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Abstract

We discuss relations and differences between fuzzy and case based

reasoning methods in order to indicate possibilities for future research

activities. We interpret the basic concepts of each approach in terms of

the other one and discuss the computational methods in particular from

an knowledge engineering point of view.

I. Preliminary Remarks

The intention of this note is to point out relations and differences between fuzzy

set theory and case based reasoning, to discuss problems arising in this context

and to indicate possibilities for future research activities. In fuzzy theory the notion

of vaguely described sets is central. In case based reasoning the central notion of

similarity deals also with some kind of vagueness. Both approaches have in

common that they are not based on classical binary logic. They have raised

considerable interest in various disciplines including computer science,

mathematics and cognitive science and have led to many consequences and a

rich theory. Both areas are also of high to practical interest. In particular fuzzy

control plays an important commercial role but also case based reasoning has

entered the commercial world.
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There is much discussion about the various attempts to deal with these and

related concepts about vagueness, uncertainty and so on. It is not intended here

to contribute to these often controversial arguments but rather to discuss the

relations on a computational and pragmatic level. The author also wants to avoid

by all means the impression that any kind of evaluation of these areas is intended.

Another observation is that both approaches have been developed relatively

independently of each other. Despite the obvious analogies mentioned above not

even the basic of each approach concepts (which we include in order to refer to

them) have been interpreted in the terminology of the other approach. This is our

starting point.

II. Basic terminology

II.1.  Case-based reasoning.

We consider a set U called the universe which is equipped with some structure. A
guiding example is where U is partitioned into nonempty subsets K1,...,Kn. A

classifier for such a partition is a mapping

c:  U —> {1,...,n }

which assigns to each  x ∈ U  (the index of) its class. The classification problem

asks for such a classifier. If we center on the task of classification where in the

simplest situation we have a partition of U into two classes we can restrict our

structure to (U, K, U\K).
For x ∈ U the class of x is then denoted by Kx. This restriction is sufficient to

explain many of the major concepts of CBR. A similarity measure on U is mapping

sim: U x U —> [ 0, 1]

with sim (x, x) = 1. Equivalently one can take distance measures for which d(x,x) =

0 is required.  Often some additional properties are required. For simplicity we will

sometimes assume the symmetry law sim (x, y) = sim (y, x). Sometimes the

codomain of sim is extended to negative values, say  [-1, 1]. This is, however,

only of interest if negative similarities are treated different from positive ones in

further arguments; we will come back to this point below.

If the objects are represented as attribute-value vectors) then the measures can

sometimes be decomposed according to these attributes. A similarity measure on

the domain of an attribute is called a local measure while the measure on the

whole objects is called a global measure.

The most common measures are the Hamming measures H(a,b) which count the

number of attributes on which a and b agree. A refinement is to introduce weights
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for each attribute which reflect their importance for the intended problem. Another

refinement introduces a local similarity measure on the domain of each attribute;

the global measure amalgamates them into a single value using again a weighted

sum (or some more sophisticated function).

We identify U with the set of problems. A case is an ordered pair

(x, Sol)

where  x ∈ U and Sol is the solution of the problem denoted by x; the set of

solutions (the "solution space") is denoted by Y. For the classification task Sol is
just  Kx  and a case is of the form

(x, Kx).

In general the problem under consideration may have an arbitrary solution type.

An example is when the solution is some action or decision. Certain actions are in

the center of interest of fuzzy control.

One generally assumes that problems have unique solutions. Therefore it is

justified two identify cases with elements of U. Then a case base is a subset CB ⊆
U. The intention is that the solution of the problem in question is available for each

x ∈ CB. .

For u ∈ U some x  ∈ CB is called a nearest neighbor of x:

NN (u, x) iff sim (u, x) ≥ sim (u, y) for all y ∈ CB.

In our special situation the pair (CB, sim) classifies now all elements in U by
Ku = Kx, NN (u, x).

If the nearest neighbor is unique then the classification is unique. (CB, sim) is

called a CBR-classifier; in general one calls it a problem solver. There are many

variations of this, e.g. considering the k nearest neighbors etc.

II.2.  Fuzzy sets.
Fuzzy subsets of A of U are denoted by A ⊆f U and µA : U —> [0, 1] is the

membership function of A.  A fuzzy partition of U into n  fuzzy subsets is given by
membership functions  µ1(x),...,µn(x) such that

∑ (µi | 1≤i≤n) = 1

holds for all  x ∈ U. A fuzzy classifier for such a partition is mapping
cf :  U —> [ 0, 1]n

such that  for
cf(x) = (y1(x),...,yn(x)) we have  ∑( yi(x) | 1≤i≤n) = 1.
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One mostly considers the case where U is a finite set of m-dimensional real

vectors. Then for each i
∑ (yi(x) |  x ∈ U )  <  1

is also required.

Fuzzy partitions were introduced in [Ruspini 69] and fuzzy classifiers have been

used in pattern recognition and cluster analysis, cf. e.g. [Bellman et al. 66].
A crisp fuzzy classifier satisfies in addition that for cf (x) = (y1,...,yn) for exactly one

i we have yi = 1 and yk = 0 for k ≠ y; hence crisp classifiers represent classifiers in

the ordinary sense. Using a subset  CB ⊆ U of classified elements (a case-base in

the CBR-terminology) and using the Euclidean norm as a distance measure one

can as above define the nearest neighbor concept by

NN (u, x) iff ||u - x|| ≤ ||u - y|| for all y ∈ CB

and obtain a crisp classifier.

The classical Boolean operations are replaced by real-valued functions which

compute the membership function of a Boolean combination of fuzzy sets from

membership values of the arguments. It is common to assume some axiomatic

properties of these functions. For our further discussion it is convenient to list two

examples.
a) t -norms f(x, y) (intended to compute µA  ∩ B)

Axioms:

(T1)  f(x, y) = f(y, x)

(T2)  f(x, f(y, z)) = f(f (x, y), z)

(T3)  x ≤ x' , y ≤ y' ⇒ f(x, y) ≤ f(x', y')

(T4)  f(x, 1) = x

Typical t-norms are f(x,y) = min(x,y)  or  f(x,y) = x⋅y

b) co-t-norms f(x, y) (intended to compute  µA ∪ B).

Axioms:

(T1), (T2), (T3) and

(T4*)  f(x, 0) = x

Typical co-t-norms are f(x,y) = max(x,y)  or  f(x,y) = x+y - x⋅y.

Consequences are f(x, 0) = 0 for t-norms f(x, 1) = 1 for co-t-norms.

There are other fuzzy combination rules available which are fuzzy versions of

general Boolean operators like different types of implication.
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III. Similarities and fuzzy sets: First Observations.

For each similarity measure sim on U we define a fuzzy subset
SIM ⊆f V: = U x U

by
µSIM (x1, x2): = sim (x1, x2)

We can also associate to each x ∈ U a fuzzy subset
Fx ⊆f U

by µx (y) = µ Fx (y) = sim (x,y) and symmetry of sim implies µx (y) = µy (x).  In this

way we obtain, starting with a fixed sim, for each x some fuzzy subset view can be

regarded how  U  is structured by sim from the viewpoint of x.

This treatment of similarity was essentially introduced in [Zadeh 71]. There

similarity was treated as a fuzzy equivalence relation with the membership
function  µSIM  from above. The transitivity law reads as

µSIM (x,y) ≥ supz (inf (µSIM (x,z),  µSIM (z,y) ).

The usual transitivity law is obtained by putting  µSIM (x,y) = 1. Also, for each x the

"similarity class" (representing the fuzzy equivalence of x) was introduced as
µSIM,x (y)  =  µSIM (x,y).

Essentially the same is the treatment of fuzzy equality as a fuzzy equivalence

relation
E(x,y) ⊆f V: = U x U.

If one argument, say x = a, is fixed then this leads to a fuzzy set
Ea (y) = E(a,y) ⊆f U .

The nearest neighbor relation now reads as
NN (x, y)  |  µx (y) ≥ µx (z), ∀ z ∈ CB,

or equivalently
NN (x, y) |  µSIM (x, y) ≥ µSIM (x, z), ∀ z ∈ CB

These considerations show that we can interpret the basic case based reasoning

concepts the terms of the fuzzy set terminology. The other direction of an

interpretation needs some addition. One aspect is easy. Suppose we have a

fuzzy subset
S ⊆f  V = U x U

with µs (x, x) = 1  then S defines obviously a similarity measure. But if we have

simply a fuzzy set K ⊆ f U then we would need in addition a reference object in

order to define a measure.

Such a reference object has to satisfy
µK (x) = 1.

In this case we can define a similarity measure by
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sim(x, y) = µK (y)

Suppose there is a subset CB ⊆ U such that for each x ∈ CB we have some fuzzy
subset  Kx ⊆f U  with membership functions µx (y), for which µK (x) = 1 holds. Then

we can again define a measure on U x CB by
sim (y, x) = µx  (y), y ∈ U, x ∈ CB.

This is sufficient to define the nearest neighbor notion NN(y, x), y ∈ U, x ∈ CB.

Suppose  now U splits into two (unknown) classes K, U\K ⊆ U and the elements

of CB are already classified. Then we may regard the fuzzy subsets
Kx ⊆f U, x ∈ K  and Kx ⊆f U, x ∈ U\K

as "fuzzy versions" of K and U\K, resp. (i.e. again these are K and U\K from the

viewpoint of x). Then  CB ∩ K  and  CB ∩ (U\K)  can be regarded as the

prototypes of K and U\K, resp., presented by CB (categories and their prototypes

are discussed in section VIII).

These considerations show that the basic notions of fuzzy sets and case-based

reasoning can be interpreted in terms of each other. Hence each problem and

statement in one terminology can also expressed in the other terminology. This

does not mean that both approaches are equivalent in each respect because they

have developed individual computational models and techniques. We will now

draw our attention to these aspects.

An important problem is connected with unknown values which ask either for

completing the object description in an optimal way or working with incomplete

descriptions. In CBR both aspects have been studied systematically; in the fuzzy

approach this has not yet played a major role.

IV. Accumulation of similarities and combination of norms.

A basic task in case-based reasoning is to accumulate similarity measures.
Suppose we have an attribute-value representation of objects a = (a1, ... , an).

A local similarity measure simi then considers only the i-th coordinate of the

objects. A global measure has to combine all local measures appropriately.

Simple but common combination functions use weighted sums which give the so-

called weighted Hamming measures.

Suppose now we represent the local measure by fuzzy sets as indicated above.

We remark that although a local measure is concerned with a single attribute it

can still be regarded as a measure on all of U (usual not a very good one). Strictly

speaking, the combination of local measures extends the local measures  to the

product space.
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In the terminology of fuzzy sets then a combination function applied to member-
ship functions is needed. Suppose we want to accumulate sim1  and sim2  where

SIM1   ⊆f  V and  SIM2   ⊆f  V  are the corresponding fuzzy sets. At a first glance

the phrase "look for the accumulation of sim1 and sim2" would ask for the fuzzy

intersection of SIM1 and SIM2 and would therefore require the application of some

t-norm. The situation is, however, somewhat more involved which is due to the

fact that it is not clear what we mean by the "accumulation of similarities". There

are basically two ways to think of such an accumulation.

a) Each similarity measure contributes a nonnegative evidence to the proposition

that two elements a and b are in the same class; sim (a, b) = 0 contributes just

nothing and sim (a, b) = 1 guarantees for sure that a and b are in the same

class.

b) Each similarity contributes also a negative evidence to the proposition that a

and b are in the same class; sim (a, b) = 0 guarantees that a and b are in

different classes.

If we have several measures (e.g. several local measures) then some may be of

type a) and others of type b). The standard similarity measures (e.g. weighted

Hamming measures and their variations) assume all type a) because then

negative weight factors occur. In principal, there are no problems to accumulate

measures entirely of type b) by considering also the complement. Difficulties arise

if measures of type a) and type b) occur in the same context, see below

In terms of fuzzy operations we can state the following:
a) For the accumulation of sim1, sim2 of type a) some co-t-norm f is applied to

SIM1 and SIM2.

b) For accumulating sim1, sim2 of type b) some t-norm f is applied to SIM1 and

SIM2.

It is easy to see that at least on the present level of discussion the axioms (t1) -

(T3), (T4) and (T4*) are meaningful. They do not cover, however, all situations

discussed so far. If we e.g. consider fuzzy sets SIM derived from weighted

Hamming measures axiom (T1) fails, i.e. conjunction and disjunction is not

commutative. This means that fuzzy sets coming from very common measures in

CBR need to treated in a more generalized manner.

Accumulating similarities of type a) has the consequence that even small

contributions can only add something in favor for the similarity; the missing part  is

regarded as ignorance and not automatically as a contribution to the opposite.

This point of view interprets similarities of x and y as evidences about the event
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that x and y belong to the same class in the sense of Dempster - Shafer. This is

discussed in  [Richter 95a ] .

The viewpoint of measures of type b) is basically that of probability (although this

is for many situations a too narrow view): The similarity of x and y represents the

probability that x and y are in the same class. A consequence is that independent

contributions to a similarity are combined multiplicatively. Fuzzy t-norms are in this

context more related to probabilities and co-t-norms are more related to evidences
A problem arises when  sim1 is of type a) and sim2 is of type b). At first, a

nonsolvable conflict arises when sim1 (a, b) = 1 and sim2 (a, b) = 0, in this case we

have a contradiction. As a consequence, the accumulation of sim1 and sim2

should be undefined. In evidence theory e.g. an analogous  contradiction occurs if

one evidence says with certainty 1 that a ∈ U \ K and another evidences

guarantees that a ∈ K; here again the accumulation of evidences is not defined.

Our above considerations suggest that
• sim1 should be treated like an evidence

• sim2 should  be treated like a probability

Unfortunately, there is very little known about such an accumulation. In the

PATDEX-system (see [Wess 95]) negative values for the measure have been
introduced; the range of simPAT was [-1, 1].  This attempt has to be used with

care, however. Suppose e.g. one uses weighted Hamming measures with

negative coefficients without any restrictions. Then it can happen that sim(a,b) < 0

for a _ b which leads to the undesirable  consequence sim(a,b) < sim(a,a

From the view point of fuzzy sets
• sim1 ask for the application of a co-t-norm

• sim2 ask for the application of a t-norm.

Here we have a related difficulty. One way is to apply one of the fuzzy versions of

other Boolean operators (in particular  employing negation or some of the various

forms of implication)

V. Linguistic rules and cases.

In qualitative reasoning one distinguishes between quantitative and qualitative

data (denoted by Quant and Qual, resp.). These are not  absolute but relative

notions. Usually we have an abstraction mapping

A:  Quant —> Qual

accompanied by a set of concretization mappings

C:  Qual —> Quant

which are compatible with A,  i.e. A(C(x)) = x holds for all x in Qual.
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There may be different qualitative levels for a fixed quantitative level. The

abstraction mapping A transforms each predicate P on Quant into a predicate

Pqual  on Qual. In the context of the usual fuzzy terminology one refers to the

predicates on Qual as to linguistic predicates or linguistic terms. This terminology

refers furthermore to

abstraction mappings as to fuzzifications

and

concretization mappings as to defuzzifications.

A linguistic rule is simply of the form

P1, P2,..., Pn —> Sol
where the Pi are the premises and Sol is the conclusion. An important difference

between qualitative reasoning and fuzzy theory now is that the qualitative

predicates in

qualitative reasoning are interpreted in binary logic

while the

linguistic predicates are interpreted as fuzzy predicates.

For the intuitive meaning this is, however not very important; the expert who

formulates the rules does normally not use a formalism. Technically the difference

is much larger. In qualitative reasoning abstraction and concretization mappings

have been developed only in an ad hoc manner  while fuzzification and

defuzzification mappings are treated much more systematically, in particular with

respect to their computational aspects. On the other hand the success of a fuzzy

system depends to a high degree on the possibility to encode the problem in

numerical terms; often this takes much effort.

In fuzzy control linguistic rules are used essentially in the following way (which

can be regarded as the "fuzzy problem solving method"): The premises describe

the required state of the system while the conclusion describes the action to be

taken. For each observation the degree of membership to the corresponding

(fuzzy) premise is computed and an application of the t-norm in use computes the

degree of membership of the whole observation to the premise. Using again  the

t-norm with the fuzzy conclusion the fuzzy set of the intended action is computed.

It has to be noted here that for the premises the specific values of observations

are used in order to compute the degree of their membership. The conclusion

then is obtained as a fuzzy predicate. It is important to note that the membership

function for the conclusion decreases when the degree of membership for the

premises of the observation decreases. If several rules for the same action are

present the co-t-norm used is applied for these rules in order to compute the final
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fuzzy set for the action in question. The final solution then is obtained by applying

a defuzzification operator.

Fuzzy classification proceeds in principle in the same way. The knowledge about

the classes is expressed in linguistic rules. The premises describe properties of

the object to be classified and the conclusions yield properties of the class.

Fuzzification transforms the premises into numerical values and defuzzification

(often realized by the nearest neighbor method) finally returns a crisp classifier.

In applications of control theory such rules are iteratively used. The input values

for the premises are obtained from the environment via sensors, the actions

change the environment and so on. This demands high efficiency and asks

therefore for simple computations.

Next we discuss a special situation which is important in fuzzy control and directly

related to the CBR-approach. Suppose their are certain tuples for which the

control action Sol has been correctly defined:

(a1,...,an, Sol).

Such tuples may lead to linguistic rules of the form

"If x1 is almost equal to a1 and ... and xn is almost equal to an then 

the conclusion is Sol" .

The intention is that values which are almost equal cannot be distinguished

because of imprecise measurement or their difference is negligible for the

intended action.

In the CBR terminology this reads as

"If x1 is similar to a1 and ... and xn is similar an then Sol",

 where “similar” is understood as “sufficiently similar”.

In fuzzy control “almost equal” is modeled as a fuzzy predicate. In particular, for
each attribute Ai one looks at the subset

Xi = {a| a occurs in one of the rules at the i-th coordinate}.

Each of these a ∈ Xi now gives rise to a fuzzy predicate Ei,a (x,x')  on Ai of being

“almost equal from the viewpoint of a”  One should note that there is in general no
uniform predicate E i on Ai easily available and simple to formulate, it rather

depends on the particular a ∈ Xi. It is, however, only a technical problem to merge

the Ei,a(x,x') into a single Ei(x,x'). The selected a ∈ Xi have to be chosen with care;

they can be regarded as prototypical elements of E (cf. section VIII).

If there is also a fuzzy equality relation in the conclusion space we obtain for each

fixed conclusion C in one of the rules a fuzzy predicate and we are back to the

general situation described above. Technically this is done by extending the fuzzy

equality relation to the product space
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A 1 x...x A n —> Y

where Y is the solution space (this requires, however, that the fuzzy equality

relations on the different attribute sets are independent of each other).

Turning to CBR we assume that our objects  are modeled as attribute-value-

vectors  Then a case is of the form
(a1,...,an, Sol)

where Sol is the desired conclusion (e.g. a class if we deal with classification). As

already indicated such a case may be regarded as a rule:
If a1 and...and an then Sol.

This rule is used as usually rules are used except:

1) The matching of actual situations is inexact; those situations match which are

nearest neighbors w.r.t. the similarity measure.

2) The conclusion may be adapted (i.e. undergo a solution transformation).

The inexact match is closely related to the computation of the degree of

membership to which the  observations satisfy the premises.  In particular, the
fuzzy equality relation Ei(x,x') is a local similarity measure.

The conclusion is not a fuzzy predicate but either a concrete conclusion or a

solution on an abstract level; the latter would require a concretization mapping.

The “fuzziness” of the conclusion is hidden in a twofold way:

1) The degree of similarity between the actual observations and the case is an

indicator how reliable the conclusion is.

2) The way the solution of the case is adapted is another indication of how

adequate the solution is.

VI.  Background  knowledge and knowledge container.

As each kind of knowledge background knowledge can be represented in an

explicit or an implicit way. The implicit representation codes the knowledge in a

more or less hidden way, e.g. in the terminology and the vocabulary used, in the

way functions, algorithms and rules are defined etc. It depends mainly on the skill

of the system designer and the user how this is done. An explicit representation

requires a language with a clearly defined semantics (which should be closely

related tom the intuitive understanding of the knowledge). In this language the

knowledge is formulated.

In [Richter 95b] we introduced the concept of knowledge container and studied it

for CBR. The knowledge containers are parts of the system in which knowledge

can be represented and which can be treated independently of each other. In
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case-based reasoning four such containers can be identified:

1) The vocabulary

2) The similarity measure

3) The case base

4) The solution transformation.

In general CBR=systems the user can represent knowledge explicitly in at least

three ways. AS an example, they are all realized in the INRECA-system (cf.

[Althoff et al.95]):

(i) Exclusion rules: They describe constraints on the retrieved cases. This is

some filtering; examples are restricting equalities as  x = a or inequalities as  x

≤ a or x ≥ a. These rules refine the similarity measure.

(ii) Completion rules: They specify how missing features of a case are inferred

from known features of old cases in the case base. This refines again the

similarity measure.

(iii) Adaptation rules: They specify the solution transformation. This describes how

a solution from a similar case is adapted to a new case if the solution is not

identically accepted.

The advantage of this explicit and easy to handle representation methods give the

user a high flexibility to react on specific demands.

In a fuzzy system we find the following knowledge containers:

(1) The vocabulary

(2) The linguistic rules

(3) The membership functions

(4) The t-norms and the co-t-norms

(5) The defuzzification method

(6) The adaptation rules

All these containers contain compiled knowledge (i.e. has to undergo a

compilation or rather coding procedure). Only (2) and to some degree (6) allow an

explicit knowledge representation. Because linguistic rules have no precise

semantics one has to specify, however, the remaining parts of the system in such

a way that the intentions of the user are met.

VII. Optimization and Learning.

The goal of optimization in this context is to improve the performance of the

system, This can be done in various ways. In principal we observe three major

methods for improving performance:
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(i) Control theory

(ii) Machine learning

(iii) Human interaction

Fuzzy control as a whole counts under (i) but in order to improve a fuzzy control

system itself human skill has been used almost exclusively.  It should also be

mentioned that couplings with other methods like neural nets are possible where

the fuzzy system gives the initialization and the learning takes place in the net.

In CBR in addition machine learning techniques (where we include hillclimbing

and related methods) have been used in order to improve the similarity measure.

In both techniques there seems to be much space for employing learning and

optimization methods.

VIII. Categories

The representation of classes by a case base and a similarity measure where

decreasing similarities of elements of the case base correspond to a decreasing

membership to the class has a tradition in cognitive science. Here one

distinguishes between a concept and a category (cf.  [Lackoff 87]). A concept in

the traditional sense has a precise definition and each element either satisfies this

definition and belongs to the concept or it does not. Categories need not to have

definitions but have typical elements called prototypes. Such categories occur

frequently in every day life and decision support systems should take this into

account (what is not yet the case).

One kind of categories is of the form described above where the degree of

membership is given by the similarity to the prototypes. In [Lackoff 87] it is argued

that many important categories are not of this form and can in addition not be

represented as fuzzy sets. Such a principal statement is probably too strong.

What seems to more likely is that the fuzzy approach is not always suitable. In

section V fuzzy equality was considered and mentioned that the membership

function is often defined with respect to prototypical elements. So here we have

an example how categories could be modeled using fuzzy sets.

In a category there is often no meaningful property which holds for all of its

members. The way categories are structured is that one starts with the

prototypical elements and reaches other elements by "links". Two elements are

connected by a link if they have something in common with respect to a property

which is considered as "important"; this is a user defined term depending on the

domain and the task. Each member of the category should be reachable from the

prototypical elements by a finite chain of links. To represent links one needs a
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complex structure and a rich language to for all the intended aspects. This favors

in principle symbolic representations over numerical encoding.

This has some resemblance in the way similarity measures are often defined: The

weighted Hamming measures reflect the importance of the attributes. If properties

correspond to attributes (which in principal can always be achieved) then links

correspond to high similarities.

The complex structure of categories is related to problems in the area of

terminology. There a term is not just simply described by a definition but rather by

a structure called term record, The term record contains (on a formal or informal

level) all relevant information about the term, see [Richter et al.95].

IX. A first discussion and comparison

IX.1 General observations

The techniques for fuzzy reasoning and case-based reasoning have been

developed with somewhat different intentions and have therefore to some degree

different merits and weakening. Our guideline is that one method favors numerical

representations and methods while the other one puts more emphasis on the

symbolic level. Basically numeric method result in higher efficiency while symbolic

ones allow more flexibility in the system design. There is, however, not a sharp

dividing line because each approach has elements of the other one too.

In fuzzy set theory one is mainly restricted to numerical entries rather than

symbolic ones. This means that real numbers or n-dimensional real vectors

represent the objects. For efficiency purposes the membership functions are

piecewise linear in most situations. The efficiency issue comes from demands of

control theory where rules have to be iterated, often under real time constraints. In

addition, various (and efficient) defuzzification methods have been developed.

In CBR the intention is not to iterate the solution process but to apply it once, e.g.

to a classification problem or to support a decision. These applications ask also

for symbolic values and hence they  play a much bigger role here. This in turn has

the consequence that the demands on the accuracy usually are not as strong as

when numerical values are involved.

Most of the major advantages of CBR are related to knowledge and software

engineering issues as pointed out in [Maurer 96] and [Althoff et al.97].

The main point is here that software products are not regarded as static elements

which remain unchanged through their life time; this is only for very dedicated
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software products the case (which applies e.g. for certain systems in fuzzy

control). In general such products undergo dynamic changes due to an unstable

context or varying user demands. Also the reuse issue is important here where

reuse is understood in non-identical situations. Two major aspects in modifying

pieces of software are:

(1) Knowledge to be changed has to be represented explicitly and separated

from the remaining knowledge.

(2) There is a knowledge container that carries knowledge which is only

interpreted at run time.

From the discussion in section VI it follows that fuzzy systems are more of static

character. In contrast CBR-systems allows more explicit knowledge

representation and has the case base as a knowledge container which is

interpreted at run time.

Abstract concepts in fuzzy systems occur in linguistic rules. Although the notions

of similarity and abstraction have much in common their detailed interplay is

somewhat delicate. A realization was obtained in the PARIS-system, see

[Bergmann 96].

IX.2 Suggestions for integrating techniques

The integration of different techniques can be obtained on various levels of

intensity. This reaches from hybrid systems where the individual methods are

simple available to a seamless integration where the components are invisible to

the user. At this point we will just indicate where and how the two techniques

under consideration can supplement each other. Despite the differences listed so

far there are still a number of promising possibilities for this.

(1) Improvement of fuzzy systems by CBR-techniques.

(1a) The experience in the CBR-domain can be used to extend numerical object

descriptions to symbolic ones.

(1b) Fuzzy equality could be treated directly by similarity measures which allows

to employ the experience with such measures.

(1c) CBR has detailed experience with missing values which could be employed

in fuzzy systems.

(1d) If linguistic rules are difficult to acquire they could be replaced by cases.

Such cases could also be used in machine learning procedures.
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(2) Improvement of CBR-systems by fuzzy-techniques.

(2a) In applications often fuzzy predicates occur in a natural way. They are either

treated using the detour via similarity measures (which is always possible,

see section II) or transformed into a binary predicate. Using fuzzy

membership functions this can be simplified as we will illustrate now.

(2b) Local as well as global similarity measure use often a fuzzy partition of their

domain in order to fine structure the measure. This fine structure could be

improved using the membership functions directly.

(2c) Object descriptions as well as attributes do not allow fuzzy notions although

they are often obtained from the expert this way. As a consequence

similarity measures have to be extended in order to allow numerical

functions as arguments.

(2d) Also it is often appropriate to give  the output as a vague predicate.  This

could either be interpreted by the user (e.g. the decision maker) individually

or undergo some defuzzification method.

(2e) Fuzzy control itself could be used to improve similarity measures and hence

supplement the machine learning methods employed so far.
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