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I. Introduction

For diagnostic processes it has long been accepted that the establishment of the

diagnosis is only the last step in a diagnostic process. Most of the work is devoted to

the (partial completion) of an incomplete state of information about the world. This

world is e.g. the health status of a patient or the failure status of a machine. Often the

world is described by an attribute-value representation and in this case the strategy

of the diagnostic process has to select attributes for which missing values have to be

acquired. This acquisition is connected with costs and hence the diagnostic process

includes an optimization problem. On the other hand, the therapy is usually

separated from the diagnostic process; the process finishes with the establishment of

the diagnosis. Hence the whole diagnostic process gives rise to a specific planning

problem. The purpose of this plan is to obtain the needed information in an efficient

way. One can view this as planned information retrieval.

The most common model for AI planning is based on the STRIPS notation. Certain

actions are defined in terms of operators, preconditions, add and delete lists. The

problem is to find a sequence of operator applications which transfer an initial

situation into some desired goal situation. In this article we assume the view of

systematic nonlinear planning (SNLP), see e.g. [McAllester 91].

It was mostly assumed that the knowledge about the world is sufficiently complete for

building the plan. Therefore there is no need for gathering new information about the

world; the actions are carried out in a completely known and fully deterministic

environment. Recently this view was broadened, cf. [Pryor 95]), but to our knowledge

this was not realized in practical systems.
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The needed information is often distributed over different locations. It is typical for

information retrieval that

a) the content of the information sources is not precisely known;

b) several sources have to be accessed.

In addition, different from database retrieval, one often does not know exactly what

one is looking for and this becomes only clear during the search. For these reasons,

information retrieval has also to be planned  The goals of such a plan have been

named as knowledge goals (cf. [Pryor 95]). In order to achieve a knowledge goal the

plan has to produce a number of (intermediate) pieces of information. These

knowledge pieces do not only have a truth value but are in addition more less useful

(which is finally the only thing that matters). This is standard when one is building

decision trees and is also accepted in diagnostic processes.

Another aspect of many planning problems is that certain actions have to be carried

out before the plan is finally established and even before the planning situation is

completely known. This requires an interleaving of planning and execution of the

plan. This is usually the case when large projects are planned. In addition, during

planning as well as during execution one has to react on changes of the environment

which is often not stable. As a consequence, some truth maintenance system is

required.

We will also discuss shortly which impact these considerations have on case-based

reasoning (CBR). We assume that the reader is familiar with the basic terminology

and techniques of CBR, cf. e.g. [Wess 94]

In this note we will present a view in which these aspects, in particular both diagnosis

and planning are embedded in more general and unified setting. The terminology will

be kept as simple as possible. The intended benefit is to reuse techniques which

have been developed for some purpose in a different context. For this we refer to

several systems designed at the university of Kaiserslautern.

II. The general problem situation

The situations we are interested in may have many aspects which all occur in real life

applications, although not always simultaneously. We will first list the main

characteristics of such aspects:

(1) The world is only partially known.

(2) Knowledge about the world may be uncertain or even false.
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(3) There are actions which change the world, actions which change the 

knowledge about the world, i.e. information providing actions and actions 

that do both.

(4) Actions can but may not necessarily be executed.

(5) The different actions interact  with each other.

(6) The execution of actions may be forced.

(7) There may be unexpected and unavoidable actions executed.

(8) Actions have costs and benefits.

Next we will indicate some situations where these difficulties occur. This is always the

case in general decision making with an  open world. More specific situations are:

(1) This is first the standard situation in diagnosis; the main task in a diagnostic

process is to partially complete the information such that appropriate further actions

can be performed. Also in robotics the robot never has a complete view of the world.

Other examples are planning or configuration tasks of complex products. The initial

information is rarely sufficient and often up to modifications.

(2) The outcome of many technical processes (e.g. in chemistry) is often uncertain.

Certain results of an action may depend on the weather of tomorrow. Due to errors

information about regulations may be false.

(3) If one travels from A  to B the state of the world is changed and if one looks up a

train schedule then the information is changed (i.e. new information is added).

Walking to the train station and looking up the schedule changes both, the state of

the world and the state of the information; in addition, there might be the unexpected

information that there is also a bus going to the point of destination.

(4) A telephone call may be unsuccessful, a machine may not operate.

(5) The interaction STRIPS-like actions is usually described by causal links, cf. [  ].

When information providing actions are present new aspects become involved:

(a) Certain actions can only be planned if another action is executed, e.g. travel plans

depend on the knowledge of available transportation means.

(b) The failure of the execution of an action gives the information that some condition

is not satisfied (e.g. one has dialed the wrong telephone number or an engine has no

fuel). The same is the case when the outcome of an executed action is not as

expected.

(6) Some authority (e.g. a legal one or a customer) may force the immediate

execution of an action. Also, if due to lack of knowledge no meaningful actions can

be planned an execution may be forced or some information providing action has to

be done.
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(7) A telephone call may be interrupted or it starts raining.

(8) In addition to the costs and benefits one has here to take into account the benefit

of the obtained information as well as the possible costs of using an unreliable

information.

One observes immediately that several points mentioned above enter the scenario

only because actions are not only planned but in addition executed. Therefore we

distinguish strongly between an action which is planned and an action which is

executed. The difference is mainly that there is no backtracking possible for executed

actions and their costs cannot be removed.

In order to distinguish planned actions from executed ones we will use the term

"postcondition" for planned actions and use the term "effects" for executed actions.

In addition, an executed action may have unforeseen effects which contribute to our

knowledge about world.  In terms of ordinary programming the distinction can also be

phrased as follows:

- Planning takes place at compile time;

- execution takes place at run time.

In this view ordinary planning is related to writing a program which is afterwards

executed while the interleaving of planning and execution is related to the

interpretation of programs. It is suitable to have the following identifications:

planning time = compile time

execution time = run time.

When one deals only with planning this distinction is unnecessary. In our context we

do not need an extra term for planning an action, it suffices to introduce the notion of

the execution of an action, see section III.

Even if an action cannot be executed just this fact can be and often is a new piece of

knowledge. For actions which provide information the type of the information may be

known at planning time (e.g. a telephone number) while the details of the information

are only available at run time (i.e. by an execution of the action).

The assumption that we have only partial knowledge about the world applies in

particular to the available actions. An action is not only described by its pre- and

postconditions ( or effects, resp.) but has in addition  parameters. The action " make

a telephone call" has e.g. the parameter "phone number" and the precondition

"phone available". Such an action may be completely unknown or some of its

parameters are missing. On an abstract level one may still work with unknown or



5

partially known actions; the execution requires, however, that the action is completely

known.

This is one more reason to deal with planning on various levels of abstraction.

Abstraction in the context of planning has some tradition, for recent developments

see e.g. [Bergmann 96].

It should also be remarked that terms like information and knowledge are used in

rather different ways. In [Aamodt 94] e.g. certain relations between data, information

and knowledge are investigated. For our purposes it suffices that information is

considered as knowledge (in the ordinary sense) about the model. A new piece of

information adds something to this knowledge which could not be inferred before.

This may be in a twofold manner:

(a) Information about the existence of actions or about the values of its parameters

may be added. This enlarges the space of possible actions.

(b) The uncertainty of the preconditions or the outcome of actions is reduced. This

reduces space of possible actions.

At planning time one might operate with an incompletely known action as long as a

corresponding information providing action which completes the operator description

is included before that action. Information providing actions  give only new

information if they are executed. Because the knowledge base is changed by such

actions the knowledge base may be partially contained in the model describing the

world.

All the situations discussed above have in common that there is a notion of what a

problem and what a solution is. Solutions are taken from a solution space the

elements of which are correct solutions, approximate solutions, or non solutions. The

solution space may be ordered by a preference relation. The problem space may

also be partially ordered expressing that one problem is more difficult than another

problem.

All these notions can be modeled in various ways, e.g. deterministic, indeterministic

or stochastic. In the following sections we will present simple formal notions for such

models. The intention is to provide a basis for discussing the various problems

mentioned. Of course, by far not all problems will occur in one application and we will

therefore discuss only relatively simple problems types from the viewpoint of an

application.



6

III. Basic formal notions

Our formalisms assume a multiple world model in the sense of modal logic:
W = < (Wi ) i∈I, ≤ >

where "≤" is the accessibility relation. In addition, we have actions g,  g ∈ A, which

provide an index set to ≤, i.e. we talk rather about certain ≤ g than about ≤. Instead of
Wi ≤ g Wj we write

Wi  → g Wj.

The worlds Wi may be of very general character containing e.g. real numbers and

functions etc. and are hence not restricted to predicate logic.

Actions g are in general described by parameters and may contain variables, i.e. they
are of the form g(p1,...,pn,x1,...,xm). The variables play the usual role as in planning

while the parameters are part of the operator description of the action.

We further assume a language L  the symbols of which are interpreted in W. Not all

objects (e.g. relations, actions etc.) are requested to have names in L. The intention

is that those objects are unknown; at some time they may be introduced into the

language. Therefore the language itself is of dynamic character.
 The interpretation assigns for the expressions in L one of the following:

• objects in W

• truth values

• probabilities

• other values depending on the application.

The intention is to keep the model open and flexible for dealing with problems

mentioned in the introduction.

Now we introduce some special sets of expressions.

a) Information pieces I; the set of information pieces is the information space II.

b) The knowledge base KB, the expressions of KB are assumed to hold in the

world W.

c) Problems P; the set of problems is the problem space IP. Usually the planning 
problems are (partial) descriptions of a pairs of worlds (Wi, Wj), Wi the initial and

Wj is the final world.
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d) Possible solutions L; the set of possible solutions is the solution space IL. 

Usually in planning possible solutions  are sequences of actions.

e) Correctness conditions  C(P, L) taken from a set  IC.

We now  assume that some information I can be represented  in W and that certain
expressions in L can refer to information I. In particular, as indicated above, certain

actions may introduce (or rather their effects, see below) other actions). We assume,

however, that self references which lead to paradoxes are avoided.

Because the system's solution of problems depends on the available information and

in our framework this information may increase during the solution process we have

to generalize the concept of a problem.

Def.1: (i) A task is of the form

T = ( KB, I, P, IL, C(P, L))

(ii) L ∈ IL  is a solution of T

   ↔
KB  ∪ I I= C(P, L)

This means that the correctness conditions assure that possible solutions are really

solutions. In principle, there could be solutions which do not satisfy condition (ii) but

we did not admit them because their correctness would depend on guessing. This

means our solutions are provably correct.

An intermediate set between the correct and the possible solutions is the search

space S. The search space is the set that is investigated by the problem solver.

Therefore it is not defined in an absolute manner but depends not only on the

problem solving method but also on the actual state of the solution process. Hence

there are various possible characterizations of it which we not investigate here,

however. The only condition which we will assume is

{L | KB ∪ I I= C(P, L) }  ⊆  S  ⊆  IL.

The search space  gives  rise to extend  the notion of a task.

Def. 2.: An extended  task is of the form  TE =  T = ( KB, I, P, IL, C (P, L), S) where S is called

the search space.
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It is often not distinguished between tasks and extended tasks. Next we introduce a

new concept for actions, the execution of action. This is done in order to discuss

formally the planning and the execution of actions at the same level.

With actions Wi → g Wj sets of expressions are connected as usual:

a) preconditions (denoted by pre(g))

b) postconditions (denoted by post(g))

Pre- and postconditions are extended to sequences of actions. Next we extend the

notions for actions:

1) With each action g we associate another action execution(g).

     These actions are external and not in the model.

2) execution(g) has

a) preconditions  (denoted by pre(g))

b) effects (denoted by eff(g))

3) There is a special precondition of execution(g) denoted by executable(g) which

always has to hold. 

4) The effects of g is either

(i) a) the transformation of a problem P into a problem Pg;

b) the addition of a new information Ig;

c) the transformation of an extended task

T = (KB, , P, IL, C(P, L), S)

to the task
Tg = (KB, Ig, Pg, ILg , C(Pg, L), Sg)

or

(ii) the new information ¬ executable(g). In this case we say that the 

execution of g failed.

5) If  executable(g) holds then always 4(i) takes place, otherwise 4(ii) happens.

6) If 4(i) takes place then
task T is solved ⇔ task Tg is solved.

The corresponding notions for tasks only are obvious. Often it is tacitly assumed that

the preconditions imply executability. A discussion of the relations between these

notions is given in [Arnold 96]. Actions with Pg = P  are called information providing

actions. Because we will deal with problems with incorrect information our knowledge

base may not only contain expressions that are true in the world under consideration.
This implies that e.g. KB  ∪ I I=  executable(g)  may hold, without g being

executable.
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We will have, however, a subset TrueKB of KB which contains only expressions true

in the world. For the sequel we assume TrueKB = KB unless specified otherwise.

Costs and benefits of actions will be treated by updating lists which are part of the

state of the world.

The most important conditions are 4) and 6). They imply that no backtracking for

executed actions is possible. Executed actions and their effects cannot simply be

removed, only other executed actions can change the effects. Because executed

actions also change the problems we can subsume here that in addition costs for

executed actions cannot be removed. This is different from planned actions; if

planned actions are removed we can simply forget them. Now we will discuss costs

and related aspects more closely.

Technically, in the task description there should be a slot in the knowledge base for

the costs (and benefits). This entry is usually initialized with 0 but then updated after

each execution of an action. This bookkeeping has no influence on the problem

solving itself but it is often required that finally the total costs are stated.

Often, the effects of execution(g) are exactly those which can be inferred from

K B ∪ I ∪ post(g). There are two important exceptions for this:

a) K B ∪ I is unreliable. In this case the effects of execution(g) may even 

contradict to post(g)

b) KB ∪ I is incomplete.

In this case the effects of execution(g) extend post(g).

Information providing actions g are usually connected with b); the whole purpose of

such g is to execute them in order to obtain the desired information. It is important

that often some part of eff(g) is contained in post(g). If g is e.g. "look up the phone

number of X" then eff(X) is twofold:

a) The fact that the phone number of X is known;

b) the precise phone number of X.

The information contained in a is sufficient to plan further actions following g.

IV. Dependencies

In particular in nonlinear planning various types of dependencies occur. We consider

two types.
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IV.1 Relations are between actions

Def. 3:    
(i)  A causal link between g1  and  g2 denotes that the postcondition of  g1

establishes a precondition of  g2.

 Notation:  g1 → c g2.

(ii)  g1 is a thread for g2 if g1 destroys some precondition of g1.

Notation:  g1 → t g2.

In addition,  one has the notion that g3 is a thread for a causal link between g1 and g2

of g3 destroys the precondition of g2 established by g1.

We have now two new types of dependencies. One comes from information

providing actions and the other results from incomplete knowledge.

Def. 4:
(i) g2 is information dependent on g1 if eff(execution(g1))  provide

(a) some missing precondition of g2

or
(b) some part of the operator description of g1 .

Notation: g1 → i g2

(ii)  g2 is negative information dependent on g1 if eff(execution(g1))  yields that  some

precondition of g2  fails.

Notation: g1 → ni g2

Due to the incompleteness of knowledge and due to the fact that the precise content

of eff(execution(g)) may be unknown each of the notions above has a companion

with the add-on “possible”. Hence we have the notions

“possible causal link”, “possible thread” and “possible information dependent”

with the obvious definitions.
Notation:  g1 → cp  g2  , g1 → tp  g2 , g1 → ip g2.

A special case is when g2 is itself the execution of some other action g3. In this case

execution (g1) has executable (g3) in its effect (resp. ¬ executable (g3)). It can

happen that an ordinary action is a thread to an information providing action, see e.g.

example 1 in section IX.
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The storage and treatment of causal links and threads is standard in SNLP. For the

corresponding notions with respect to information actions as given in definition 4 this

is somewhat different. We will first discuss some immediate consequences and then

return to the planning task in section VII.

a) The relation g1 → i g2  gives rise to a knowledge goal.

b) The relation g1 → ni g2 is a thread on an abstract level. Its precise form is

unknown and it gives again rise to a knowledge goal if this information is relevant

in order to remove the thread.
c) All of the relations  give g1 → cp  g2 , g1 → tp g2 , g1 → ip g2 generate candidates

for knowledge goals.

Whether it is worthwhile to achieve these various kinds of knowledge goals depends

on the actual planning status. In this status the available actions which in principal

could be executed are partitioned into four sets:

(I) Actions known as executable (including those where other actions with a causal

link have to be carried out first).

(ii) Actions that are possibly executable.

(iii) Actions with a possible thread.

(iv) Actions with a thread.

IV.2  Relations between knowledge and actions

In STRIPS the preconditions are sufficient for the execution of an action. There are,

however, conflicts in so far as several actions might be executable in some situation.

The selection of a single action is usually based on a strategy or heuristics which

looks at some specific characteristics of the situation. These are the  “reasons” for

the particular choice and are called design rationales.

One way to formalize this is as follows. We assume that the solution space consists

of sequences of actions. Suppose T is a task; recall that A is the set of actions.

Def.:The conflict of T is  conf(T) = {g ∈ A |  KB ∪ Ι I=  pre(g) }.

Def.:

(i)  A heuristic is a partial mapping H :  E  →  A, where E is the set of sets of

expressions.
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(ii) H is applicable for T if there is a unique maximal E ∈ dom(H) such that E ⊆ KB ∪
Ι and H(E) ∈ conf(T). In this case H(E) is selected as the next action and E is

called the design rational e for this decision.

The design rationale E should make reference to the conflict and as well as to the

preferences applied (see section V.).

The last concept has no counterpart coming from any missing information or

uncertainty. After solving the conflict one would now proceed to solve the new task
Tg. It should be noted that backtracking is possible as long as g is not executed. The

design rationales are important in three main situations:

(a) An inconsistency in the planning occurs and one has to select an intelligent

backtracking point.

(b) Due to the execution some external action some part of the knowledge base or

the available information is changed and one has to react on this.

(c)  One wants to reuse an old plan for a new task.

In (b) the old task T is replaced by the new task Tg. In (c) the reuse is extended to

speed up the solution transformation using design rationales (called complete replay,

cf. [Munoz 96]).

The notion of a design rationale has also an extension to situation with incomplete

information: It may happen that the design rationale includes a certain hypothesis on

which the heuristics depended. This should be noted in the record of the design

rationale.

These situations ask for some truth maintenance system. An advanced such system

is REDUX (cf. [Petrie 91]): it has been applied e.g. in the configuration system IDAX

(cf. [Paulokat 95]), in the planning system CAPlan (cf. [Weberskirch 95]) or to

software and knowledge engineering purposes (cf. [Maurer 94]).

The principal structure of REDUX allows the inclusion of hypotheses about the

partially known world. The following changes are appropriate, however:

1) Design rationales should be marked if they include a hypothesis.

2) If all hypotheses are confirmed then the mark is deleted.

3) If a hypothesis is rejected then the same mechanism is applied as in the case

where an assumption is withdrawn.
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V. Preferences and optimality

In the previous sections we have described the basic notions for actions which

change the state of the problem and the state of the information available. It was

important to distinguish between actions which are simply planned and those which

are executed. These notions have some impact on how optimality issues are

addressed.

Optimality is always connected with costs and benefits. Cost functions are in general

utilities. Utility functions are, however, often not directly available. What is present is

a partial ordering (a preference relation). In our context we encounter several such

preference relations.

The domain dependent preferences which describe the costs and benefits of the

actions defined for the specific domain under consideration is assumed to given by

some partial ordering  “ ≤ “ which we will discuss furthermore here. Instead we

consider two relations connected with partial information.

Def.6: The action g is search space reducing for the task
T = .(KB, Ι, P, IL, C(P, L), S).if Tg = (KB, Ig, Pg, ILg, C(P, L), Sg)  such that  Sg ⊂ S

holds.
Notation: T ≤s,g Tg.

Def.7: The action g is solution space expanding for the task T = (KB, Ι, P, IL, C(P, L),
S) if Tg = (KB, Ig, P, ILg, C(P, L), Sg) such that  IL ⊂ ILg  and  Sg ∩ IL = S hold.

Notation: T ≤e,g Tg.

The intention is that g provides information about new actions which enlarge the

search space (if at all) only in so far as the new actions are involved.

As in the previous section, these concepts have their counterpart with respect to

incomplete information which leads to the concepts (with the obvious definitions):

possibly search space reducing  and possibly  solution space expanding,
Notation: T ≤ps,g Tg,   and T ≤pe,g Tg.

The advantages of search space reducing actions are obvious. Solution space

expanding actions may be useful in two situations:

(1) There are no other meaningful actions available.
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(2) The available actions will lead to unacceptable bad solutions.

VI. Rules and constraints

It is not our purpose here to discuss rules, constraints and other knowledge

representation methods. For the representation of cases it is, however, useful to

distinguish between rule and constraint oriented problems. We consider tasks in
which a number of variables, say x1,...,xk are involved. The values of some of the

variables are given (these are called problem variables) and the ultimate task is to

determine the value of the remaining variables (these are called solution variables)

Suppose a class T of tasks is given.

Def.: The class T is called to be of rule type if the set of problem variables is fixed for

all T ∈ T; otherwise it is of constraint type.

In a more general setting the problem variables of a problem variables of a problem

are not completely specified but only restricted by some additional constraints.

Another important generalization is when constraint problems contain optimization

aspects. One way to handle this is to distinguish between hard and weak constraints

and order the latter ones by priorities, as done in the CONTAX-system, cf. [Meyer

95].

VII. Planning and knowledge goal planning

Here we will draw some first consequences of the framework introduced so far to

integrate the achievement of knowledge goals in an SNLP-planer. It should be

observed that knowledge goals have no value in themselves but are only means to

achieve other goals.

A central part of an SNLP-planer is the algorithm which arranges the ordering of

actions in such a way that threads disappear. We need to distinguish two aspects:

(a) Establishment of correctness conditions with respect to the executability of

actions.

(b) Selection of actions with respect to preference relations.

In both aspects knowledge goals occur explicitly and have to be achieved.

In aspect (a) the dependency relations of section IV.1 play a role. The recording of

these relations is the same as in ordinary SLNP-planning in so far as just some
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abstract dependencies have to be stored. Also the top-level algorithm of SNLP can

be taken over.

On the next level of detail the partition of space of available actions mentioned in IV.1

play a role. This first influences the ordering in which the algorithm consideres the

actions; this will just lead to specific heuristics. Next the partition gives rise to activate

information providing actions:

(i) Information dependencies give rise to knowledge goals as subgoals.

(ii) Negative dependencies give rise to knowledge goals only if its information is

needed on the top level.

(iii) “Possible” relations can be used either for the reduction of the search space by

assuming that causal links are not established or threads are already there or for

the generation of knowledge goals.

In which way this is realized in detail again depends on special heuristics.

For aspect (b) the notions from section IV.2 are relevant. The search for better

solutions leads to an investigation of the design rationales an in particular of the

possible alternatives. The wish to select better alternatives leads again to new

knowledge goals.

If the achievement of knowledge goals is a major task and does not only result in a

simple query then the planning has several specific characteristics. One is that the

information is stored at different locations which have specific access paths.

A system which realizes information retrieval in a general sense is COBRA, see

[Carranza 96].

VIII. Cases

Traditionally in case-based reasoning cases are ordered pairs of the form (problem,

solution).  This was often certainly adequate. Examples are classification tasks or

certain actions for a decision maker had to be generated. In planning one often

considers cases of the form (problem, partial solution). This is of interest if one wants

to partially complete partial solutions. The situation is even more different if the task

is not of rule type or the effects of some actions in the solution are not deterministic.

Also we deal with incomplete information in planning. For simplicity we assume an

attribute-value representation.
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VIII.1 Incomplete information

Cases have been used in CBR-systems for diagnosis for the partial completion of

information, cf. [Wess 94]. There are basically two ways a CBR-system can handle

incomplete information:

(1) Similarity measures accept input tuples with unknown values.

(2) Cases can be used to select the next variable for which a value has to found.

(1) The handling of unknown values in measures is a very delicate matter. In the

measure used in INRECA (cf. [Althoff 95]) it leads to an unsymmetry of the measure

because the impact of a missing value in a query case is not the same as a missing

value in a case from the case base.  This is also connected with some implicit

knowledge about the expectation of the missing value itself as well as about its

importance. In principle, unknown values could give rise to knowledge goals. The

treatment in similarity measures avoids this because sufficient a priori knowledge is

compiled into the measure.

The handling of unknown values in similarity measures for planning seems to be not

different from the diagnostic situation.

(2) Those cases which are used for selecting the next variable to be associated with

a value are called strategic cases because in diagnostics they determine the

diagnostic process.

In the usage of strategic cases we have to distinguish the aspects mentioned in

section VII; if only “good” cases are stored this is of minor importance.

The selection of needed information can be coupled with the replay technique. In a

replay the plan of a case from the case base is applied as long as possible to an

actual problem; if this is no longer possible then generative planning takes place ( as

in the CAPlan-system, cf. [Munoz 96]).

Here the replay may stop due to missing information. It can first be continued with

preferences obtained from the partitioning of the action space described in section

IV.1 as if those action that are not completely ruled out where still there. In a second

step this leads to knowledge goals in order to confirm the missing information.

Finally we remark that in order to reuse cases for information retrieval it is often more

advisable not to include the detailed information itself in the case but rather the

location where the information is stored.
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VIII.2 Constraint type cases

Constraints typically occur in design, e.g. in the design of buildings. A superficial view

could suggest that a case is the tuple of all values for the variables because after all

this tuple describes the result the customer wants to have. If CB contains only correct

solutions then this would suffice as long as only correctness is involved. When

optimality is also required then this becomes insufficient even if CB contains only

cases with optimal solutions. The reason is that optimality is defined with respect to

the values or constraints of the problem variables. This leads to the following

definition.

Def.:  A case of constraint type is a marked tuple of values for all variables. The

marks select the problem variables and state their constraints in the original problem.

In many applications the problem variables are quite arbitrary but more or less

determined by a user type. Each user type has a different view on the cases. If the

objects are e.g. houses then we have among the user types architects, builders,

customers who by the house and banks which do the financing. Each group selects

certain variables as problem variables, has its own preferences and its own default

values. This observation allows to proceed in a somewhat restricted way.

With each user type ut we associate the following.

Notation:
(i) V(ut) is a tuple (x1,...,xk) of variables which are called the problem variables of

ut.
(ii) simV is a similarity measure on the tuples of variables.

(iii) simut is a similarity measure on the on the k-tuples of values from the domains

of the variables xi from V(ut).

(iv) Each k-tuple of values from the domains of the variables xk has either the label

“default” or “exceptional”.

Comments:

(i) V(ut) is intended to contain those variables which users of this type are most

likely to select as problem variables.

(ii) This measure is applied when the type of some user is not completely clear.

The type of an actual user is determined using the nearest neighbor method
with respect to simV. In addition even users of the same type do not choose
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always the same problem variables. This approach can also be regarded as

some kind of preprocessing for case retrieval.

(iii) Each such measure reflects the view of its user type. Such individual measures

for user types are of course applied very often. The specialty here is that these

measures are applied on different argument sets.

(iv) This should indicate whether the user wishes are considered to be normal or

unusual. The intention is not that exceptional values are considered as “second

class citizens”. The idea is rather that one should not use such values for actual

problems with care because they reflect unusual demands. If e.g. the case

describes a building with a variable for “window type” then an exceptional value

would be a very expensive one. The label reminds to the fact that this value was

not selected during the solution process but given by the customer.

It should be noted that a more adequate would be to model  V(ut) as well “default”

and “exceptional” as fuzzy sets. The approach taken here simulates the fuzzy

membership functions by CBR-techniques.

VIII.3 Cases, effects and multiple cases

The intended problem is that of a decision maker who has to produce an action as

the solution for the task. The case description of the form (task, action) is insufficient

if the outcome of the action is uncertain, in particular if the action may not be

executable. In [Gilboa 92] it was suggested to represent cases as triples; due to the

lack of a common term we call them extended cases.

Def. An extended case is of the form (task T, action g, eff(g)).

A first observation is that there may be two cases coinciding in the first two entries

but with different effects; without the effects these two cases could not be

distinguished.

This leads to question whether one would admit the same case twice in the case

base. In a deterministic situation with complete information there would be no need

for this. In a more general context the occurrence of several cases with identical

description may, however, be highly informative.

Def.: A multiple case is a pair (C, n) with C a case and  n ≥ 1.
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The information in a multiple case is that values unknown at the time of problem

solving occurred n times. There are two major situations where this is important:

(i) Some value important for the solution is missing and one still has to proceed

(e.g. to apply a suitable information providing action).

(ii) A decision has to be made in form of some action with an uncertain outcome.

In both situations the multiple occurrence of cases will increase the likelihood of

certain values and will therefore give rise to certain preferences of actions. As long

as the occurrences are just recorded in the case base their information is used at run

time. In the terminology of [Richter 95] the information is stored in the container

“case-base”. If sufficiently much of such information has been obtained it may be

suitable to shift it to the container “similarity measure” which means that it is handled

at compile time.

IX. Examples

We will now give simple examples from the blocks world in order to illustrate the

interplay between ordinary planning, information providing actions and abstraction in

the presence of costs.

We use A,B, C,.. for blocks, X,Y,Z,... as variables for blocks, T is the table. We have

the predicates ON(X,Y) resp. ON(X,T) and CLEAR(X).

Actions are of the form PUT(A,B) and PUT(A,T). Information providing actions are

queries of the form ON(A,B)? For both types of actions no variables are allowed.

PUT-actions are executable if the usual preconditions are satisfied (what may not be

known); queries are always executable.

Besides the usual axioms for the blocks world we assume that towers are of height at

most 3.

The cost structure is given by:

cost(query) = 1 unit;

cost(other action) = 4 units;

cost(false solution) = 20 units.

Costs will apply of course also to failed executions of actions.
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1. Example.

The numbers in the sequel refer to the comments at the end of this section.

Initial situation:

ON(C ,B), ON(B,A), ON(A,T), CLEAR(C), ON(E,D), ON(D,T), CLEAR(E).

Goal situation:

ON(C,D), ON(D,A), ON(A,T), , CLEAR(C), ON(B,E), ON(E,T), CLEAR(B).

A

B

C

D

E

A

D

C

E

B

T T

Initial Situation Goal Situation

We observe that some information is redundant. Next we introduce an incomplete

information about the initial situation; we assume that this information is reliable, all

blocks are different and no unknown blocks exist.

Given information about the initial situation:

ON(X,B), ON(B,Y), ON(Z,D), ON(A,T), ON(E,U), ON(C,V), CLEAR(E), CLEAR(C).

The variables are here understood as existentially quantified.

?

B

?

A

D

?

?

E

?

C

?

?

?

? ?

?

A first analysis of the situation yields the following:

X ∈ {E,C}, Y ∈ {A,D}, Z ∈ {B,E,C}, U ∈ {B,D,A}, V ∈ {B,D,A}, (see (1)).

There is a choice now between a PUT-action and a query.

a) PUT-actions: The only one which can be surely executed is PUT(E,T). This action

has  necessarily to be executed at some time. It prevents us, however, to rise queries
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of the form ON(E,.)? Therefore it may make impossible to find out what U is (unless

U = X) or what X and Z are (because E = X or E =Z may hold) or what might be on

top of A, (2). All other PUT actions will fail with a high probability (unless information

on the probability distribution of the situations is given).

b) Queries: On verifies that at least two queries are needed. It suffices to rise the

queries  ON(C,B)? and ON(B,A)? in order to get complete information. The ordering

of the queries is irrelevant although both ways lead to different considerations, (3).

Although ones knows that there is a complete information achieved there are too

many possibilities to continue planning on the concrete level. On an abstract level the

following plan is possible:

(i) ON(C,B)?

(ii) ON(B,A)?

(iii) Solve the remaining task.

In order to make more detailed planning one needs to execute the first two steps:

(i) execute(ON(C,B)?)

(ii) execute(ON(B,A)?).

This changes the task and one can proceed as usual (4).

2. Example.

We vary the first example such that each PUT-action shows what was underneath

(either the table or the block) with no extra cost.

This implies that PUT(E,T) provides complete information and is therefore the optimal

action. To continue planning again execution(PUT(E,T)) has to be done (5).

3. Example.

This example shall only demonstrate that even in the blocksworld there may be a

need for planning information retrieval carefully. We will only state a problem situation

without going into the details of the solution.

We now assume that the goal situation is given but nothing is known about the initial

situation. Besides the actions in example 1 we assume some more actions:

TOP? : lists all top blocks.

NEXT? lists all blocks directly under top blocks.

SHOWBLOCK(A): gives the blocks below A as a set, if A is some top block,

otherwise it fails  (for each block A).

Cost structure:

Cost(TOP?) = 5;

Cost(NEXT?) = 5 if directly asked after a TOP?-query, otherwise 8.
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Cost(SHOWBLOCK(A)) = 5.

(See (6)).

Comments:

(1) This is achieved by constraint propagation.

(2) This means we have a possible thread between PUT(E,T) and queries of the form

ON(E,.), ON(.,B), ON(.,D) and ON(.,A).

(3) This is the (optimal) constraint satisfaction problem which occurs in diagnostic

processes: What is the optimal information needed?

(4) This illustrates the interleaving between planning and executing actions in the

context of information retrieval.

(5) PUT(E,T) is an “ordinary”action as well as a information providing one.

(6) This example illustrates that information retrieval has to plan the access to the

different locations where the information is stored.
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