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 Abstract

        Application sharing is a technology which allows two or more users located at geographically
different places to synchronously work with an unmodified single-user application. To make this
technology available to the network-based X Window System, several different software products
have been developed. All of them use a protocol similar to the X Window System protocol X11 to
display the output of a single-user application on more than one screen and to receive response
from more than one user. However, this protocol was designed to be run over a fast LAN. Used
over a high-latency or a low-bandwidth connection, it leads to serious delays and loss of
interactivity. While there have been some efforts to make the X11 protocol more suitable for those
scenarios, none of them have been integrated into application-sharing software.

The objectives of this work are to review existing techniques for enhancement and compression of
the X11 protocol, to prove that those techniques can be integrated into application sharing
products by providing a prototype integration, and to identify areas of future work. It will be
shown that the caching and compression techniques of the prototype integration reduce the
synchronicity of application sharing products by up to 74%, and the amount of sent data by an
average of 70%.
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1 Introduction

With a rapidly growing demand for expert knowledge and the tendency to work in globally

distributed teams, computer solutions for cooperation and information exchange become

more and more important. This area of research is known as Computer-Supported

Cooperative Work (CSCW) [17] and should lead to the development of adequate computer

tools to make cooperation between humans easier and more efficient.

One part of CSCW deals with synchronous distributed cooperation tools, e.g. tools that are

used simultaneously by different persons in geographically different places. The following

scenario gives an impression of how those tools could support human interaction and

cooperation:

The system administrator Reak just encountered a problem while installing new

software. Knowing that it might take him days to solve the problem, he decides to get

some expert advice. With a mouse click, he opens his conference manager. After

consulting his electronic phone book, he establishes a connection to a company

specialized in answering questions about the product he was attempting to install.

Immediately a video pops up on Reak’s screen and an expert asks him to describe his

problem. Reak explains the problem and sends the window he was using for the

installation to the screen of the expert. In order to discover the problem, Reak and

the expert take turns entering commands into the window they now share. Finally

they decide that they need to modify some system files to get the software running on

Reak’s computer. Reak sends his editor to the screen of the expert, who in turn

suggests some changes to the system files. Together they edit the files and try once

more to install the software. The software is now working. Reak takes back the

installation and editor windows from the expert’s screen and disconnects using his

conference manager.

Several hours later, Reak finishes his work on a document that proposes a new

network structure for his company. He wants to get some input on his proposal from

fellow administrators in different branches. Again using the conference manager, he

establishes a connection to them. He sends the window of his desktop publishing

tool to the screen of the conference participants. Explaining his proposal, he points

to parts of the document with a pointer which is shared between all participants

(telepointer). After Reak explains his view, the conference participants take turns in

modifying the document, viewing and discussing these modifications.
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Examining the tools the person in the scenario was using, one can distinguish between

tools that were explicitly developed for cooperative use and those that were developed for

a single user. The conference manager, audio, video and the telepointer belong to the first

group, while the window for the installation, the editor and the desktop publishing tool

belong to the second. Those groups are known as cooperation aware and cooperation

unaware tools, respectively [24].

While it is conceivable that in the distant future the majority of tools are developed as

cooperation aware tools, most applications today and in the near future will belong to the

cooperation unaware group. In order to make those applications available to cooperative

work, a special software is necessary. This software makes it possible that unmodified

single user applications are displayed on more than one screen simultaneously and receive

input from more than one user. To give the user the feeling of a true cooperative

environment, any cooperation unaware application should be sharable at any time with any

user. A software that makes this possible is called application-sharing software.

Consequently application sharing (AS) is defined as “... a technology which allows two or

more users located at geographically different places to synchronously work with a single-

user application, i.e. online and at the same time” [24].

The first system for which application-sharing solutions were developed is the X Window

System Version X11 [22]. It is the first window system that is based on a network protocol

between application and window system instead of function calls. It also has a number of

other attributes interesting for application sharing, such as hardware transparency, freely

available source code and a huge number of cooperation unaware applications using X

Window.

Virtually all of the application-sharing tools developed for X Window use the X protocol

to display the output of a single user application on more than one screen and to receive

response from more than one user. However, this protocol was developed for usage over a

local area network with low latency and high bandwidth. Returning to the scenario, it

would be a common case that the expert is not located in the same area as the one who

seeks advice. In fact CSCW should especially support cooperation between users that are

separated by long distances, maybe even working on different continents. Another

common usage would be application sharing over low-bandwidth links. In the scenario

one of the administrators might currently be at home, connected only via an ISDN line.

A standard X Window application like Netscape needs more than 450 synchronous

protocol requests and it transfers well over 450 kbyte of data just at start-up of the

application. With either a high-latency link (200+ ms round-trip delay) or a low-

bandwidth connection (< 64 kbit), this leads to a delay of 60–90 seconds! The number of
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synchronous requests and the amount of data sent make the usage of the basic X protocol

unsatisfying for those scenarios.

While there have been some efforts to optimize and compress the X protocol for high-

latency and low-bandwidth links, up to now there exists no integration of these efforts into

application-sharing tools.

Objectives of this thesis

This thesis is about protocol enhancement and compression for X-based application

sharing. The main objectives are as follows:

• give an overview over the existing efforts to enhance and compress the X protocol,

• show that those mechanisms can be integrated into existing application-sharing prod-

ucts by providing a prototype integration,

• measure the compression rate and the reduction of synchronicity achieved with the

integration and

• identify areas of future work.

Chapter Overview

The second chapter gives an introduction to the X Window system. It explains the basic

concepts of the X Window architecture, the X Window protocol, what an X server is and

how the sample X server distributed with X works. Chapter Three starts with an

introduction to the different approaches for application sharing under X Window. It then

describes in more detail the application-sharing tool (XpleXer) that was chosen for the

integration. The final part of Chapter Three shows the problems of application sharing

over high-latency and low-bandwidth links. Chapter Four summarizes existing efforts to

enhance and compress the X Window protocol for high-latency and low-bandwidth

connections. It describes why one tool (Low Bandwidth X) was preferred for the

integration and under which circumstances a different tool should be chosen. The fifth

chapter deals with the prototype integration of XpleXer and Low Bandwidth X. It

proposes an architecture for the prototype and shows which Low Bandwidth X features

could be integrated and how they where changed to fit into the new environment. This

chapter also evaluates the compression rate and the reduction of synchronous protocol

requests achieved by the integration. The sixth chapter is dedicated to areas of future work

and research that were identified while working on this thesis. It shows that there are

numerous ways to further increase the compression rate and to enhance the elimination of

synchronicity. A summary of this thesis can be found in Chapter Seven.



Introduction

10



The X Window System: An Overview

11

2 The X Window System: An Overview

This chapter gives an overview of the X Window System. It will explain only the concepts

and terminology necessary to understand the remaining chapters of this thesis. For a

detailed explanation of the X Window System, the X protocol and the X server, see [26],

[25] and [20].

2.1 X Window System Basics

2.1.1 Architecture

The X Window System Version X11 (X) is a network oriented, hardware independent,

graphical window system. Its source code is freely available. The current release of X is

R6; most application-sharing products, mentioned in this thesis, were written for R5.

Figure 1 shows the basic architecture for X: The user receives output from the applications

through one or more bitmapped screens. Input is entered with various input devices such

as mouse and keyboard. Together screens and input devices are called a display. One

display is managed by a piece of software known as the X server (server). The server gets

requests from application programs — the X clients (clients) — and acts accordingly. A

typical request from a client could be: draw a square on the screen. The server would

receive this request, translate it into pixels on the screen and draw those pixels in the

desired color. Answers to information requests, error reports and events (like mouse

movement) are sent from the server to the client.

In the X Window System version X11, the communication between client and server is

based on a protocol rather than on function calls. This allows the user to run multiple

clients on different computers, using only one display for in- and output. The protocol

used for the communication between client and server is called X protocol.

To shield application programmers from the X protocol, the XLib was developed. XLib is

the C application programming interface to X. Using XLib, the application programmer

can develop software for X in a way similar to developing software for a non-network-

based window system. Knowledge about the X protocol is not needed.

As a window system, X defines a window as a rectangular area of the screen. The X server

maintains a data abstraction for every window. This data abstraction has different

attributes, like width and height, which are called window attributes. Windows are the
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basic building blocks for every graphical user interface under X. Buttons, menus, text

fields and icons are all examples of windows.

Figure 1   X Window System architecture

To coordinate and manage multiple clients and their windows, which compete for

resources like screen space, a special software is needed. This software is called a window

manager. Most window managers have a user interface that allows the user to resize,

iconify and move application windows. For X, a window manager is realized as a client

with certain responsibilities. Although X provides a sample window manager, its usage is

not mandatory. Instead it is up to the user to choose a window manager he or she likes.

2.1.2 Interclient Communication

Since X clients frequently need to exchange information, X has to provide ways for

interclient communication. One such method is the use of properties. A property is an

arbitrary information associated with a window. In order to access this information, a

client needs to know the property name, represented by a string and the window with

which the property is associated. The same property name for different windows points to

different information.

To save bandwidth, numerical aliases — called atoms — are used to refer to property

names. Some of those atom-to-property-name mappings are predefined. Other property

names don’t have a standard mapping to atoms. For those properties, the client has to ask

the server about the mapping: It sends the property name as a string to the server, which

replies with the atom. This mapping is guaranteed to not change during the lifetime of the
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server. If another client asks for the mapping of the same property name, it will get the

same atom as a response. The action of asking the server for an atom is known as “intern

an atom”.

To set or read a property, a client specifies a pair of an atom and a window. This kind of

interclient communication is often used between clients and the window manager.

2.1.3 Color Handling

X is designed to support bitmapped graphics screens. The color of each pixel on the screen

is defined by the state of 1 to 32 bits, depending on the hardware of the screen. Black-and-

white screens, for example, need just one bit for each pixel to represent the two possible

states. Color screens have more bits per pixel. Those bits are arranged in planes, where

each plane has one bit for every pixel on the screen. Figure 2 shows an eight-plane screen.

The pixel in the lower right corner of the screen is described by eight bits, one in each

plane. Those bits together are called the pixel value. The pixel value does not directly

specify a color. Instead it describes an index to a color table where the actual RGB (Red,

Green, Blue) values (usually 16 bit for each primary color) for the electron beams are

located. This has the following advantage: The number of colors that can be displayed

simultaneously is only 28. But, if the colormap is writable, the number of colors from

which to choose these colors is 248(16 bit per primary color). The color map looks slightly

different for grey scale and high-end graphics screens [26].

Figure 2   X Window color handling

Usually all clients of one server share one common colormap. But although most screens

have just one hardware colormap, every window can potentially define its own private

colormap. In this case, the window manager is responsible for loading the colormap for

the right window into the hardware colormap whenever necessary. However, applications
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usually avoid defining their own colormaps since all windows that do not use the private

colormap will be displayed in the wrong colors when the private colormap is loaded.

Each member of a colormap is called a colorcell. In the example, the colorcell for pixel

value 13 has the RGB values of 129, 17 and 255.

In order to use a color, a client has to ask the server for permission. There are two different

things the client can ask for:

• allocation of a shared color: The client specifies the RGB values it wants to use. The

server replies with an index to a colorcell, which contains the closest RGB values

physically possible on that screen. The client can use this color, but it is not allowed to

change the content of the colorcell. The advantage of this method is that the colorcell

can be used by more than one client at the same time.

• allocation of private colors: The client asks for a number of private colorcells. The

server answers with the index of those cells. The client can then use and change the

content of those colorcells whenever it wants. This prevents other clients from using

the same colorcell, but it is very useful if the client needs to do color manipulation.

To use the advantage of a shared color, two or more clients have to specify exactly the

same RGB values. Without further assistance it is very unlikely that two clients will ever

choose the same values out of 248 possibilities. To make sharing and specification easier, a

server side colorname database is provided. To use it the client asks the server for

information about a color described by a string. The server answers with the RGB values

that matches the requested color.

2.1.4 Extensions

The X Window System is extensible. This means that there exists a standard way to

enhance X by additional functionality. This additional functionality is called an extension

to X. Adding an extension is done by providing new Xlib functions, developing new

protocol messages and modifying the server. There exists a number of extensions to X, for

example the shape extension which lets the programmer use non-rectangular windows. A

server is never required to support any extensions, therefore a client must ask the server if

a certain extension is present before using it. Several of the approaches for X protocol

compression described in this thesis make use of the extension mechanism.
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2.2 The X Protocol

The X protocol is the true definition of the X Window System, and any code in any
language that implements it is a true implementation of X. It is designed to
communicate all the information necessary to operate a window system over a
single asynchronous bidirectional stream of 8-bit bytes.[25]

The X protocol defines four different types of messages:

• request: With a request, the client asks the server to do something (like drawing a line)

or to send back information (like an atom for a property name). As an example, Figure

3 shows the InternAtom request. Each request type is identified by a major request

opcode included in the request. Those opcodes range from 0 to 127 for the basic X pro-

tocol. Another field common to all requests is the request length. It specifies the length

of the request in multiples of 4 bytes. Padding is added to make sure that word and

long word datatypes have the right alignment and that the message length is indeed a

multiple of 4.

Figure 3   The InternAtom request

• replies: Replies are sent from the server to the client as an answer to certain requests.

Only a small number of requests need a reply. Figure 4 shows the InternAtom reply.

The type of the reply is identified by the request which caused the reply. To distinguish

replies from events and errors, the server includes a 1 as the opcode in the message.

The message for all replies, events and errors contain the number of the last request

processed by the server — this number is called a sequence number. The sequence

number makes it possible for the client to match server messages with the request that

caused them. This is especially useful for debugging. The reply length is given in mul-

tiples of 4 in excess of 32 bytes.

Position Size Value Description

0 1 16 opcode: intern atom

1 1 BOOL only if exists

2 2 2+(n+p)/4 request length

4 2 n length of property name

6 2 padding

8 n STRING property name

8+n p padding



The X Window System: An Overview

16

Figure 4   The InternAtom reply

• events: Whenever the server needs to notify the client about a change of state (like

mouse movement or side effects of previous requests), it sends the client an event. Fig-

ure 5 shows the Expose event. The Expose event is generated by the server whenever

an area of a window needs to be repainted by the client. Events are identified by their

opcode which ranges from 2 to 34 and have a fixed length of 32 bytes.

Figure 5   The Expose event

• errors: If the server encounters an error caused by a client request, it notifies that client

by sending an error message. An error which could be generated by the InternAtom

request is the Alloc error. Receiving an Alloc error tells the application that the server

Position Size Value Description

0 1 1 opcode: reply

1 1 padding

2 2 unsigned integer sequence number

4 4 0 reply length

8 4 ATOM atom

12 20 padding

Position Size Value Description

0 1 12 opcode: expose event

1 1 padding

2 2 unsigned integer sequence number

4 4 WINDOW window

8 2 unsigned integer x

10 2 unsigned integer y

12 2 unsigned integer width

14 2 unsigned integer height

16 2 unsigned integer count

18 14 padding
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was not able to allocate enough memory to execute the request. The alloc error is

shown in Figure 6. The type of error can be determined by the error code included in

the message. The major opcode shows which request type caused the error. All errors

use the opcode 0 and have a length of 32 bytes.

Figure 6   The Alloc error

As mentioned in the previous section, the X protocol is extensible. The major request

opcodes 128 through 255 are reserved for extensions. Each extension gets one major

opcode and has to include a minor opcode in each of its requests to distinguish between

different requests from that extension. For extension events, X provides the opcodes

64–127 and for errors the error codes 128–255.

A request which needs a reply is called a round-trip request, all other requests are called

one-way requests. Round-trip requests are synchronous, e.g., the client issuing the round-

trip request waits until it receives the answer (or an error) to the request. In high-latency

networks, a large number of round trips is devastating for the performance of the client.

Even a well-designed client using the basic X protocol uses enough round trips to be

seriously delayed over those networks.

2.3 The X Server

2.3.1 Structure of the Sample X Server

The source code of the sample server provided with the distribution of X has been

developed to be easily portable to new hardware platforms. The main building blocks of

the sample server are shown in Figure 7 [20].

Position Size Value Description

0 1 0 opcode: error

1 1 11 error code: alloc

2 2 unsigned integer sequence number

4 4 0 unused

8 2 unsigned integer minor opcode

10 1 byte major opcode

11 21 padding
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The Device Independent X (DIX) layer contains the code that is portable across platforms.

Dependencies from input and output devices are encapsulated by the Device Dependent X

(DDX) layer. The OS layer contains operating system specific functions. Functions for

managing fonts are combined in the Font Library.

Figure 7   Structure of the sample X server

The DIX and OS layers are of special interest in the context of this thesis.

The main OS layer function is to encapsulate the communication with the clients. It

manages client connections, reads client requests from the network, forwards them to the

DIX layer and writes errors, events and replies from the other layers back to the client. It

provides input and output buffers and tells the DIX layer when new requests arrive.

The two main tasks of the DIX layer are request dispatching and event delivery. Incoming

requests from the OS layer are sent (dispatched) to the appropriate request functions.

Those functions can call DDX functions (for output to the screen) or do the requested

work in the DIX layer (like interning an atom). Input events are generated in the DDX

layer and are forwarded to the DIX layer. Other events are generated in the DIX layer
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itself. In both cases the DIX layer processes those events and determines which events

should be sent to which client. Then it hands the events over to the OS layer for

transmission. With those two tasks, the DIX layer is the control center of the server. It

directs which parts become active and how the data flows through the system.

2.3.2 Flow of Control

An example for the flow of control between the three key functions of the server is shown

in Figure 8. The server is started at t1 and begins with the initialization of the data

structures in the DIX layer functionmain() before the functionDispatch() is called.

As there are no clients yet,Dispatch() tells the OS layer toWaitForSomething()

to happen. At t2, the first client connects and starts sending requests to the server. Now

Dispatch() distributes those requests to appropriate functions and calls

WaitForSomething() to wait for new requests from the OS layer, or input from input

devices. At t3 the last client disconnects. This causesDispatch() to return and

main() decides to reset the server. A new cycle, called server generation begins. The first

client in this generation connects in t4, the last client disconnects at t5 causing

Dispatch() to return. This timemain() decides to exit, ending the X Server process.

Figure 8   Example for the flow of control in the X server

Themain() function is the starting point for the flow of control in the server. Figure 9

[20] shows that after processing command line arguments and creating server structures,

the server begins with dispatching client requests. When the last client disconnects, the

server structures are reset and the server is either restarted or terminated.
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Figure 9   Flow of control in main()

The dispatch loop is the heart of the server. As shown in Figure 10 [20], it starts with the

decision to return or to continue dispatching. Usually the dispatch loop ends when the last

client disconnects. If there is input from the input devices, the DDX function

ProcessInputEvents() is called to get the events. Certain input events, for example

pointer movement, are required to be delivered timely. Those events are called critical

output (output from the server to the client). Critical output is flushed to the client in

FlushIfCriticalOutputPending(). After handling device input, the dispatch

loop uses the OS layer functionWaitForSomething() to sleep until new requests

arrive or the next input event occurs. If some clients have requests, those requests are

dispatched for one client at a time. After dispatching the requests from one client, all

output to all clients is flushed.

Figure 10   Flow of control in Dispatch()

Figure 11 [20] shows how requests from a single client are dispatched. The loop continues

until all available requests are processed or until some other parts of the server tell

Dispatch() to stop processing requests for that client. This is necessary to prevent a

hyperactive client from dominating the server. Before reading the request from the OS

layer with ReadRequestFromClient(), the DDX layer gets a chance to process

exit?process
arguments

create server
structures

free server
structuresDispatch() END

NO

YES

ready to return? input pending? WaitForSomething()

FlushAllOutput()FlushIfCriticalOutputPending()ProcessInputEvents()

some
client has
request?

dispatch
requests

from client
to main()

YES NO

YES

NO

NO

YES

from main()



The X Window System: An Overview

21

input events and, if applicable, critical output is flushed. This is done to keep the pointer

device responsive.

ReadRequestFromClient() can return either with or without a new request. If no

request is returned and an error occurred while trying to read the requests, the responsible

client is closed. If no error occurred, the loop knows that there are no more requests for

that client and resumes with dispatching other clients.

After a request is successfully read, it is dispatched to the appropriate function identified

by the major opcode in the request. If this function returns an error, it is examined. In the

case of a fatal error, the client is closed. If the error was not fatal, it is reported to the client

andDispatch() continues dispatching requests for the next client.

Figure 11   Dispatching requests from a client

Extensions are integrated into the flow of control by providing a dispatch function. All

requests belonging to the extension are dispatched to that function. Examining the minor

opcode of the request, this function can distinguish between different request types of the

extension. It then forwards the request to whichever extension function is responsible for

handling this type of request.

ready to yield?

ReadRequestFromClient()
is there

a request?
dispatch
request

did an
error occur?

was the
error fatal?did an

error occur?

YES

YES

NO

NO

YES

YES

NO

YES

NO

NO

CloseDownClient()

report error

CloseDownClient()

handle
input



The X Window System: An Overview

22



X-Based Application Sharing

23

3 X-Based Application Sharing

3.1 Approaches and Architectures for X-Based Application
Sharing

Application sharing is realized by intercepting the communication between applications

and the window system. Doing this, the application-sharing software is able to multiplex

the output of an unmodified single user application to multiple users and to forward their

actions to the application. For X, the locations where the interception can take place are

the Xlib, the server, or the X protocol. All of those locations have been used to develop

application-sharing software. The following sections describe the different approaches and

architectures of application-sharing products for X. It will be shown that virtually all of

them use the X protocol for communication over potentially high-latency or low-

bandwidth connections. A detailed discussion about the advantages and disadvantages of

the approaches can be found in [24] and [19].

3.1.1 Server Modification

Figure 12 shows the architecture of an application-sharing product that is based on a

server modification. In this architecture, a special server is not only able to display an

application on its screen, but can also share it with any other unmodified server across the

network. For the communication, the basic X protocol is used since the unmodified servers

have no information about application sharing. For them the server with the application-

sharing modification looks like an ordinary client from which they receive requests and to

which they deliver replies, errors and events. It is the modified servers job to forward

requests to the other servers and to shield the client from the knowledge that more than

one user interacts with its windows.

In this architecture, the X protocol is used over the connections from the client to the

modified server and from the modified server to the other servers. As indicated by the

dashed arrows in Figure 12, any of those connections might be of high-latency or low-

bandwidth: the one between client and modified server, because it might be necessary to

run the application on a remote computer; the connection between the modified server and

an unmodified server because the users of those two servers might not be located in the

same local area network (LAN).

An example for this type of architecture is SharedX from Hewlett Packard [16].
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Figure 12   Server modification

3.1.2 Xlib Modification

In this approach, the application-sharing functionality is integrated into the Xlib. This

might look like a violation of the rule that the single user application must not be changed

in any way. However, almost all UNIX-based operating systems support shared libraries.

Those libraries are not statically linked to a program; instead they are loaded at run time. If

the client is compiled and linked to use Xlib as a shared library, it is possible to replace the

old Xlib with a new one which supports application sharing. This does not require a new

linking of the client.

Figure 13 shows the basic architecture for this approach. The Xlib function calls are

mapped to requests for all participating servers. Replies, errors and events are collected

from all servers and handed to the application as if they were generated by one server.

Figure 13   Xlib modification
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The shared Xlib uses the standard X protocol to communicate with the X Servers. Some of

them might be reachable over a high-latency or low-bandwidth connection only.

An implementation of this architecture is shXlib from DEC in Karlsruhe [2].

3.1.3 Centralized Pseudo Server

In this architecture, the communication between application and window system is

intercepted at the X protocol level. As shown in Figure 14, a special server without a

display — called pseudo server — is inserted between client and real servers. To the

client, the pseudo server looks like an ordinary server; for the real servers it pretends to be

an ordinary client.

A client that has to be shared is started in such a way that it connects to the pseudo server

instead of to the users real server. The pseudo server then multiplexes the requests from

the shared client to multiple real servers. It collects the replies, events and errors from

those servers, forwarding them to the client as if they where issued by only one server. The

pseudo server can be thought of as a service: Whenever someone wants to share a

cooperation unaware application, it is started using this service.

Figure 14   Centralized pseudo server

Just as in the modified server architecture, all connections might be high-latency or low-

bandwidth connections. In addition to that, it is not unlikely that someone might want to

use the service, even if he or she is not located in the same LAN as the computer that
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from the pseudo server to the user’s real server could be of high-latency or low-bandwidth

even if client and real server run on the same computer.
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Xmux, developed by Greg McFarlane, OTC Ltd., is an application-sharing tool that is

based on a centralized pseudo server architecture. A comparison of Xmux with other

application-sharing programs can be found in [4].

3.1.4 Distributed Pseudo Server

To prevent the pseudo server from becoming the bottleneck of the system, the distributed

pseudo server architecture was developed. One of the most time consuming tasks in the

centralized approach is the generation of requests for the different real servers when a

client request arrives at the pseudo server. The generation of requests is not a simple

copying of the incoming requests to the real server. Rather it is a mapping of the

information the client sends in the request to the information a real server needs to

understand the request. Examples of information that have to be mapped are sequence

numbers, atom numbers, color information, window coordinates and various identifiers.

In the distributed pseudo server architecture shown in Figure 15, this work is done by a

pseudo client running on the same workstation as the real server. Whenever necessary, the

pseudo server forwards rough data from the client requests to the pseudo client. From this

information, the pseudo client creates a request for the local server, performing all

necessary mapping. Along with the data for requests, the pseudo server sends information

about which user is currently allowed to interact with the application and which users are

just watching. According to that information, the pseudo clients report the events, errors

and replies from the real servers back to the pseudo server.

Figure 15   Distributed pseudo server
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and from the pseudo server to the pseudo clients can be high-latency or low-bandwidth

connections.

Examples for distributed pseudo server architectures are Xy [19] and Xwedge [18].

3.1.5 Distributable Pseudo Server

The distributable pseudo server architecture was developed to make it possible for users

without the pseudo client software to participate in the sharing of an application, while

retaining the distributed architecture for those users who have the necessary software

installed. As shown in Figure 16, the distributable architecture is a combination of the

centralized and the distributed approach.

Figure 16   Distributable pseudo server
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X server. When a client has to be shared, it is started in such a way that it connects to one
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as a real server participating in the sharing of the application. Those pseudo servers
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pseudo client in the distributed approach. For servers that do not have a slave running on

their workstation, the master does the slaves job, mapping and sending the request to the

real server. Replies, events and errors are sent back from the slaves and the real servers to

the master. The master forwards them to the client as if they were generated by only one

server. For the communication between master and real servers, the X protocol is used,

since those servers know nothing about application sharing. Master and slaves

communicate by using a slightly modified X protocol for the forwarded requests, events,

errors and replies. Additional information is transferred by using an extension to the X

protocol. For the same reasons as in the centralized approach, the connections from the

client to the master, from the master to the real servers and from the master to the slaves

can be high-latency or low-bandwidth connections.

The only application-sharing product that supports this advanced architecture is the

XpleXer [24], which is the basis for the prototype integration described in this thesis.

Table 1 gives an overview over the different application-sharing architectures described in

Sections 3.1.1–3.1.5.

Table 1   Application-sharing architectures — overview

3.2 The XpleXer — An Application-Sharing Tool for the X
Window System

The XpleXer is an application-sharing software that was developed at the Siemens

Telecooperation Center (STC) in Saarbrücken. It is the central component of the
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heterogeneous multi-media collaboration system GroupX which was developed within the

scope of the BERKOM-2 project. GroupX is sold by Siemens Private Networks

Department.

3.2.1 Sharing Applications Using the XpleXer

Whenever the user wants a client to be sharable, it is started in such a way that it connects

to a pseudo server instead of the user’s real server. The pseudo server forwards all requests

from the client to the real server as well as all replies, errors and events from the real

server to the client. The real server of the user who started the client is called the primary

server and, as described above, the pseudo server to which the client is connected is called

the master. For all practical purposes, the master looks to the client as if it were the

primary server. Because of that, the master does not need to do any mapping for this server

— it can just forward all messages. This makes the processing for a sharable application,

which is not actually being shared, very fast.

When the user wants to share one of his sharable clients with another user, he or she tells

the master to add a new server to the client. In order to do this, the master tries to contact a

pseudo server on the workstation of the new server. If there is one, it becomes the slave; if

there is none, the master connects directly to the new server. As soon as the master has

contact to either the slave or the new server, it starts replicating the client’s output which is

already shown on the primary server’s display. To do this, it queries the primary server for

information. However, some information necessary for the replication cannot be retrieved

in that way. Therefore the master has to keep some information in a private database.

Using both types of information, the master generates requests for the replication. If a

slave is present the requests are sent without any mapping to the slave. The slave then does

all the necessary transformations and hands the modified requests to the new server. If no

slave is present, the master has to do the mapping and the requests are sent directly to the

new server. After the replication is completed, the master multiplexes all new requests

from the client to both the primary and the new server, using a slave if possible. The action

of sharing a client while it is running is called spin-out sharing. If a slave is used to do the

required mapping, it is also known as cooperative sharing [24].

As soon as a client is shared between more than one user, it is the master’s job to shield the

client from the fact that more than one server sends replies, errors and events. Replies and

errors are generated in response to requests. Since the client thinks it is interacting only

with the primary server, only the replies and errors from the primary server are sent back

to the client. Replies and errors from other servers are either discarded or handled

internally in the pseudo servers.
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Input events are processed differently: An input token is assigned to any one of the users

participating in the sharing of the application. The master forwards only input events from

the token holder to the client. All input events from other users are ignored. The XpleXer

provides mechanisms to assign the input token any time to any participant. The user

interface that is controlling the XpleXer is responsible for implementing suitable policies

for the assignment of the input token using the provided mechanisms.

3.2.2 Architecture of the XpleXer Pseudo Server

As shown in Figure 17 the XpleXer pseudo server can be divided into three layers.

Because of the functional similarity with a real server, the OS and the DIX layers were

taken from the sample server of X11 Release 5 and modified to fit into the new

environment.

The OS layer was enhanced to accept connections to a master XpleXer from a special

pseudo-client port. The DIX layer’s only remaining job is the scheduling of the pseudo

server. All incoming requests are handed to the new Application-Sharing (AS) layer. No

requests are processed by the DIX layer itself.

Figure 17   Architecture of the XpleXer pseudo server
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different destination server. The AS layer is also responsible for event handling and spin-

out sharing.

3.2.3 Flow of Control in the XpleXer Pseudo Server

The flow of control in the dispatch loop is very similar to the one in the sample server

described in Section 2.3.2, Figure 10. As can be seen in Figure 18, the main difference is

the handling of events. The pseudo server doesn’t generate events. Instead the events

generated by the real servers are mapped and forwarded to the client. The OS layer

functionWaitForSomething() directly forwards any incoming events from the real

servers to the AS layer for processing.

Figure 18   Flow of control in the XpleXer’s Dispatch() function

Figure 19 shows how requests from a single client are dispatched: After a request is

successfully read from the client, it is first dispatched to the primary server. If the client is

shared, the request is additionally dispatched to each of the servers participating in the

sharing. As explained above, only errors from the primary server are sent to the client or

can cause the client to be closed down.

ready to return? WaitForSomething()

FlushAllOutput()

some
client has
request?

dispatch
requests

from client
to main()

YES

NO

YES

from main()



X-Based Application Sharing

32

.

Figure 19   Dispatching requests from a client in the XpleXer

3.3 X-Based Application Sharing Over Low-Bandwidth and
High-Latency Connections

In the standard X Window environment, client and server usually run on the same

workstation or in the same LAN. The only common exception is the usage of a modem or

an ISDN line to access an application remotely from “home”.

For an application-sharing environment, this scenario changes completely. As mentioned

above, there are two main reasons why the X protocol is used over non-LAN links for

application sharing: The application-sharing service might be a remote service and two

users might not be located in the same LAN. The second reason is particularly strong,

since the purpose of application sharing is “to allow two or more users located at

geographically different places to synchronously work with a single-user application”

[24].

In addition to the inherent usage of non-LAN links, application sharing increases the

amount of bandwidth needed, since protocol data is exchanged with not only one, but with

several servers. Unless a reliable multicast protocol is used for the transmission, this leads

to an enormous increase in the required bandwidth.
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To get an impression about the data volume and the number of round trips a usual client

sends, the start-up of some applications has been monitored. The data from Table 2 was

generated by applications that were started shareable using the XpleXer with a Sun Sparc

5 station (8 bit frame buffer) as the primary server.

Table 2   Data volume and round-trip requests at application start-up

A high-latency link could be a connection between Berkeley/USA and Berlin/Germany,

which has an average round-trip delay of about 200 ms for a high speed ATM link, and

about 500 ms for an internet connection. This would lead to an additional start-up (or spin-

out sharing) delay of 96.8 to 242.0 seconds for Netscape and still 25 to 62.5 seconds for

emacs.

Typical low-bandwidth connections are ISDN (64 kbps) or a telephone with modem (14.4

kbps). For those connections, a start-up (or spin-out sharing) of Netscape would be 43.4 to

192.9 seconds slower than usual, if the full bandwidth is used and no protocol overhead

exists. Since application sharing is not of much use without audio communication, and

protocol overhead does exist, the usable bandwidth is usually less and therefore the delay

is higher.

These numbers show that the basic X protocol has to be enhanced in order to be suitable

for application sharing via high-latency or low-bandwidth connections.

Application Request Data (Bytes) Reply, Error and Event Data (Bytes) Round Trips

Netscape 347136 140608 484

Frame Maker 55668 38660 167

xtetris 5216 13760 13

emacs 9908 37064 125

xterm 2348 10532 11
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4 Compressing and Enhancing the X
Protocol

Since the appearance of the first X protocol compression approach — XRemote [7] — in

1992, a lot of work has been done to further compress and enhance the X protocol. Up to

now, there exist two main directions for this work: The first was originated by Xremote

and is still very active with its successor Low Bandwidth X [14] [27]. The second is the

development of Higher Bandwidth X [10], Fast Higher Bandwidth X [12] and dxpc. The

main difference between those directions is that XRemote and Low Bandwidth X use

sequential data compression, while Higher Bandwidth X, Fast Higher Bandwidth X and

dxpc relay on prediction-based compression. This chapter gives an overview of the X

protocol enhancement and compression approaches mentioned above.

4.1 XRemote

XRemote is a protocol developed by Network Computing Devices (NCD) for using X

over a serial line. This includes multiplexing of several client connections on a single

serial line and compressing the X protocol. XRemote was developed before compressed

serial line IP (CSLIP) [21] and point-to-point protocol (PPP) [23] were widely available,

therefore it defines its own network and data link layer. Since it is now common to use

CSLIP or PPP over serial lines, this section will focus on the multiplexing and

compression aspects of XRemote.

4.1.1 XRemote Architecture

In order for XRemote to be transparent to client and server, the architecture shown in

Figure 20 was developed. The remote clients connect to a pseudo server running in the

same LAN as the clients. This pseudo server multiplexes all data streams from the clients

into one stream and compresses it. The compressed stream is sent over the serial line to a

pseudo client. There the data is decompressed and split into separate streams which are

sent to the X server. In the reverse direction, data is multiplexed and compressed in the

pseudo client, and the pseudo server decompresses and splits the data stream.

Neither clients nor server are aware that the X protocol is intercepted, multiplexed and

compressed. For clients, the pseudo server looks like the real server, and for the real
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server, the pseudo client looks like a real client. In this architecture, XRemote is

completely transparent to the whole X environment of the user.

Figure 20   XRemote architecture

4.1.2 XRemote Layers

The functionality of XRemote can be divided into the layers shown in Figure 21. The X

protocol data arrives at the XRemote layer. The first processing step is the multiplexing of

several client streams of data in one stream. To accomplish this, three protocol primitives

are used in the XRemote Layer. The first is NewClient, which signals that a new client has

connected and tells the peer XRemote Layer that all following data in the stream belongs

to the new client connection. When data from a different client connection is sent, this

must be indicated by ChangeClient, which identifies the client connection to which all

following data belongs. When a client disconnects, a CloseClient message is sent to

inform the peer XRemote layer about the removal of a client stream.

Figure 21   XRemote layers
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After multiplexing into one stream, the X protocol messages are run through a delta

compactor. In this step, a cache of the last 16 messages of length 64 bytes or less is kept.

The current message is compared to the messages in the cache. This comparison of

messages is done by sequentially comparing the bytes of two messages. If the difference

between a message in the cache and the current message can be expressed in fewer bytes

than the current message, then the difference is sent instead of the current message. This

message is then called a delta message. The result of the processing in the XRemote layer

is a stream of X protocol, NewClient, ChangeClient, CloseClient and delta messages. This

stream is handed to the data compression layer as a stream of bytes.

In the data compression layer, the stream of bytes is broken into fixed-sized chunks. This

is necessary to guarantee that the compressed data fits into one transport layer packet. The

chunks are then compressed by using LZW1 [29] sequential data compression.

The compressed data is sent to the peer using the transport layer service. The peer

decompresses the data, restores delta compressed information and splits up the stream

sending X protocol messages to the clients or the server. The construction of pseudo client

and pseudo server is symmetrical in respect to what the pseudo server does for requests the

pseudo client does for replies, error, events and vice versa.

4.1.3 Efficiency of XRemote

The compression performance of the XRemote protocol has been evaluated in [9]. The

tests were done using several X protocol traces of real users. The overall results are as

follows:

On average, client data compressed to 44% of its original size while server data
compressed to about 28% of its original size. On average, server data accounted for
19% of each trace with client data accounting for the remaining 81% of the
transferred bytes. In an average trace, compression would have reduced the amount
of transferred data to 41% of its original size, giving a compression ration of 2.4:1.
[9]

It was found that delta compression is very efficient for input events like pointer

movement and keyboard input. For all other data, the delta compression reduces the LZW

compressed data by less than 7%.

Especially unsatisfying was the bad compression performance for images (3:1 where fax

protocols regularly achieve a 10:1 compression) and for graphic requests (worse than 2:1).

1. This algorithm was named after its developers Lempel, Ziv and Welch.
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4.2 Low Bandwidth X

Low Bandwidth X (LBX) is the successor of XRemote. In addition to improved protocol

compression LBX offers elimination of round trips. This makes the usage of LBX as

useful for high-latency links as for low-bandwidth connections. LBX was designed to

improve the compression rate and reduce the number of round trips by taking advantage of

various X protocol characteristics.

The version of LBX that was available for the integration is distributed with X11R6.0 and

is a work-in-progress version. The final LBX standard is not completely compatible to this

version. Version 1.0 of the final standard is part of X11R6.3 and is available since January

1997. This section discusses the work-in-progress version of LBX.

4.2.1 LBX Architecture

The main difference between the XRemote and the LBX architecture is the absence of a

pseudo client. As shown in Figure 22, a special LBX X server is necessary to use LBX.

The advantage of this architecture is that more information is available in the X server than

in the XRemote pseudo client. This is true because the pseudo client has information about

only remote clients, whereas the server has information about remote and local clients.

Using this additional information, LBX is able to increase the compression rate. The

disadvantage of this architecture is that LBX is not fully transparent to the X environment:

A new X server has to be installed to use LBX.

Figure 22   LBX architecture
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4.2.2 LBX Layers

The functionality of LBX can be divided into the layers shown in Figure 23. LBX is

basically XRemote with a preprocessing layer. In the preprocessing layer, all incoming X

protocol messages are examined and optimized for compression or reduction of round

trips. If a message can be optimized, it is handed as an LBX extension message in the

optimized form to the XRemote layer. If no optimization is possible, the original X

protocol message is forwarded to the XRemote Layer. The XRemote layer multiplexes the

message streams of multiple clients in one stream and performs delta compaction on that

stream. Finally the message stream is LZW compressed in the data compression layer and

transmitted using an existing transport service like CSLIP or PPP.

Figure 23   LBX layers
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extension requests. In the reverse direction, optimized replies, errors and events from the

LBX server are converted back to X protocol messages in the preprocessing layer.

On the LBX X server side, the preprocessing layer is realized as an extension. The LBX

extension requests that were generated by the proxy are dispatched to LBX extension

functions, which take appropriate actions to execute the request. Requests that were not

optimized are dispatched and executed as usual. In addition to request handling, replies,

events and errors are optimized by the LBX extension.

The following sections discuss the functionality of the preprocessing layer.

4.2.3 Short Circuiting

Short circuiting is the replacement of round-trip requests with one-way requests. The main

idea is that whenever a remote client gets constant information from the server through the

proxy, this information is stored in the proxy. If a remote client later asks for the same

information, the proxy can directly answer the request without asking the server first. To

keep the server updated about sequence numbers and client states, one-way requests are

sent to the server if the proxy short circuits requests. The effect of short circuiting is that

round-trip requests over a potentially high-latency connection (remote client→ server) are

replaced by round-trip requests within one LAN (remote client→ proxy).

There are five X protocol requests for which LBX supports short circuiting: InternAtom,

GetAtomName, LookupColor, AllocColor and AllocNamedColor.

In order to intern an atom, a client uses the InternAtom request to send the server a

property name. The server replies with the atom that refers to the property name. This

mapping is constant for the lifetime of the server. The first time the proxy sees an

InternAtom request and its reply for a property name, it stores the mapping. If a remote

client later asks for the atom of the same property name, the proxy looks at the stored

information and answers the request directly. To update the sequence number for the

client, the proxy sends an LbxModifySequence request to the server. If several InternAtom

requests are short circuited in a row, only one LbxModifySequence request needs to be

sent.

With the GetAtomName request, the client asks for the property name of a given atom. As

this requires the same information as the InternAtom request, it is handled in the same

way, using the same stored information.

The LookupColor request is used to get the RGB values of a color described by a string.

The mapping between color name and RGB values is constant for a server. Therefore the
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LookupColor request is handled similarly to the InternAtom request. The only difference

is that colorname and RGB values are stored instead of property-name and atom values.

To allocate a read-only colorcell with given RGB values in a given colormap, a client

issues an AllocColor request. The server replies with an index and the contents of a

colorcell that contains the closest RGB values physically possible on the screen. For each

read-only colorcell the server counts the number of clients that have allocated it. If this

number drops to zero, the server knows that no client has allocated the colorcell and frees

it.

In order to short circuit AllocColor requests, the proxy stores the mapping from RGB

values to the index and the contents of a colorcell. This is done the first time a color is

allocated by a remote client in a colormap. If thereafter a remote client wants to allocate

the same color in the same colormap, the proxy responds with the stored data. In order to

update the counter for the colorcell and the sequence number for the client, an

LbxIncrementPixel request is sent to the server. When the last remote client deallocates a

read-only color, the mapping for that color is removed from the proxy.

The AllocNamedColor request is a combination of the LookupColor and AllocColor

request. It asks the server to map a colorname string to a RGB value and allocate this value

in a colormap. If the proxy has both information the request is short circuited as an

AllocColor request. If not, the request is sent on to the server and the reply information is

stored for colorname to RGB value mapping and for RGB value to colorcell index and

content mapping.

Short circuiting causes a very interesting problem: X guarantees that replies, errors and

events that were generated by an earlier request are delivered to the client before replies,

errors and events generated by a later request are delivered. As shown in Figure 24, this

can’t be guaranteed if short circuiting is used. In this example the first request issued by

the remote client is the one-way drawing request PolyLine. This request is optimized to an

LbxPolyLine request and sent to the server. At the server, an error occurs while executing

the request and a BadAlloc error is sent back to the proxy, which forwards the error to the

client. In the meantime the client has issued an AllocColor request, which was short

circuited by the proxy. The result is that the client receives the response to the AllocColor

request before it gets the error from the PolyLine request.

Usually the Xlib can compensate this and shield the application from the problem. For all

applications tested in this thesis, there have been no problems except for a few warnings

from the Xlib. To avoid any problems with out-of-order event and error delivery the proxy

can be asked to do short circuiting only if it can guarantee that no events and errors from
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earlier messages can arrive. However, this reduces the number of round trips that can be

short circuited seriously.

Figure 24   Problem with Short Circuiting
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Four X protocol requests and their replies are optimized using tags in this way: The

request to connect to the server, which returns information about the display; the

GetKeyboardMapping and GetModifierMapping requests, which return information about

the mapping between keyboard key numbers and how they should be interpreted by the

client; and the QueryFont request, which returns logical information about a certain font.

A second usage of tags is the support of property data which is used for interclient

communication. A client usually sends property data by issuing a ChangeProperty request

for the desired property. The server stores the property data and if another client asks for it

with a GetProperty request, the server sends back that information as a reply.

If both of the clients that want to communicate with each other use the proxy, it is not

necessary to send the property data over the connection between proxy and server. When

the proxy receives a ChangeProperty request from a client, it stores the property data.

Using the LbxChangeProperty request, the proxy then asks the server for a tag that refers

to the property data without actually sending it. When a client asks the proxy for property

data that it has stored, the proxy sends an LbxGetProperty to the server. If the property is

still valid, the server replies with the tag of the property data. If it has been changed by a

client not connected to the proxy, the server sends the new property data to the proxy. If

the data is needed by the server because a client not connected to the proxy asks for it, an

LbxQueryTag event is sent to the proxy. The proxy then sends the actual data of the

property to the server.

Tag usage is theonly part of LBX that requires an architecture with a modified X server.

Everything else could be implemented using an architecture similar to that of XRemote.

However, in order to invalidate tags or request property data from the proxy, LBX needs

information about all clients that are connected to the server.

4.2.5 Reencoding

X protocol messages that are not efficiently coded are reencoded in the preprocessing

layer. There are four types of reencoding: Image compression, drawing request

reencoding, font metric reencoding and event squishing.

The two X protocol requests PutImage and GetImage are used to transfer images between

client and server. Both requests transfer images as uncompressed bitmaps. LBX provides

mechanisms to integrate arbitrary image compression techniques for those requests. In the

current version CCITT1 G4 [5], compression is used for two color images and PackBit [8]

compression for multi-color images. The image included in a PutImage request is

1. Comite Consultatif Internationale de Telegraphie et Telephonie
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compressed in the preprocessing layer and sent to the server using an LbxPutImage

request. For GetImage, the image in the reply is compressed and sent from the server to

the proxy with an LbxGetImage reply. Since further LZW compression of the already-

compressed image data is not efficient, the LbxPutImage and LbxGetImage requests are

passed through the compression layer without further processing.

Drawing requests use 4 byte identifiers for the identification of the destination (resource

ID) and the style (graphic context ID) of the drawing request. These identifiers are

extremely repetitive. Therefore a small cache of 15 entries for both identifiers is kept in

proxy and server. If a cache hit occurs, the 4 bit index of the cache entry is sent. For a miss,

all 4 bits are set to 1 and the identifier is sent. If, for example a hit occurs for both graphic

context ID and resource ID, only one byte has to be sent instead of 8. For the

determination of coordinates, lengths, widths and angles, 2 byte fields are used in the X

protocol. However in many cases 1 byte is sufficient to hold the information. LBX reduces

all of those 2 byte fields to 1 byte where possible. The drawing requests that are reencoded

in this manner are: CopyArea, CopyPlane, PolyPoint, PolyLine, PolySegment,

PolyRectangle, PolyArc, FillPoly, PolyFillRectangle, PolyFillArc, PolyText and

ImageText. The LBX extension requests generated to replace these requests are:

LbxCopyArea, LbxCopyPlane, LbxPolyLine, LbxPolySegment, LbxPolyRectangle,

LbxPolyArc, LbxFillPoly, LbxPolyFillRectangle, LbxPolyFillArc, LbxPolyText and

LbxImageText.

The X protocol request QueryFont asks for the description of a certain font, which is

called a font metric. The QueryFont reply describes each character of the font with the

following information fields: left side bearing, right side bearing, character width, ascent

to top, descent to bottom and attributes. For each of those information fields, two bytes are

reserved in the QueryFont reply. However, in most cases one byte is sufficient. Therefore

LBX reduces the information fields to one byte whenever possible before sending the

reply.

All X protocol events are padded to 32 bytes to make reading and processing easier. As

shown in [27], up to 26 bytes of an event may be unused. LBX squishes events to the size

of the used data before transmitting it. There are no new LBX extension events necessary

to do this: The original X protocol events are used without sending the padding.

4.2.6 Motion Event Suppression

In order to keep the client informed about the position of the pointer device, the server

sends MotionNotify events to the client. With a high speed connection, a large number of

MotionNotify events lead to a smooth animation on the screen. However, for a low-
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bandwidth connection, it might consume a big amount of the available bandwidth. In order

to prevent MotionNotify events from using too much bandwidth, the number of

MotionNotify events is reduced by LBX. To do this, the server keeps a counter of how

many MotionNotify events it is allowed to send. For each sent MotionNotify event, this

counter is decreased by one. If it reaches zero, no more MotionNotify events are

generated. When the proxy receives MotionNotify events and enough bandwidth is

available (e.g., transmission buffers are empty), it sends an LbxAllowMotion request to

the server. As soon as the server receives this request, its counter is increased by the

number contained in the request.

4.2.7 Performance of LBX

Since there exists virtually no information about the performance of LBX, it is within the

scope of this thesis to evaluate the efficiency of LBX. To do this, the LBX proxy was

modified to collect information about compression rates and elimination of round trips.

The modified proxy generates the following data:

• Amount of data sent in requests from the client to the proxy. This data is called uncom-

pressed client data.

• Amount of compressed data sent in requests from the proxy to the server. This data is

called compressed client data.

• Amount of data sent in replies, errors and events from the proxy to the client. This data

is called uncompressed server data.

• Amount of compressed data sent in replies, errors and events from the server to the

proxy. This data is called compressed server data.

• Amount of total data exchanged between client and proxy, which is the sum of the

uncompressed server and client data. This data is called the uncompressed total data.

• Amount of total compressed data exchanged between proxy and server, which is the

sum of the compressed server and client data. This data is called the compressed total

data.

• The number of round-trip requests without short circuiting.

• The number of round-trip requests that are InternAtom, GetAtomName, LookupColor,

AllocColor and AllocNamedColor requests. Those round-trip requests are called elim-

inatable round trips.

• The number of round trips that were actually eliminated by LBX.
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Five standard X applications have been selected for evaluation with the modified proxy:

xterm, emacs, xtetris, FrameMaker and Netscape. Each of these applications has been

monitored under three different conditions:

• At application start-up with a proxy that was newly started and therefore had an empty

cache.

• At application start-up where the same application was already running over the proxy,

which leads to a nearly optimally filled cache.

• During the usage of the application, e.g., browsing the web with Netscape, editing a

document with FrameMaker, playing xtetris, writing a paragraph with emacs, and issu-

ing shell commands using xterm.

All tests have been done on a Sparc5 station with an 8 bit frame buffer, running Solaris

2.5. The X server was the X11R6.0 X server and the window manager was twm.

Table 3 shows the results from application start-up with an empty cache. The compression

rate for the total data lies between 2.3:1 and 3.9:1 with an average of about 2.8:1. This is

marginally better than XRemote. The existence of eliminated round trips for emacs and

Netscape is very interesting. Since the proxy had no information prior to the start of the

application, this shows that those programs make inefficient use of the X protocol: They

requested the same constant information multiple times.

Table 3   Application start-up with empty cache

xterm emacsxtetris FrameMaker Netscape

Uncompressed client data (bytes) 2348 9904 4992 55704 345644

Compressed client data (bytes) 1184 5036 2329 19463 178733

Compression rate 2.0:1 2.0:1 2.1:1 2.9:1 1.9:1

Uncompressed server data (bytes) 105323706413504 39036 142908

Compressed server data (bytes) 3876 7160 4869 13643 38260

Compression rate 2.7:1 5.2:1 2.8:1 2.9:1 3.7:1

Uncompressed total data (bytes) 128804696818496 94740 488552

Compressed total data (bytes) 506012196 7198 33106 216993

Compression rate 2.5:1 3.9:1 2.6:1 2.9:1 2.3:1

Round trips without short circuiting 11 125 13 167 484

Eliminatable round trips 4 49 8 31 371

Round trips eliminated 0 13 0 0 97

Percentage of round trips eliminated 0 10.4 0 0 20.0
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As can be seen in Table 4 a filled cache leads to a large increase in the compression rate.

The main reasons are the filled tag cache, the filled delta compactor and the filled identifier

cache. In this scenario, the compression rate lies between 2.4:1 and 9.2:1 with an average

of about 5.3:1, which is more than two times the compression rate of XRemote. However,

the start-up of Netscape and FrameMaker shows that the advantage of caching decreases

with the amount of data sent. For applications that exchange only a small amount of data

with the server (xterm, emacs and xtetris), the information sent back from the server

dominates the total amount of data. This information can be dramatically reduced by using

tags. For applications that exchange a large amount of data with the server (FrameMaker

and Netscape), the client data dominates the total amount of data. This information is

unaffected by tag usage.

Short circuiting is effective in this scenario, ranging from a 18% elimination for

FrameMaker to a 74.6% elimination for Netscape with an average of 40.4% elimination.

For simple X applications like xterm, emacs and xtetris, the short circuiting of InternAtom

and LookupColor requests are most important. For graphically-oriented applications like

Netscape, the AllocColor request is the one that is most often short circuited. Since

FrameMaker allocates only private colorcells, only a few round trips can be eliminated.

Table 4   Application start-up with filled cache

The efficiency of LBX during application usage is shown in Table 5. Here the compression

rates for the total data range from 2.7:1 to 6.5:1 with an average of about 4.3:1. The image

xterm emacsxtetris FrameMaker Netscape

Uncompressed client data (bytes) 2348 9872 4992 55772 340952

Compressed client data (bytes) 946 3580 1964 18961 176080

Compression rate 2.5:1 2.8:1 2.5:1 2.9:1 1.9:1

Uncompressed server data (bytes) 105323696813440 39420 140348

Compressed server data (bytes) 450 3156 2435 8221 27244

Compression rate 23.4:111.7:1 5.5:1 4.8:1 5.2:1

Uncompressed total data (bytes) 128804684018432 95192 481300

Compressed total data (bytes) 1396 6736 4399 27182 203324

Compression rate 9.2:1 7.0:1 4.2:1 3.5:1 2.4:1

Round trips without short circuiting 11 125 13 167 484

Eliminatable round trips 4 49 8 31 371

Round trips eliminated 3 45 6 30 361

Percentage of round trips eliminated 27.3 36.0 46.2 18.0 74.6
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compression is the main factor for the good compression result of Netscape. The

compression rate for xtetris was achieved because of graphics reencoding and delta

compaction of extremely repetitive requests.

With the exception of FrameMaker, the number of round trips is small compared to the

number of round trips at application start-up. The number of eliminatable round trips is

negligible. The only application that uses a lot of round trips during usage is FrameMaker.

A closer examination of those round trips revealed that about 80% of those round trips are

GetInputFocus requests, sometimes more than 20 in a row. Asked about this inefficient

usage of the X protocol, the developers said that this might be an overcompensation of a

problem with an earlier version of FrameMaker. In general, the data from Table 8 suggests

that round trips do not play an important role during the usage of an application.

Table 5   Application usage

As a summary, it can be said that LBX improves the compression of XRemote by a factor

between 1.5 and 2, and if the proxy’s cache is filled, LBX eliminates about 40.4% of the

round trips at application start-up.

4.3 Higher Bandwidth X, Fast Higher Bandwidth X and dxpc

Higher Bandwidth X (HBX) is an approach to compress the X protocol by using

structured data compression (SDC). HBX and SDC were developed 1994 by John Danskin

xterm emacs xtetris FrameMaker Netscape

Uncompressed client data (bytes) 950812192129008 13053527312664

Compressed client data (bytes) 4261 3345 21068 469477 1111403

Compression rate 2.2:1 3.6:1 6.1:1 2.8:1 6.6:1

Uncompressed server data (bytes) 512012864 18816 94904 70504

Compressed server data (bytes) 1105 3297 5298 27825 18508

Compression rate 4.6:1 3.9:1 3.6:1 3.4:1 3.8:1

Uncompressed total data (bytes) 1462825056147824 14002567383168

Compressed total data (bytes) 5366 6642 26366 497302 1129911

Compression rate 2.7:1 3.8:1 5.6:1 2.8:1 6.5:1

Round trips without short circuiting 3 2 2 764 105

Eliminatable round trips 0 0 0 6 13

Round trips eliminated by short circuiting 0 0 0 0 5

Percentage of round trips eliminated 0 0 0 0 4.8
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at the Princeton University. Fast Higher Bandwidth X (FHBX) can be considered a

successor to HBX. It was developed to speed up the compression process of HBX by using

hash based prediction. dxpc is an X protocol compressor that was greatly influenced by

HBX and FHBX. It is freely distributed in the contrib section of X and was developed in

1995 by Brian Pane. The current version of dxpc is 3.3.0.

The architectures of HBX, FHBX and dxpc are similar to that of XRemote and thus fully

transparent to the X environment of the user. For HBX, FHBX and dxpc, the compression

and decompression is basically done in one step. A division of the functionality in

different layers is therefore not necessary.

The following sections will explain the basic concepts of HBX, FHBX and dxpc.

4.3.1 Structured Data Compression

SDC uses arithmetic coding and statistical modeling to achieve high compression
rates. The beauty of this technique is the separation of modeling and coding. In this
method, the sender and receiver each have a predictive model which generates a
table of probabilities for the next input symbol. An arithmetic coder on the sender
side accepts the table and the symbol si which actually occurred in the input, and
communicates the symbol to the decoder in just -log2(pi) bits, where pi was the
estimate probability of symbol si appearing at this position in the input. The
arithmetic decoder in the receiver decodes the coded bits using its identical table of
probabilities as an inverse map. Bits are shared between adjacent messages, which
means that individual messages can be expressed in fractional bits. For example,
when pi=.5 then 1 bit is necessary as expected, but when pi=.75 then only ≈.41 bits
are necessary to update the receiver.[11]

The fundamental idea of arithmetic coding [3] can be described as follows: Given is a set

S of input symbols si with probabilities pi, where the sum of all pi is 1. Each si occupies a

certain interval I(si) between 0 and 1 according to its probability. The intervals are non-

overlapping and completely cover the Interval [0,1). A string S1...n consisting of the input

symbols S1 ... Sn ∈ S will be encoded by finding its interval I(S1...n), which lies in [0,1).

This interval can be found by recursively applying I(Sn) to I(S1...n-1). The result of an

interval I1=[L1,H1) applied to an interval I2=[L2,H2) is an interval

I3=[ L2+L1(H2-L2) , L2+H1(H2-L2) )

As an example, Figure 25 shows how to encode the string S1-3=ABA for the input symbol

set s1=A s2=B s3=C with the probabilities p1=0.5, p2=0.25, p3=0.25 and the intervals

I(s1)=[0,0.5), I(s2)=[0.5,0.75), I(s3)=[0.75, 1).

To find the interval I(S1...3), we have to apply I(S3) (=I(s1) for A) to I(S1...2). To get

I(S1...2), we have to apply I(S2) (=I(s2) for B) to I(S1) (=I(s1) for A).
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With I(S2)=[0.5,0.75) and I(S1)=[0,0.5) we get I(S1...2)=[0.25, 0.375). Applying I(S3) to

I(S1...2) we get I(S1...3)=[0.25, 0.3125).

Figure 25   Example for arithmetic coding

If the length of the input string is known, any number from the resulting interval is sent by

the encoder to update the decoder. In our example the transmission of 0.25 would be

sufficient to transmit the string ABA.

The decoder recursively looks up the intervals in which the transmitted number lies,

reconstructing the input string. For our example, 0.25 lies in I(s1)=[0,0.5) which yields an

A as the first input symbol. Relative to I(S1), 0.25 lies within the interval I(s2), which

yields B as the second input symbol. Finally 0.25 lies within the interval I(s1) relative to

I(S1...2), which yields A as the third input symbol.

Given the exact probability distribution of the input symbols, it can be shown that

arithmetic coding is optimal. The key for a good compression is therefore the availability

of a good approximation for the probability distribution of the input symbols.

SDC uses predictive models to get a good approximation for the probability distribution of

the input symbols. Those predictive models are adaptive, which means that the predicted

probability distribution for the next input token depends on previously processed input
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tokens. The usage of these predictive models is called statistical modeling in the context of

SDC.

A simple predictive model for text compression could be based on relative frequencies of

input characters. If, for example, at a certain point of time the character ‘e’ has appeared

200 times more often than the character ‘j’ the predicted probability for ‘e’ would be 200

times higher than for ‘j’. A predictive model like this is called a 0 order context model. A

first order context model for text compression would pay special attention to the character

directly in front of the next input character. If, for example, the character in front of the

next input character was a ‘q’, the probability that the next input character is a ‘u’ is

greater than 0.99. For this example, ‘q’ would be the context for the following input

character. For each possible context, there would be a particular predictive model with

relative frequencies. The context is used to index a particular predictive model (for

example, the model for characters following a ‘q’) from a set of predictive models. The

order describes the number of values used to index the model. English text is most

efficiently compressed at 3rd or 4th order [3].

4.3.2 Predictive Models in Higher Bandwidth X

One of the most interesting parts of HBX are the predictive models used to approximate

the probability distribution for X protocol message fields.

• Text: For text compression, Moffatt’s Prediction by Partial Match, method C’ (PPMC’)

[3] is used. This is basically a 3rd order context model.

• Coordinates in drawing requests: Since the shape of objects is important and objects

are frequently moved on the screen, absolute coordinates are transferred into relative

∆X and ∆Y coordinates. The relative coordinates are then predicted by a third order

context model.

• Small Bi-Level Images: Small bi-level images are usually glyphs, which are used for

special characters or buttons. These small images are cached and predicted like text.

• Large Bi-Level Images: The color of a pixel in a large image is predicted by examining

other pixels that are close to the predicted pixel. The state of those pixels are the con-

text of the predicted pixel. The predictive model indexed by the context contains the

probabilities for black or white.

• Color Images: Not supported.

• Incrementing fields: Those fields are typically sequence numbers or time stamps. The

∆ of those fields is predicted using a 0 order context model.
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• Default model: For all other fields, a simple 0 order context model is used. This is par-

ticularly interesting for window IDs, graphic context IDs and length fields.

4.3.3 Performance of Higher Bandwidth X

HBX achieved a 7.5:1 compression over a test suite described in [11]. The main drawback

of HBX is that arithmetic coding and statistical modeling is much more CPU intensive

than LZW compression. HBX is therefore about 10 times slower than XRemote or LBX.

In addition the lack of colored image compression could be devastating for the

compression performance. For programs like Netscape, the transfer of color images could

easily be responsible for over 80% of the data exchanged between client and server.

4.3.4 Fast Higher Bandwidth X

The goal of FHBX is to achieve a similar compression rate as HBX with a CPU

performance similar to XRemote. In order to reach this goal the arithmetic coding and

statistical modeling of HBX is replaced with hash based prediction [28].

Hash based prediction has been developed for text compression. In this technique, the last

few processed characters are used as a context for the next character by generating a hash

code. The hash code is used to select a move to front list. As shown in Figure 26, the

selected move to front list is indexed by using an efficient integer coding scheme like the

Huffman code. In order identify the next input character for the decoder, the encoder

searches the character in the move to front list and sends its index to the decoder. The

decoder selects the same move to front list by using the context of the transmitted

character and gets the character using the transmitted index.

After the transmission of a character, it is moved closer to the front of the move to front

list that was selected by the context. This ensures, that the characters with a higher

probability for a certain context are located at the beginning of the move to front list where

the index can be expressed with fewer bits.

Figure 26   Example for hash based prediction

E R U LV

N P S RV

U R E TL

1 01 001 0001 00001Index

Hash

10

11

12

Hash(MA)

In this example, R is encoded with
the context of MA. The hash of MA
is a pointer to a move to front list
where R can be found in position 2.
The index is encoded a 01 and sent
to the decoder.



Compressing and Enhancing the X Protocol

53

Hash based prediction can be used as an approximation to SDC: For SDC, a context is

used to select a particular predictive model; for hash based prediction, a context is used to

select a move to front list. SDC uses arithmetic coding to encode an input symbol

optimally. Hash based prediction uses the index of a move to front list to encode an input

symbol nearly optimally. Because of this similarity, the prediction models of HBX can be

reused by translating them into hash selected move to front lists.

Tests for the X protocol messages, PutImage and MotionNotify, have shown that FHBX

has a compression rate of about 10%-20% less than HBX with a CPU performance similar

to XRemote.

4.3.5 dxpc

The only documentation available for dxpc is the README file provided with the Version

3.3.0 distribution. From this file it can be learned that dxpc basically uses caching and

HBX/FHBX techniques to compress the X protocol.

Testing dxpc with the same applications as LBX resulted in the compression rates for the

total data shown in Table 6. A comparison to those of LBX shows that dxpc has, in most

cases, significantly higher compression rates. One noticeable exception is the usage of

Netscape. This is not surprising, as it is stated in the README file that “the

implementation of color image compression in dxpc is fairly unsophisticated”.

Table 6   Compression rates for dxpc compared to LBX compression rates

4.4 Which Technique to Choose for the Prototype Integration

The choice of which technique to integrate into the XpleXer had to be made between

HBX/FHBX/dxpc and LBX. The advantages of FHBX/HBX/dxpc are a higher

compression rate and an architecture that is easy to integrate. LBX however offers the

unique feature of round-trip elimination.

xterm emacs xtetris FrameMaker Netscape

Application start-up with empty cache
(LBX values)

3.0:1
(2.5:1)

4.7:1
(3.9:1)

3.4:1
(2.6:1)

3.9:1
(2.9:1)

2.7:1
(2.3:1)

Application start-up with full cache
(LBX values)

9.0:1
(9.2:1)

6.8:1
(7.0:1)

8.2:1
(4.2:1)

4.8:1
(3.5:1)

2.8:1
(2.4:1)

Application usage
(LBX values)

5.0:1
(2.7:1)

6.4:1
(3.8:1)

7.3:1
(5.6:1)

6.6:1
(2.8:1)

4.7:1
(6.5:1)
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Since the objective of this thesis is the integration of synchronicity reducing techniques as

well as compression into an application-sharing product, the choice was made to integrate

LBX. For scenarios where low-bandwidth is the primary issue, HBX/FHBX/dxpc should

be preferred. As will be explained in Chapter 6: Future Work, a combination of both

techniques could be an optimal solution for a product-level integration.
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5 Integrating Protocol Enhancement
and Compression into Application
Sharing

This chapter describes the integration of LBX into the XpleXer. Since LBX was still under

development at the time the integration was done, the result of the integration is still in a

prototype stage. The objectives of the prototype integration were to discover potential

problems of an integration, to solve those problems and to show what effect the integration

has on the used bandwidth and the number of round-trip requests.

The functionality of this prototype is limited in two ways:

• The LBX version integrated in the XpleXer is the work-in-progress version distributed

with X11R6.0 and not the final version of LBX.

• Only the centralized part of the XpleXer is supported (e.g., a scenario where no slave

pseudo servers exist). Supporting the distributable architecture would be necessary for

a product-level integration but does not yield further general information about how to

integrate protocol enhancement and compression into application sharing. A discus-

sion about supporting the distributable architecture can be found in Chapter 6: Future

Work.

5.1 Architecture of the Prototype

The XpleXer has a centralized application-sharing architecture if it is running without any

slaves. Figure 27 shows a scenario where the centralized XpleXer is used for application

sharing between two LANs that are connected by a low-bandwidth or high-latency

network. In this scenario, two users have each started one client sharable by connecting it

to the XpleXer instead of connecting it to their own server. This connection between client

and XpleXer is a low-bandwidth or high-latency connection for the client in LAN 2. If

both clients are shared between the users in LAN 1 and LAN 2, then the XpleXer is

connected to one primary server and one additional server for each client. The connection

between the XpleXer and the primary server is a non-LAN connection for the client in

LAN 2, while the connection between the XpleXer and the additional server is a non-LAN

connection for the client in LAN 1.
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This scenario shows that there are two types of low-bandwidth or high-latency

connections: the connections between client and XpleXer as well as the connections

between XpleXer and server. To support both types of connections, LBX has to be used

between client and XpleXer as well as between XpleXer and server.

Figure 27   Architecture of the centralized XpleXer without LBX

The integration of LBX into the centralized architecture is shown in Figure 28. All

connections that cross LAN boundaries use LBX to enhance and compress the X protocol.

The integration of LBX in the connection between XpleXer and server is a trivial task: For

this connection, LBX can be used without any modifications because LBX was

specifically designed to enhance a connection between client (the XpleXer looks to the

LBX proxy like a normal client) and server. The only restriction is that the user has to have

an LBX capable server.

The interesting part is the integration of LBX into the connection between client and

XpleXer. This part is drawn in bold lines in Figure 28. For this integration, the

functionality of the LBX part of the LBX server must be added to the XpleXer. The

XpleXer must be able to understand and decode the data sent by the LBX proxy.

A closer examination of the architecture shows that the integration of LBX into the

connection between client and XpleXer results in an architecture identical to that of

XRemote: The LBX proxy connects to the XpleXer, which performs the tasks of a pseudo

client in addition to its usual application-sharing functionality. The proxy no longer has a

direct connection to the server. This has the following consequences:

XpleXer
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• The LBX tag mechanism cannot be integrated into the connection between client and

XpleXer.

• A successful integration of LBX into the XpleXer is a transformation of the LBX

architecture into a transparent architecture identical to the one of XRemote.

Figure 28   Architecture of the centralized XpleXer with LBX

5.2 Integrating the Low Bandwidth X Features into the
XpleXer

One challenging aspect of the prototype integration is the volume of the software involved.

The volume of the original XpleXer source code is approximately 2.6 MB and that of the

LBX source code approximately 1.4 MB. The resulting prototype integration has a volume

of nearly 3.6 MB.

An additional problem is that the XpleXer was developed reusing source code from

X11R5, while LBX was developed for X11R6. The combination of the large volume and

the version differences made merging the two software pieces particularly troublesome

and time consuming. The following sections will explain how the different LBX

mechanisms were integrated into the XpleXer.

5.2.1 XRemote Layer and Data Compression Layer

As mentioned in the previous chapter, the XRemote layer and the data compression layer

are integrated in the OS layer of the LBX server. For the prototype integration, the LBX

part of the LBX server’s OS layer was extracted and inserted into the OS layer of the

LBX XpleXer
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XpleXer. Even though no major changes were necessary, the difference between the

X11R6 and the X11R5 code caused several minor conflicts that had to be solved.

Succinctly, it can be said that the integration of the XRemote layer and the data

compression layer was straightforward but time consuming.

The original implementation of the data compression layer in LBX has one drawback:

Monitoring the IP packets sent by LBX X server and proxy, it can be seen that the usage of

LBX increases the number of IP packets by a factor of two. As an example, Table 7 shows

the number of IP packets sent at the start-up of Netscape.

Table 7   Number of IP packets sent at the start-up of Netscape

With TCP/IP header compression (combined TCP/IP overhead per IP packet about 5

byte), the increase of IP packets should have no significant impact on the compression

performance of LBX. Nevertheless, a reduction of the number of IP packets generated by

LBX is desirable for scenarios where no header compression is used, or where the delay

for the network access is high.

A closer examination reveals two reasons why the number of IP packets is increased when

using LBX:

• The Xlib buffers client requests as long as possible and sends several of them in one

TCP packet. Usually this TCP packet is mapped to one IP packet. The decision when

to buffer requests and when to send them is made using local information of the client.

The proxy, however, sends the requests to the LBX server without special request buff-

ering, causing the number of IP packets to increase.

• The LZW compressor splits the data stream into small chunks, compresses them and

immediately sends them to the decompressor, one chunk at a time. Because of this, the

LZW compression of large requests and replies can cause multiple IP packets to be

sent.

Netscape start-up

IP packets for client data without LBX 656

IP packets for client data with LBX 1459

IP packets for client data with LBX and buffering of LZW chunks 1202

IP packets for server data without LBX 599

IP packets for server data with LBX 1278

IP packets for server data with LBX and buffering of LZW chunks 839
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While the proxy does not have enough information about the client to do request

buffering, the LZW compressor can be tuned to produce output in a more efficient way:

For the prototype integration, a buffer was inserted after the LZW compressor. This buffer

is only flushed if enough data is assembled, or if no further data needs to be compressed.

As can be seen in Table 7, the result of buffering LZW chunks is a significant reduction of

IP packets, compared to the original LBX. The remaining difference between LBX with

buffering of LZW chunks and no LBX is caused by the lack of request buffering in the

proxy.

5.2.2 Short Circuiting

The integration of short circuiting for InternAtom requests required some extra work

because of the handling of atoms in the XpleXer. The XpleXer keeps a list of all interned

atoms for each client. When the client is shared using spin-out sharing, those atoms are

interned by the XpleXer from the new server. The mapping between atoms of the primary

server and atoms of the new server is stored in the XpleXer. If the client later wants to set

property data, the data is set in the primary server as well as the new server using the

stored mapping.

Short circuiting, as it is used by LBX, does not give the XpleXer enough information to

keep the list of interned atoms for each client: When an InternAtom request is short

circuited, only an LbxModifySequence request is sent to the XpleXer. There is no way for

the XpleXer to figure out the property name in the short circuited request. Therefore the

LBX extension protocol had to be modified for the integration. Figure 29 shows the

definition of a new LbxInternAtom request which replaces the LbxModifySequence

request.

The LbxInternAtom request contains all the information of the InternAtom request from

the X protocol. With this information, the XpleXer is able to keep the list about which

client has interned which atoms.
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Figure 29   The LbxInternAtom request

Another problem had to be solved for the integration of short circuiting AllocColor and

AllocNamedColor requests. As described in the previous chapter, the LBX proxy sends an

LbxIncrementPixel when an AllocColor or an AllocNamedColor request is short

circuited, so that the server can increment the counter for the respective colorcell.

Since the real colormap is located in the primary server and not in the XpleXer, the

handling of LbxIncrementPixel requests had to be changed for the integration. In order to

increment the counter for a colorcell, the XpleXer has to send an appropriate AllocColor

request to the real server whenever it receives an LbxIncrementPixel request. For the

server, this request looks like an ordinary AllocColor request. It is therefore executed by

incrementing the counter for the colorcell that contains the RGB values specified in the

request. The reply to this request is discarded by the XpleXer because the original request

was short circuited and the client already received the reply from the proxy.

The original LbxIncrementPixel request just contains an index to a colorcell. The XpleXer

cannot generate an appropriate AllocColor request from this information, since the index

can be interpreted only with the real colormap. In order to give the XpleXer all the

necessary information, the LbxIncrementPixel request had to be changed. As shown in

Figure 30, the new version of the LbxIncrementPixel request contains all information that

the XpleXer needs to generate the AllocColor request for the server.

Position Size Value Description

0 1 extension opcode major opcode: LBX request code

1 1 35 minor opcode: LBXInternAtom request

2 2 2+(n+p)/4 request length

4 1 BOOL only if exists

5 1 padding

6 8 n length of property name

8 n STRING property name

8+n p padding
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Figure 30   The new LbxIncrementPixel request

Short circuiting of LookupColor and GetAtomName was integrated into the XpleXer

without major modifications of the original LBX.

5.2.3 Profiling and Cache Prefill for Short Cir cuiting

As described in Chapter 4, LBX eliminates a significant number of round-trip requests at

application start-up if the proxy’s cache is filled. This improves the performance for

applications that are started after the proxy has been used for some time. Short circuiting

would be even more useful if applications that are started early in the lifetime of the proxy

could also take advantage of the short circuiting mechanism. This would especially apply

to application-sharing scenarios, where usually only a very small number of clients is

involved in each session.

Given the fact that most users use the same applications repeatedly, it makes sense to

preserve parts of the proxy’s short circuiting cache not only while the proxy is running, but

also thereafter for the next start of the proxy. In the context of the prototype integration,

the action of preserving parts of the proxy’s cache is called profiling, since the resulting

data is essentially a profile of certain eliminatable round-trip requests.

However, since the peer server or XpleXer for an LBX proxy might have been restarted

while the proxy was not running, only the information that is provided by the client can be

reused. For example, if the proxy has a property-name-to-atom mapping in its cache, only

the property name is saved in the profile. At start-up, the proxy therefore has to request the

Position Size Value Description

0 1 extension opcode major opcode: LBX request code

1 1 8 minor opcode: LBXIncrementPixel request

2 2 5 request length

4 4 integer colormap id

8 2 short integer red value

10 2 short integer green value

12 2 short integer blue value

14 2 padding

16 4 integer amount
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missing information from the server or XpleXer. Asking the server or XpleXer about the

missing information and storing the combined information in the proxy’s short circuiting

cache is called cache prefill.

The effect of profiling and cache prefill is that round trips which are exchanged between

proxy and server/XpleXer are shifted from the start-up of the applications to the start-up of

the proxy. For the user, this should be an improvement, since the proxy is usually started

long before it is actually being used. If this is not satisfying, a special LbxCachePrefill

request could be used to prefill the proxy’s cache, using only one round-trip request.

The prototype integration supports profiling and cache prefill for property-name-to-atom

mapping and colorname-to-RGB-value mapping. The profile for property names and

colornames is written to special files in the user’s home directory whenever the proxy’s

last client disconnects. At the start-up of the proxy, those files are read and the appropriate

InternAtom and LookupColor requests are issued by the proxy in order to prefill the cache.

Profiling and cache prefill is not supported for the mapping of RGB values to the index

and the contents of a colorcell. The reason for this is that the cache prefill for the mapping

would require the allocation of shared colorcells that might never be used. Since colorcells

are a scarce resource in the server, this should not be done.

5.2.4 Tag Usage

As mentioned above, the LBX tag mechanism cannot be integrated into the Xplexer: The

XpleXer is not aware of clients that connect directly to the primary server and is therefore

not able to invalidate tags or request the transmission of property data.

However, a product-level integration could replace the LBX tag mechanisms with a

caching strategy that does not require knowledge about the actions of clients that are

directly connected to the primary server. To realize this strategy, the proxy and the

XpleXer would keep identical caches for the last replies to GetKeyboardMapping,

GetModifierMapping, QueryFont and connect requests. If one of those requests arrives at

the XpleXer, it would be forwarded to the primary server. The reply of the primary server

would be compared with the content of the cache in the XpleXer. If the content of the

cache and the reply are identical, the XpleXer would send only a short reply which tells

the proxy to send the content of proxy’s cache as a reply to the client. If the content of the

cache and the reply are different, the whole reply would be sent to the proxy, and the

caches in XpleXer and proxy would be updated.



Integrating Protocol Enhancement and Compression into Application Sharing

63

5.2.5 Reencoding

The decoding of reencoded messages had to be integrated into the XpleXer in a way that

made sure that a request is decoded only once, even if the client is shared by multiple

servers. Usually the XpleXer dispatches incoming requests once for every server. For

reencoded messages, this would have led to an unacceptable increase in decoding

overhead. In order to decode a reencoded request only once, it is now dispatched to an

LBX decoding function only for the primary server. This function replaces the encoded

request with the decoded equivalent of the request. The decoded request is then dispatched

once for every server.

All other parts of message reencoding were integrated into the XpleXer without major

modifications.

5.2.6 Motion Event Suppression

Motion event suppression was integrated into the XpleXer in order to reduce the number

of MotionNotify events that are generated by the input token holder. All MotionNotify

events from other servers are discarded by the XpleXer before they reach the motion event

suppression of LBX. For the MotionNotify events of the input token holder, the

unmodified LBX motion event suppression was used.

5.3 Performance of the Prototype

For the performance evaluation of the prototype integration, the same tests as for the

original LBX were used. In order to make the comparison between the performance of the

original LBX and the prototype integration easier, additional lines with the values from the

original LBX have been included in Tables 7–9. The following results apply to the

integration of LBX into the connection between client and XpleXer. For the connection

between XpleXer and server, the original LBX, enhanced by cache prefill and buffering of

LZW chunks, is used. Consequently, that part of the integration has compression rates

equal to those of the original LBX, and round-trip elimination rates equal to those

described in this section.

The results for a newly started proxy with a prefilled short circuiting cache is shown in

Table 8. As can be seen, the compression rates for the client data is identical to that of

LBX. The compression rates for the server data are slightly lower than for the original

LBX because tag usage was not integrated into the prototype.
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For a newly started proxy, the tag usage only reduces server data for the reply to a connect

request — the proxy knows the reply to the connect request, since it is itself connected to

the XpleXer — and for replies to requests which are issued more than once during the

start-up of the application. Accordingly, the impact of the missing tag usage on the total

compression performance is relatively low.

For this scenario, the prefill of the short circuiting cache leads to a large increase in the

eliminated round-trip requests. The average percentage of eliminated round trips is 25.8%

for the integration, opposed to only 6.1% for the original LBX.

Table 8   Application start-up with pr efilled short circuiting cache

Table 9 shows the second scenario with an optimally filled cache. As in the first scenario,

the compression rates for the client data are nearly identical. For the server data, the

original LBX achieves significantly better compression results than the prototype

integration. The reason is obvious: With an optimally filled cache, the usage of tags is a

big advantage, especially for ‘small’ applications like xterm or emacs. However, for

applications that transfer a large amount of data at start-up, like FrameMaker or Netscape,

xterm emacsxtetris FrameMaker Netscape

Uncompressed client data (bytes) 2348 9908 5216 55668 347136

Compressed client data (bytes) 1169 4995 2389 19363 180156

Compression rate 2.0:1 2.0:1 2.2:1 2.9:1 1.9:1

(Original LBX) (2.0:1) (2.0:1) (2.1:1) (2.9:1) (1.9:1)

Uncompressed server data (bytes) 10532 37064 13760 38660 140608

Compressed server data (bytes) 4284 9184 5059 13834 40626

Compression rate 2.5:1 4.0:1 2.7:1 2.8:1 3.5:1

(Original LBX) (2.7:1) (5.2:1) (2.8:1) (2.9:1) (3.7:1)

Uncompressed total data (bytes) 12880 46972 18976 94328 487744

Compressed total data (bytes) 5453 14179 7448 33197 220782

Compression rate 2.4:1 3.3:1 2.5:1 2.8:1 2.2:1

(Original LBX) (2.5:1) (3.9:1) (2.6:1) (2.9:1) (2.3:1)

Round trips without short circuiting 11 125 13 167 484

Eliminatable round trips 4 49 8 31 371

Round trips eliminated 3 39 4 26 117

Percentage of round trips eliminated27.3 31.2 30.8 15.6 24.2

(Original LBX) (0) (10.4) (0) (0) (20.0)
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the overall compression rates of the original LBX and the prototype integration are still

fairly similar.

As can be seen in Table 9, for this scenario the elimination of round trips is not affected by

the integration into the XpleXer.

Table 9   Application start-up with filled cache

From the data in Table 10 can be learned that, for application usage, the integration has

basically the same compression rates and round-trip elimination percentages as the

original LBX.

The evaluation shows that the performance of the original LBX and the prototype

integration are similar for most cases. The original LBX has a significantly higher

compression rate only for application start-up with an optimally filled cache. For a

product-level integration, the lack of tag usage could be compensated by the integration of

the caching strategy described in 5.2.3. Due to cache prefill, the prototype integration has a

significantly higher round-trip elimination rate as the original LBX for a newly started

proxy.

xterm emacsxtetris FrameMaker Netscape

Uncompressed client data (bytes) 2484 9872 4992 55772 341324

Compressed client data (bytes) 945 3963 2106 19650 177595

Compression rate 2.6:1 2.5:1 2.4:1 2.8:1 1.9:1

(Original LBX) (2.5:1) (2.8:1) (2.5:1) (2.9:1) (1.9:1)

Uncompressed server data (bytes) 10532 36968 13600 39332 142244

Compressed server data (bytes) 3112 7114 3872 13810 40657

Compression rate 3.4:1 5.2:1 3.5:1 2.8:1 3.5

(Original LBX) (23.4:1) (11.7:1) (5.5:1) (4.8:1) (5.2:1)

Uncompressed total data (bytes) 13016 46840 18592 95104 483568

Compressed total data (bytes) 4057 11077 5978 33460 218252

Compression rate 3.2:1 4.2:1 3.1:1 2.8:1 2.2:1

(Original LBX) (9.2:1) (7.0:1) (4.2:1) (3.5:1) (2.4:1)

Round trips without short circuiting 11 125 13 167 484

Eliminatable round trips 4 49 8 31 371

Round trips eliminated 3 45 6 30 361

Percentage of round trips eliminated 27.3 36.0 46.2 18.0 74.6

(Original LBX) (27.3) (36.0) (46.2) (18.0) (74.6)
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Table 10   Application usage

xterm emacs xtetris FrameMaker Netscape

Uncompressed client data (bytes) 7004 13888 120744 1364448 6980512

Compressed client data (bytes) 3237 3905 19909 485509 1042329

Compression rate 2.2:1 3.6:1 6.0:1 2.8:1 6.7:1

(Original LBX) (2.2:1) (3.6:1) (6.1:1) (2.8:1) (6.6:1)

Uncompressed server data (bytes) 4832 14528 17920 92568 66592

Compressed server data (bytes) 1240 4259 4915 25954 18094

Compression rate 3.9:1 3.4:1 3.6:1 3.6:1 3.7:1

(Original LBX) (4.6:1) (3.9:1) (3.6:1) (3.4:1) (3.8:1)

Uncompressed total data (bytes) 11836 28416 138664 1457016 7047104

Compressed total data (bytes) 4477 8164 24824 511463 1060423

Compression rate 2.6:1 3.5:1 5.6:1 2.8 6.6:1

(Original LBX) (2.7:1) (3.8:1) (5.6:1) (2.8:1) (6.5:1)

Round trips without short circuiting 4 2 2 781 77

Eliminatable round trips 0 0 0 6 10

Round trips eliminated 0 0 0 4 7

Percentage of round trips eliminated 0 0 0 0 9.1

(Original LBX) (0) (0) (0) (0) (4.8)
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6 Future Work

This chapter identifies future work that should be done in order to transform the prototype

into a product-level integration. The first section discusses the integration of LBX into the

distributable architecture of the XpleXer. Sections 6.2 through 6.4 present approaches to

improve the X protocol enhancement and compression techniques described in Chapter 4.

The last two sections cover miscellaneous topics that must be take into account in order to

make X protocol enhancement and compression more efficient for an integration into

application sharing.

6.1 Supporting the Distributable Architecture

Support for the distributed part of the XpleXer must be added to the prototype for a full

integration of LBX into the distributable architecture of the XpleXer. Figure 31 shows a

scenario where the distributed XpleXer is used to share two clients. For client 1, XpleXer

1 is the master and XpleXer 2 is the slave. For client 2, XpleXer 2 is the master and

XpleXer 1 is the slave. The only connections that cross LAN boundaries are the

connections between the two XpleXers. The communication between master and slave is

based on the X protocol with an extension for additional information.

Figure 31   Architecture of the distributed XpleXer without LBX

The architecture for an integration of LBX into the distributed part of the XpleXer is

shown in Figure 32. For most parts of this integration, the code of the prototype
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integration can be reused. However, there is one additional problem that must be solved:

While the communication between master and slave is based on the X protocol, there

exists one major difference between the protocol that is used between client and server and

the protocol that is used between master and slave. For some information requests, the

client is interested only in the reply from the primary server. In those cases, it is not

necessary for the slave to send the replies from the additional server to the master. Instead,

the information contained in those replies is stored in the slave for the mapping of future

requests. To make the LBX proxy work with the slave, it needs to be modified to accept

this behavior. This is the major task for the integration of LBX into the distributed

architecture.

Figure 32   Architecture of the distributed XpleXer with LBX

The combined integration of LBX into the centralized and the distributed part would

provide full support for the distributable architecture of the XpleXer.

6.2 The New Low Bandwidth X

The final LBX standard for protocol version 1.0 [6] was published in January 1997, after

the prototype integration was completed. This section gives an overview of the additional

features of the final standard.

A lot of work has been done to enable short circuiting of AllocColor and

AllocNamedColor requests for the case where the short circuiting cache of the proxy is

empty. In order to make this possible, a mechanism called colormap grabbing has been

developed. Colormap grabbing allows the proxy to gain control over a colormap, when a
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client connected to that proxy starts issuing AllocColor or AllocNamedColor requests. In

order to grab a colormap, the proxy issues an LbxGrabCmap request. The server replies to

this request with the description of the grabbed colormap. Thereafter the proxy controls

the colormap: It is allowed to allocate colors in the colormap and to reply to AllocColor or

AllocNamedColor requests without contacting the server first. The server is updated with

regard to the status of the colormap by the one-way request LbxAllocColor that contains

the same data as the AllocColor request. The LbxAllocColor request is sent by the proxy

as a substitution for short circuited AllocColor and AllocNamedColor requests. If other

clients try to allocate colors in a grabbed colormap, the server sends an

LbxReleaseCmapEvent to the proxy. Upon receiving this event, the proxy passes the

control of the colormap back to the server by sending an LbxReleaseCmap. Other clients

are allowed to deallocate colors in a grabbed colormap. If the counter for a specific

colorcell reaches zero, the server informs the proxy by sending an LbxFreeCellsEvent.

Another convenient feature that has been added to the LBX standard is a way to intern

more than one atom with a single round-trip request. This is done by using the

LbxInternAtoms request. With the presence of this request, the cache prefill for property

name to atom mapping can be done in a single round-trip request.

With colormap grabbing and cache prefill, the full power of short circuiting can be used

right after the start of the proxy. The time necessary for the prefill of the atom cache can be

dramatically reduced by using LbxInternAtoms. An additional LbxLookupColors request

would be very desirable to reduce the whole cache prefill to two round trips.

Arbitrary algorithms can be used for the stream compression of the new LBX. The

implementation provided by the X Consortium supports the DEFLATE compressed data

format [13], which is a combination of the LZW algorithm and Huffman coding. The

usage of the DEFLATE compressed data format should not significantly change the

compression performance of LBX because of its similarity to the LZW compression that

is used by the work-in-progress version of LBX.

The remaining parts of the new LBX standard are similar to those of the work-in-progress

version described in Chapter 4. The main problem with an integration of the new LBX

standard into application sharing would therefore be the integration of colormap grabbing.

The algorithms for colormap grabbing require the knowledge about actions of clients that

are directly connected to the server. As explained in Chapter 5, the same reason prevented

the integration of tag usage into the prototype. A proposal of how this problem could be

solved is presented in section 6.3.
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6.3 A Transparent Architecture for Low Bandwidth X

One of the main disadvantages of LBX is that the architecture is not transparent to the X

window environment of the user. With the architecture proposed by LBX, everyone who

wants to use LBX must install a new X server. This is hardly optimal, taking into account

the huge installed base of X servers and the large number of operating systems and

hardware platforms to which the X server code has been ported. For application sharing, a

transparent architecture would be even more important, since only the transparent parts of

LBX can be integrated into application sharing. A very interesting question is therefore:

“Can the LBX architecture be converted into a transparent architecture, retaining support

for all compression and short circuiting mechanisms?”

To answer this question one has to reconsider, why a non-transparent architecture is

proposed for LBX. The reason is that the X server has information about all connected

clients. A pseudo client, as it is used by XRemote or HBX/FHBX, does not have

information about clients that are directly connected to the server. This information is

essential for tag usage and colormap grabbing.

If it were possible to give the pseudo client information about all clients of a server, all

LBX mechanisms could be used with a transparent architecture. How the pseudo client

could get this information is shown in Figure 33. The key idea is that no client would be

allowed to connect directly to the server. Even local clients would use the LBX pseudo

client to communicate with the real server. The LBX pseudo client would forward most of

the requests unchanged from local clients to the server. Only requests that affect tag usage

or colormap grabbing would be examined closer and appropriate actions — like

invalidating tags, requesting property data or handling requests for grabbed colormaps —

would be taken.

Figure 33   Transparent architecture for LBX
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For an integration into application sharing, the XpleXer could do the job of the pseudo

client in addition to its usual application-sharing functionality. With the guarantee that all

clients of the primary server connect through the XpleXer, all LBX mechanisms could be

integrated into application sharing.

6.4 Combining Different X Protocol Enhancement and
Compression Techniques

As shown in Chapter 4, both the HBX/FHBX/dxpc and the LBX approach have different

advantages. HBX/FHBX/dxpc usually achieves a higher compression rate, while LBX

supports short circuiting and motion event suppression as well as superior tag usage and

image compression. A combination of the different X protocol enhancement and

compression techniques is therefore desirable.

Figure 34 proposes the functional layers for a combination of LBX and HBX/FHBX/dxpc.

The LBX preprocessing layer of the combination would be responsible for short

circuiting, tag usage, reencoding of images and motion event suppression. A

HBX/FHBX/dxpc layer would replace the delta compaction and compression layers of

LBX. The data received from the preprocessing layer would be compressed in the

HBX/FHBX/dxpc layer by using prediction based compression.

Figure 34   Functional layers for a combination of LBX and HBX/FHBX/dxpc
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6.5 Transport Layer Support

This thesis focuses on the optimization of the X protocol being used over existing

transport services. However, the used transport services do have a significant impact on

synchronicity and bandwidth of X-based application sharing. Forward error correction and

multicast are two examples, where transport layer services could enhance the

communication for application sharing.

6.5.1 Forward Error Correction

With the usage of TCP, the average round-trip delay depends not only on the latency, but

also on the loss rate of the underlying network. When a client issues a round-trip request,

it waits until it receives the reply from the server. If packet loss occurs either for the

request or the reply, the round-trip delay is increased by the time TCP needs for a time-out

and retransmission of the lost packet. One-way requests are less sensitive to the loss rate of

the network since the client does not have to wait for a reply to the request. Because of this

difference between round-trip and one-way requests, the X protocol can be considered to

have two priorities: a higher priority for data that belongs to a round-trip request and a

lower one for the remaining data. If applied to the higher priority data, forward error

correction could reduce the round-trip delay for lossy networks by decreasing the number

of retransmissions. It should be interesting to investigate how existing forward error

correction schemes like PET [1] could be used to enhance the X protocol performance.

6.5.2 Multicast

A reliable multicast protocol could tremendously reduce the required bandwidth for the

data sent from the master to the slaves: Application-sharing sessions with many

participants would basically require a similar amount of bandwidth as sessions with two

participants. Only the data that is sent from the slaves to the master would require unicast.

This is not a major limitation, since usually only the connection to the slave of the input

token holder is active. All other slaves filter the replies, errors and events from their

servers and do not send them to the master. A combined integration of multicast and X

protocol enhancement and compression techniques into the XpleXer should result in an

optimal reduction of the used bandwidth.
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6.6 Graceful Quality Degradation

For very low-bandwidth connections like modem or cellular modem connections, the user

might be interested in trading quality for speed.

Since the transfer of images is one of the most bandwidth-consuming activities, it would

be interesting to investigate how graceful degradation of image quality could be included

in X protocol enhancement and compression. In this context, graceful degradation would

mean a reduction in quality while retaining the essential information for the user. The

algorithms for graceful degradation would have to work in real time: intercepting the

image sent by the client, performing graceful degradation of the image and then sending

the degraded image over the low-bandwidth connection to the server. The degradation of

images could be performed by reducing the number of colors, by reducing the resolution,

or by employing existing lossy image compression techniques. A similar problem is

currently been investigated for world wide web access over low-bandwidth connections

[15].

Another example where graceful quality degradation might be acceptable for the user is

the refreshing of windows. Usually the application is asked to repaint the content of a

window, as soon as parts of it that have been obscured become visible. Over a very low-

bandwidth connection it might make sense to let the user decide when to repaint which

window. Typically a user would request the refreshing of a window after finishing window

manipulation (resizing, moving, raising and lowering windows).

Other parts of X might qualify for graceful quality degradation also. Overall, it should be

very interesting to examine the impact of graceful quality degradation on the used

bandwidth and the perceived quality.
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7 Conclusion

The topic of this thesis is the integration of protocol enhancement and compression into X-

based application sharing.

Application sharing is “... a technology which allows two or more users located at

geographically different places to synchronously work with a single-user application, i.e.

online and at the same time” [24]. To make this technology available to the network-based

X Window System, several different software products have been developed. As shown in

this thesis, virtually all of them use a protocol similar to the X Window System protocol to

display the output of a single user application on more than one screen and to receive

response from more than one user. However, this protocol was designed to be run over a

fast LAN. Used over a high-latency or a low-bandwidth connection, it leads to serious

delays and loss of interactivity. In these environments, the start-up of a standard

application like Netscape can easily take more than 90 seconds. For low-bandwidth or

high-latency connections, the X protocol must be enhanced in order for X-based

application sharing to become a universal cooperation technology.

In this thesis, existing approaches to enhance the X protocol for low-bandwidth or high-

latency connections were reviewed and an integration of one of those approaches into the

XpleXer, an application-sharing product developed by Siemens, was presented.

The X protocol enhancement and compression approaches that were summarized in this

thesis are: XRemote, Low Bandwidth X (LBX), Higher Bandwidth X, Fast Higher

Bandwidth X and dxpc. For the integration, LBX was the compression method of choice,

since it is the only approach that supports high-latency connections by eliminating

synchronous X protocol requests. LBX uses stream and delta compression as well as

several request specific algorithms to reduce the amount of data that must be sent over a

low-bandwidth connection. Higher Bandwidth X, Fast Higher Bandwidth X and dxpc use

prediction based compression to achieve better compression results as LBX. However,

none of them supports high-latency connections.

In order to prove that LBX can be integrated into application sharing, a prototype

integration into the XpleXer has been done. Several modifications had been necessary to

fit LBX into the new environment, including changes to the LBX protocol. In order to

make LBX more efficient, cache prefill and LZW packet buffering were added to the

original LBX. The overall compression rate of the prototype integration is about 3.3:1, and

at the start-up of an application, up to 74% of the synchronous X protocol requests can be
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eliminated. With these results, application sharing over low-bandwidth or high-latency

connections is considerably improved.

While working on the prototype integration, several areas of future work were identified.

These areas include further improvements for X protocol enhancement and compression

as well as advanced, product-level integration of those techniques into application sharing.

The prototype integration only scratches the surface of what is possible. A future product-

level integration should be able to achieve compression rates of at least 6:1 with a very

stable rate of eliminated synchronous X protocol requests.
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