 5, hence the assertion follows with
az:=7/10. O

Later we will need this theorem in the following two forms:

Corollary 4. Let K be a number field of degree n given by an irreducible integer polynomial
g, and L be its normal closure with Galois group G over Q. Assuming FRH, there exist
effectively computable absolute constants ay,ay, a3 such that for = > az(n!In(disc(g)))™
we have

#W =z

#peP|p <o punramifiedin L, p [ disc(g), Frobr(p) € W} > as gy

One may take aq := 5/2, ag := (13000)*1, and az := 3499/5000.

Proor.  Let us call the number on the left-hand side ¢. First note that ¢ > 7w (z) —
log(disc(g)). Further log(disc(g)) < 2(z/a3)/®1 /n! by our assumption on z. Notice that we
have for > 2 the inequality (z/a3)'/*1 < 2/(100001n(z)), and that #W/#G > 1/n!. As
a result, log(disc(g)) < #Wx /(5000 In(z)#G). Since the absolute value of the discriminant
d of L is at most disc(g)™, we can apply the last lemma to see that

>#_W<l_ 1 ) x #W3499 2
T #G 5000/ In(z)  #G 5000 In(z)’

which proves the assertion. O

Corollary 5. Suppose that K and M are fields generated by monic irreducible integer poly-
nomials g and h of degrees m and n, respectively. Furthermore, suppose that K is normal,
and let I be the normal closure of the compositum K M. Let aq,ay,a3 be the constants
from the previous corollary. Assuming ERH, we have for x > as(mn!In(disc(g)disc(h)))™

#W =z

#{peP|p<z, punramified in L, p Jdisc(g)disc(h), Frobr(p) C W} > a3 £G In(2)’




Proov. Again, let us call the number on the right-hand side {. We first note that
€ > 7w (z) — log(disc(g)disc(h)). Further, log(disc(g)disc(h)) < 2(z/az)'/*1 /(mn!), which,
as in the proof of the previous corollary, gives us log(disc(g)) < #W=z /(5000 In(z)#G): note
that L = KM since K is normal, where M is the normal closure of M, which shows that
#G < [K : Q][M : Q] < mn!. For the discriminant d(L) of L we have the inequality

|d(L)| < |d(M)™d( KM < disc(h)™ disc(g)™.

(We use the well-known fact that d(N;Ny) divides d(N;)N2Ud(No)IN:Q which follows
from a theorem of Téyama [25].) Hence, z > ay(In(|d(L)|))** and, as in the proof of the
previous corollary, we can apply Lemma 3 to obtain the assertion. O

Remark 6. The constants given in the last theorem are far from optimal. One could use
techniques from [2] to optimize them.

5 Normality Test

In this section we will design a Monte Carlo algorithm with one-sided error to decide whether
a given separable monic irreducible integer polynomial g is normal, i.e., whether the field
K generated by a root of g contains all roots of g. Equivalently, we want to test whether K
is a Galois extension of @. The idea of the algorithm is quite simple: we randomly select
primes p from a certain interval and test whether ¢ mod p has a homogeneous factorization
pattern. If not, then K is not normal, and if yes, then this provides some evidence for the
normality of K.

Let GG be the Galois group of the normal closure L of K over Q, and let U be the
subgroup of G fixing K elementwise. Let

Wi (U) {0€G|0+Cla)NU # Cl(o)}
W(U) = Wi(U):={oceG|ImeN:0™e Wi(U)}.

The following result states that W (U) is the union of Frobyz,(p) for p ranging over all primes
with an inhomogeneous decomposition pattern, and gives an estimate on the size of W(U).

Proposition 7. Let K be a number field and p be a prime unramified in K. Then the
following assertions hold:

(1) If K is normal then the decomposition pattern of p in K is homogeneous.

(2) If K is not normal, then a prime p has an inhomogeneous decomposition pattern,
hence is a witness for the non-normality of K, iff ¥robr(p) C W(U).

(3) If K is not normal and of degree n over Q, then #W (U) > #G /n.

ProoF. (1) Assume K is normal and let p decompose as p = 1 --- P, in K. The Galois
group of K acts transitively on the prime divisors of p and thus Ok /9P; = Ok /PB;. So these
fields have the same degree over F,.



(2) If K is not normal, then U is not a normal subgroup of GG, hence there exists o € U
such that the conjugacy class of o is not contained in U. Hence, W;(U) and W(U) are not
empty. Now suppose that Frobz(p) C W(U) and let m be the smallest positive integer such
that o™ € W1(U) for some o € Froby(p). Then there exists 7 € G such that re™7~! € U.

It is easily seen that 7,70,...,76™ ! are different cosets modulo U, and that the cycle of
the action of (o) on Ut has length m. If all cycles had length m, then there would exist
Ti,...,Ts such that Urje', 7 = 1,...,s, 72 = 0,...,m — 1 were all the cosets modulo U,

which would show that 76™7~! € U for all 7 € (G, a contradiction.

Conversely, assume that p has an inhomogeneous decomposition pattern, and let f; be
the smallest residue class degree of a prime divisor of p in K. Let f; be another residue
class degree, fy > f1, and let Ur; and Uty induce cycles of lengths f; and f;, respectively.
Then ro/try! € U, but myafir;t ¢ U, which shows that ot € Wi (U), i.e., o € W(U).

(3) Since U is not normal, there exists o such that cUco~! =: U7 and U are different. Let
H:=UnU?. Then (U\H)U(U?\ H) C W1(U), and we obtain #W1(U) > 2(#U — #H).
Since H is a proper subgroup of U, we have #W(U) > #W1(U) > #U = #G/n. O

H. W. Lenstra has given a characterization of all groups G for which the bound in
Part (3) of the last proposition is sharp.

Proposition 8. In the situation of the preceding proposition we have: #W(U) = #G [n if
and only if G is a 2-group, #U = 2, the normalizer of U in G has index 2 in G, and the
nontrivial element of U is not the square of an element in G.

Proor. If the index of the normalizer Ng(U) of U in G is larger than 2, then there exist
7,0 such that U, U7, U7 are all different, and there exists an element € U™\ (U U U7).
This element certainly belongs to Wy (U ), which shows that in this case #W1(U) > #U +1.
So, if #W1(U) = #U, then we have that #H = #U/2, and [G : Ng(U)] = 2. In this case,
H is a normal subgroup of U, which shows that H is the trivial subgroup, as U does not
contain any nontrivial normal subgroup of GG. (Recall that L is the normal closure of K.)
Hence, #U = 2. So, #W(U) = #U if and only if #U = 2, #W(U) = #W1(U), and the
length of the conjugacy class of the nontrivial element u of U is 2. Suppose that G is not
a 2-group. Then there exists a prime p > 2 such that p divides the order of Ng(U). Let
z € Ng(U) be an element of order p. Then zu = uz for the nontrivial element u of U and
(zu)? = u. Hence, zu € W(U) = W1(U), which shows that zu = cuc™! for any o outside
Ng(U). This implies that (zu)? = u = ouo™!, a contradiction. Hence, G is a 2-group.

For proving the sufficiency of the conditions given for #W (U) = #U, we only need to
show that if the nontrivial element u of U is not a square, then W(U) = Wy(U), i.e., u is
not a power of an element of G\ U. Suppose that 7 € G\ U is such that 7™ = u. There
exists an odd £ such that m{ modulo #G divides #G, since G is a 2-group. As a result,

7™ = 4, which shows that u is a square, a contradiction. O

Remark 9. The following example, also due to H. W. Lenstra shows that the above lower
bound #G/n for #W(U) is sharp for infinitely many n. Let G := Dy X Cy where Dy =
(o,7|c* =72 =1,70771 = 071) is the dihedral group and Cy is the cyclic group of order
2. Set U := (r) x 1. A famous theorem of Shafarevich [24] states that every solvable group
G is realizable over Q as the Galois group of a number field L. Hence, we obtain K as the

fixed field of U.



Homoa(g, p)

Input: monic irreducible integer polynomial g, prime p

Output: YES, NO, FAIL

(1) Compute h := g mod p.

(2) if gcd(h, k') # 1 then return FAIL;

(3) Compute the distinct degree factorization A = hy -+« hy, of h;
(4)  if there exists ¢ # j such that h;, h; # 1 then return NO;
(5) else return YES

Figure 1: Algorithm HomoG.

We now proceed with the description of our algorithm which was sketched at the be-
ginning of the section. The homogeneity test (which is deterministic) is given in Figure 1.

Theorem 10. Algorithm HoMoG outputs NO if and only if p does not divide disc(g) and
the factorization pattern of h := g mod p is not homogeneous. The running time of this
algorithm is O(nv + n?log(p) + nlog(p)?), where v is the mazimum of A\(g) and In(p).

Proor. The prime p does not divide disc(g) if and only if g passes the test in line (2).
For this reason we may assume in the following that p is a prime not dividing disc(g).

Let h = hy---h, be the distinct degree factorization of h. Clearly, A has homogeneous
factorization iff only one of the h; is not equal to 1. Hence, the algorithm returns NO if
and only if A does not have a homogeneous factorization pattern.

In line (1) we have to perform n divisions mod p, which takes O(nv) operations. Com-
puting the distinct degree factorization of h takes O(n?log(p) + n log(p)?) operations. This
implies our result on the running time of HoMoG. O

Our final normality test is given in Figure 2. The constants ay, as, and as in that test
are from Corollary 4.

Theorem 11. If g is a normal polynomial, then NORMALITY(g) returns NORMAL. If g is
not normal, then, assuming FRH, NORMALITY(g) returns NON-NORMAL with probability
at least 1 — 1/e and uses O(nl® + n’ul) bit operations, where £ := max{n,In(\)}, p :=
max{{, A}, and X := A(g).

Proor. If g is normal, then the factorization pattern of ¢ modulo p is homogeneous for all
p not dividing the discriminant of g. Hence, HoM0G(g, p) never returns NO, which means
that NORMALITY always returns NORMAL.

Suppose that g is not normal. Then the number of “witnesses” p in the interval [1, k],
i.e., the number of p unramified in L and not dividing the discriminant of g such that
g mod p has an inhomogeneous factorization pattern is at least as(#W (U)/#G)(k/In(k))
by Corollary 4. By Proposition 7(3) this number is at least agk/(nln(k)). Hence, the
randomly chosen p is not a witness of normality of g with probability at most 1—1/¢, where
t = nin(k)/as. Hence, the probability of not choosing a witness in any of the runs of the
loop in line (2) is at most (1 — 1/¢)" < 1/e.



NORMALITY(g)

Input: monic irreducible integer polynomial g of degree n,

Output: NORMAL, NON-NORMAL
(1) Compute k := ay (n!(Zn)(ln(n) + )\(g)))

@y

(2) for j from 1 to nln(k)/as do

(3) Choose at random an integer p from {1,...,k}.

(4) if p is prime then

(3) if HomoG(g,p) = NO then return NON-NORMAL and stop .
(6) return NORMAL.

Figure 2: Algorithm NORMALITY.

Computing k in line (1) takes @M(log(k)) = O(¢) bit operations. Assuming ERH, testing
p for primality in line (4) takes O((*) operations. By Theorem 10 HomoG(g,p) takes
O(nu+nt?) operations. As the loop is performed at most O(nf) times, this gives an overall

running time of O(nl’ + n?uf), and proves the theorem. O

Remark 12. The major part, @(ﬁ‘l), of the running time in each run of the loop per-
formed in NORMALITY is contributed by the deterministic primality test in line (4). On the
cost of turning our algorithm into a BPP-algorithm, we can use a randomized primality
test instead. We then have to analyze the probability of NORMALITY(g) returning NOT-
NORMAL if ¢ is normal. This can only happen if at least one of the primality tests in the
loop of line (2) does not recognize the composite number p, and if this p passes the rou-
tine HoMoG and produces a non-homogeneous factorization pattern. However, if we run
a randomized primality test like the Miller-Rabin or the Solovay-Strassen test O(log(t))
times—where £ is the number of times the loop is performed—then with a constant proba-
bility all the p passing the primality tests are indeed prime. This turns the algorithm into a
BPP-algorithm, with constant two-sided error. The cost of performing the primality tests
is O(log()€%) which clearly equals O(£?). The whole algorithm would then have a running
time of O(nl® + nul?).

6 Subfield problem

In this section we present a Monte Carlo algorithm with one-sided error which, given fields
K and M with K normal, decides whether K is a subfield of M.

The basis for our algorithm is the following well-known theorem of M. Bauer (see,
e.g. [20, Cor. 6.8]): K is a subfield of M if and only if all primes which split a factor of
degree one in M do so in K. To apply this theorem, we randomly select primes, and test
whether they split a factor of degree one in M. If so, we then test whether that prime splits
completely in K. If not, then K is not a subfield of M. If yes, then there is some chance
that K is a subfield of M. The algorithm is given in pseudocode in Figure 3. The constants
a1, ag, ag are from Corollary 5.

Let L be the normal closure of KM, and let GG be the Galois group of L over Q. Assume
that H is the normal subgroup of G corresponding to K and that U is the subgroup of ¢

10



corresponding to M. If K is not a subfield of M then any prime p such that Frobz(p) is a
subset of

W(U,H):={ceG|Clle)nU # 0 and Cl(c)n H = §}

serves as a witness for this property. The following proposition will be used later to show
that our algorithm has small one-sided error, given that K is normal.

Proposition 13. With the above notation we have:

(1) If K C M then any prime p having a prime divisor of degree 1 in M also has a prime
divisor of degree 1 in K.

(2) If K € M, then any prime p such that Frobr(p) C W(U, H) splits a factor of degree
1 in L, but is not split in K.

(3) If K € M, then we have #W (U, H) > #G/(2n), where n = [M : Q].

Proor. (1) Let P be a prime divisor of p of degree 1 in L. Then p := PN K is a prime
divisor of p in K and Ok /p embeds in O, /.
(2) Since H is a normal subgroup of G, the set U \ (U N H) is contained in W(U, H).
(3) Since U N H is a proper subgroup of U, its size is at least #U/2 = #G/(2n). O

Theorem 14. Let g and h be monic irreducible integer polynomials of degrees m and n,
m < n, and assume that g is normal. Let K be generated by a root of g. If K C M for a field
M generated by any of the roots of h, then NORMAL-SUBFIELD(g, h) returns SUBFIELD.
Otherwise, assuming ERH, NORMAL-SUBFIELD(g, h) returns NOT-SUBFIELD with prob-
ability at least 1 — 1/e and uses O(nl® + nly) bit operations, where £ := max{n,In(\)},
p = max{l, A}, and XA := max{A(g), A\(h)}.

Proor. Let K C M and assume that p does not divide disc(g)disc(h). Then Fact 2 and
Proposition 13(1) imply that if » mod p splits a linear factor over F, then so does g mod p.
Hence the condition in line (8) is never fulfilled, which means that NORMAL-SUBFIELD
always returns SUBFIELD.

Suppose that K ¢ M. Then using Corollary 5 and Part (3) of the above proposition,
we see that the number of primes p in the interval [1, k] which fail the test in line (8) is at
least agk/(2nln(k)). (Note that k£ > ag(n!mIn(disc(g)disc(h))*!.) We obtain the assertion
on the error probability of our algorithm as in the proof of Theorem 11.

Since log(k) = O(f), computing k in line (1) takes O(£) operations. The primality test
in line (4) takes O(£*) operations. Computation of § and A in line (5) is accomplished with
O(ny) operations, and the ged’s in line (6) use O(nf) operations. The loop is performed

O({n) times, which gives the desired estimate on the running time. O

Remark 15. Again, if we use a randomized primality test instead of the deterministic test
in Line (4), we obtain a BPP-algorithm with running time O(nf* + n?uf).

11



NORMAL-SUBFIELD(g, k)

Input: monic irreducible integer polynomials g and h of degrees m and n, g normal, m <=n
Output: SUBFIELD, NOT-SUBFIELD

(1) Compute A := max{A(g), A(R)} and k := a2 (2n!n2(ln(n) + )\))al.
2) for j from 1 to 2nln(k)/as do

3) Choose at random an integer p from {1,...,k}.

4) if p is prime then

5) Compute § = ¢ mod p and & = h mod p.

) if ged(7,7') # 1 and ged(h, h') # 1 then

) if gcd(h, XP — X) # 1 and ged(g, XP — X) = 1 then

) return NOT-SUBFIELD and stop .

0

8
9
10) return SUBFIELD.

(
(
(
(
(6
(
(
(

Figure 3: Algorithm NORMAL-SUBFIELD

SUBFIELD-OF-CYCLOTOMIC(g, n)

Input: a monic irreducible integer polynomial g of degree m and a non-negative integer n, m < n
Output: SUBFIELD, NOT-SUBFIELD
(1)  if 2 runs of NORMALITY(g) return NORMAL then

(2) Compute k := a> (Zmn(ln(m) +A) + mn ln(n:))al, where XA = XA(g).

(3) for j from 1 to 2(21In(k)/as) do

(4) Choose at random an integer ! from {1,...,k/n}.

(5) Compute p=In +1

(6) if p is prime then

(7) Compute § = g mod p.

(8) if gcd(g,7') # 1 then

(9) if ged(g, X? — X) =1 then return NOT-SUBFIELD and stop .
(10) return SUBFIELD.

Figure 4: Algorithm SUBFIELD-OF-CYCLOTOMIC.

7 Subfield of a Cyclotomic Field Test

Let us now turn to a problem for which to the best of our knowledge no deterministic
polynomial time algorithm is known. We describe a Monte Carlo algorithm showing that
the language consisting of the pairs (¢g,n), ¢ an irreducible monic integer polynomial such
that the splitting field K of g is contained in the cyclotomic field Q((,), is in co-RP. The
reason that the currently available factorization approach does not apply here is that the
nth cyclotomic polynomial can have a (dense) representation of exponential size in log(n).

The idea of our algorithm is as follows. Assume for the moment that K is normal.
Then as in the algorithm NORMAL-SUBFIELD we are going to test if a prime p that splits
completely over Q((,) does so over K as well. Fortunately we do know the set of primes
which split completely in Q((,): these are exactly the primes p = 1 mod m (see, e.g., [26,
Chapter 2]). This additional information allows us now to obtain a randomized efficient
solution to the problem “K C Q((,)?” (see Figure 4).

Theorem 16. Let K be generated by a root of a polynomial g of degree m and let n

12



be a non-negative integer. If K C Q((,) then SUBFIELD-OF-CYCLOTOMIC(g,n) returns
SUBFIELD. Assuming FRH, if K ¢ Q((,), then SUBFIELD-OF-CYCLOTOMIC(g, n) returns
NOT-SUBFIELD with probability at least 1/2, and its running time is (’j(mﬁfn +m2 by, +
v + uv?), where £, := max{m,In(\)}, p, = max{l,,A}, g := max{m,In(A),\}, v :=
max{In(A),In(n)}, and A = A(g).

Proor. Assume K C Q((,). Then K is normal as a subfield of an Abelian field. Thus
NoRMALITY(g) returns NORMAL by Theorem 11. Furthermore if p = 1 mod n, then p has
a prime divisor of degree 1 over K and so SUBFIELD-OF-CYCLOTOMIC(g, n) always returns
SUBFIELD.

Let K ¢ Q((n). Then

Pr[SuBFIELD-OF-CYCLOTOMIC(g,n) returns SUBFIELD | K ¢ Q((,)]

< Pr[SuBFIELD-OF-CYCLOTOMIC(g, n) returns SUBFIELD | K not normal] +
Pr[SuBFIELD-OF-CYCLOTOMIC(g, n) returns SUBFIELD | K normal and K ¢ Q((,)]
1/e* +1/e* < 1/4,

IN

where the first estimate follows from Theorem 11. To see the validity of the second estimate
it remains to verify that

Pr[SuBFIELD-OF-CYCLOTOMIC(g, n) returns SUBFIELD | K normal and K ¢ Q((,)]
< 1/€2.

So assume for the rest of the proof that K is normal and K ¢ Q((,). We start by bounding
the discriminant d of the (normal) field KQ((,):

d] < disc(g)"(n")".

Hence, for k computed in line (2) of the algorithm we have that £ > aglIn(|d|)**. Let ¢
be the Galois group of L := KQ((,), U be the normal subgroup of G fixing K, and H be
the normal subgroup of G fixing Q((,). Let W := H\ U. Any prime p not dividing disc(g)
such that Frobr(p) C W is a witness for the fact that K does not lie in Q((,). Further,
#W > #H/2,and #H = #G/p(n). As in the proof of Corollary 5, the Witness Lemma 3
implies that for £ computed in the line (1) of SUBFIELD-OF-CYCLOTOMIC we have

- Qa3 1 k
ww (k) > 7@111(@7

where Ty (k) is the number of primes p contributing to 7w (k) which do not divide ndisc(g).
Define Q := {p < k| p = 1 mod n}. Note that any p with Frobz(p) C H belongs to 2. To
find witnesses we can thus sample directly from 2. We have

ww (k)
#Q

The additional factor of 2 for the number of rounds in line (3) decreases the bound on
the error probability from 1/e to 1/e2, which was to be proved.

>

as n 1 a3
2

©(n)In(k) =3 In(k)’
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ABELIAN(g)

Input: a monic irreducible integer polynomial g of degree m

Output: ABELTAN, NOT-ABELIAN

(1) Compute d = disc(g).

(2) if SUBFIELD-OF-CycLOTOMIC(g, |d|)=SUBFIELD then return ABELIAN and stop .
(3) return NOT-ABELIAN.

Figure 5: Algorithm ABELIAN.

Let us now analyze the running time of the algorithm. Two runs of NORMALITY take
@(mﬁfn + m%u, ) operations by Theorem 11. Since In(k) = @(y), computation of k
in line (2) uses O(v) operations and the primality test in line (6) uses O(v*) operations.
Computing g takes O(uv) operations. The ged-computations in lines (8) and (9) use O(mv)
operations. The loop in line (3) is performed O(v) times, which gives the running time of
O(v® + uv?) for lines (3) to (13). Putting the pieces together proves the assertion on the

running time. O

Remark 17. If g is known to be normal, then the running time of our algorithm SUBFIELD-
or-CycroToMic can be reduced to O(v° + pv?). Using a randomized primality test in
Line (6) reduces the running time to O(v* 4 ur?), on the cost of obtaining a BPP-algorithm.

8 Is K Abelian?

We call a polynomial g € Z[X] Abelian if its splitting field is an Abelian extension of
@. In this section we will describe a Monte Carlo algorithm with one-sided error to decide
whether a monic irreducible polynomial g € Z[X]is Abelian. How can we solve this problem
with our methods? Let K be an Abelian extension of @. By the celebrated Theorem of
Kronecker and Weber [26, Chapter 14] there exists an integer f such that K is contained in
a cyclotomic field Q((s). The smallest such f is called the conductor of K. Because every
subfield of an Abelian field is Abelian, we see that a field K is Abelian if and only if K is
contained in some cyclotomic field Q((y). For a given f we can test this relation with the
algorithm SUBFIELD-OF-CcYCLOTOMIC(g, f) described in Section 7. Computing f seems the
be a hard problem: we will show in Section 10 that the computation of the conductor of an
Abelian field is a currently intractable problem. We will prove this by relating this problem
to other seemingly hard number-theoretic problems.

How do we get around the conductor? Assume that K is Abelian. By the conductor-
discriminant formula quoted before Lemma 27 we know that the conductor of K divides
the discriminant of K. So we have proved:

Lemma 18. A number field K is Abelian if and only if K C Q(()q), where d is the dis-
criminant of K.

The desired algorithm now follows, see Figure 5.
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Theorem 19. Let K be generated by a root of a monic irreducible integer polynomial g
of degree m. If K is Abelian ABELIAN(g) returns ABELIAN. Assuming ERH, if K is
not Abelian, then ABELIAN(g) returns NOT-ABELIAN with probability at least 1/2, and
the running time of this algorithm is (’j(m€5 + m2url + mPA® 4 pamI\t), where ( =
max{m,In(A)}, g1 := max{A,{}, pz := max{m,In(A), A}, and A = A(g).

Proor. It only remains to prove that d can be computed in time @(7714/\). But this follows
from the trivial algorithm for this task which computes the determinant of the Sylvester
matrix. O

Remark 20. (1) Assuming that disc(g) < () for some constant ¢, we obtain a run-
ning time of O(m?®), which is substantially faster than O(m!®) given by factorization
routines. Such an inequality for the discriminant is valid if, e.g., A is polylogarithmic
in m.

(2) The running time of the algorithm can be reduced to O(ml*+m?ui 4+m* AN+ pgm*2\?)
by using randomized primality tests.

(3) If we know that g is normal, we can drop the assumption that it is irreducible! Namely,
in that case the splitting field of g is contained in Q((|q|), d being the discriminant of
g, if and only if this is true for all irreducible factors of g.

9 Cyclicity Test

We call a polynomial g € Z[X] cyclic if its splitting field is a cyclic extension of Q. In this
section we describe a Monte Carlo algorithm with two-sided error to decide whether a monic
irreducible polynomial g € Z[X]is cyclic. The idea of the algorithm uses the following: if g
is normal, then the Galois group of G is cyclic if and only if it contains an element of order
#G. Hence, if we know that g is normal, any p such that A~ = g mod p is irreducible is a
witness for g being cyclic by Fact 2 Proposition 1. (Notice that if & is irreducible then in
particular ged(h, h') = 1 and thus p fdisc(g) so that we can indeed apply Fact 2.)

Proposition 21. Let K be an extension of Q given by a monic irreducible integer polyno-
mial g of degree n with Galois group G.

(1) If K is cyclic and W := {0 € G' | 0 has order n}, then

#W _eln) 1
#G n ~ 5ln(ln(n))’

(2) Assume K is normal. Then K is cyclic if and only W # 0. Hence, every prime p
unramified in K such that ¥robg(p) C W is a witness for K being cyclic.

Proor. Easy (for a lower bound on ¢(n) see [1, Th. 8.8.7]). O

Algorithm Cvycric(g) is given in Figure 6. We first test whether K is normal. If we can
assume that K is normal with a sufficiently high probability, then we try to sample a prime
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CycLric(yg)

Input: a monic irreducible integer polynomial g of degree n
Output: CYCLIC, NOT-CYCLIC

(1) if 2 runs of NORMALITY(g) return NORMAL then
(2) Compute k := a> (n!(Zn)(ln(n) + )\(g)))al.

(3) for j from 1 to 2-5In(In(n))In(k)/as do

(4) Choose at random an integer p from {1,...,k}.
(3) if p is prime then

(6) Compute h := g mod p.

(7) if h is irreducible then

(8) return CYCLIC and stop .

(9) return NOT-CYCLIC.

Figure 6: Algorithm Cycric.

p such that ¢ mod p is irreducible. This implies that any o € Frobg(p) has maximal order n
witnessing that G is indeed cyclic. The probability for finding such a prime can be bounded
below by the preceding proposition. If we can not find such a prime the algorithm outputs

NOT-CYCLIC.

Theorem 22. Let K be generated by a root of the polynomial g of degree n. Assuming
FRH, the probability that Cycric(g) returns the correct solution to the problem “Is K
cyclic?” is at least 3/4 and the running time of this algorithm is O(nl> + n*ul) where
¢:=max{n,In(\)}, g := max{l, A}, and X := A(g).

Proor. We have

Pr[Cycric(g) returns CYCLIC | K not cyclic]

< Pr[Cvcric(g) returns CYCLIC | K not normal] +
Pr[Cvycric(g) returns CYCLIC | K normal and K not cyclic |
< 1/t +0<1/4,

by Theorem 11 and Proposition 21.

Assume K given by g is cyclic. Then NORMALITY(g) always returns NORMAL by
Theorem 11. The probability that we do not pick a witness p for K being cyclic in one run
of the loop is at most 1 —1/¢, where ¢ = 5In(In(n)) In(k)/as by Lemma 21 and Corollary 4.
The additional factor of 2 in the loop of line (3) implies that

Pr[Cycric(g) returns NOT-CYCLIC | K cyclic] < 1/e* < 1/4.

The assertion on the running time of this algorithm is proved as in Theorem 11. O

Remark 23. (1) A more practical cyclicity test for the polynomial ¢ would be to run
the normality test and set a flag as soon as a prime p is found modulo which g is
irreducible. After the normality test is finished, the algorithm returns CYCLIC if the
normality test returns NORMAL and the flag is set. In all other cases the algorithm
returns NON-CYCLIC.

(2) Using randomized primality tests the running time can be reduced to O(nf* + n?puf).
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10 Computing the Conductor of an Abelian Field

Let K be an Abelian field given by a monic irreducible polynomial g € Z[z] of degree n > 1.
How difficult is it to compute the conductor f of K given the polynomial g? In this section
we will prove that this problem is polynomial time equivalent to that of computing the
largest squarefree divisor of an integer, for which there is no efficient algorithm known at
the present time. (For some practical advice on how to compute such a divisor, the reader
is referred to Section 7 of [4].)

the model of computation that we will be using is that of a Turing machine. We say
that a language £ is polynomial time reducible to a language £, and denote it by £ < £/,
if there is a polynomial time reduction from £ to £’ in the usual sense.

10.1 Known Results

In this subsection we will gather some well-known results about the complexity of various
computational problems in algebraic number theory.

Fact 24. The following problems are equivalent under polynomial time reduction:
(ROI) Computing the ring of integers of a number field;
(DISC) Computing the discriminant of a number field;
(OPY') Computing the product of primes dividing an integer to an odd power.

The equivalence of ROI and OPF is due to Chistov [7]. (The reduction used in this equiv-
alence has been improved by Buchmann and Lenstra [4].) Considering quadratic fields we
see that OPF < DISC. Furthermore, the definition of the discriminant shows that given the
ring of integers, we can easily compute the discriminant in polynomial time which shows
that DISC < ROI.

Another result we will need later for our investigations is the following one, due to
Buchmann and Lenstra [4]. (See also [3, pp. 47-48].)

Fact 25. Given a number field K and a prime p, one can compute in polynomial time the
ramification index of p in K.

10.2 Largest squarefree divisor and similar problems

For an integer m we denote by Isqf(m) the largest square factor of m, i.e., the integer
1) .0rd,p(m)>1 p°rde(™) - The largest square-free divisor Isfd(m) is defined as [1;0rd,(m)>0 P-
The equal order factorization eof(m) of m is defined as a vector (sq,...,s;), where s; =
Hp,ordp(m):ip‘ Hence, the s; are squarefree and pairwise co-prime integers and the prime
divisors of s; are exactly those prime divisors of m appearing in m to power ;. How hard is
it to compute any of these data from m? We will prove in this section that these problems
are equivalent under polynomial time reductions. We remark that Landau [14] has also
considered the problem EQF below. Her interest has been in showing that this problem
can be reduced to that of computing the Euler ¢-function of an integer. Though it is likely
that the reductions we present here have been already obtained by other people, we choose
to give them since they have not appeared in print to the best of our knowledge.
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Input: m € N.
Output: 1sfd(m).
(1) Q:=1,5:=m.

(2) while S#1do

(3) t :=lsqf(5S);

(4) u = S/t;

(5) Q :=1em(Q, m);
(6) S =4

Figure 7: Reduction of LSFD to LSQF.

Theorem 26. The following problems are equivalent under polynomial time reductions:

(LSQY) Computing the largest square factor of an integer;
(LSFD) Computing the largest square-free divisor of an integer;

(EOY') Computing the equal order factorization of an integer.

ProoF. Note that Isfd(m) = s1 - - -s¢, and that Isqf(m) = [T;even 5% - [L;0qq 5. "s:- Hence,
LSQF < EOF and LSFD < EOF under polynomial time reduction. Algorithm 7 shows that
LSFD < LSQF under polynomial time reduction: the number of times the while-loop is
performed is < log(n), and all the steps inside the loop (except possibly for computing the
largest square divisor) can be performed in time polynomial in log(n). (Note that since ¢ is
a square in line (6), its square root can be efficiently computed by any variant of Newton’s
method.) Algorithm 8 shows that EOF < LSFD under polynomial time reduction: once
we have found (7q,...,7,) we can compute eof(m) = (s1,...,5,) in polynomial time, since
si=T1i/Tigr fori=1,...,r—1,and s, = 7,. O

Noting that the problem OPF from the last subsection and LSQI are polynomial time
equivalent, the last theorem shows that all of the problems stated there are equivalent to
those in the last subsection.

10.3 Computing the conductor

Let X be the character group of K. Each x € X is a Dirichlet character, and has a period
Jx which we call the conductor of x. Each x € X has a unique decomposition x = [, x;,
where the conductor of x, is a power of the prime p, and the product formally extends
over all prime numbers. (Of course, only finitely many y, are nontrivial.) In this case
the conductor of x is just the product of the conductors of the x,. Furthermore, the
conductor f(K) of K equals the least common multiple of the conductors f,, x € X. The
conductor-discriminant formula (see [26, Th. 3.11]) relates the discriminant d( K') of K and
the conductors of characters in X in the following way:

d(K) =TT /v

x€X

In the sequel we will denote for a nonzero integer m and a prime p by ord ,(m) the largest
exponent to which p divides m.
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Input: m € N.

Output: vector (71, ..., Tog(m)) such that 7 = Hp,ordp(m)>,' pord p(m),
(1) S :=m; B

(2) for j from 1 to log(m) do

(3) r; := Isfd(S);

(4) S = S§/1y;

Figure 8: Reduction of EOF to LSFD.

Lemma 27. (1) If p # 2 is ramified in K, then the p-part of the conductor f(K) of K
equals pd,, where d, is the p-part of the ramification index of p in K.

(2) If 2 is ramified in K, then the 2-part of f(K) equals 22211 or 272 where ey := 2¢ is
the ramification index of 2 in K. The first case occurs if and only if eqord o(d(K))/n =
240

Proor. Let X, denote the group {x, | x € X}. By [26, Th. 3.5] we know that |X,| equals
the ramification index e, of p in K. Hence X,, is the character group of a subfield of Q((,)
of order e,,.

(1) If p # 2, this subfield is uniquely determined, since the group Z;m is cyclic for any
m. This subfield has conductor p°d»(»)*1. Hence, lem(f, | x € X,) = pert!, and the left
hand side of this equation is the p-part of the conductor of K.

(2) X is the direct product of the X,,, hence

X/X,| = —. (1)

P

Let X' := [1,42 Xp. Then X = Xy X’, and by the conductor-discriminant formula we have

ordy(d(K)) = Zordz(fx)z Z Z ord 3(fyy)

x€X x€X2 peX’
n
= Z Z ordo(fy) = — E ord o( fy)
x€Xz YEX' €2 (ex,
= Zordy(d(M)),
€2

where M is a subfield of order e; = 2¢ of Q((ze¢) having X3 as character group. There are
three possibilities for M: either M = Q((yes1), or M = Q(¢C+ (7Y, or M = Q(¢ - (7Y,
where ( is a primitive 2+2th root of unity. In any case, the conductor of M equals the least
common multiple of f,, x € Xy, which is equal to the 2-part of the conductor of K. In the
first case M has conductor 2°*! and [[,(d(M)) = (2*, see [26, Prop. 2.1]. In the second
and third case M has conductor 2*2 and the following argument shows that ord o(d(M)) =
Ef;}) 2j(j + 3): in this case X3 is cyclic, and generated by a character x, say, of conductor
2642 Since fxe = fx/gcd(s,QZ"'Z), we see that X, contains 2% characters of conductor
2f=i+3 = 1,...,¢, and one character of conductor 1. The conductor-discriminant formula
shows now our claim for ord o(d(M)).
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Using induction on ¢ we see that ZZ 027(5 +3) > £2° for £ > 1. Hence, M = Q((ye41)
if and only if [To(d(K)) = n2‘/ey. O

Theorem 28. The following problems are polynomial time equivalent:
COND) Computing the conductor of an Abelian field;

ROI) Computing the ring of integers of a number field;

DISC) Computing the discriminant of a number field;

LSQY) Computing the largest square factor of an integer;

LSFD) Computing the largest square-free divisor of an integer;

(
(
(
(
(
(

EOY) Computing the equal order factorization of an integer.

Proor. We first show that LSQF < COND: Given m, we compute the conductor f(K)
of K = Q(y/m), which, in this case, equals the discriminant of K. If m' := m/lsqf(m) is
congruent to one modulo 4, then d(K) = m’. Otherwise, d(K) = 4m’. So, we can compute
m/, and hence Isqf(m), from f(K) in polynomial time.

Now we show that COND < LSFD. By virtue of Fact 24 and Theorem 26 the result
follows.

By Facts 24 and 25 we can compute in polynomial time the following invariants of K:
the discriminant d(K), for each prime p less than n the ramification index e, of p in K,
and d'(K) which is the product of all prime divisors p of d(K) which are larger than n.
Note that for any p the ramification index e, of p divides n. As a result, all primes larger
than n are at most tamely ramified in K, and Lemma 27(1) implies that the p-part of f(K')
equals p for any such ramified p. Hence, f(K) = d'(K)d"(K), where d”(K) has only prime
divisors < n ramified in K. We may thus concentrate on computing d”( K).

Suppose that p # 2, p < n, and e, > 1. By Lemma 27 we know that ord ,(f(K)) =
[[,(d"(K)) = prdreep)+1 and this number can be computed in polynomial time. If p = 2
and ey := 2° > 1, we compute esord o(d(K))/n and test whether it equals £2°. In this case
we know that [],(d"”(K)) =€+ 1. Otherwise ord o(d"(K)) =(+ 2. O

11 Conclusions and Open Problems

We have developed randomized algorithms for deciding several properties of number fields
given by monic irreducible integer polynomials. Our algorithms are orders of magnitude
faster than polynomial time deterministic solutions based on factorization of polynomials.
We have also found a problem for which the factorization method does not yield a polynomial
time algorithm, while our approach gives a fast Monte Carlo algorithm with one-sided error.
The main idea of our algorithms is the study of the decomposition behavior of primes in
the corresponding number fields. Their basic building blocks are thus primality testing and
ged-computations in polynomial rings over finite fields.
The following questions remain open:
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(1) Does there exist a deterministic polynomial time algorithm for deciding the problem
K CQ(¢n)? Specializing K to a quadratic field given by the polynomial 22 — n, such an
algorithm would also decide whether n/lsqf(n) divides m.

(2) Is there a fast Monte Carlo algorithm for deciding K C L for general K and L? Our
methods only work if K is normal, since for non-normal K Bauer’s theorem does not hold.

(3) Algorithm ABELIAN introduced in Section 8 decides whether a normal polynomial g
is Abelian. Can we detect other types of Galois extensions? For instance, given a normal
polynomial ¢ of degree n!, can we decide in random polynomial time whether the Galois
group of GG is the symmetric group? Note that the question whether a degree n polynomial
has Galois group 5, or A, can be decided in polynomial time, see [18, Th. 3.6].

(4) In the algorithm ABELIAN we can drop the assumption that g is irreducible if we know
that it is normal. Is there a way to drop the irreducibility assumption in the other algorithms,
such as the normality test, as well?

(5) Our methods do indeed yield statistical results about orders of different elements in
the group. In some cases (as in the cyclicity test) this might be enough. Is there a way
to quickly find a “good guess” for the structure of the Galois group of a normal irreducible
polynomial g, if we know that the group is Abelian?

(6) A well-known theorem (which is a consequence of the Chebotarev Density Theorem)
states that Galois number fields are uniquely determined by the set of split rational primes
(see [20, Cor. 6.9]). What kind of results can be obtained from this set of primes in random
polynomial time?
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