
INTERNATIONAL COMPUTER SCIENCE INSTITUTE
1947 Center St. • Suite 600 • Berkeley, California 94704-1198 • Phone (510) 643-9153 • FAX (510) 643-7684

Reorganization in Persistent Object Stores

Reda Salama Lutz Wegner1 and Jens Thamm

TR-097-023

May 1997

Abstract: The Record Identifier (RID) storage concept was initially made popular through IBM’s System R.
It remains in use for DEC’s Rdb and IBM’s DB2 and is attractive because of its self-contained nature. It can
even be combined with pointer swizzling. Although simple in principle, its details are tricky and little has
been released to the public. One particular problem is the reclamation of empty space when a RID-file
becomes sparsely populated. Since RIDs, also called Tuple Identifiers (TIDs), are invariant by definition,
pages can be deleted physically, but not logically. Therefore, there must be a mapping from “old“ to “new“
page numbers. If the self-contained nature is to be preserved, this is not to be achieved by a table but rather
through some arithmetical “folding“ similar to hashing schemes. Page numbers are meant to collide creating
merged pages. The paper explains in detail an efficient division-folding method where f adjacent pages are
merged into one. This process can be iterated should the load factor of the file continue to decrease. The algo-
rithm is also designed in a way that the reorganization can be done on-line and step-wise whenever the system
is idle. The paper closes with empirical data concerning the relationship between expected number of “spill
pages“ (extra pages resulting from an overflow in the merge step) and load factor before and after reorganiza-
tion.

Keywords: persistent storage, file reorganizations, pointer swizzling, complex objects

1. Paper completed while L. Wegner was a visitor to ICSI, Berkeley in May 1997.

Al-Azhar University
Computer and Systems Dept.

Naser City, Cairo, Egypt

Universität Gesamthochschule Kassel
FB Mathematik/Informatik
D-34109 Kassel, Germany

2

1 Problem Definition

The Storage Management Layer (SML) of a database system, either relational or object-ori-
ented, associates primary keys, surrogate keys or other identifiers with objects, stores these
objects on disks, retrieves them upon request, and performs a number of other tasks. One
essential requirement is that object identifiers remain unchanged (invariant) because they are
stored in several places, e.g. base tables, materialized views, indexes, etc. Another requirement
is that the objects themselves can grow or shrink in size which implies their movement to dif-
ferent storage locations.

There are basically two different techniques for handling the conflicting requirements of
invariant addresses and movement of objects:

• address tables, primary B+-trees or a similar index and

• forwarding schemes.

In the first solution, the identifier is a logical identifier or key, often called Object Identifier
(OID) or Database Key. It serves as an index into a table or guides the search in a tree index
which contains the actual disk storage address. Another table might exist which maps objects
to main memory addresses (pointer addresses). Whenever an object has to move because it
doesn’t fit into its old location, the new address is entered into the table(s) or primary tree.
Inter-object reference is by means of OIDs or primary keys. In particular, OIDs never change
and are usually never reused once an object has been deleted. A well-known commercial rela-
tional DBMS which uses this tabular approach for object movement is ADABAS [6, p. 763].
For an object-oriented DBMS it is a quite common technique, as e.g. in ORION [5]. According
to [9], primary B+-trees are e.g. Tandem’s default organization.

Obviously this tabular or index approach offers great flexibility. Its main disadvantage is the
need for large tables or indexes which must be stored on disk as well and must be synchronized
for concurrent access. Quite often, the OID-address space becomes so large (264 typically,
some people even suggest 128-bit OIDs) that OIDs are first hashed onto some smaller index
which is used to retrieve the actual address (see also [4] for different techniques).

In the other approach, the identifier is a physical address, usually called a Tuple Identifier
(TID) or Record Identifier (RID). This RID directly specifies a page and some offset into the
page, usually with indirection by means of a small table inside this page to allow for shifts
within the page. When an object grows and cannot be accommodated inside its present page, it
is moved to another page and the new address (forwarding address) is stored in the original
location. Should another movement be needed, the object moves to yet another page, but the
original forwarding address is changed simultaneously. This way no more than two page
fetches are required to access an object. This technique was made popular with IBM’s System
R [1]. It is in use today by the well-known storage system WiSS [3] as used e.g. in the OO-
DBMS O2 [5], and in both DEC’s Rdb and IBM’s DB2 according to [9].

3

The advantage of this approach is that the data are self-contained and that they are accessed
directly, i.e. there is no need to store another table or index-tree which often requires a second
disk access, must be flushed to disk at checkpointing times, needs extra locks, etc.

However, the RID-approach has some subtle problems. One is that after a set of pages has
grown to a certain size and a RIDR, sayR=(p, s) has been assigned, wherep is the page num-
ber ands a slot index, the file cannot be truncated to less thanp+1 pages (assuming numbering
of pages 0, 1, ...,p) even if all or most of the pages beforep are empty. Paged files of this type
arise in modern multimedia systems where large data chunks come from multiple streams (e.g.
monitoring systems, multi-channel operating systems [8]) and are temporarily stored in tables
and then filtered which deletes all irrelevant entries.

Here we present solutions for storage compaction in RID-files when these files become
sparsely populated due to a large number of deletions. The solution we offer uses what we call
folding of pagesand causes almost no overhead both in access times and extra storage require-
ments.

The remainder of the paper is organized as follows. In Section 2 we list general requirements
for reorganization and describe the usual RID-implementation as known from System R and
implemented e.g. in ESCHER [11]. Section 3 then explains the new techniques of folding and
lists the algorithms both for folding and for object access. Section 4 gives empirical evidence
of the feasibility and inherent limitations of our approach. Section 5 summarizes the results
and mentions open problems.

2 Folding a RID-file

2.1 Requirements for Effective Reorganization

A RID-file grows by having new objects added to it or when existing objects are increased in
size. Depending on the allocation policy of the SML, growth might for some time be achieved
by filling existing pages to maximum capacity. Past some point, however, new pages must be
added, at least logically, at the end of the file.

Similarly, a RID-file shrinks when objects are deleted or are reduced in size. If pages at the end
become totally empty, they can be truncated. If, however, at least one object remains inside a
page, that page and all preceding pages cannot be truncated.

To judge the state of a file with respect to the amount of data it holds, we define theload factor
of pagep, shortqp, 0 <qp ≤ 1, astotal amount of data in page p / page size. Unless other-
wise specified, let the load factor also include meta data, like headers and slot lists . For a fileF
with N pages we then let 0 <Q ≤ 1 denote thefile load factor,

Q
1
N

= qi
i 0=

N 1−

∑

4

From hash file organizations we know that efficient operation can be expected when load fac-
tors do not exceed about 0.85. In B- and B*-tree organizations, load factors of at least 0.5 are
guaranteed and around 0.65 are to be expected on the average [6].

For RID-files, no direct correlation exists between load factors and performance, at least in
static files. In the dynamic case, when frequent insertions/deletions/size changes happen, there
is an indirect correlation in that clustering deteriorates and displacements increase when the
load factor is high. Here, however, we are mostly concerned with situations where the load fac-
tor drops below a certain threshold, typically well below 50% utilization (Q < 0.5). This is a
common phenomenon in database systems where a table represents a queue, say of applica-
tions or messages, which first grows up to a large size and then drops again once most queued
items have been handled and leave the queue.

A reorganization of persistent storage for these type of applications must fulfill several require-
ments:

• storage utilization after reorganization should be better than 50% and preferably be in the
80 to 90% range;

• the overhead introduced for handling access after the reorganization should be small and
should possibly cancel against the savings from having smaller files;

• therefore access time to data before and after the reorganization should not differ by more
than a small factor, say 1.1 or 1.2 (10 to 20% increase in access time after reorganization);

• reorganization should occur on-line and step-wise whenever there is low activity; it
should not disrupt operations on the file;

• it must be possible to halt storage compaction at any time and even to reverse the process,
in case a period of growth is encountered;

• reorganization principles should be simple and generic so that the algorithm works regard-
less of implementation specific details.

2.2 Review of the RID-design

To judge the following reorganization scheme, it is necessary to first understand the RID
addressing principle. Consider the following Figure 1 with two pages and several objects
stored inside these pages.

Pagep contains 4 stored objects. Two of these objects are true system objects (meta objects
which belong to the system), namely the header and the free space. Slot 0 which holds byte
address 4 thus points to the start of the header. Direct manipulation of the header is forbidden
and there is a set of dedicated routines to handle header contents which is omitted here.

The free space in pagep starts at byte address 1028 and extends to the start of the slotlist which
is address 4086 (page size 4096 - 5*2 bytes for five slots of size 2). This address is also seen in
a 2-byte field at the very beginning of the page.

The other two “normal” objects are a 1,000-byte object in slot 1 and a displacement RID in slot

5

3. Displacement RID means that the actual object is on another page, herep’, and its new RID
R’ is stored in the original (invariant) location. The reason for dislocating the object from page
p could have been insufficient space at the time when the object grew.

Finally, pages can contain empty slots corresponding to deleted objects. Empty slots can be
recycled1. Slots marked as empty form a linked list with the last entry having value zero. In our
example, pagep contains one empty slot, namely slot 2, and the second field in the start of the
page contains the index of this (first) slot in the chain of empty slots. Note also that object sizes
are determined by subtracting an object’s starting address from the starting address in the next
higher non-empty slot.

Pagep’ is quite similar but does not have an empty slot. Note also that the displaced object is
not marked in any way, i.e. one cannot determine that any object in pagep’ is a displaced one
by looking atp’ alone. In some implementations, the displaced object is marked as a “protected
object”, just like the header and the free space, to catch any erroneous access to this object2.

Even if the displaced object where marked as such one would need to store the original RID (a
“back pointer”) in order to freely reorganize pages. We will return to this severe limitation of
the RID-design later on.

1. If recycling of RIDs is undesired, objects should be truncated to size 0 or changed into small tomb-
stones.
2. Remember: if (p’, s’) is the RID of a displaced object with original RID (p, s), then (p’, s’) should not
be released to the outside world because the object might migrate again; only (p, s) is guaranteed to be
invariant and any access is only via this RID.

01234

R‘=(p‘, s)
1000 bytes

header (20 bytes)

n

4086 2

0 42410241028
d

free space (3058 bytes)

0123

2000 bytes (displaced object)

header (20 bytes)4088 0

2024 4243524
free space

1500 bytes

(564 bytes)

page p page p’

Figure 1:Two example pages

6

For the following discussion we also keep to the usual RID-file parameters which assume 4,
sometimes 8 KB pages. Slots are normally 16 bits wide which allows 12 to 13 bits for the
address inside the page (8 KB = 213) and 3 bits for flags (normal, displaced, empty, protected,
... object).

3 Remapping of Page Numbers

3.1 Division versus Modulo Method

Assume a RID-file has grown to a size where it occupiesN pages, i.e. the highest index of a
page (page number) isN-1 given that the first one is numbered 0. Then, once an object has
been allocated with a RIDR = (N-1, s) for somes > 0, and once that invariant RID has been
handed to an application, the file cannot be truncated to a size less thanN without explicit or
implicit remapping of page numbers.

One method would be through the use of a mapping table. This, however, leads to the address
(database key) approach mentioned earlier and is not considered here because it does not pre-
serve the self-containing nature of RID-files.

The other method is to convert all page numbers by some form of arithmetic into page num-
bers of a smaller range. This is similar to hashing except that we want a high and evenly dis-
tributed number of collisions which represent “merged” pages. Here, merging of pages implies
some way of throwing objects from two or more pages into one single page freeing the other
pages for reclamation or other use.

We consider two straight-forward mappings.

• division folding:p’ = p div f

• modulo folding:p’ = p mod N/f
wherep is a given page number, p’ the newly computed page number, f is a folding factor, and
x denotes the smallest integer which is greater or equal tox. To understand the differences,
consider Figures 2 and 3 withf set to 2.

0 1 2 N/2+1N/2-1 N/2 N-1

......

Figure 2:Mapping with modulo-method

7

With f = 2, a 2-way fold is performed, i.e. the file will be folded once which reduces its size to
half, provided all pages can be merged. In themodulo method, pages which areN/f apart are
merged1, i.e. 0 goes withN/2, 1 withN/2+1, etc. Clustering is not affected by this method apart
from a jump of locality around the folding pointN/2. If d = N/f is a power of two, say 2k,
then this method corresponds to keeping thek lowest bits to determine the new page number
p’. Furthermore,p div d tells us always from which side of the file the page came from: in the
case off = 2, 0 is left side, 1 right side. Similarly for higher values off, p div N/f yields 0, 1,
..., f-1 for the first, second, up to thef’ th stretch.

For the actual merging process consider Figure 3 which depicts again the casef = 2. The pro-
cess of merging pages is from the right to the left starting with pagesj= N-1 andi = N/2-1.
They are loaded, merged and rewritten to locationN/2-1. Theni andj are decremented. Figure
3 also shows a shaded area betweenj+1 andk, called the “spill”, which leads into the consider-
ation of how to handle pages which cannot be merged.

Since individual pages can carry any perceivable load from 0 toMAXOBJECTSIZE, it can
happen that the f pages to be merged don’t fit into a single page, although the file as a whole
might have a load factor of less than 1/f . This results in what we callspill pages which come to
rest outside the merged area but inside the file. In Figure 3 they form the lightly shaded part
betweenj+1 andk. They must be moved to the left as merging progresses. This will be done by
a technique called the wheel which was introduced in [10] and requires the exchange of one
page per move (pagek is moved to locationj). Details of this handling of spill pages are
skipped here and are reconsidered in the context of the detailed explanation of the division-
algorithm below.

In Figures 2 and 3 above, folding was depicted withf = 2 which we might callbinary folding.
For the modulo-method, folding withf > 2, calledmulti-way folding, exhibits some unpleas-
ant effects.

Firstly, multi-way folding creates multiple gaps of freed pages. Those “inside” the file cannot
be truncated. Those at the tail end of the file can be truncated, but up to the last step, only up to
N/f - 1 pages are returned to the system.

1. For the example withf = 2 assume without loss of generality thatN is even.

0 N-1kji

merged pages spill gapuntreated

Figure 3:Folding for modulo method from right to left

untreated

N/2-1

8

Secondly, it may even happen that in the immediate steps the file actually grows (!) because
spill pages are created at the tail end while simultaneously gaps of empty pages appear inside
the file. Of course, spill pages could be differently chained to stay inside the gaps but that
would require keeping track which pages are spill pages and which are freed which is not very
attractive.

Thirdly, at the end of folding, the spill pages as a block must be copied back to the tail end of
the file which has been reduced to sizeN/f (+ spill).

Folding a file with the modulo method suffers from another few, very subtle, defects, e.g.

• handling repeated folding when the file size was not a power of 2

• merged slot lists inside pages become interleaved.

This finally made us decide to drop the modulo algorithm and to consider the division-method
instead.

3.2 The Division-Folding Algorithm

In thedivision method, f adjacent pages are merged, i.e. in the case off = 2, pages 0 and 1
become page 0, 2 and 3 become 1, 4 and 5 become 2, etc. as shown in Figure 4. Iff is a power
of 2, the new address can be thought of as deleting the lowest logf bits which can also be very
efficiently achieved by shifting logf bits to the right during the address calculations. Further-
more, clustering increases with every folding.

On the other hand, the folding process is most naturally performed from left to right creating a
larger and larger gap inside the file (see Figure 5 and explanation in next paragraph) and
requires loading three pages (in generalf + 1 pages) for each merge step except the first one.
Although there are ways to improve this scheme, e.g. with some clever buffering scheme and
doing up tolog N merges in one step starting at the right, the left to right method is much
simpler. The disadvantage is that no pages are returned to the system until the end of the reor-
ganization pass.

Consider now the details of the left to right division folding method. Thef pages which are
merged in each iteration are at locationsk, k+1, ...,k + f - 1, initially starting withk = 0. The

0 1 2 N-2N/2-1 N/2 N-1

......

3

Figure 4:Mapping with division-method

9

result goes into pagei = k div f (initially i = 0), i is increased andk increases byf which is also
the increase in the gap of freed pages. Again, a wheel of spill pages is maintained betweeni
andj-1 and is rolled to the right at each folding step.

The process stops whenk reachesN-1 and in the last step less thanf pages might be merged if
N modf ≠ 0. The resulting file has sized = N/f plus whatever spill pages were produced.

This leads to the following straightforward algorithm written in Pseudo-Pascal, where we
assume that the folding factorf is decided beforehand based on a measured load factorQ.

procedure FoldFile(file F; int f, N);
var

i, j, k: int;
begin

i := j := k := 0;
while idle and (k < N) do

foldstep(F, N, f, i, j, k);
end {FoldFile};

procedure foldstep(file F; int N, f; var int i, j, k);
{ create a gap of one page at location i and merge f pages starting at location k

into this new location}
begin

RollWheelUp(F, f, N, i, j, k);
i := i + 1; j := j + 1;
if EnoughSpace(F, f, k)
then begin

MergePages(F, f, N, i, j, k);
end
else begin

MergeAndHandleSpill(F, f, N, i, j, k);
end;

end { foldstep}

procedure MergePages(file F; var int f, N, i, j, k);
var page: int;

buf_a, buf_b: buffer_for_page;

0 N-1kji

merged pages spill gap untreated

Figure 5:Folding for division method from left to right

10

begin
LoadPage(F, k, buf_a);
k := k + 1;page := 1;
while (k < N) and (page <= f - 1) do
begin

LoadPage(F, k, buf_b);
MoveToPage(F, i-1, k, buf_a, buf_b);
MarkAsEmpty(F, k);
k := k + 1;page := page + 1

end {while};
WriteBackPage(F, i - 1, buf_a)

end {MergePages};

Let MoveToPage(file F; int a, b; buffer_for_page buffer_a, buffer_b) be a procedure which
moves the contents of page no.b into page no.a, wherea is the number of the final destination
of the merged pages. Figure 6 shows the logical scheme. The procedure assumes that both

buffers buffer_a andbuffer_b have been loaded before. Afterwards, pageb will be logically
empty. Details ofMoveToPage are given below in Subsection 3.4.

Example 1

Consider the three-way (f = 3) folding ofN = 10 pages. The line indicates the final lengthd =
N/f , here10/3 = 4.

Step 1:

i - 1 k + f -1k

...
...

k + 1

buf_a buf_b
merge

load from disk
load

write to disk

Figure 6:Folding f pages via two buffers

0 1 2 93 84 5 6 7

i, j, k N-1

11

In the first round, pages 0, 1, and 2 are folded. They are merged into page 0 creating a gap of
two pages, depicted as shaded squares. There is no wheel of spill pages.

Step 2:

In step 2, pages 3, 4 and 5 are merged. Assume, all three won’t fit into one page and that 4 and
5 both become spill pages. Page 1 (previously no. 3) holds two anchors which indicate that
pages 2 and 3 hold a wheel of spill pages. Note also, that these spill pages contain “back refe-
rences”, here indicated with “→1”.

Step 3:

In the third step, we assume all three pages 6, 7, and 8 fit into one page. The wheel is rolled
once to the right causing adjustments of one anchor in page 1.

Step 4:

In the final step, page 9 becomes page 3 and the wheel is again rolled once with the usual

0 1 2 93 84 5 6 7

i, j k0/1/2

0 1 2 93 84 5 6 7

i k

→3

→2

0/1/2 j3/4/5

→1 →1

0 1 2 93 84 5 6 7

i k

→3

→4

0/1/2 j3/4/5 6/7/8

→1→1

0 1 2 3 4 5

i k = N

→5

→4

0/1/2 j = 63/4/5 6/7/8 9

→1 →1

12

adjustment of one anchor. This leads to the final configuration with pages 6 - 9 truncated.■

We will use this example to discuss some design alternatives.

3.3 Merged Pages

The final crucial point is the design of the merging of pages. Here it is important to remember
that empty slots can only be removed if their index is higher than the highest non-empty slot.
We will show in Section 4 that, if pages have an average slot list length ofS slots at the time of
their maximal growth (Q = 1) and if subsequently the file load shrinks to a factorQ << 1, slot
lists will reduce their length by at most (1 -Q)/Q, i.e. the reduction is independent of the list
lengthS! This creates a phenomenon very similar to the file itself: although the page could
become almost empty, the slot list cannot be truncated past the highest occupied slot.

Example 2

If 4 KB pages are considered and object sizes vary uniformly between 1 and 100 bytes, a page
can take an average of 80 objects, i.e.S = 80. If now objects are randomly deleted down to a
load factor ofQ = 0.1 (90% deleted), the new average slot list length isS’ = S - 0.9/0.1= 80 - 9
= 71. If the file were compacted five-fold times to bringQ back to 0.5, we merge f =5 pages
into one which implies having, on the average, to deal with5 * 71 = 355 slots or about 0.7 KB
of metadata. ■

In the example above, the large amount of slots makes it unlikely thatQ > 0.75 can be achieved
unless there is a way to also merge the large sparse slot lists. However, the example might be
misleading. As our empirical tests indicate, slot list lengths depend very much upon the appli-
cation. If a 4 KB page holds objects of 500 bytes average size and subsequently looses almost
all objects (Q = 0.1), we observe average slot lists between two and three and even for f = 8,
throwing all slot lists together only requires less than 50 bytes! Similarly, Q = 0.1 might also
be, on the average, a file with one full page versus nine empty ones for every ten pages consid-
ered.

Common ways to handle sparse vectors include bit vectors to indicate non-empty entries, con-
densed sequential of chained storage of pairs (slot-index, slot-value), hashing, etc. In most
cases, however, we loose direct access to the slot value which, in particular in connection with
software based pointer swizzling [11], seems unacceptable.

One interesting alternative which we considered was collision-free folding of slot lists as indi-
cated in Figure 7. There the slot lists, sayX of pagepx andY of page py, are represented as bit-
vectors with a 1 representing a non-empty slot. Using bit-wiseAND, we shift vectorY one bit
to the left filling up with zeroes (logical shift left) as long asX AND Y ≠ 0. When afterk shifts
(ultimately in the worst case afterk = n+1 shifts forn = length ofX) no conflicts occur, we can
save the starting positionk and access any slot in the combined slot vector, sayXY, with XY[s’],
where slot indexs’ = s if R = (px, s) and with slot indexs’ = s + k if R = (py, s).

13

However, this method has several disadvantages. Firstly, the probabilities for successfully
folding two (or even more) lists is small. Secondly, the SML cannot catch invalid RIDs
because it cannot distinguish between slot entries from different pages. For the same reason it
cannot unfold pages in the case where the file grows again.

Therefore, the design decision was to simply concatenate existing slot lists from the merged
pages and to place a little table into the available free space. This table withf (the folding fac-
tor) entries contains the start addresses of each slot list (see Figure 8).

Figure 8 assumes the merging of three pages. The first page contained a header, a 1000-bytes
object, an empty slot, a displaced object. The slot for the original free space is deleted. As for
the second page, it had originally a header, a 500-bytes and a 100-bytes object. Again the slot
for the free space is deleted.

The third page had header, an empty slot, a 1100-bytes object and, finally, the slot for the
empty space of the whole page. This empty space amounts to 4096 - (2768 + 22 + 6) = 1300
bytes, where 22 bytes account for the slot list of 11 slots and the little table has f elements with
a two byte address each.

Naturally, details may vary with implementation specific requirements, e.g. whether headers
are copied into the merged page or not. The important point, however, is that merged data go
behind existing data objects and that slot lists go in front of existing slot lists. Thus, there is no
need for shifting data inside the page.

Also the calculation of object sizes remains unchanged. Finally, when folding of the file con-
tinues in additional rounds, the merged slot lists and tables are easily added without shifts.

3.4 Calculating Object Adresses at Run-Time

What remains to be shown is the calculation of an object addresses A for a given RID R = (p,
s). Clearly, the proper conversion of page number and slot index depends on the folding his-

0

0m

0

n

k

m+k

Figure 7:Collision-free folding of slot lists

14

tory. In particular, it must take into account that folding might be in progress.

Fortunately, this requires only three integers which the system must remember:

• old folding factorf_old (initially 1)

• new folding factorf (initially 1)

• start pagek of the untreated portion.

For the algorithm which follows, assume thatSlots is a variable which looks at the 4 KB page
as an array[0 .. 2047] of 16-bit addresses and letPage be the array[0 .. 4095] of bytes (char).
Note also that the 16-bit values inside the slots—unless they are empty slots—themselves are
byte addresses which must be divided by 2 to convert to slot numbers.

p’ := p div f_old;
if p’ >= k { in the untreated section of the current folding process}
then proper_f := f_old
else begin p’ := p div f; proper_f := f end;
loadp’ unless already in main memory,
let PA be the starting address of the buffer for this page
SlotContent := Slots(PA^.Page)[Slots(PA^.Page)[Slots(PA^.Page)[

0123

R‘=(p‘, s)
1000 bytes

header (20 bytes)

n

4074 2

8 4241024
d

net free space (1300 bytes)

1/82/93/10

2768 01668

Figure 8:Merged page withf = 3 slot lists

0/41/52/60/7

1548 102810481648

500 bytes

header (20)

100 bytes header (20)

n

1100 bytes

4094

4078

4086

15

Slots(PA^.Page)[0] div 2] div 2 +p mod proper_f] div 2 - s];
if SlotContent > $3FFF
then ... displaced or empty object or object in spill page ...
else A := Addr(PA^.Page[SlotContent and $1FFF]);

Although this address calculation seems pretty expensive, it actually is not. Compared to the
original RID-access algorithm, the cost of the access algorithm has increased by one compari-
son (p’ >= k), a division operation (p div f_old), a modulo operation (p modproper_f) and a
triple indirection which is cheap. Iff is a power of two, division and modulo arithmetic can be
efficiently done with register shifts.

3.5 Handling Spill Pages

The situation that pages cannot be merged arises most likely when pages contain few, but large
objects and two or more of these pages happen to fold onto the same target page. They create
what we call spill pages which are stored at the tail end of the file.

Naturally, there are many options. Since RID-files support object relocation, one could try to
move a conflicting object individually to a less crowded page. Secondly, there is a choice of
moving all or only some of the conflicting objects to a special spill page and, thirdly, there is
the choice to treat the page as a whole like a displaced page.

The last choice could easily be accommodated with the little table off entries which we placed
at the beginning of the free space (cf. Figure 8). Here, entries would be 4 bytes to take page
numbers (which only require 3 bytes in the usual RID set-up) and a flag inside these entries
would indicate whether we have a page number or a slot list address.

Here, we opted for the second solution and move all objects from a conflicting page to one spill
page, but the displacement is individually handled as if a displaced object had to be handled.
This saves an extra comparison in the address calculation. The disadvantage is that chains of
dislocation can extend to 3 pages. Thus, whenever objects are accessed with the ultimate loca
tion inside a spill page, objects should be relocated to reduce the access path to at most two
page reads.

As for the back pointer inside a spill page, we suggest storing this page number (i.e. the num
ber where this spill page originated from) inside the first 4 bytes of the free space. Should such
a page be filled to the very limit with free space of zero bytes, we can adopt the convention that
linking of empty slots is not done for spill pages which frees two bytes in bytes 2 and 3 of the
page (see Figure 8, the entry in the left corner containing the slot index 2). Similarly, the
header always starts at byte position 4, so this value is redundant and could be used to create
the needed page number. Other possibilities are fields inside the header which are not needed
for spill pages.

In general, these finer details are design dependent and are best solved by leaving extra space
in pages to start out with. It is also clear that spill pages do not participate in (future) folding

16

steps. However, as further objects are deleted, pages could become empty and may then be
deleted altogether. Since each spill page is linked to its originating page, the resulting gap can
be closed with a page from the end and the file truncated accordingly.

4 Empirical Results

The proposed folding algorithm invites all kinds of empirical investigations regarding optimal
folding factors and starting times, expected improvement of storage utilization, etc. Here we
concentrate on describing our experimental set-up, the basic assumptions and the conclusions
gained from the data.

To study the behaviour of the folding algorithm we created a parametric simulation environ-
ment. To run the experiments, the user specifies

• the initial sizeN of the file (number of 4KB pages)

• a distribution for the object sizes with categories and minimum and maximum sizes

• a load factorQ (0 ≤ Q ≤1) before folding

• a folding factorf.

The experiment then runs as follows. The system creates in turn objects with random sizes,
where the size is uniformly drawn from the chosen size range. It then tries to locate a page
which has sufficient space to store the object. The search starts with the last page moving
towards the front. If a page is found, the simulation returns the RID which goes into an arrayA.
If none of the existing pages can hold the object, another page is added to the file. The process
stops when theN+1st page would be needed. Finally, statistics are collected which report the
average slot list length, average gross and net storage utilization (i.e. with and without space
needed for internal meta data such as slot lists), etc. Figure 9 shows a typical situation with 20
pages and fairly large objects (avg. 510 bytes). As can be seen, the particular allocation strat-
egy for objects fills pages rather well leading toQ = 0.9585.

In the next phase, the system randomly picks RIDs from arrayA and deletes the corresponding
objects. Subtracting the freed space from the total space, the system continues until storage uti-
lization drops belowQ for the first time. The system then reports again the current status (see
Figure 9 withQ aiming at 0.4).

The most important observation here is that although slot lists contain many free slots (in the
example 3.5 slots on the average), the slot list length has been reduced from 7.60 to only 6.60.
The reason is that the highest non-deleted RID in a page determines the final list length. In fact
we can precisely estimate the slot list reductions when deletions reduce a RID-file to a load
factorQ.

E Listreduction() Q= i 1 Q−() i

i 0=

∞

∑ 1 Q−
Q

=

17

As the little table shows, the reductions are minimal even in the case of infinite slot lists.

Figure 9 also shows how page utilization varies strongly with the two random processes
(object size and deletion pick) overlapping. If a page has been filled by two large objects and
both happen to survive the deletion process, the page can be quite full even ifQ is below 0.4
(see pages 4, 8, and 19 in Figure 9).

In the third phase, the file is folded with factorf. This is done by applying the division-folding

Q 0.1 0.2 0.3 0.4 0.5 0.6

E(reduction) 9 4 2.3 1.5 1 0.6

minimal record size: 0 (4)
maximal record size: 1018 (1024)
page count: 20

page|used|free|#sl|#fs|usage
----+----+----+---+---+-----

0|3844| 252| 9| 0|93.8
1|3877| 219| 8| 0|94.7
2|3904| 192| 7| 0|95.3
3|3993| 103| 6| 0|97.5
4|3983| 113| 10| 0|97.2
5|3973| 123| 6| 0|97.0
6|4086| 10| 7| 0|99.8
7|4013| 83| 10| 0|98.0
8|4011| 85| 10| 0|97.9
9|3993| 103| 7| 0|97.5
10|3693| 403| 7| 0|90.2
11|4061| 35| 9| 0|99.1
12|3987| 109| 8| 0|97.3
13|3996| 100| 9| 0|97.6
14|3546| 550| 7| 0|86.6
15|3993| 103| 9| 0|97.5
16|3654| 442| 6| 0|89.2
17|4095| 1| 8| 0|99.9
18|3404| 692| 4| 0|83.1
19|3744| 352| 5| 0|91.4

record count: 152
total record size: 77546
average record size: 510.17
average free: 203.50
average slot count: 7.60
average free slot count: 0.00
average usage: 95.03

space quota: 40%

page|used|free|#sl|#fs|usage
----+----+----+---+---+-----

0| 952|3144| 8| 5|23.2
1|1208|2888| 7| 5|29.5
2| 878|3218| 7| 4|21.4
3|1459|2637| 6| 4|35.6
4|2743|1353| 9| 4|67.0
5| 321|3775| 3| 2| 7.8
6|1581|2515| 5| 2|38.6
7|1739|2357| 10| 6|42.5
8|2827|1269| 10| 4|69.0
9|2554|1542| 7| 3|62.4
10| 728|3368| 6| 5|17.8
11|1036|3060| 7| 3|25.3
12| 889|3207| 3| 2|21.7
13|2312|1784| 9| 3|56.4
14|1454|2642| 5| 2|35.5
15|1077|3019| 7| 4|26.3
16|2199|1897| 6| 2|53.7
17|1250|2846| 8| 6|30.5
18| 980|3116| 4| 3|23.9
19|2789|1307| 5| 1|68.1

record count: 62
total record size: 30712
average record size: 495.35
average free: 2547.20
average slot count: 6.60
average free slot count: 3.50
average usage: 37.81

Figure 9:A test set ofN = 20 pages initially and after reduction toQ = 0.4

18

algorithm from Section 3.2 including creation and rolling of a wheel of spill pages as needed.
Inside the pages, slot lists are concatenated. The resulting data are again tabulated. Figure 10
shows one particular result forN = 20 pages,f = 2 andQold ≤ 0.4 as shown in Figure 9 before.

In this particular example, only one spill page results, which is caused by the attempted folding
of pages 8 and 9. In Figure 10, the two pages become page 4 and page 10. We also note that the
new utilization withQnew = 0.6888 is well below the anticipated 80% (Qold * f).

As it turns out, this particular example is even better than the average which we report below.
Some analysis shows that the average usage drops because of spill pages and because of over-
head with merged (but mostly empty) slot lists.

To study these effects we ran our simulations with two different data sets. One consisted of
large objects whose size was uniformly distributed in the range 0 to 1024 bytes. Figure 10
shows the resulting utilizationU (average net usage of space) plotted against initial load factor
Q. Since the objects are fairly large and slot lists are short (around eight slots), the difference
between gross and net usage is only about 0.5%.

Of course, one cannot expect a high utilizationU if pages were initially rather empty (e.g.Q =
0.1) andf is low. Therefore, the plot also includes an efficiency factorE which measures how
close the actual load factor after folding came to the factor achievable in theory, i.e.E = Qnew /
Qold * f. The upper curve shows E for f = 2 which is well above 0.9 forQ ≤ 0.3 and atE = 0.88
for Q = 0.4. With higher loads or higher folding factors, spill pages take their toll.

spill length: 1 page(s)

page|used|free|#sl|#fs|usage
----+----+----+---+---+-----

0|2166|1930| 16| 10|52.9
1|2343|1753| 14| 8|57.2
2|3070|1026| 13| 6|75.0
3|3326| 770| 16| 8|81.2
4|2833|1263| 11| 4|69.2
5|1770|2326| 14| 8|43.2
6|3207| 889| 13| 5|78.3
7|2537|1559| 13| 6|61.9
8|3455| 641| 15| 8|84.4
9|3775| 321| 10| 4|92.2
10|2554|1542| 7| 3|62.4

record count: 72
total record size: 30752
average record size: 427.11
average free: 1274.55
average slot count: 12.91
average free slot count: 6.36
average usage: 68.88

Figure 10:Result after folding withf = 2

19

For the second set we took data from the OO7 benchmark [2] which created four categories of
objects as shown in the following Figure 12. Clearly, smaller but numerous objects create more
even distributions in pages. However, they also create larger slot lists!

From these data we see that slot lists consume about 6% of the available space in full pages
(page size / slot list length * slot size≈ 4096 / 120 * 2). After deleting 80% of the objects for
Qnet = 0.2, only about 4 slot entries are removed as explained above. Folding this reduced file
three times creates 6 spill pages and slot lists of triple length which now amounts to already
14% overhead. At the same time, net usage remains around the 50% level even though one
would hope for 3 * Q = 0.6.

When the experiments described above were performed 100 times each with folding factors 2,
the curves in Figure 13 result. As before we notice that folding without adjustments for collis-
sions of well-filled pages cannot push gross utilization above the 0.67 mark.

There is also a simple argument for explaining this phenomenon. If the degree of data within a
page is random within a certain normal distribution we could classify pages as “low load“,
“average load“ and “high load“. When being folded, pairs ofaverage/average andlow/high,
high/low even out.Low/low pairs bring the resulting load factor down and would normally be
counterbalanced byhigh/high pairs. The latter however turn into 2 or more spill pages which
reduces the load facor even further. Currently, we try to give a more precise statistical explana-
tion which is difficult because we start with random sizes and random deletions.

All in all, the strong influence of randomness in the deletion process together with randomness
in the choice of object sizes surprised us. They call for strategies of balancing sizes before
merging takes place. This is feasible within the RID-concept but difficult because displaced
objects carry no back-pointers with them. No dynamic reorganization technique for RID-files

0.1 0.2 0.3 0.4 0.5 0.6

load factor Q before folding

0.2

0.4

0.6

0.8

1

U
, E

f = 2

f = 3

Figure 11: Utilization U and efficiencyE of folding with f = 2 andf = 3

E

U

20

is currently known in the literature1.

5 Conclusion

The Record Identifier storage concept was initially made popular through IBM’s System R [1].
It is in use today with DEC’s Rdb and IBM’s DB2 and remains attractive because of its self-
contained nature. Although simple in principle, its details are tricky and little has been released
to the public.

1. Gray and Reuter report ([6], p. 763) that Salzberg and Dimock have developed a method for RID reor-
ganization. However, [9] is about transaction-based on-line reorganization and according to a personal
communication, there is no other paper from them which considers dynamic RID reorganization.

ABC distribution: 4 slices
11940 values
slice| min | max |exp. |real |val #
-----+-----+-----+-----+-----+-----

0| 18| 18|86.70|86.69|10351
1| 24| 48|11.56|11.56| 1380
2| 96| 96| 0.58| 0.59| 70
3| 1016| 1040| 1.16| 1.16| 139

page|#sl|#fs|used|free|net |gross
----+---+---+----+----+-----+-----

0|134| 0|4090| 6|93.31|99.85
1| 92| 0|4090| 6|95.36|99.85
2|139| 0|4092| 4|93.12|99.90
3|134| 0|4086| 10|93.21|99.76
4| 95| 0|4078| 18|94.92|99.56
5|140| 0|4096| 0|93.16|100.00

. . .

page count: 100
record count: 11939
total record size: 384786
average record size: 32.23
average free space: 9.36
average slot count: 119.39
average free slot count: 0.00
average net usage: 93.94
average gross usage: 99.77

page|#sl|#fs|used|free|net |gross
----+---+---+----+----+-----+-----

0|134|109| 746|3350|11.67|18.21
1| 89| 72| 537|3559| 8.76|13.11
2|137|100|1062|3034|19.24|25.93

3|126|105| 644|3452| 9.57|15.72
4| 94| 68|1693|2403|36.74|41.33
5|139|110| 865|3231|14.33|21.12

. . .

page count: 100
record count: 2610
total record size: 81886
average record size: 31.37
average free space: 3046.10
average slot count: 115.52
average free slot count: 89.42
average net usage: 19.99
average gross usage: 25.63

page|#sl|#fs|used|free|net |gross
----+---+---+----+----+-----+-----

0|361|281|2353|1743|39.82|57.45
1|360|283|3210| 886|60.79|78.37
2|310|235|3142| 954|61.57|76.71
3|354|281|3164| 932|59.96|77.25
4|358|271|2476|1620|42.97|60.45
5|361|277|3424| 672|65.97|83.59

. . .
39|133|107|1783|2313|37.04|43.53

page count: 40
record count: 2644
total record size: 82090
average record size: 31.05
average free space: 1464.45
average slot count: 289.65
average free slot count: 223.55
average net usage: 50.10
average gross usage: 64.25

Figure 12:Data sets of the OO7 benchmark withQ = 0.2 andf = 3

21

One particular problem is reclamation of empty space when such a RID-file becomes sparsely
populated. Since Record Identifiers (RIDs, also called Tuple Identifiers, TIDs) are invariant by
definition, pages can be deleted physically, but not logically. Therefore, there must be a map-
ping from “old“ to “new“ page numbers. If the self-contained nature is to be preserved, this is
not to be achieved by a table but rather through some arithmetical “folding“ similar to hashing
schemes. Page numbers are meant to collide creating merged pages.

The paper explains in detail an efficient division-folding method where f adjacent pages are
merged into one. This process can be iterated should the load factor of the file continue to
decrease. On the other hand, should the load start to increase again, the folding process can be
reversed. The algorithms are also designed in a way that the reorganization can be done on-line
and step-wise whenever the system is idle.

Like the RID-technique itself, the reorganization algorithm is simple in principle, but creates
tricky special cases and has some not so nice features. One case is the fact that the folding pro-
cess is best performed from left to right. This, however, does not free any pages for truncation
until the very end. Another point is that empty slot lists inside the pages cannot be truncated
and use up a fair amount of space in the merged pages.

Whether the last point is relevant depends very much on the actual type of data. As our empiri-
cal tests show, it is of concern when individual objects tend to be small on the average. On the
other hand, few but large objects, as e.g. typical for multimedia databases, create insignificant
slot lists but tend to block merging because the variance in page load after a random deletion
process creates a surprisingly high number of incompatible pairs of pages. The resulting over-
flow is called a spill page and is chained onto the original location but rests at the end of the

0.1 0.2 0.3 0.4 0.5 0.6

net load factor Q before folding

0.2

0.4

0.6

0.8

1

U
, E

OO7 Dataset, f=2

Usage(net)

Usage(gross)

Figure 13:Gross and net utilizationU and efficiencyE of folding with f = 2

E

22

file. These pages reduce the resulting utilization and in fact prevent load factors better than
67%.

These observations also suggest that folding should be combined with some type of object
movement. Since displaced objects don’t have reverse links, i.e. they don’t know where they
came from originally, this is not a trivial task and is left as an open research problem. Similarly,
aspects of hiding the folding process within on-line transactions along the lines of [7, 9, 12] are
not considered here and pose an interesting challenge.

Literature

[1] M.M. Astrahan et al. System R: Relational Approach to Database management, ACM TODS, 1:2 (June
1976) pp. 97-137

[2] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The OO7 benchmark. In Proc. 1993 ACM
SIGMOD Conference, Washington D.C., May 1993, pp. 12-21

[3] H.Chou, D. DeWitt and A. Klug. Design and implementation of the Wisconsin Storage System, Software
Practice and Experience 15, 10 (Oct. 1985)

[4] A. Eickler, C.A.Gerlhof, D. Kossmann. A Performance Evaluation of the OID Mapping Techniques, Proc.
21st VLDB, Zürich, Switzerland (1995) pp. 18-29

[5] A. Gamache and Nadjiba Sahraoui, Addressing Techniques Used in Database Object Managers O2 and
ORION, SIGMOD Record 24:3 (Sept. 1995) pp. 50-55

[6] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques, Morgan Kaufmann Publishers,
San Mateo, Calif., 1993

[7] E. Omiecinski, L. Lee, and P. Scheuermann. Concurrent File Reorganization for Record Clustering: A Per-
formance Study, Eighth Int. Conf. on Data Engineering, Tempe, Ariz., Feb. 3-7, 1992, pp. 265-272

[8] Reda Khalifa Salama. Design of a Multi-Channel Operating System Based on UNIX, PhD-Thesis Univer-
sity of Kassel, Germany (1995)

[9] B. Salzberg and A. Dimock. Principles of Transaction-Based On-Line Reorganization, Proc. 18th VLDB
Conf. Vancouver, B.C., 1992, pp. 511-520,

[10] J. Teuhola and L. Wegner: Minimal Space, Average Linear Time Duplicate Deletion, Comm. ACM 34:3
(March 1991) pp. 62-73

[11] L. Wegner, M. Paul, J. Thamm, and S. Thelemann: Pointer Swizzling in Non-Mapped Object Stores, Pre-
print 4/95 (August 1995) and Proc. Seventh Australasian Database Conference (ADC’96), Melbourne,
Australia, 29-30 January 1996, Rodney Topor (Ed), Australian Computer Science Communications, Vol.
18 Number 2, pp. 11-20

[12] C. Zou and B. Salzberg. On-line Reorganization of Sparsely-populated B+-trees, Proc. 1996 SIGMOD,
Montreal, Canada, SIGMOD Record 25:2, June 1996, pp. 115-125

