Protocol Enhancement and Compession
for
X-Based Application Sharing

Martin Mauve
mauve@icsi.berkeley.edu

TR-97-004
February 1997

International Computer Science Institute, Berkeley, California
Lehrstuhl fur Praktische Informatik 1V, University of Mannheim

Abstract

Application sharing is a technology whichatawo or more users located at geographically
different places to synchronouslomk with an unmodified single-user application. Male this
technology gailable to the netark-based X Whdow System, seeral diferent softvare products
have been desloped. All of them use a protocol similar to the Xhdéow System protocol X11 to
display the output of a single-user application on more than one screen andu®e meggbnse
from more than one usddowever, this protocol vas designed to be ruvar a fist LAN. Used
over a high-latenc or a lav-bandwidth connection, it leads to serious delays and loss of
interactvity. While there hee been some fefrts to male the X11 protocol more suitable for those
scenarios, none of themveabeen intgrated into application-sharing sofive.

The objecties of this wrk are to reiew existing techniques for enhancement and compression of
the X11 protocol, to pre that those techniques can be dnaded into application sharing
products by praeiding a prototype inigration, and to identify areas of futureomk. It will be

shavn that the caching and compression techniques of the prototyggatiaa reduce the
synchronicity of application sharing products by up to 74%, and the amount of sent data by an
average of 70%.

Table of Contents

Table of Contents

List of Figures 1
List of Tables 3
Abbreviations 5
1 Introduction 7
2 The X Window System: An Overview 11
2.1 XWindow SysStem BasiCSot 11..
2.1.1 Architecturet e 11. ..
2.1.2 Interclient Communication. 12..
2.1.3 ColorHandling. 13 ..
2.1.4 EXIENSIONS 14. ..
2.2 The X Protocol. 15. ..
2.3 The X SerIVer e 17...
2.3.1 Structure of the Sample X Server., 17.
2.3.2 FlowofControl 19 ..
3 X-Based Application Sharing 23
3.1 Approaches and Architectures for X-Based Application Sharing. 23
3.1.1 Server Modification. 23..
3.1.2 Xlib Modification 24 ..
3.1.3 Centralized Pseudo Server................o . 25. .
3.1.4 Distributed Pseudo Server. 26. .
3.1.5 Distributable Pseudo Server............ 27. .
3.2 The XpleXer — An Application-Sharing Tool for the X Window System?28
3.2.1 Sharing Applications Using the XpleXer. 29,
3.2.2 Architecture of the XpleXer Pseudo Server. 30
3.2.3 Flow of Control in the XpleXer Pseudo Server. 31
3.3 X-Based Application Sharing Over Low-Bandwidth and High-Latency

CONNECLIONS.t e e 32...

iii

Table of Contents

4 Compressing and Enhancing the X Protocol 35
41 XREMOIE. . .. 35
411 XRemote Architecturet 35

412 XRemoteLayerS. 36

4.1.3 Efficiency of XRemote. 37

4.2 LowBandwidth X 38
421 LBXArchitecture. e 38

422 LBX Layers. ..ottt e 39

423 Short Circuiting. 40

424 TagUSAOE. . ..ot 42

425 ReenCOdiNgt 43

4.2.6 Motion Event SUPPreSSION . ..o v et 44

427 Performanceof LBX. 45

4.3 Higher Bandwidth X, Fast Higher Bandwidth X anddxpc 48
4.3.1 Structured Data ComPresSIoNo vttt 49

4.3.2 Predictive Modelsin Higher Bandwidth X...................... 51

4.3.3 Performance of Higher Bandwidth X 52

434 FastHigherBandwidth X 52
435 OXPC. .ttt e 53

4.4 Which Technique to Choose for the Prototype Integration 53

5 Integrating Protocol Enhancement and Compression into

Application Sharing 55
5.1 Architectureof thePrototype 55
5.2 Integrating the Low Bandwidth X Featuresinto the XpleXer 57
5.2.1 XRemote Layer and Data CompressionLayer................... 57
522 Short CirCUiting.ot e e 59
5.2.3 Profiling and Cache Prefill for Short Circuiting. 61
5.24 TagUSaQe. .. .ot 62
525 Reencodingt 63
526 Motion Event SUPPressiono it 63
5.3 Performanceof thePrototype. ...t 63

Table of Contents

6 FutureWork 67
6.1 Supporting the Distributable Architecture 67
6.2 TheNewLowBandwidth X 68
6.3 A Trangparent Architecture for Low Bandwidth X 70
6.4 Combining Different X Protocol Enhancement and Compression

TeChNIQUES . ..o e 71

6.5 Transport Layer SUPPOITot 72
6.5.1 Forward Error Correction. 72

6.5.2 MUItICaSt 72

6.6 Graceful Quality Degradation. i 73

7 Conclusion 75
References 77

Table of Contents

Vi

List of Figures

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

X Window System architecture., 12..
X'Window colorhandling.

The InternAtom request. 15..
The InternAtom reply. 16 ..
The EXpPOSE eVent. e e 16. .
The AlloC error. 17. ..
Structure of the sample X'server. 18. .
Example for the flow of control inthe X server. 19
Flow of controlinmain() 20. .
Flow of control in Dispatch(). 20. .
Dispatching requests fromaclient. 21 .
Server modification. 24, .
Xlib modification. 24. .
Centralized pseudo SErver.t
Distributed pseudo Server.
Distributable pseudo server. 27. .
Architecture of the XpleXer pseudo server. 30.
Flow of control in the XpleXer’s Dispatch() function. 31
Dispatching requests from a client in the XpleXer. 32
XRemote architecture 36 .
XRemote layers 36. .
LBX architecture. 38..
LBX layers. 39...
Problem with Short Circuiting. 42. .
Example for arithmeticcoding 50. .
Example for hash based prediction. 2.
Architecture of the centralized XpleXer without LBX 56
Architecture of the centralized XpleXer with LBX 57
The LbxInternAtom request

List of Figures

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

The new LbxIncrementPixel request 61
Architecture of the distributed XpleXer without LBX................. 67
Architecture of the distributed XpleXerwithLBX 68
Transparent architecturefor LBX i 70
Functional layers for a combination of LBX and HBX/FHBX/dxpc. 71

List of Tables

List of Tables

Table 1 Application-sharing architectures — overview. 28
Table 2 Data volume and round-trip requests at application start-up. 33
Table 3 Application start-up withempty cache. 46.
Table 4 Application start-up with filled cache. 47.
Table5 Applicationusage. e 48. ..
Table 6 Compression rates for dxpc compared to LBX compression rates. . 53
Table 7 Number of IP packets sent at the start-up of Netscape 58
Table 8 Application start-up with prefilled short circuiting cache. 64
Table 9 Application start-up with filled cache. 65.
Table 10 Applicationusage. 66. . .

List of Tables

Abbreviations

Abbreviations

AS
CCITT
client
CsCcw
CSLIP
DDX
DIX
FHBX
HBX
P
ISDN
LAN
LBX
LZW
master
NCD
oS
PPMC’
PPP
RGB
SDC
server
slave
STC
TCP

X

Application Sharing

Comite Consultatif Internationale de Telegraphie et Telephonie
X Window System client
Computer-Supported Cooperative Work
Compressed Serial Line Internet Protocol
Device Dependent X (layer)

Device Independent X (layer)

Fast Higher Bandwidth X

Higher Bandwidth X

Internet Protocol

Integrated Services Digital Network
Local Area Network

Low Bandwidth X

Lempel-Ziv-Welch (compression algorithm)
master pseudo server

Network Computing Devices

Operating System (layer)

Prediction by Partial Match, method C’
Point-to-Point Protocol

Red, Green, Blue

Structured Data Compression

X Window System server

slave pseudo server

Siemens &lecooperation Center
Transmission Control Protocol

X Window System

Abbreviations

Introduction

| ntroduction

With a rapidly graving demand forxgert knavliedge and the tendento work in globally
distributed teams, computer solutions for cooperation and informaticimaage become
more and more important. This area of research isviknas ComputeSupported
Cooperatre Work (CSCW) [17] and should lead to thevdl®pment of adequate computer
tools to mak cooperation between humans easier and miiceef.

One part of CSCW deals with synchronous disteld cooperation tools, e.g. tools that are
used simultaneously by &#fent persons in geographicallyfdifent places. The folwing
scenario gies an impression of fothose tools could support human interaction and
cooperation:

The system administior Reak just encountl a poblem while installing ne
softwae. Knowing that it might takhim days to solve theginiem, he decides t@g
some gpert advice Wth a mouse clic, he opens his confarce manger. After
consulting his electmic phone book, he establishes a connection to a company
specialized in answering questions about thedpct he was attempting to install.
Immediately a video pops up on Readceen and anxert asks him to describe his
problem. Reak>glains the poblem and sends the window he was using for the
installation to the s@en of thegert. In oder to discoer the poblem, Reak and
the pert tale turns entering commands into the windowy thew shae. Finally
they decide that theneed to modify some system filesetiotige softwag running on
Reaks computerReak sends his editor to the esan of the »xgert, who in turn
suggests somehanges to the system filesogéther thg edit the files and try once
more to install the softwar The softwag is now working Reak taks ba& the
installation and editor windowsdm the gpert's sceen and disconnects using his
confeence manger.

Several hours later Reak finishes his work on a document thappses a ne
network structue for his companyHe wants to gt some input on his @posal fom
fellow administators in diferent bianches. Again using the conégrce manger, he
establishes a connection to them. He sends the window of his desktop publishing
tool to the saeen of the confence participants. Explaining hisqposal, he points
to parts of the document with a pointer whis shaed between all participants
(telepointer). After Reakxplains his viey, the confegnce participants takturns in
modifying the document, weng and discussing these modifications.

Introduction

Examining the tools the person in the scenaras wsing, one can distinguish between
tools that werexplicitly developed for cooperate use and those that wereveleped for

a single userThe conference manageudio, video and the telepointer belong to the first
group, while the windw for the installation, the editor and the desktop publishing tool
belong to the second. Those groups arewknas cooperationware and cooperation
unavare tools, respeetely [24].

While it is concerable that in the distant future the majority of tools areelbped as
cooperation ware tools, most applications today and in the near future will belong to the
cooperation unaare group. In order to makhose applicationsvailable to cooperate
work, a special softare is necessaryhis softvare males it possible that unmodified
single user applications are displayed on more than one screen simultaneously aad recei
input from more than one usefo give the user the feeling of a true cooperti
ervironment, ag cooperation unaare application should be sharable at@me with ary

user A software that maks this possible is called application-sharing saféw
Consequently application sharing (AS) is defined as “... a technology whials &ho or

more users located at geographicallyettént places to synchronouslysk with a single-

user application, i.e. online and at the same time” [24].

The first system for which application-sharing solutions weveldped is the X \Mdow
System ¥rsion X11 [22]. It is the first windo system that is based on a netkvprotocol
between application and windcsystem instead of function calls. It also has a number of
other attrilutes interesting for application sharing, such as harelwransparemg freely
available source code and a huge number of cooperatiomav@applications using X
Window.

Virtually all of the application-sharing tools\@#oped for X Whdow use the X protocol

to display the output of a single user application on more than one screen andveo recei
response from more than one uséowever, this protocol vas deeloped for usagever a

local area netark with low lateny and high bandwidth. Returning to the scenario, it
would be a common case that theert is not located in the same area as the one who
seeks advice. Iratt CSCW should especially support cooperation between users that are
separated by long distances, mayleneworking on diferent continents. Another
common usage ould be application sharingver lov-bandwidth links. In the scenario

one of the administrators might currently be at home, connected only via an ISDN line.

A standard X Whdow application likk Netscape needs more than 450 synchronous
protocol requests and it transfers wellep 450 kbyte of data just at start-up of the
application. Vith either a high-latenc link (200+ ms round-trip delay) or awe
bandwidth connection (< 64 kbit), this leads to a delay of 60—90 seconds! The number of

Introduction

synchronous requests and the amount of data sert tinakisage of the basic X protocol
unsatisfying for those scenarios.

While there hae been some feirts to optimize and compress the X protocol for high-
lateny and lav-bandwidth links, up to @ there &ists no intgration of these &jrts into
application-sharing tools.

Objectives of thisthesis

This thesis is about protocol enhancement and compression for X-based application
sharing. The main objeggs are as follos:

» give an @erview over the gisting eforts to enhance and compress the X protocol,

* show that those mechanisms can begnéed into risting application-sharing prod-
ucts by preiding a prototype inigration,

* measure the compression rate and the reduction of synchronicityeathweh the
integration and

* identify areas of future ark.
Chapter Overview

The second chaptervgis an introduction to the X Mtdow system. It gplains the basic
concepts of the X Widow architecture, the X Wdow protocol, what an X seev is and

how the sample X seer distriuted with X works. Chapter Three starts with an
introduction to the dferent approaches for application sharing under iKddv. It then
describes in more detail the application-sharing tool (XpleXer) tlaat elhosen for the
integration. The final part of Chapter Three wiothe problems of application sharing
over high-lateng and lav-bandwidth links. Chapterdtr summarizesxesting eforts to
enhance and compress the Xindbw protocol for high-latenc and lav-bandwidth
connections. It describes whone tool (Lev Bandwidth X) was preferred for the
integration and under which circumstances ded#nt tool should be chosen. The fifth
chapter deals with the prototype igtation of XpleXer and Lw Bandwidth X. It
proposes an architecture for the prototype anavshehich Lav Bandwidth X features
could be intgrated and he they where changed to fit into thewesrvironment. This
chapter alsowaluates the compression rate and the reduction of synchronous protocol
requests achved by the intgration. The sixth chapter is dedicated to areas of futark w

and research that were identified whileriing on this thesis. It skas that there are
numerous \ays to further increase the compression rate and to enhance the elimination of
synchronicity A summary of this thesis can be found in Chapteeie

Introduction

10

The X Window System: An Overview

2 The X Window System: An Overview

This chapter gies an gerview of the X Wndow System. It will gplain only the concepts
and terminology necessary to understand the remaining chapters of this tbess. F
detailed &planation of the X Wdow System, the X protocol and the X ser\see [26],
[25] and [20].

2.1 X Window System Basics

211 Architecture

The X Window System ¥rsion X11 (X) is a netark oriented, hardare independent,
graphical windav system. Its source code is freelyagable. The current release of X is
R6; most application-sharing products, mentioned in this thesis, were written for R5.
Figure 1 shass the basic architecture for X: The user reegioutput from the applications
through one or more bitmapped screens. Input is entered avithus input deices such

as mouse andeiboard. Dgether screens and inputvaes are called a displapne
display is managed by a piece of safterknevn as the X seer (serer). The serer gets
requests from application programs — the X clients (clients) — and acts accardingly
typical request from a client could be: Wra square on the screen. The semwuld
receve this request, translate it into gix on the screen and drahose piels in the
desired colar Answers to information requests, error reports avehts (likk mouse
movement) are sent from the servo the client.

In the X Window System ersion X11, the communication between client andeseis/
based on a protocol rather than on function calls. Thisvallbhe user to run multiple
clients on diferent computers, using only one display for in- and output. The protocol
used for the communication between client andesas/called X protocol.

To shield application programmers from the X protocol, the Xlals deeloped. XLib is
the C application programming intade to X. Using XLib, the application programmer
can deelop softvare for X in a vy similar to deeloping softvare for a non-netark-
based winde system. Knwledge about the X protocol is not needed.

As a windav system, X defines a windoas a rectangular area of the screen. The Xeserv
maintains a data abstraction foveey windav. This data abstraction has fdifent
attributes, like width and height, which are called windattributes. Whdows are the

11

The X Window System: An Overview

basic lilding blocks for gery graphical user intaa€e under X. Buttons, menusxte
fields and icons are alkamples of windws.

Application .
Xlib B
-4— X Protocol Screen
—» X Sener §
Display

Network

Figurel X Window System architecture

To coordinate and manage multiple clients and their wisdovhich compete for
resources lik screen space, a special saftis needed. This sofane is called a windwo
manager Most windav managers hee a user intedce that allvs the user to resize,
iconify and mee application windas. For X, a windav manager is realized as a client
with certain responsibilities. Although X prides a sample windo managerits usage is
not mandatorylnstead it is up to the user to choose a wandwnager he or she é&k.

2.1.2 Interclient Communication

Since X clients frequently need txahange information, X has to mide ways for
interclient communication. One such method is the use of properties. A property is an
arbitrary information associated with a windoln order to access this information, a
client needs to ko the property name, represented by a string and the wimndth

which the property is associated. The same property name feredif windevs points to
different information.

To sare bandwidth, numerical aliases — called atoms — are used to refer to property
names. Some of those atom-to-property-name mappings are predefined. Other property
names dort’have a standard mapping to atomer Ehose properties, the client has to ask

the serer about the mapping: It sends the property name as a string to tee whieh

replies with the atom. This mapping is guaranteed to not change during the lifetime of the

12

The X Window System: An Overview

sener. If another client asks for the mapping of the same property name, it will get the
same atom as a response. The action of asking ther $enan atom is krnvan as “intern
an atom”.

To set or read a propertg client specifies a pair of an atom and a wwdihis kind of
interclient communication is often used between clients and the win@dmager

2.1.3 Color Handling

X is designed to support bitmapped graphics screens. The color of ealabnpifte screen

is defined by the state of 1 to 32 bits, depending on the heedvithe screen. Black-and-
white screens, forxample, need just one bit for eachglixo represent the twpossible
states. Color screensvgamore bits per p&d. Those bits are arranged in planes, where
each plane has one bit foregy pixel on the screen. Figure 2 s¥®an eight-plane screen.
The piel in the laver right corner of the screen is described by eight bits, one in each
plane. Those bits together are called theelpigalue. The pirl value does not directly
specify a colarinstead it describes an ind® a color table where the actual RGB (Red,
Green, Blue) alues (usually 16 bit for each primary color) for the electron beams are
located. This has the follong adwantage: The number of colors that can be displayed
simultaneously is onIy82 But, if the colormap is writable, the number of colors from
which to choose these colors fhgm6 bit per primary color). The color map looks slightly
different for grg scale and high-end graphics screens [26].

R G B

! -

14

1 \ 13(129 17 |255——» Color
. 12
oooonom' 11

O —
[]

- 10
8 Planes L

pa—

Colormap

Figure2 X Window color handling

Usually all clients of one seev share one common colormap. But although most screens
have just one hardare colormap, \ery windav can potentially define itswnm private
colormap. In this case, the windananager is responsible for loading the colormap for
the right windaev into the hardwre colormap whewner necessaryHowever, applications

13

The X Window System: An Overview

usually aoid defining their wn colormaps since all winge that do not use the yate
colormap will be displayed in the wrong colors when thegpei colormap is loaded.

Each member of a colormap is called a colorcell. In #zangle, the colorcell for ped
value 13 has the RGBalues of 129, 17 and 255.

In order to use a colpa client has to ask the senfor permission. There aredwdifferent
things the client can ask for:

» allocation of a shared color: The client specifies the R&Beg it vants to use. The
sener replies with an indeto a colorcell, which contains the closest RGBues
physically possible on that screen. The client can use this, colkait is not allaved to
change the content of the colorcell. Theadage of this method is that the colorcell
can be used by more than one client at the same time.

» allocation of pwvate colors: The client asks for a number of/gie colorcells. The
sener answers with the ingeof those cells. The client can then use and change the
content of those colorcells whese it wants. This preents other clients from using
the same colorcell,ub it is very useful if the client needs to do color manipulation.

To use the adintage of a shared coldwo or more clients he to specify gactly the
same RGB alues. Vithout further assistance it i€sy unlikely that two clients will ever
choose the samalues out of 2 possibilities. male sharing and specification easer
sener side colorname database isved. 10 use it the client asks the servfor
information about a color described by a string. Theeseamswers with the RGBalues
that matches the requested color

214 Extensions

The X Window System is etensible. This means that thergists a standard ay to
enhance X by additional functionalityhis additional functionality is called artension
to X. Adding an gtension is done by pvading nev Xlib functions, deeloping nev
protocol messages and modifying the serVhere &ists a number obagensions to X, for
example the shapexension which lets the programmer use non-rectangular wgdd
sener is n@er required to support grextensions, therefore a client must ask theeseifv
a certain gtension is present before using itv&el of the approaches for X protocol
compression described in this thesis make of thexd@ension mechanism.

14

The X Window System: An Overview

2.2 The X Protocol

The X potocol is the true definition of the Xifow System, and any code in any
language that implements it is a true implementation of X. It is designed to
communicate all the information necessary to afera window systemver a
single asynieronous bidiectional steam of 8-bit byte$25]

The X protocol defines four d#rent types of messages:

request: ith a request, the client asks the serw do something (l&draving a line)

or to send back information (kkan atom for a property name). As aaraple, Figure

3 shavs the InternAtom request. Each request type is identified by a major request
opcode included in the request. Those opcodes range from 0 to 127 for the basic X pro-
tocol. Another field common to all requests is the request length. It specifies the length
of the request in multiples of 4 bytesadeling is added to maksure that wrd and

long word datatypes & the right alignment and that the message length is indeed a
multiple of 4.

Position | Size Value Description

0 1 16 opcode: intern atom

1 1 BOOL only if exists

2 2 2+(n+p)/4 | request length

4 2 n length of property name
6 2 padding

8 n STRING property name

8+n P padding

Figure3 ThelnternAtom request

replies: Replies are sent from the szrto the client as an answer to certain requests.
Only a small number of requests need a repigure 4 shas the InternAtom reply
The type of the reply is identified by the request which caused the Teglistinguish
replies from gents and errors, the sernvincludes a 1 as the opcode in the message.
The message for all repliessemts and errors contain the number of the last request
processed by the senwv— this number is called a sequence numbke sequence
number maks it possible for the client to match srmessages with the request that
caused them. This is especially useful forudghng. The reply length is\gn in mul-
tiples of 4 in &cess of 32 bytes.

15

The X Window System: An Overview

Position | Size Value Description
0 1 1 opcode: reply

1 1 padding

2 2 unsigned integer | sequence number
4 4 0 reply length

8 4 ATOM atom

12 20 padding

Figure4 ThelnternAtom reply

* events: Wheneer the serer needs to notify the client about a change of state (lik
mouse meement or side &cts of preious requests), it sends the client aarg. Fig-
ure 5 shws the Exposevent. The Exposevent is generated by the serwhenger
an area of a windw needs to be repainted by the clienteig are identified by their
opcode which ranges from 2 to 34 andéa fixed length of 32 bytes.

Position | Size Value Description
0 1 12 opcode: expose event
1 1 padding

2 2 unsigned integer | sequence number
4 4 WINDOW window

8 2 unsigned infeger | x

10 2 unsigned integer | y

12 2 unsigned integer | width

14 2 unsigned infeger | height

16 2 unsigned integer | count

18 14 padding

» errors: If the semr encounters an error caused by a client request, it notifies that client
by sending an error message. An error which could be generated by the InternAtom

Figure5 The Expose event

request is the Alloc erroReceving an Alloc error tells the application that the serv

16

The X Window System: An Overview

was not able to allocate enough memory xecete the request. The alloc error is
showvn in Figure 6. The type of error can be determined by the error code included in
the message. The major opcodevehavhich request type caused the erhdk errors

use the opcode 0 andveaa length of 32 bytes.

Position | Size Value Description

0 1 0 opcode: error

1 1 11 error code: alloc

2 2 unsigned integer | sequence number
4 4 0 unused

8 2 unsigned integer | minor opcode

10 1 byte major opcode

11 21 padding

Figure6 TheAllocerror

As mentioned in the pveous section, the X protocol itensible. The major request
opcodes 128 through 255 are resenfor etensions. Eachx¢éension gets one major
opcode and has to include a minor opcode in each of its requests to distinguish between
different requests from thaitension. Br ecxtension gents, X preides the opcodes
64—127 and for errors the error codes 128-255.

A request which needs a reply is called a round-trip request, all other requests are called
one-way requests. Round-trip requests are synchronous, e.g., the client issuing the round-
trip request wits until it receres the answer (or an error) to the request. In high-katenc
networks, a lage number of round trips is wkestating for the performance of the client.
Even a well-designed client using the basic X protocol uses enough round trips to be
seriously delayedwer those netarks.

2.3 The X Server

2.3.1 Structure of the Sample X Server

The source code of the sample serprovided with the distribtion of X has been
developed to be easily portable townbdardvare platforms. The mainubding blocks of
the sample seer are shen in Figure 7 [20].

17

The X Window System: An Overview

The Device Independent X (DIX) layer contains the code that is portable across platforms.
Dependencies from input and outpuvides are encapsulated by thevidge Dependent X
(DDX) layer. The OS layer contains operating system specific functions. Functions for
managing fonts are combined in thenELibrary

X Sener
Graphics
Device Device Operations
Independent Dependent
Layer Layer \\ Kevboard
(DIX) (DDX) Events
T e
A =

L~ Font Library

Pointer

Operating H ==
A S —
Syst(eomS)Layer A;_/
A
Font Serer

Operating System

Protocol

Font
Databas

X Protocol
Network

Color

Database ‘ v

Figure7 Structure of the sample X server

The DIX and OS layers are of special interest in the gbnfehis thesis.

The main OS layer function is to encapsulate the communication with the clients. It
manages client connections, reads client requests from therkefarwards them to the

DIX layer and writes errorsyents and replies from the other layers back to the client. It
provides input and outputuffers and tells the DIX layer whenwi&equests ave.

The two main tasks of the DIX layer are request dispatching et elelvery. Incoming
requests from the OS layer are sent (dispatched) to the appropriate request functions.
Those functions can call DDX functions (for output to the screen) or do the requested
work in the DIX layer (lile interning an atom). Inpuvents are generated in the DDX
layer and are forarded to the DIX layerOther @ents are generated in the DIX layer

18

The X Window System: An Overview

itself. In both cases the DIX layer processes thesate and determines whickents
should be sent to which client. Then it hands thents w@er to the OS layer for
transmission. \th those two tasks, the DIX layer is the control center of the eeiv
directs which parts become agtiand hw the data fls through the system.

2.3.2 Flow of Control

An example for the flov of control between the threeykfunctions of the seer is shavn
in Figure 8. The seer is started at;tand begins with the initialization of the data
structures in the DIX layer functiarai n() before the functio®i spat ch() is called.
As there are no clients y& spat ch() tells the OS layer t@ai t For Sonet hi ng()
to happen. At4 the first client connects and starts sending requests to thex e
Di spatch() distributes those requests to appropriate functions and calls
Wi t For Sonet hi ng() to wait for nev requests from the OS layer input from input
devices. At g the last client disconnects. This caus#sspatch() to return and
mai n() decides to reset the servA new cycle, called semr generation lggns. The first
client in this generation connects ip, tthe last client disconnects a tausing
Di spat ch() to return. This timerai n() decides toxat, ending the X Semr process.
Function

A

main() |-
- DIX layer -

Di spatch() |-
- DIX layer -

Wi t For Sonet hi ng() |-
- OS layer -

Figure 8 Example ér the flow of control in the X sewer

Therai n() function is the starting point for the Woof control in the seer. Figure 9

[20] shawvs that after processing command linguements and creating servstructures,

the serer bayins with dispatching client requests. When the last client disconnects, the
sener structures are reset and the eseiy either restarted or terminated.

19

The X Window System: An Overview

YES
process create serr ' free serer
P> aguments[| “structures [P | sPat ch() B sirictures

NO

Figure9 Flow of control in main()

The dispatch loop is the heart of the sernAs shovn in Figure 10 [20], it starts with the
decision to return or to continue dispatching. Usually the dispatch loop ends when the last
client disconnects. If there is input from the inputvides, the DDX function
Processl nput Event s() is called to get thevents. Certain inputvents, for @mple
pointer m@ement, are required to be delied timely Those eents are called critical
output (output from the segv to the client). Critical output is flushed to the client in

Fl ushl f Criti cal Qut put Pendi ng() . After handling deice input, the dispatch

loop uses the OS layer functidii t For Sonet hi ng() to sleep until ne@ requests
arrive or the net input esent occurs. If some clients & requests, those requests are
dispatched for one client at a time. After dispatching the requests from one client, all
output to all clients is flushed.

from mai n() ¢

NO

Processl| nput Event s() —={Fl ushl f Criti cal Qut put Pendi ng() i Fl ushAl | Qut put ()

!

YES | dispatch

—| requests
from client

some
client has

input pending? request?

Wi t For Sonet hi ng()

Figure10 Flow of control in Dispatch()

Figure 11 [20] shas hav requests from a single client are dispatched. The loop continues
until all available requests are processed or until some other parts of tlee tadlv

Di spat ch() to stop processing requests for that client. This is necessarywenpee
hyperactve client from dominating the sew Before reading the request from the OS
layer with ReadRequest FronCl i ent (), the DDX layer gets a chance to process

20

The X Window System: An Overview

input events and, if applicable, critical output is flushed. This is done¢p khe pointer
device responsie.

ReadRequest FronCl i ent () can return either with or without awmeaequest. If no
request is returned and an error occurred while trying to read the requests, the responsible
client is closed. If no error occurred, the loop wedhat there are no more requests for

that client and resumes with dispatching other clients.

After a request is successfully read, it is dispatched to the appropriate function identified
by the major opcode in the request. If this function returns an @ri®examined. In the

case of adtal erroythe client is closed. If the erroa& not &tal, it is reported to the client
andDi spat ch() continues dispatching requests for thetrdient.

A

YES

ready to yield? >

NO

did an
error occur?

handle —ReadRequest FronC i ent () alfetggerzit?

dispatch
input request >

was the
error fatal?

Cl oseDownd i ent () (-

did an
error occur?

report error
¢ NO

Cl oseDownd i ent ()

Figure1l Dispatching requestsfrom aclient

Extensions are intgated into the fl of control by preiding a dispatch function. All
requests belonging to th&tension are dispatched to that function. Examining the minor
opcode of the request, this function can distinguish betwefmnadif request types of the
extension. It then forards the request to whichex extension function is responsible for
handling this type of request.

21

The X Window System: An Overview

22

X-Based Application Sharing

3 X-Based Application Sharing

3.1 Approaches and Achitectures br X-Based Application
Sharing

Application sharing is realized by intercepting the communication between applications
and the winder system. Doing this, the application-sharing safevis able to multipe

the output of an unmodified single user application to multiple users and t&rdotteir
actions to the applicationoF X, the locations where the interception caretplace are

the Xlib, the serer, or the X protocol. All of those locationsueabeen used to delop
application-sharing softare. The follaving sections describe the fdifent approaches and
architectures of application-sharing products for X. It will benghthat virtually all of

them use the X protocol for communicationep potentially high-latenc or low-
bandwidth connections. A detailed discussion about thardages and disadrtages of

the approaches can be found in [24] and [19].

3.1.1 Server Modification

Figure 12 shas the architecture of an application-sharing product that is based on a
sener modification. In this architecture, a special serfi¢ not only able to display an
application on its screenubcan also share it with yother unmodified seer across the
network. For the communication, the basic X protocol is used since the unmodifiedsserv
have no information about application sharingr fhem the serr with the application-
sharing modification looks lé&kan ordinary client from which theeceve requests and to
which the/ deliver replies, errors andvents. It is the modified sexs job to forvard
requests to the other serg and to shield the client from the lwtedge that more than

one user interacts with its wings.

In this architecture, the X protocol is useeepthe connections from the client to the
modified serer and from the modified s&awto the other seevs. As indicated by the
dashed arnos in Figure 12, anof those connections might be of high-latemme low-
bandwidth: the one between client and modifiedesgbecause it might be necessary to
run the application on a remote computer; the connection between the modifexchaerv
an unmodified sear because the users of those weners might not be located in the
same local area netrk (LAN).

An example for this type of architecture is SharedX fromvié#t Packard [16].

23

X-Based Application Sharing

— v X Sener
Application P -
X Protocol Modified -
odifie
Xib | — — — vy { X Protocol
~
~
~
A X Sener

Figure 12 Sever modification

3.1.2 Xlib Modification

In this approach, the application-sharing functionality isgrated into the Xlib This

might look like a violation of the rule that the single user application must not be changed
in ary way. However, almost all UNIX-based operating systems support shared libraries.
Those libraries are not statically limtk to a program; instead thare loaded at run time. If

the client is compiled and liekl to use Xlib as a shared libraityis possible to replace the

old Xlib with a nev one which supports application sharing. This does not require a ne
linking of the client.

Figure 13 shas the basic architecture for this approach. The Xlib function calls are
mapped to requests for all participating sesv Replies, errors andemnts are collected
from all serers and handed to the application as ijtivere generated by one serv

Application _ W7 XSener
~
~
~
Shared |~
Xlib X Protocol
S
~
~
~
A X Sener

Figure 13 Xlib modification

24

X-Based Application Sharing

The shared Xlib uses the standard X protocol to communicate with the &rSe3eme of
them might be reachableer a high-lateng or lov-bandwidth connection only

An implementation of this architecture is shXlib from DEC in Karlsruhe [2].

3.1.3 Centralized Pseudo Server

In this architecture, the communication between application and wirgystem is

intercepted at the X protocolviel. As shavn in Figure 14, a special servwithout a

display — called pseudo semnv— is inserted between client and real sessv D the

client, the pseudo sezwlooks like an ordinary seer; for the real seers it pretends to be
an ordinary client.

A client that has to be shared is started in suchyathat it connects to the pseudo serv
instead of to the users real sarvihe pseudo seev then multiplges the requests from
the shared client to multiple real sers. It collects the repliesyents and errors from
those serers, forvarding them to the client as if thevhere issued by only one servlhe
pseudo semr can be thought of as a service: Wivenesomeone ants to share a
cooperation unaare application, it is started using this service.

{ X Sener
Application /
X Protocol Pseudo
Xlib - — — | X Sener X Protocol
N
\ X Sener

Figure14 Centralized pseudo server

Just as in the modified servarchitecture, all connections might be high-lagemrclow-
bandwidth connections. In addition to that, it is not wetlikhat someone mightamt to

use the serviceyven if he or she is not located in the same LAN as the computer that
provides this service. In this case, the connection from the client to the pseusioasetv
from the pseudo seev to the uses real serer could be of high-lategyar low-bandwidth

even if client and real seev run on the same computer

25

X-Based Application Sharing

Xmux, developed by Grg McFarlane, QC Ltd., is an application-sharing tool that is
based on a centralized pseudo eerarchitecture. A comparison of Xmux with other
application-sharing programs can be found in [4].

3.1.4 Distributed Pseudo Server

To prevent the pseudo sexwfrom becoming the bottleneck of the system, the dig&th
pseudo sewlr architecture as deeloped. One of the most time consuming tasks in the
centralized approach is the generation of requests for tferedht real semers when a
client request awves at the pseudo serv The generation of requests is not a simple
copying of the incoming requests to the real senRather it is a mapping of the
information the client sends in the request to the information a rearseeeds to
understand the request. Examples of information theg k@ be mapped are sequence
numbers, atom numbers, color information, wiwdmordinates andavious identifiers.

In the distriluted pseudo seev architecture shen in Figure 15, this wk is done by a
pseudo client running on the samerlstation as the real senvWheneer necessaryhe
pseudo sewrr forwards rough data from the client requests to the pseudo client. From this
information, the pseudo client creates a request for the locadrs@erforming all
necessary mapping. Along with the data for requests, the pseudo samds information
about which user is currently aed to interact with the application and which users are
just watching. According to that information, the pseudo clients reportvingts errors

and replies from the real serg back to the pseudo serv

X Protocol

P Pseudo Clierj @™ X Sener

Application /
) X Protocol Pseudo
Xlib |« — — - X Sener Internal Protocol
N

X Protocol

BN Pseudo Clierjr®—® X Sener

Figure15 Distributed pseudo server

For the dataaxchange between pseudo sarand pseudo client, an internal protocol could

be used. But, since the X protocol isf&ugént to transfer most of this information, the
internal protocol is usually realized by using the X protocol with>dansion. r the

same reasons as in the centralized approach, the connections from client to pseudo serv

26

X-Based Application Sharing

and from the pseudo senvto the pseudo clients can be high-layeoc low-bandwidth
connections.

Examples for distribted pseudo seev architectures are Xy [19] and Xwedge [18].

3.1.5 Distributable Pseudo Server

The distrilutable pseudo segv architecture as deeloped to mad it possible for users
without the pseudo client sofare to participate in the sharing of an application, while
retaining the distribted architecture for those users whwéhdhe necessary sofiwne
installed. As shwn in Figure 16, the distniliable architecture is a combination of the
centralized and the distubed approach.

X Protocol
Slave XS
/ Pseudo Serr > ener

Application Y /
; X Protocol Master ’ Internal Protocol
Xlib — — PIpseudo Seer
N
_ v * X Protocol
\ A Psel?cliec‘)l%eer < B> X Sener
X Protocol

il D

X Sener

Figure16 Distributable pseudo server

In this architecture, a pseudo s&ris running on somearkstations in addition to the real
X sener. When a client has to be shared, it is started in sucyahat it connects to one
of those pseudo sexxs. This pseudo sewbecomes the master pseudo se(master) for
that client. The master notifies all other pseudoessrwhich run on the samevkstation
as a real seer participating in the sharing of the application. Those pseuderserv
become she pseudo seers (slaes) for the client.

The master is responsible for distriimg client requests.df serers that run on the same
workstation as a sk&, it simply forvards the unmodified client request to thevesldrhe
slave then does the required mapping and sends the request to the exajustriike a

27

X-Based Application Sharing

pseudo client in the distuibed approach.df serers that do not va a slae running on
their workstation, the master does thevsk job, mapping and sending the request to the
real serer. Replies, eents and errors are sent back from theeslaand the real sass to

the masterThe master forards them to the client as if thevere generated by only one
sener. For the communication between master and reaksgrthe X protocol is used,
since those seevs kneov nothing about application sharing. Master andveda
communicate by using a slightly modified X protocol for the fnded requestsyents,
errors and replies. Additional information is transferred by usingxeengon to the X
protocol. for the same reasons as in the centralized approach, the connections from the
client to the mastefrom the master to the real sers and from the master to thevels
can be high-laterycor low-bandwidth connections.

The only application-sharing product that supports thisaackd architecture is the
XpleXer [24], which is the basis for the prototype grtion described in this thesis.

Table 1 gves an werview over the diferent application-sharing architectures described in
Sections 3.1.1-3.1.5.

Communication Suitable for Every Uses X prot_ocol
S . . oy over potentially
. between applicatior] Transparent to the X sessions with| participant |, . :
Architecture : : . .| high-bandwidth
and windev system is Window System? mary needs special
. . - or low-lateny
intercepted at: participants?| software? .
connections?
S.e.r\er. X Sener No No No Yes
modification
Xlib XLib No No No Yes
modification
Centralized X Protocol Yes No No Yes
pseudo seer
Distributed X Protocol Yes Yes Yes Yes
pseudo seer
Distributable X Protocol Yes Yes No Yes
pseudo seer

Table 1 Application-sharing architectures — aerview

3.2 The XpleXer — An Application-Sharing Tool for the X
Window System

The XpleXer is an application-sharing sadive that vas deeloped at the Siemens
Telecooperation Center (STC) in Saarbeitk It is the central component of the

28

X-Based Application Sharing

heterogeneous multi-media collaboration system GroupX whashdgeloped within the
scope of the BER®M-2 project. GroupX is sold by Siemens vate Netvorks
Department.

3.2.1 Sharing Applications Using the XpleXer

Wheneer the user ants a client to be sharable, it is started in suchyathat it connects

to a pseudo seev instead of the userteal serer. The pseudo seev forwards all requests
from the client to the real sawas well as all replies, errors ancerts from the real
sener to the client. The real sewof the user who started the client is called the primary
sener and, as described aleg the pseudo sexwto which the client is connected is called
the masterFor all practical purposes, the master looks to the client as if it were the
primary serer. Because of that, the master does not need toydmapping for this seer

— it can just forvard all messages. This nezkthe processing for a sharable application,
which is not actually being sharedry fast.

When the user ants to share one of his sharable clients with anotherheser she tells

the master to add awesener to the client. In order to do this, the master tries to contact a
pseudo serr on the wrkstation of the ng sener. If there is one, it becomes thevdaif

there is none, the master connects directly to the seg\er. As soon as the master has
contact to either the sla or the n& sener, it starts replicating the cliestoutput which is
already shayn on the primary seer’s display To do this, it queries the primary senfor
information. Havever, some information necessary for the replication cannot bevedrie

in that way. Therefore the master has teep some information in a pate database.
Using both types of information, the master generates requests for the replication. If a
slave is present the requests are sent withopta@apping to the slee. The slae then does

all the necessary transformations and hands the modified requests ta $er\we If no

slave is present, the master has to do the mapping and the requests are sent directly to the
newv sener. After the replication is completed, the master mulkipdéeall n&v requests

from the client to both the primary and thewsener, using a shee if possible. The action

of sharing a client while it is running is called spin-out sharing. If\eeskused to do the
required mapping, it is also kwa as cooperate sharing [24].

As soon as a client is shared between more than onetuséne mastes' job to shield the

client from the &ct that more than one sensends replies, errors angets. Replies and

errors are generated in response to requests. Since the client thinks it is interacting only
with the primary semr, only the replies and errors from the primary eelare sent back

to the client. Replies and errors from other sesvare either discarded or handled
internally in the pseudo sers.

29

X-Based Application Sharing

Input events are processed feifently: An input token is assigned to grone of the users
participating in the sharing of the application. The masterdais/only inputeents from

the tolen holder to the client. All inputvents from other users are ignored. The XpleXer
provides mechanisms to assign the inputetolaly time to ag participant. The user
interface that is controlling the XpleXer is responsible for implementing suitable policies
for the assignment of the input wkusing the proded mechanisms.

3.2.2 Architectureof the XpleXer Pseudo Server

As shavn in Figure 17 the XpleXer pseudo sarwan be dided into three layers.
Because of the functional similarity with a real sgrthe OS and the DIX layers were
taken from the sample saw of X11 Release 5 and modified to fit into thevne
ervironment.

The OS layer ws enhanced to accept connections to a master XpleXer from a special
pseudo-client port. The DIX laysr'only remaining job is the scheduling of the pseudo
sener. All incoming requests are handed to thev gplication-Sharing (AS) layeNo
requests are processed by the DIX layer itself.

Client Port Pseudo-Client Port
S A

Operating System (OS) Layer
Sheduling (DIX) Layer

Application-Sharing(AS) Layer

Xlib Xlib Xlib
X Sener 1 X Sener 2 Primary Serer

Figure17 Architecture of the XpleXer pseudo server

The AS layer has a request processing function for each type of request. In those
functions, the request mapping is done when necessary and the modified request is sent to
the real serr by using Xlib function calls. If a client is being shared, a vedeiequest is

passed to the same processing function multiple times, each time with a reference to a

30

X-Based Application Sharing

different destination seev The AS layer is also responsible feeet handling and spin-
out sharing.

3.2.3 Flow of Control in the XpleXer Pseudo Serer

The flov of control in the dispatch loop iery similar to the one in the sample ssrv
described in Section 2.3.2, Figure 10. As can be seen in Figure 18, the feaendd is
the handling of ¥ents. The pseudo semnvdoesrt’ generate \ents. Instead thevents
generated by the real serg are mapped and faavded to the client. The OS layer
function WAi t For Sorret hi ng() directly forwards ag incoming @ents from the real
seners to the AS layer for processing.

Fl ushAl | Qut put ()

!

YES dispatch

—p| requests
from client

frommai n()

some
client has
request?

Wi t For Sonet hi ng()

NO

Figure 18 Flav of control in the XpleXer's Dispatch() function

Figure 19 shas hav requests from a single client are dispatched: After a request is
successfully read from the client, it is first dispatched to the primargrsdrthe client is
shared, the request is additionally dispatched to each of thersemarticipating in the
sharing. As gplained abwe, only errors from the primary servare sent to the client or
can cause the client to be closeavdo

31

X-Based Application Sharing

YES

ready to yield?>-

is there

YES dispatch
a request? >

ReadRequest FronQ i ent () request/ ™

was the
error fatal?

Cl oseDownd i ent () (-

did an
error occur?

report error
¢ NO

— C oseDownCl i ent ()

Figure19 Dispatching requestsfrom aclient in the XpleXer

3.3 X-Based Application Sharing Over Low-Bandwidth and
High-L atency Connections

In the standard X Wdow ervironment, client and seev usually run on the same
workstation or in the same LAN. The only commaoweption is the usage of a modem or
an ISDN line to access an application remotely from “home”.

For an application-sharing @nonment, this scenario changes completAky mentioned
above, there are ta main reasons whthe X protocol is usedver non-LAN links for
application sharing: The application-sharing service might be a remote servicecand tw
users might not be located in the same LAN. The second reason is particularly strong,
since the purpose of application sharing is “tovallovo or more users located at
geographically dferent places to synchronouslyosk with a single-user application”

[24].

In addition to the inherent usage of non-LAN links, application sharing increases the
amount of bandwidth needed, since protocol datadsanged with not only oneybwith

several serers. Unless a reliable multicast protocol is used for the transmission, this leads
to an enormous increase in the required bandwidth.

32

X-Based Application Sharing

To get an impression about the data volume and the number of round trips a usual client
sends, the start-up of some applications has been monitored. The data from Table 2 was
generated by applications that were started shareable using the XpleXer with a Sun Sparc
5 station (8 bit frame buffer) as the primary server.

Application Request Data (Bytes) | Reply, Error and Event Data (Bytes) | Round Trips
Netscape 347136 140608 484
Frame Maker | 55668 38660 167
xtetris 5216 13760 13
emacs 9308 37064 125
xterm 2348 10632 11

Table2 Datavolumeand round-trip requestsat application start-up

A high-latency link could be a connection between Berkeley/USA and Berlin/Germany,
which has an average round-trip delay of about 200 ms for a high speed ATM link, and
about 500 msfor an internet connection. Thiswould lead to an additional start-up (or spin-
out sharing) delay of 96.8 to 242.0 seconds for Netscape and till 25 to 62.5 seconds for
emacs.

Typical low-bandwidth connections are ISDN (64 kbps) or a telephone with modem (14.4
kbps). For those connections, a start-up (or spin-out sharing) of Netscape would be 43.4 to
192.9 seconds slower than usual, if the full bandwidth is used and no protocol overhead
exists. Since application sharing is not of much use without audio communication, and
protocol overhead does exist, the usable bandwidth is usually less and therefore the delay
is higher.

These numbers show that the basic X protocol has to be enhanced in order to be suitable
for application sharing via high-latency or low-bandwidth connections.

33

X-Based Application Sharing

34

Compressing and Enhancing the X Protocol

4 Compressing and Enhancing the X
Protocol

Since the appearance of the first X protocol compression approach — XRemote [7] — in
1992, a lot of werk has been done to further compress and enhance the X protocol. Up to
now, there &ist two main directions for this ark: The first vas originated by Xremote

and is still wery actve with its successor o Bandwidth X [14] [27]. The second is the
development of Higher Bandwidth X [10].ast Higher Bandwidth X [12] and dxpc. The
main diference between those directions is that XRemote amd Bandwidth X use
sequential data compression, while Higher Bandwidth ast Higher Bandwidth X and
dxpc relay on prediction-based compression. This chaptes gin wervien of the X
protocol enhancement and compression approaches mentiowved abo

4.1 XRemote

XRemote is a protocol @eloped by Netwrk Computing Deices (NCD) for using X
over a serial line. This includes multiglag of several client connections on a single
serial line and compressing the X protocol. XRemo&s deeloped before compressed
serial line IP (CSLIP) [21] and point-to-point protocol (PPP) [23] were widedylable,
therefore it defines itswn network and data link layeiSince it is na@ common to use
CSLIP or PPP wer serial lines, this section will focus on the multqohg and
compression aspects of XRemote.

411 XRemote Architecture

In order for XRemote to be transparent to client andegetive architecture skhm in

Figure 20 vas deeloped. The remote clients connect to a pseud@isemning in the

same LAN as the clients. This pseudo semultiplexes all data streams from the clients

into one stream and compresses it. The compressed stream igese¢heaerial line to a
pseudo client. There the data is decompressed and split into separate streams which are
sent to the X senr. In the reerse direction, data is multipled and compressed in the
pseudo client, and the pseudo semecompresses and splits the data stream.

Neither clients nor seer are ware that the X protocol is intercepted, multygd and
compressed. df clients, the pseudo servlooks like the real semer, and for the real

35

Compressing and Enhancing the X Protocol

sener, the pseudo client looks &ka real client. In this architecture, XRemote is
completely transparent to the whole X/eanment of the user

Remote X Clien\
Serial Connection
X P Pseudo < > Pseudo

rotocol Sener [Tt Client [B XSener

/ XRemote Protocol X Protocol L=
Remote X Clien i X Protocol

Local X Clien

Figure20 XRemote architecture

412 XRemotelLayers

The functionality of XRemote can bevitled into the layers skm in Figure 21. The X
protocol data arves at the XRemote layéeFhe first processing step is the multytey of

several client streams of data in one streama&complish this, three protocol prinés

are used in the XRemote Lay@&he first is Ne/Client, which signals that a weclient has
connected and tells the peer XRemote Layer that alWoilp data in the stream belongs

to the n&v client connection. When data from aféient client connection is sent, this
must be indicated by ChangeClient, which identifies the client connection to which all
following data belongs. When a client disconnects, a CloseClient message is sent to
inform the peer XRemote layer about the reat@f a client stream.

Requests Replies, Eents, Errors
A A
XRemote Layer XRemote Layer
(Multiplexing and Delta Compaction) (Multiplexing and Delta Compaction)
Data Compression Layer Data Compression Layer
Transport Layer Transport Layer
Data Link Layer Data Link Layer
Physical Layer

Pseudo Seer Pseudo Client

Figure2l XRemotelayers

36

Compressing and Enhancing the X Protocol

After multiplexing into one stream, the X protocol messages are run through a delta
compactorln this step, a cache of the last 16 messages of length 64 bytes or &g#s is k

The current message is compared to the messages in the cache. This comparison of
messages is done by sequentially comparing the bytesoahegsages. If the tBfence
between a message in the cache and the current message xprebsed in feer bytes

than the current message, then théedghce is sent instead of the current message. This
message is then called a delta message. The result of the processing in the XRemote layer
is a stream of X protocol, M&Client, ChangeClient, CloseClient and delta messages. This
stream is handed to the data compression layer as a stream of bytes.

In the data compression layéne stream of bytes is brexk into fixed-sized chunks. This
IS necessary to guarantee that the compressed data fits into one transport layeT pack
chunks are then compressed by using Ezm] sequential data compression.

The compressed data is sent to the peer using the transport layer service. The peer
decompresses the data, restores delta compressed information and splits up the stream
sending X protocol messages to the clients or theesditwe construction of pseudo client

and pseudo seev is symmetrical in respect to what the pseudcesetves for requests the
pseudo client does for replies, errevents and viceersa.

4.1.3 Efficiency of XRemote

The compression performance of the XRemote protocol has bakrated in [9]. The
tests were done usingvegal X protocol traces of real users. Themll results are as
follows:

On average, client data compressed to 44% of its original size while server data
compressed to about 28% of its original size. On average, server data accounted for
19% of each trace with client data accounting for the remaining 81% of the
transferred bytes. In an average trace, compression would have reduced the amount
of transferred data to 41% of its original size, giving a compression ration of 2.4:1.

[9]
It was found that delta compression isry eficient for input @ents like pointer
movement and &/board input. Br all other data, the delta compression reduces the LZW
compressed data by less than 7%.

Especially unsatisfying as the bad compression performance for images (3:1 wdvere f
protocols rgularly achige a 10:1 compression) and for graphic requestss@gthan 2:1).

1. This algorithm vas named after its delopers Lempel, Ziand Velch.

37

Compressing and Enhancing the X Protocol

4.2 Low Bandwidth X

Low Bandwidth X (LBX) is the successor of XRemote. In addition to iwguigorotocol
compression LBX dérs elimination of round trips. This mek the usage of LBX as
useful for high-lateng links as for lev-bandwidth connections. LBX ag designed to
improve the compression rate and reduce the number of round trips by takamgeayvof
various X protocol characteristics.

The \ersion of LBX that vas &ailable for the intgration is distribted with X11R6.0 and

is a work-in-progress &rsion. The final LBX standard is not completely compatible to this
version. \érsion 1.0 of the final standard is part of X11R6.3 andagadble since January
1997. This section discusses therkvin-progress &rsion of LBX.

421 LBX Architecture

The main diference between the XRemote and the LBX architecture is the absence of a
pseudo client. As sk in Figure 22, a special LBX X sawis necessary to use LBX.

The adwantage of this architecture is that more informatiowaslable in the X semr than

in the XRemote pseudo client. This is true because the pseudo client has information about
only remote clients, whereas the s#rhas information about remote and local clients.
Using this additional information, LBX is able to increase the compression rate. The
disadwantage of this architecture is that LBX is not fully transparent to thevzixoement:

A new X sener has to be installed to use LBX.

Remote X Clien
Low-Bandwidth or
Pseudo S High-Latengy Connection
seudo Seer
X Protocol (Proxy) e S P |LBX X Sener|
/ X protocol with LBX extension =F— 2
Remote X Clien i X Protocol

Local X Client

Figure22 LBX architecture

In LBX terminology the pseudo seev is called a proxyThe LBX X serer and the proxy
communicate using the X protocol with an LBXension.

38

Compressing and Enhancing the X Protocol

422 LBX Layers

The functionality of LBX can be divided into the layers shown in Figure 23. LBX is
basically XRemote with a preprocessing layer. In the preprocessing layer, al incoming X
protocol messages are examined and optimized for compression or reduction of round
trips. If a message can be optimized, it is handed as an LBX extension message in the
optimized form to the XRemote layer. If no optimization is possible, the original X
protocol message is forwarded to the XRemote Layer. The XRemote layer multiplexes the
message streams of multiple clients in one stream and performs delta compaction on that
stream. Finally the message stream is LZW compressed in the data compression layer and
transmitted using an existing transport service like CSLIP or PPP.

Requests Replies, Events, Errors
_ Preprocessing Layer . X protocol with LBX extension _ Preprocessing Layer .
(Short Circuiting, Tag Usage, Reencoding - - (Short Circuiting, Tag Usage, Reencoding
and Motion Event Suppression) and Motion Event Suppression)
Multiplexed and Delta Compacted
XRemote Layer X Protocol with LBX Extension XRemote Layer
(Multiplexing and Delta Compaction) | [- (Multiplexing and Delta Compaction)
Data Compression Layer LZW Compressed Packets Data Compression Layer
(LZW Sequential Data Compression) | (< | (LZW Sequential Data Compression)
I - . I
| Existing Transport Service |
L - ————z=T i
Proxy LBX X server

Figure23 LBX layers

The Proxy and LBX X server provided with the work-in-progress version of LBX are
realized by reusing the sample X server described in Chapter 2.

The XRemote and the data compression layers of LBX are integrated into the OS layer of
the proxy and the LBX X server. Whenever messages are sent over the connection
between proxy and LBX X server, they are automatically processed by the XRemote and
the data compression layers.

For the proxy, the preprocessing layer replaces the DDX layer of the sample server. All
reguests from clients are dispatched to optimization functions located in the preprocessing
layer. If possible, the optimization functions replace the requests with optimized LBX

39

Compressing and Enhancing the X Protocol

extension requests. In theverse direction, optimized replies, errors amengs from the
LBX serwer are coverted back to X protocol messages in the preprocessing layer

On the LBX X serer side, the preprocessing layer is realized ax@mm&ion. The LBX
extension requests that were generated by the proxy are dispatched toxteBXian
functions, which ta& appropriate actions txecute the request. Requests that were not
optimized are dispatched angeeuted as usual. In addition to request handling, replies,
events and errors are optimized by the LBXeasion.

The following sections discuss the functionality of the preprocessing layer

4.2.3 Short Circuiting

Short circuiting is the replacement of round-trip requests with anergquests. The main
idea is that whener a remote client gets constant information from theese¢hvough the
proxy, this information is stored in the proxiy a remote client later asks for the same
information, the proxy can directly answer the request without asking ther siest.
keep the semr updated about sequence numbers and client statesagmequests are
sent to the seer if the proxy short circuits requests. Theeeff of short circuiting is that
round-trip requestsver a potentially high-lateyaconnection (remote client sener) are
replaced by round-trip requests within one LAN (remote cliergroxy).

There are fig X protocol requests for which LBX supports short circuiting: InternAtom,
GetAtomName, LookupColpAllocColor and AllocNamedColor

In order to intern an atom, a client uses the InternAtom request to send tle serv
property name. The sawreplies with the atom that refers to the property name. This
mapping is constant for the lifetime of the s#rvihe first time the proxy sees an
InternAtom request and its reply for a property hame, it stores the mapping. If a remote
client later asks for the atom of the same property name, the proxy looks at the stored
information and answers the request direclly update the sequence number for the
client, the proxy sends an LbxModifySequence request to therdéseveral InternAtom
requests are short circuited in avyonly one LbxModifySequence request needs to be
sent.

With the GetAtomName request, the client asks for the property namevefineagom. As
this requires the same information as the InternAtom request, it is handled in the same
way, using the same stored information.

The LookupColor request is used to get the R@Bias of a color described by a string.
The mapping between color name and R@Ri@s is constant for a servTherefore the

40

Compressing and Enhancing the X Protocol

LookupColor request is handled similarly to the InternAtom request. The ofdyedite
is that colorname and RGRilues are stored instead of property-name and ahtunes/

To allocate a read-only colorcell withvgn RGB walues in a gien colormap, a client
issues an AllocColor request. The sgrveplies with an indeand the contents of a
colorcell that contains the closest RG&lues plysically possible on the screerorFeach
read-only colorcell the seev counts the number of clients thavéallocated it. If this
number drops to zero, the senknavs that no client has allocated the colorcell and frees

it.

In order to short circuit AllocColor requests, the proxy stores the mapping from RGB
values to the indeand the contents of a colorcell. This is done the first time a color is
allocated by a remote client in a colormap. If thereafter a remote clas o allocate

the same color in the same colormap, the proxy responds with the stored data. In order to
update the counter for the colorcell and the sequence number for the client, an
LbxIncrementPigl request is sent to the serwVhen the last remote client deallocates a
read-only colarthe mapping for that color is renex from the proxy

The AllocNamedColor request is a combination of the LookupColor and AllocColor
request. It asks the sento map a colorname string to a RGBue and allocate thisiue

in a colormap. If the proxy has both information the request is short circuited as an
AllocColor request. If not, the request is sent on to theesemvd the reply information is
stored for colorname to RGBale mapping and for RGBalue to colorcell inde and
content mapping.

Short circuiting causes a&wy interesting problem: X guarantees that replies, errors and
events that were generated by an earlier request ake@mrglito the client before replies,
errors and eents generated by a later request areveledd. As shwn in Figure 24, this
cant be guaranteed if short circuiting is used. In tixianeple the first request issued by
the remote client is the oneaydraving request PolyLine. This request is optimized to an
LbxPolyLine request and sent to the enAt the serer, an error occurs whilexecuting

the request and a BadAlloc error is sent back to the pvaxgh forwards the error to the
client. In the meantime the client has issued an AllocColor request, wiashskhort
circuited by the proxyThe result is that the client reees the response to the AllocColor
request before it gets the error from the PolyLine request.

Usually the Xlib can compensate this and shield the application from the prololeail F
applications tested in this thesis, thergehbeen no problemseept for a fev warnings
from the Xlih To avoid ary problems with out-of-ordenent and error delery the proxy
can be askd to do short circuiting only if it can guarantee thatvents and errors from

41

Compressing and Enhancing the X Protocol

earlier messages can agi Havever, this reduces the number of round trips that can be
short circuited seriously

PolyLine Request

— — _ __ AllocColor Request LbxPolyLine Request
T e
- — LbxIncrementPiel Request
— — BadAlloc Error

AllocColorReply - — 1 BadAlloc Error =
- —

BadAlloc Error
Remote Client Proxy LBX X Sener

Figure 24 Problem with Short Circuiting

424 TagUsage

Tags are used to supportdardata items that rarely change and are queried by man
clients, sometimes more than once by a single client. The first time those data items are
sent as a reply from the serto the proxya tag is included in the message. The proxy
caches the data item with the tag. Thetrigne the sergr wants to reply with the same

data item it sends the tag instead. The proxy thesstiide data item that belongs to the tag
from the cache and sends it to the client.

The usage of tags is tBfent from short circuiting because the data items are not
necessarily constant. Therefore the proxy has to ask ther sdaout the data item before it

can reply to the client. The senreplies with a tag only if the data item has not changed.

If it has, the semr sends the medata item and a metag. Consequently this method is

only used for requests where the queried data item might change on rare occasions. It
reduces the required bandwidtl loloes not reduce the number of round trips.

In order to manage tag usage and caching, additional LBX messagekdam defined.
The LbxIrvalidate®g request is sent from the proxy to the semv a tag has been
removed from the cache. This happens when the proxy runs out of cache mémory
LbxInvalidate Bg event is sent by the sexwto tell the proxy that the data associated with
a tag has changed and can therefore bewvethfsom the cache. If the proxy has lost the
data associated with a tag it can get it back from theseaith an LbxQueryag request.

42

Compressing and Enhancing the X Protocol

Four X protocol requests and their replies are optimized using tags in disThe
request to connect to the servwhich returns information about the display; the
GetKeyboardMapping and GetModifierMapping requests, which return information about
the mapping betweerekboard key numbers and o they should be interpreted by the
client; and the Quendnt request, which returns logical information about a certain font.

A second usage of tags is the support of property data which is used for interclient
communication. A client usually sends property data by issuing a ChangeProperty request
for the desired propertyhe serer stores the property data and if another client asks for it
with a GetProperty request, the sargends back that information as a reply

If both of the clients that &ant to communicate with each other use the prixg not
necessary to send the property datardhe connection between proxy and sefwhen

the proxy recetles a ChangeProperty request from a client, it stores the property data.
Using the LbxChangeProperty request, the proxy then asks tles &ara tag that refers

to the property data without actually sending it. When a client asks the proxy for property
data that it has stored, the proxy sends an LbxGetProperty to tiee Bahe property is

still valid, the serer replies with the tag of the property data. If it has been changed by a
client not connected to the prgxye serer sends the meproperty data to the proxif

the data is needed by the sarbecause a client not connected to the proxy asks for it, an
LbxQueryTag event is sent to the proxyrhe proxy then sends the actual data of the
property to the seer.

Tag usage is thenly part of LBX that requires an architecture with a modified Xeserv
Everything else could be implemented using an architecture similar to that of XRemote.
However, in order to inalidate tags or request property data from the proBX needs
information about all clients that are connected to theeserv

425 Reencoding

X protocol messages that are ndiicgntly coded are reencoded in the preprocessing
layer There are four types of reencoding: Image compressiomwirgdrarequest
reencoding, font metric reencoding anve® squishing.

The two X protocol requests Putimage and Getlmage are used to transfer images between
client and semsr. Both requests transfer images as uncompressed bitmaps. LARgsro
mechanisms to inggate arbitrary image compression techniques for those requests. In the
current \ersion CCITT G4 [5], compression is used fordwolor images anda@kBit [8]
compression for multi-color images. The image included in a Putlmage request is

1. Comite Consultatif Internationale del@raphie et €lephonie

43

Compressing and Enhancing the X Protocol

compressed in the preprocessing layer and sent to ther sagsing an LbxPutimage
request. Br Getimage, the image in the reply is compressed and sent from taetserv
the proxy with an LbxGetimage repl$ince further LZW compression of the already-
compressed image data is ndicént, the LbxPutimage and LbxGetlmage requests are
passed through the compression layer without further processing.

Drawing requests use 4 byte identifiers for the identification of the destination (resource
ID) and the style (graphic comtelD) of the draving request. These identifiers are
extremely repetitte. Therefore a small cache of 15 entries for both identifierspsik

proxy and serr. If a cache hit occurs, the 4 bit indef the cache entry is senbra miss,

all 4 bits are set to 1 and the identifier is sent. If, kangple a hit occurs for both graphic
context ID and resource ID, only one byte has to be sent instead obr8thE
determination of coordinates, lengths, widths and angles, 2 byte fields are used in the X
protocol. Havever in maiy cases 1 byte is didient to hold the information. LBX reduces

all of those 2 byte fields to 1 byte where possible. Theidgarequests that are reencoded

in this manner are: CgArea, CopPlane, PolyPoint, PolyLine, Poly§ment,
PolyRectangle, PolyArc, FillPaly PolyFillRectangle, PolyFillArc, Polykt and
Image®xt. The LBX etension requests generated to replace these requests are:
LbxCopyArea, LbxCopPlane, LbxPolyLine, LbxPoly$gnent, LbxPolyRectangle,
LbxPolyArc, LbxFillPoly, LbxPolyFillRectangle, LbxPolyFillArc, LbxPoly&t and
Lbximageext.

The X protocol request Querghkt asks for the description of a certain font, which is
called a font metric. The Querght reply describes each character of the font with the
following information fields: left side bearing, right side bearing, character width, ascent
to top, descent to bottom and atiriés. r each of those information fields,dwytes are
resened in the Querydnt reply However, in most cases one byte isfatiént. Therefore

LBX reduces the information fields to one byte whemepossible before sending the

reply.
All X protocol events are padded to 32 bytes to ma&ading and processing easikss
shawvn in [27], up to 26 bytes of avent may be unused. LBX squishegmts to the size

of the used data before transmitting it. There are moliEX extension gents necessary
to do this: The original X protocolents are used without sending the padding.

4.2.6 Motion Event Suppression

In order to leep the client informed about the position of the pointeicdethe serer
sends MotionNotify eents to the client. Vth a high speed connection, agamumber of
MotionNotify events lead to a smooth animation on the screenvetAm, for a low-

44

Compressing and Enhancing the X Protocol

bandwidth connection, it might consume a big amount ofvthidgadle bandwidth. In order

to prevent MotionNotify eents from using too much bandwidth, the number of
MotionNotify events is reduced by LBX.oldo this, the seer keeps a counter of to
mary MotionNotify events it is allaved to send. & each sent MotionNotifyvent, this
counter is decreased by one. If it reaches zero, no more MotionNeogfytseare
generated. When the proxy rees MotionNotify &ents and enough bandwidth is
available (e.g., transmissioruffers are empty), it sends an LbxAllMotion request to
the serer. As soon as the saw receves this request, its counter is increased by the
number contained in the request.

427 Peformanceof LBX

Since therexasts virtually no information about the performance of LBX, it is within the
scope of this thesis tovaluate the diciency of LBX. To do this, the LBX proxy @as
modified to collect information about compression rates and elimination of round trips.
The modified proxy generates the foliag data:

* Amount of data sent in requests from the client to the pfixg data is called uncom-
pressed client data.

* Amount of compressed data sent in requests from the proxy to tlee 3éxg data is
called compressed client data.

* Amount of data sent in replies, errors amdrégs from the proxy to the client. This data
is called uncompressed sendata.

* Amount of compressed data sent in replies, errors st from the seer to the
proxy. This data is called compressed semata.

 Amount of total dataxehanged between client and prpxyhich is the sum of the
uncompressed sexvand client data. This data is called the uncompressed total data.

* Amount of total compressed datechanged between proxy and sarwvhich is the
sum of the compressed senand client data. This data is called the compressed total
data.

* The number of round-trip requests without short circuiting.

* The number of round-trip requests that are InternAtom, GetAtomName, LookupColor
AllocColor and AllocNamedColor requests. Those round-trip requests are called elim-
inatable round trips.

* The number of round trips that were actually eliminated by LBX.

45

Compressing and Enhancing the X Protocol

Five standard X applications V&been selected fovauation with the modified proxy:
xterm, emacs, xtetris, FrameMakand Netscape. Each of these applications has been
monitored under three @#rent conditions:

» At application start-up with a proxy thaaw nevly started and therefore had an empty
cache.

» At application start-up where the same applicatias already runningver the proxy
which leads to a nearly optimally filled cache.

* During the usage of the application, e.g.wWsimg the web with Netscape, editing a
document with FrameMak playing xtetris, writing a paragraph with emacs, and issu-
ing shell commands using xterm.

All tests hae been done on a Sparc5h station with an 8 bit framfferpbrunning Solaris
2.5. The X serer was the X11R6.0 X seev and the winde manager \&s twm.

Table 3 shws the results from application start-up with an empty cache. The compression
rate for the total data lies between 2.3:1 and 3.9:1 witlverage of about 2.8:1. This is
mamginally better than XRemote. Thaistence of eliminated round trips for emacs and
Netscape is ery interesting. Since the proxy had no information prior to the start of the
application, this shes that those programs nealkneficient use of the X protocol: The
requested the same constant information multiple times.

xtermlemacyxtetris FrameMaler|Netscape
Uncompressed client data (bytes) 2348 9904 4992 55704 345644
Compressed client data (bytes) 1184 5036 2329 19463 178733
Compression rate 2.0:1 2.0:1 2.1:1 2.9:1] 1.9:1
Uncompressed sezv data (bytes) 105323706413504 39036 142908
Compressed seeyv data (bytes) 3876 7160 4869 13643 38260
Compression rate 2.7:1 5.2:1 2.8:1 291 3.7:1
Uncompressed total data (bytes) 1288046968 18496 94740 488552
Compressed total data (bytes) 506012196 7198 33106 216993
Compression rate 2.5:1 3.9:1 2.6:1 2.9:1 2.3:1
Round trips without short circuiting 11 125 13 167 484
Eliminatable round trips 4, 49 8 31 371
Round trips eliminated o 13 0 0 97
Percentage of round trips eliminated 0| 10.4 0 0 20.0

Table3 Application start-up with empty cache

46

Compressing and Enhancing the X Protocol

As can be seen inable 4 a filled cache leads to agincrease in the compression rate.
The main reasons are the filled tag cache, the filled delta compactor and the filled identifier
cache. In this scenario, the compression rate lies between 2.4:1 and 9.2:1 wélage a

of about 5.3:1, which is more thandwimes the compression rate of XRemotewHcer,

the start-up of Netscape and Framebfaghavs that the achntage of caching decreases
with the amount of data sentFapplications thatxehange only a small amount of data
with the serer (xterm, emacs and xtetris), the information sent back from therserv
dominates the total amount of data. This information can be dramatically reduced by using
tags. for applications thatxehange a lare amount of data with the ser{FrameMakr

and Netscape), the client data dominates the total amount of data. This information is
unafected by tag usage.

Short circuiting is déctive in this scenario, ranging from a 18% elimination for
FrameMaler to a 74.6% elimination for Netscape with amrage of 40.4% elimination.

For simple X applications lik xterm, emacs and xtetris, the short circuiting of InternAtom
and LookupColor requests are most importaot. graphically-oriented applications dik
Netscape, the AllocColor request is the one that is most often short circuited. Since
FrameMaler allocates only prate colorcells, only a #e round trips can be eliminated.

xterm emacyxtetris FrameMaler|Netscape
Uncompressed client data (bytes) 2348 9872 4992 55772 340952
Compressed client data (bytes) 946/ 3580 1964 18961 17608d
Compression rate 2.5:1 2.8:1 2.5:1 2.9:1 1.9:1
Uncompressed segv data (bytes) 10532 3696813440 39420 14034§
Compressed segy data (bytes) 450 3156 2435 8221 27244
Compression rate 23.4:111.7:1 5.5:1 4.8:1 5.2:1
Uncompressed total data (bytes) 12880 4684018432 95197 48130C
Compressed total data (bytes) 1396 6736 4399 27182 203324
Compression rate 9.2:1 7.0:1 4.2:1 3.51 2.4:1
Round trips without short circuiting 111 125 13 167 484
Eliminatable round trips 4 49 8 31 371
Round trips eliminated 3 45 6 30 361
Percentage of round trips eliminated 27.3 36.0 46.2 18.0 74.6

Table 4 Application start-up with filled cache

The eficiengy of LBX during application usage is sk in Table 5. Here the compression
rates for the total data range from 2.7:1 to 6.5:1 withvarage of about 4.3:1. The image

47

Compressing and Enhancing the X Protocol

compression is the maimadtor for the good compression result of Netscape. The
compression rate for xtetrisas achieed because of graphics reencoding and delta
compaction of etremely repetitre requests.

With the eception of FrameMady, the number of round trips is small compared to the
number of round trips at application start-up. The number of eliminatable round trips is
neggligible. The only application that uses a lot of round trips during usage is FrameMak
A closer g&amination of those round tripsvesaled that about 80% of those round trips are
Getlnputfocus requests, sometimes more than 20 inna Asked about this inétient
usage of the X protocol, theddopers said that this might be areccompensation of a
problem with an earlierarsion of FrameMad. In general, the data fromaflle 8 suggests

that round trips do not play an important role during the usage of an application.

xtermemacy xtetris| FrameMaler|Netscape
Uncompressed client data (bytes) 950812192129008§ 1305357 7312664
Compressed client data (bytes) 4261 3345 21068 4694711111403
Compression rate 2.2:1 3.6:1] 6.1:1 2.8:1 6.6:1
Uncompressed sexv data (bytes) 512012864 18816 94904 70504
Compressed seeyv data (bytes) 1105 3297 5298 27825 18508
Compression rate 4.6:1 3.9:11 3.6:1 3.4:1 3.8:.1
Uncompressed total data (bytes) 1462825056147824 1400254 7383168
Compressed total data (bytes) 5366 6642 26366 497304 1129911
Compression rate 2.7:1 3.8:1 5.6:1 281 6.51
Round trips without short circuiting 3 2 2 764 105
Eliminatable round trips 0 0 0 6 13
Round trips eliminated by short circuiti 0 0 0 0 5
Percentage of round trips eliminated 0 0 0 0 4.8

Table5 Application usage

As a summauryit can be said that LBX impves the compression of XRemote byaatbr
between 1.5 and 2, and if the praxgache is filled, LBX eliminates about 40.4% of the
round trips at application start-up.

4.3 Higher Bandwidth X, Fast Higher Bandwidth X and dxpc

Higher Bandwidth X (HBX) is an approach to compress the X protocol by using
structured data compression (SDC). HBX and SDC wereloleed 1994 by John Danskin

48

Compressing and Enhancing the X Protocol

at the Princeton Uwersity Fast Higher Bandwidth X (FHBX) can be considered a
successor to HBX. It as deeloped to speed up the compression process of HBX by using
hash based prediction. dxpc is an X protocol compressor #wmgreatly influenced by
HBX and FHBX. It is freely distribted in the contrib section of X ancagvdeeloped in
1995 by Brian Bne. The currentersion of dxpc is 3.3.0.

The architectures of HBX, FHBX and dxpc are similar to that of XRemote and thus fully
transparent to the X emonment of the useFor HBX, FHBX and dxpc, the compression
and decompression is basically done in one step.visiain of the functionality in
different layers is therefore not necessary

The following sections will gplain the basic concepts of HBX, FHBX and dxpc.

431 Structured Data Compression

SDC uses arithmetic coding and statistical modeling to achieve high compression
rates. The beauty of this technique is the separation of modeling and coding. In this
method, the sender and receiver each have a predictive model which generates a
table of probabilities for the next input symbol. An arithmetic coder on the sender
side accepts the table and the symbol 5 which actually occurred in the input, and
communicates the symbol to the decoder in just -logy(p;) bits, where p; was the
estimate probability of symbol s appearing at this position in the input. The
arithmetic decoder in the receiver decodes the coded bits using its identical table of
probabilities as an inverse map. Bits are shared between adjacent messages, which
means that individual messages can be expressed in fractional bits. For example,
when p;=.5 then 1 bit is necessary as expected, but when p;=.75 then only =.41 bits
are necessary to update the receiver.[11]
The fundamental idea of arithmetic coding [3] can be described awdol@ven is a set
S of input symbols;swith probabilities p where the sum of all ;s 1. Eachsoccupies a
certain interal I(5) between 0 and 1 according to its probabilitize interals are non-
overlapping and completely eer the Interal [0,1). A string $ |, consisting of the input
symbols $... §, 0 S will be encoded by finding its intevI(S;), which lies in [0,1).
This intenal can be found by recuvely applying I(§) to I(S; _,.9. The result of an
intenval 1,=[L,,H4) applied to an inteai 1,=[L 5,H,) is an interal

I3=[LotLi(Ha-Lo) , LotHy(Ho-Lo))
As an g&le, Figure 25 shks hav to encode the string; S=ABA for the input symbol
set §=A s,=B 53=C with the probabilities 0.5, p=0.25, 3=0.25 and the inteals
I(s1)=[0,0.5), I($)=[0.5,0.75), I(g)=[0.75, 1).

To find the interal I(S; 3, we hae to apply I(Q) (=I(sl) for A) to I(§ 5. To get
I(S1 o), we hae to apply () (=I(sp) for B) to I(S)) (=I(sy) for A).

49

Compressing and Enhancing the X Protocol

With 1(S;)=[0.5,0.75) and 1(§=[0,0.5) we get I($ 9=[0.25, 0.375). Applying I(§ to
1(S1 ») we get I(§ 2=[0.25, 0.3125).

! T 05 T 0.375
C C C
—+ 075 —+ 0375 — 0.34375
B B B
—+ 05 —+ 025 —+ 03125
A A A (=1(S1..9)
Lo p L0 L 025
I(S) I(S1..0)

Figure25 Examplefor arithmetic coding

If the length of the input string is kmm, ary number from the resulting intealis sent by
the encoder to update the decodarour ekample the transmission of 0.25%wud be
sufficient to transmit the string A&

The decoder recurgly looks up the intemls in which the transmitted number lies,
reconstructing the input stringoFour xample, 0.25 lies in 1(s1)=[0,0.5) which yields an
A as the first input symbol. Relbedi to 1(S1), 0.25 lies within the intelvI(s2), which
yields B as the second input symbol. Finally 0.25 lies within the mté(s1l) relatve to
I(S1 9, which yields A as the third input symbol.

Given the gact probability distribtion of the input symbols, it can be sho that
arithmetic coding is optimal. Theak for a good compression is therefore thailability
of a good approximation for the probability distriton of the input symbols.

SDC uses prediate models to get a good approximation for the probability digtab of
the input symbols. Those predieimodels are adapé, which means that the predicted
probability distrilution for the ngt input tolen depends on prieusly processed input

50

Compressing and Enhancing the X Protocol

tokens. The usage of these predietmodels is called statistical modeling in the ceinbé
SDC.

A simple predictte model for tgt compression could be based on re&frequencies of
input characters. If, fonr@mple, at a certain point of time the character ‘e’ has appeared
200 times more often than the character ‘j’ the predicted probability fordeldabe 200
times higher than for ‘j’. A predicte model lile this is called a O order cortanodel. A
first order contet model for t&t compression wuld pay special attention to the character
directly in front of the ne input characterlf, for example, the character in front of the
next input character as a ‘q’, the probability that the xteinput character is a ‘u’ is
greater than 0.99.dF this example, ‘q’ would be the conté for the folloving input
character For each possible conte there would be a particular predigg model with
relatve frequencies. The comteis used to inde a particular predicte model (for
example, the model for characters faliag a ‘q’) from a set of prediate models. The
order describes the number ddlwves used to indethe model. English k& is most
efficiently compressed at 3rd or 4th order [3].

4.3.2 Predictive Modelsin Higher Bandwidth X

One of the most interesting parts of HBX are the prediatiodels used to approximate
the probability distrilation for X protocol message fields.

» Text: For text compression, Mdtt's Prediction by &tial Match, method C’ (PPMC’)
[3] is used. This is basically a 3rd order caht@aodel.

» Coordinates in dwing requests: Since the shape of objects is important and objects
are frequently meed on the screen, absolute coordinates are transferred inteerelati
AX andAY coordinates. The relag coordinates are then predicted by a third order
context model.

* Small Bi-Level Images: Small bi-leel images are usually glyphs, which are used for
special characters outtons. These small images are cached and prediceetibdik

» Large Bi-Level Images: The color of a mkin a lage image is predicted bya&mining
other piels that are close to the predictedgbix he state of those s are the con-
text of the predicted ped. The predictie model indeed by the contd contains the
probabilities for black or white.

» Color Images: Not supported.

* Incrementing fields: Those fields are typically sequence numbers or time stamps. The
A of those fields is predicted using a 0 order cdnteodel.

51

Compressing and Enhancing the X Protocol

» Default model: Br all other fields, a simple O order coxitenodel is used. This is par-
ticularly interesting for winde 1Ds, graphic contd IDs and length fields.

4.3.3 Performance of Higher Bandwidth X

HBX achieved a 7.5:1 compressionear a test suite described in [11]. The maindrack

of HBX is that arithmetic coding and statistical modeling is much more CPU weensi
than LZW compression. HBX is therefore about 10 timewesdldhan XRemote or LBX.

In addition the lack of colored image compression could beastigting for the
compression performanceofprograms lik Netscape, the transfer of color images could
easily be responsible fover 80% of the dataxehanged between client and sarv

4.3.4 Fast Higher Bandwidth X

The goal of FHBX is to achwe a similar compression rate as HBX with a CPU
performance similar to XRemote. In order to reach this goal the arithmetic coding and
statistical modeling of HBX is replaced with hash based prediction [28].

Hash based prediction has beewdleped for t&t compression. In this technique, the last
few processed characters are used as axddotethe na&t character by generating a hash
code. The hash code is used to select gento front list. As shwn in Figure 26, the
selected mee to front list is indeed by using an &€ient integer coding scheme kkthe
Huffman code. In order identify the xteinput character for the decodeéhe encoder
searches the character in thevado front list and sends its indéo the decoderThe
decoder selects the same vaato front list by using the conteof the transmitted
character and gets the character using the transmitted inde

After the transmission of a charagtitris moved closer to the front of the wm to front

list that was selected by the comte This ensures, that the characters with a higher
probability for a certain contéare located at the gmning of the mue to front list where
the inde can be epressed with feer bits.

w 1 01 001 0001 00001
Hash

Hash(MA) 10 EFRIMUFMF VL
In this xkample, R is encoded with
the contat of MA. The hash of MA
11 Ub4d rR gL 7 is a pointer to a me to front list

where R can be found in position
The index is encoded a 01 and ser
to the decoder

12 N/ Pr—/SrH—/Vr—/R

Figure26 Examplefor hash based prediction

52

Compressing and Enhancing the X Protocol

Hash based prediction can be used as an approximation to ®DSDE, a contd is

used to select a particular predretimodel; for hash based prediction, a ceinteused to
select a mee to front list. SDC uses arithmetic coding to encode an input symbol
optimally. Hash based prediction uses the sdea mae to front list to encode an input
symbol nearly optimallyBecause of this similarityhe prediction models of HBX can be
reused by translating them into hash selectedenm front lists.

Tests for the X protocol messages, Putimage and MotionNb#fg shevn that FHBX
has a compression rate of about 10%-20% less than HBX with a CPU performance similar
to XRemote.

435 dxpc

The only documentationvailable for dxpc is the README file pvaled with the ¥rsion
3.3.0 distrilution. From this file it can be learned that dxpc basically uses caching and
HBX/FHBX techniques to compress the X protocol.

Testing dxpc with the same applications as LBX resulted in the compression rates for the
total data shen in Table 6. A comparison to those of LBX s¥that dxpc has, in most
cases, significantly higher compression rates. One noticeat#t®mn is the usage of
Netscape. This is not surprising, as it is stated in the README file that “the
implementation of color image compression in dxp@idyf unsophisticated”.

xterm emacy xtetris FrameMaler|Netscape
Application start-up with empty cac, 3.0:14 4.7:1 3.4:1 3.9:1 2.7:1
(LBX values) (2.5:1)(3.9:1) (2.6:1 (2.9:1) (2.31
Application start-up with full cache | 9.0:1 6.8:1 8.2:1 481 2.8:1
(LBX values) (9.2:1)(7.0:1) (4.2:1 (3.5:1) (2.4:1
Application usage 501 6.4:1 7.3:1 6.6:1 4.7:1
(LBX values) (2.7:1)(3.8:1) (5.6:1 (2.8:1) (6.5:1

Table6 Compression ratesfor dxpc compared to LBX compression rates

4.4 Which Technique to Choose for the Prototype Integration

The choice of which technique to igtate into the XpleXer had to be made between
HBX/FHBX/dxpc and LBX. The adwntages of FHBX/HBX/dxpc are a higher
compression rate and an architecture that is easy wramee LBX havever offers the
unique feature of round-trip elimination.

53

Compressing and Enhancing the X Protocol

Since the objective of thisthesisis the integration of synchronicity reducing techniques as
well as compression into an application-sharing product, the choice was made to integrate
LBX. For scenarios where low-bandwidth is the primary issue, HBX/FHBX/dxpc should
be preferred. As will be explained in Chapter 6: Future Work, a combination of both
techniques could be an optimal solution for a product-level integration.

Integrating Protocol Enhancement and Compression into Application Sharing

5 Integrating Protocol Enhancement
and Compression into Application
Sharing

This chapter describes the igtation of LBX into the XpleXerSince LBX was still under
development at the time the imggeation was done, the result of the igtation is still in a
prototype stage. The objeats of the prototype inggation were to disaer potential
problems of an ingration, to sole those problems and to shwhat efect the intgration
has on the used bandwidth and the number of round-trip requests.

The functionality of this prototype is limited in dwvays:

* The LBX version intgrated in the XpleXer is theatk-in-progress &rsion distrilited
with X11R6.0 and not the finakvsion of LBX.

* Only the centralized part of the XpleXer is supported (e.g., a scenario whereeno sla
pseudo serrs «ist). Supporting the distriiable architecture auld be necessary for
a product-leel intggration lut does not yield further general information abowt ho
integrate protocol enhancement and compression into application sharing. A discus-
sion about supporting the distfable architecture can be found in Chapter 6: Future
Work.

5.1 Architecture of the Prototype

The XpleXer has a centralized application-sharing architecture if it is running without an
slaves. Figure 27 shwes a scenario where the centralized XpleXer is used for application
sharing between tw LANs that are connected by awidbandwidth or high-lateryc
network. In this scenario, tavusers hee each started one client sharable by connecting it
to the XpleXer instead of connecting it to theamosener. This connection between client
and XpleXer is a hv-bandwidth or high-laterycconnection for the client in LAN 2. If
both clients are shared between the users in LAN 1 and LAN 2, then the XpleXer is
connected to one primary senand one additional sewfor each client. The connection
between the XpleXer and the primary s#ris a non-LAN connection for the client in
LAN 2, while the connection between the XpleXer and the additionatisisra non-LAN
connection for the client in LAN 1.

55

Integrating Protocol Enhancement and Compression into Application Sharing

This scenario shws that there are tw types of lav-bandwidth or high-latenc
connections: the connections between client and XpleXer as well as the connections
between XpleXer and sew To support both types of connections, LBX has to be used
between client and XpleXer as well as between XpleXer anérserv

-~

X Sener W”| X Sener
X Protocol —
7 — -
_ -
X Protocol -
_ —
— - -
- Low-Bandwidth
XpleXer Hiah Er
~g igh-Lateny
—~ - Network
X Protocol - _
X Protocol ~ — <. —
X Client " | X Client

\ LAN 1 / \ LAN 2 /

Figure27 Architecture of the centralized XpleXer without LBX

The intgration of LBX into the centralized architecture is whoin Figure 28. All
connections that cross LAN boundaries use LBX to enhance and compress the X protocol.
The intgyration of LBX in the connection between XpleXer and eeiv a trvial task: for

this connection, LBX can be used withoutyamodifications because LBX as
specifically designed to enhance a connection between client (the XpleXer looks to the
LBX proxy like a normal client) and sew The only restriction is that the user has teeha

an LBX capable seer.

The interesting part is the iggeation of LBX into the connection between client and
XpleXer. This part is dran in bold lines in Figure 28. df this intgration, the
functionality of the LBX part of the LBX seev must be added to the XpleXdie
XpleXer must be able to understand and decode the data sent by the LBX proxy

A closer eamination of the architecture sh® that the intgration of LBX into the
connection between client and XpleXer results in an architecture identical to that of
XRemote: The LBX proxy connects to the XpleXwhich performs the tasks of a pseudo
client in addition to its usual application-sharing functionalitye proxy no longer has a
direct connection to the semv This has the folwing consequences:

56

Integrating Protocol Enhancement and Compression into Application Sharing

* The LBX tag mechanism cannot be mrated into the connection between client and
XpleXer.

* A successful intgration of LBX into the XpleXer is a transformation of the LBX
architecture into a transparent architecture identical to the one of XRemote.

-~

X Sener W7 |LBX X Sener
= X Protocol —~ -
= with LBX Extension| —
X Protocol ~
~
~
-
X Protocol -
LBX XpleXer |a——— | LBX Proxy |4 ,
Low-Bandwidth
- or
~ - High-Lateny
~ o Network
X Protocol ~
-~
-~
~ -~
X Protoc\ol — Al X Protocol
X Client . _ LBX Proxy |<d——»| X Client
with LBX Extension y

\ LAN 1 / K LAN 2 /

Figure28 Architecture of the centralized XpleXer with LBX

5.2 Integrating the Low Bandwidth X Featuresinto the
XpleXer

One challenging aspect of the prototypegnéion is the glume of the softare irvolved.

The wlume of the original XpleXer source code is approximately 2.6 MB and that of the
LBX source code approximately 1.4 MB. The resulting prototypgiaten has acume

of nearly 3.6 MB.

An additional problem is that the XpleXeraw deeloped reusing source code from
X11R5, while LBX was deeloped for X11R6. The combination of theganolume and
the \ersion diferences made nging the tvo software pieces particularly troublesome
and time consuming. The follong sections will gplain hav the diferent LBX
mechanisms were irgeated into the XpleXer

52.1 XRemoteLayer and Data Compression L ayer

As mentioned in the pveous chapterthe XRemote layer and the data compression layer
are intgrated in the OS layer of the LBX servFor the prototype ingration, the LBX
part of the LBX sergr's OS layer s etracted and inserted into the OS layer of the

57

Integrating Protocol Enhancement and Compression into Application Sharing

XpleXer. Even though no major changes were necesshgy diference between the
X11R6 and the X11R5 code caused/esal minor conflicts that had to be sedv
Succinctly it can be said that the igg@ation of the XRemote layer and the data
compression layer &s straightfonard kut time consuming.

The original implementation of the data compression layer in LBX has ondalrk:
Monitoring the IP paosts sent by LBX X semr and proxyit can be seen that the usage of
LBX increases the number of IP pat& by adctor of tw. As an gample, Bble 7 shas
the number of IP pa€its sent at the start-up of Netscape.

Netscape start-up
IP paclets for client data without LBX 656
IP paclets for client data with LBX 1459
IP paclets for client data with LBX andufffering of LZW chunks 1202
IP paclets for serer data without LBX 599
IP paclets for serer data with LBX 1278
IP paclets for serer data with LBX and iffering of LZW chunk 839

Table7 Number of | P packets sent at the start-up of Netscape

With TCP/IP header compression (combined TCPABrlzead per IP paek about 5

byte), the increase of IP patk should h& no significant impact on the compression
performance of LBX. Neertheless, a reduction of the number of IP p&igenerated by

LBX is desirable for scenarios where no header compression is used, or where the delay
for the netwrk access is high.

A closer gamination reeals tvwo reasons whthe number of IP paeks is increased when
using LBX:

» The Xlib kuffers client requests as long as possible and sendskef them in one
TCP packt. Usually this TCP paek is mapped to one IP patk The decision when
to buffer requests and when to send them is made using local information of the client.
The proxy however, sends the requests to the LBX serwithout special requestf-
ering, causing the number of IP patkto increase.

* The LZW compressor splits the data stream into small chunks, compresses them and
immediately sends them to the decompresswe chunk at a time. Because of this, the
LZW compression of lge requests and replies can cause multiple IPetsdk be
sent.

58

Integrating Protocol Enhancement and Compression into Application Sharing

While the proxy does not ti@ enough information about the client to do request
buffering, the LZW compressor can be tuned to produce output in a niicrentfway:

For the prototype inggration, a bffer was inserted after the LZW compressinis luffer

is only flushed if enough data is assembled, or if no further data needs to be compressed.
As can be seen irable 7, the result ofuffering LZW chunks is a significant reduction of

IP paclets, compared to the original LBX. The remainindedénce between LBX with
buffering of LZW chunks and no LBX is caused by the lack of requ&fétring in the

proxy.

5.2.2 Short Circuiting

The intgration of short circuiting for InternAtom requests required sowie enork
because of the handling of atoms in the XpleXé&e XpleXer lkeeps a list of all interned
atoms for each client. When the client is shared using spin-out sharing, those atoms are
interned by the XpleXer from the wesener. The mapping between atoms of the primary
sener and atoms of the wesener is stored in the XpleXelf the client later \ants to set
property data, the data is set in the primary eseas well as the mesener using the

stored mapping.

Short circuiting, as it is used by LBX, does notegthe XpleXer enough information to
keep the list of interned atoms for each client: When an InternAtom request is short
circuited, only an LbxModifySequence request is sent to the Xpl&@Xere is no ay for

the XpleXer to figure out the property name in the short circuited request. Therefore the
LBX extension protocol had to be modified for the gntgion. Figure 29 shes the
definition of a ne LbxInternAtom request which replaces the LbxModifySequence
request.

The LbxInternAtom request contains all the information of the InternAtom request from
the X protocol. Vith this information, the XpleXer is able tedép the list about which
client has interned which atoms.

59

Integrating Protocol Enhancement and Compression into Application Sharing

Position | Size Value Description

0 1 extension opcode | major opcode: LBX request code

1 1 35 minor opcode: LBXInternAtom request
2 2 2+(N+p)/4 request length

4 1 BOOL only if exists

5 1 padding

6 8 n length of property name

8 n STRING property name

8+n P padding

Figure29 TheLbxInternAtom request

Another problem had to be seld for the intgration of short circuiting AllocColor and
AllocNamedColor requests. As described in thevioies chapterthe LBX proxy sends an
LbxIncrementPiel when an AllocColor or an AllocNamedColor request is short
circuited, so that the sexvcan increment the counter for the respeatolorcell.

Since the real colormap is located in the primary eseand not in the XpleXeithe
handling of LbxIncrementPét requests had to be changed for thegration. In order to
increment the counter for a colorcell, the XpleXer has to send an appropriate AllocColor
request to the real sew whenger it receves an LbxIncrementPek request. & the

sener, this request looks l&kan ordinary AllocColor request. It is therefore@ited by
incrementing the counter for the colorcell that contains the R&iBe=s specified in the
request. The reply to this request is discarded by the XpleXer because the original request
was short circuited and the client already reegithe reply from the proxy

The original LbxIncrementPét request just contains an ixde a colorcell. The XpleXer
cannot generate an appropriate AllocColor request from this information, since the inde
can be interpreted only with the real colormap. In order ve ghe XpleXer all the
necessary information, the LbxIncrement#?ixequest had to be changed. Asvamon
Figure 30, the ne version of the LbxIncrementRekrequest contains all information that
the XpleXer needs to generate the AllocColor request for therserv

60

Integrating Protocol Enhancement and Compression into Application Sharing

Position | Size Value Description

0 1 extension opcode | major opcode: LBX request code

1 1 8 minor opcode: LBXIncrementPixel request
2 2 5 request length

4 4 infeger colormap id

8 2 short integer red value

10 2 short intfeger green value

12 2 short integer blue value

14 2 padding

16 4 infeger amount

Figure 30 The new LbxincementPixel request

Short circuiting of LookupColor and GetAtomNameasvintgrated into the XpleXer
without major modifications of the original LBX.

5.2.3 Profiling and Cache Pefill for Short Cir cuiting

As described in Chapter 4, LBX eliminates a significant number of round-trip requests at
application start-up if the proxy’cache is filled. This impves the performance for
applications that are started after the proxy has been used for some time. Short circuiting
would be gen more useful if applications that are started early in the lifetime of the proxy
could also ta& adwantage of the short circuiting mechanism. Thauld especially apply

to application-sharing scenarios, where usually onlyery wmall number of clients is
involved in each session.

Given the &ct that most users use the same applications repeatedigles sense to
presere parts of the proxg’short circuiting cache not only while the proxy is running, b
also thereatfter for the restart of the proxyln the contet of the prototype ingration,
the action of preserving parts of the praxgache is called profiling, since the resulting
data is essentially a profile of certain eliminatable round-trip requests.

However, since the peer sewor XpleXer for an LBX proxy might va been restarted
while the proxy vas not running, only the information that isyad®zd by the client can be
reused. Br example, if the proxy has a property-name-to-atom mapping in its cache, only
the property name isgad in the profile. At start-up, the proxy therefore has to request the

61

Integrating Protocol Enhancement and Compression into Application Sharing

missing information from the sezwor XpleXer Asking the serer or XpleXer about the
missing information and storing the combined information in the psostyort circuiting
cache is called cache prefill.

The efect of profiling and cache prefill is that round trips which aighanged between
proxy and sermr/XpleXer are shifted from the start-up of the applications to the start-up of
the proxy For the userthis should be an impvement, since the proxy is usually started
long before it is actually being used. If this is not satisfying, a special LbxCachePrefill
request could be used to prefill the prexgache, using only one round-trip request.

The prototype intgration supports profiling and cache prefill for property-name-to-atom
mapping and colorname-to-RGBdue mapping. The profile for property names and
colornames is written to special files in the us@ome directory whemer the proxys

last client disconnects. At the start-up of the pragse files are read and the appropriate
InternAtom and LookupColor requests are issued by the proxy in order to prefill the cache.

Profiling and cache prefill is not supported for the mapping of R&&es to the inde

and the contents of a colorcell. The reason for this is that the cache prefill for the mapping
would require the allocation of shared colorcells that migitmiee used. Since colorcells

are a scarce resource in the serthis should not be done.

524 TagUsage

As mentioned abee, the LBX tag mechanism cannot be gngged into the Xpbeer: The
XpleXer is not avare of clients that connect directly to the primary seand is therefore
not able to imalidate tags or request the transmission of property data.

However, a product-leel integration could replace the LBX tag mechanisms with a
caching stratgy that does not require kwtedge about the actions of clients that are
directly connected to the primary servTo realize this stragy, the proxy and the
XpleXer would keep identical caches for the last replies to @®gbkdardMapping,
GetModifierMapping, Querydnt and connect requests. If one of those requestesat
the XpleXer it would be forvarded to the primary seew The reply of the primary sesv
would be compared with the content of the cache in the XpldK#dre content of the
cache and the reply are identical, the XpleXeula send only a short reply which tells
the proxy to send the content of praxgache as a reply to the client. If the content of the
cache and the reply are féifent, the whole reply @uld be sent to the proxgnd the
caches in XpleXer and proxyonld be updated.

62

Integrating Protocol Enhancement and Compression into Application Sharing

525 Reencoding

The decoding of reencoded messages had to lgrated into the XpleXer in aay that
made sure that a request is decoded only oves, i the client is shared by multiple
seners. Usually the XpleXer dispatches incoming requests oncevéoy serer. For
reencoded messages, thiouhl hae led to an unacceptable increase in decoding
overhead. In order to decode a reencoded request only once, W dispatched to an
LBX decoding function only for the primary servThis function replaces the encoded
request with the decoded egaient of the request. The decoded request is then dispatched
once for gery serer.

All other parts of message reencoding weregirged into the XpleXer without major
modifications.

52.6 Motion Event Suppression

Motion event suppression ag intgrated into the XpleXer in order to reduce the number
of MotionNotify events that are generated by the inputtokolder All MotionNotify
events from other seers are discarded by the XpleXer beforg/tteach the motionvent
suppression of LBX. & the MotionNotify ®ents of the input tan holder the
unmodified LBX motion eent suppressionas used.

5.3 Performance of the Prototype

For the performancevaluation of the prototype irgeation, the same tests as for the
original LBX were used. In order to makhe comparison between the performance of the
original LBX and the prototype ingeation easieradditional lines with thealues from the
original LBX have been included inables 7-9. The folleing results apply to the
integration of LBX into the connection between client and XpleXer the connection
between XpleXer and sexy the original LBX, enhanced by cache prefill andfdring of

LZW chunks, is used. Consequentligat part of the intgation has compression rates
equal to those of the original LBX, and round-trip elimination rates equal to those
described in this section.

The results for a ndy started proxy with a prefilled short circuiting cache isvahan

Table 8. As can be seen, the compression rates for the client data is identical to that of
LBX. The compression rates for the samdata are slightly \eer than for the original

LBX because tag usagea® not intgrated into the prototype.

63

Integrating Protocol Enhancement and Compression into Application Sharing

For a navly started proxythe tag usage only reduces serdata for the reply to a connect
request — the proxy kmes the reply to the connect request, since it is itself connected to
the XpleXer — and for replies to requests which are issued more than once during the
start-up of the application. Accordinglthe impact of the missing tag usage on the total
compression performance is relaty low.

For this scenario, the prefill of the short circuiting cache leads t@a iacrease in the
eliminated round-trip requests. Theseage percentage of eliminated round trips is 25.8%
for the intgration, opposed to only 6.1% for the original LBX.

xterm emacy xtetris|FrameMaler|Netscape
Uncompressed client data (bytes] 2348 9908 5216 55668 347136
Compressed client data (bytes) 1169 4995 2389 19363 180156
Compression rate 2.0:1 2.0:1 2.2:1 2.9:1 1.9:1
(Original LBX) (2.0:1)(2.0:1) (2.1:1 (2.9:1) (1.912
Uncompressed segv data (bytes) | 10532 37064 13760 38660 140608
Compressed segy data (bytes) 4284 9184 5059 13834 40626
Compression rate 2.5:1 4.0:14 2.7:1 2.8:1 3.5:1]
(Original LBX) (2.7:1)(5.2:1) (2.8:1 (2.9:1) (3.7:1
Uncompressed total data (bytes) | 1288 46972 18976 94328 487744
Compressed total data (bytes) 5453 14179 7448 33197 220782
Compression rate 2.4:1 3.3:1 2.5:1 281 221
(Original LBX) (2.5:1)(3.9:1)(2.6:1 (2.9:1) (2.31
Round trips without short circuitin 11 125 13 167 484
Eliminatable round trips 4 49 8 31 371
Round trips eliminated 3 39 4 26 117
Percentage of round trips elimina] 27.3 31.2 30.8 15.6 24.2
(Original LBX) (0)] (10.4) (0 (0)] (20.0

Table 8 Application start-up with pr efilled short circuiting cache

Table 9 sharis the second scenario with an optimally filled cache. As in the first scenario,
the compression rates for the client data are nearly identicalthE serer data, the
original LBX achieres significantly better compression results than the prototype
integration. The reason is vibus: Wth an optimally filled cache, the usage of tags is a
big adwantage, especially for ‘small’ applications dikkterm or emacs. kiever, for
applications that transfer a ¢ggr amount of data at start-up dikrameMakr or Netscape,

64

Integrating Protocol Enhancement and Compression into Application Sharing

the overall compression rates of the original LBX and the prototypegraten are still
fairly similar.

As can be seen irable 9, for this scenario the elimination of round trips is rfettdd by
the intgration into the XpleXer

xterm emacy xtetris FrameMaler/Netscape
Uncompressed client data (bytes) 2484 9872 4992 55772 341324
Compressed client data (bytes) 945 3963 2106 19650 177595
Compression rate 2.6:1 251 2.4:1 2.8:1 1.9:1
(Original LBX) (2.5:1) (2.8:1)(2.512 (2.9:1) (1.9
Uncompressed segvdata (bytes) | 10532 36968 13600 39332 142244
Compressed segy data (bytes) 3112 7114 3872 13810 40657
Compression rate 3.4:1 5.2:1 3.5:1 2.8:1 3.5
(Original LBX) (23.4:1)(11.7:1)(5.5:1 (4.8:1) (.21
Uncompressed total data (bytes)| 13016 4684(18592 95104 483568
Compressed total data (bytes) 4057 11077 5978 33460 218257
Compression rate 3.2:1 4.2:1 3.1:1 2.8:1 2.2:1
(Original LBX) (9.2:1) (7.0:1)(4.2:1 (3.5:1) (2.41
Round trips without short circuitin 11 125 13 167 484
Eliminatable round trips 4 49 8 31 371
Round trips eliminated 3 45 6 30 361
Percentage of round trips elimina] 27.3 36.0 46.2 18.0 74.6
(Original LBX) (27.3) (36.0) (46.2 (18.0) (74.6

Table 9 Application start-up with filled cache

From the data indble 10 can be learned that, for application usage, thgramiten has
basically the same compression rates and round-trip elimination percentages as the
original LBX.

The ealuation shws that the performance of the original LBX and the prototype
integration are similar for most cases. The original LBX has a significantly higher
compression rate only for application start-up with an optimally filled cacbe.aF
product-level integration, the lack of tag usage could be compensated by theatibe of
the caching stratyy described in 5.2.3. Due to cache prefill, the prototypgrat®n has a
significantly higher round-trip elimination rate as the original LBX for @iyestarted

proxy.

65

Integrating Protocol Enhancement and Compression into Application Sharing

66

xterm| emacs| xtetris| FrameM aker|Netscape
Uncompressed client data (bytes) 7004 13888|120744 1364448 6980512
Compressed client data (bytes) 3237| 3905| 19909 485509/ 1042329
Compression rate 22:1) 3611 6.01 281 6.7:1
(Origina LBX) (2.2:.1)|(3.6:1)| (6.1:2) (2.81)| (6.6:1)
Uncompressed server data (bytes) 4832 14528| 17920 92568| 66592
Compressed server data (bytes) 1240, 4259 4915 25954| 18094
Compression rate 391 341 361 3.6:1 3.7:1
(Original LBX) (4.6:1)(3.9:1)| (36:1) (3.4:1)| (381
Uncompressed total data (bytes) 11836| 28416|138664 1457016| 7047104
Compressed total data (bytes) 4477| 8164| 24824 511463| 1060423
Compression rate 261 351 561 2.8 6.6:1
(Original LBX) (2.7:1)((3.8:1)| (5.6:1) (2.8:1)| (6.5:1)
Round trips without short circuiting 4 2 2 781 77
Eliminatable round trips 0 0 0 6 10
Round trips eliminated 0 0 0 4 7
Percentage of round trips eliminated 0 0 0 0 9.1
(Origina LBX) 0) 0) (0) 0) (4.8)

Table 10 Application usage

Future Work

6 Future Work

This chapter identifies futureork that should be done in order to transform the prototype
into a product-leel integration. The first section discusses thegragon of LBX into the
distributable architecture of the XpleXe$ections 6.2 through 6.4 present approaches to
improve the X protocol enhancement and compression techniques described in Chapter 4.
The last tvo sections ozer miscellaneous topics that must beetako account in order to

make X protocol enhancement and compression mdreiegft for an intgration into
application sharing.

6.1 Supporting the Distributable Architecture

Support for the distrilted part of the XpleXer must be added to the prototype for a full
integration of LBX into the distribtable architecture of the XpleXdfigure 31 shos a
scenario where the disttited XpleXer is used to shareawlients. lr client 1, XpleXer

1 is the master and XpleXer 2 is thevslaFor client 2, XpleXer 2 is the master and
XpleXer 1 is the shke. The only connections that cross LAN boundaries are the
connections between thedwXpleXers. The communication between master anc sta
based on the X protocol with artension for additional information.

-

~

X Sener 1 X Sener 2
X Protocol X Protocol between X Protocol
Master (XpleXer 1) and
Slave (XpleXer 2).
| .
XpleXer 1 XpleXer 2
- .
X Protocol between
Master (XpleXer 2) and
X Protocol Slave (XpleXer 1). X Protocol
X Client 1 X Client 2

K LAN 1 / K LAN 2 /

Figure31 Architectureof thedistributed XpleXer without LBX

The architecture for an irgeation of LBX into the distribted part of the XpleXer is
shavn in Figure 32. Br most parts of this inggation, the code of the prototype

67

Future Work

integration can be reused. Wever, there is one additional problem that must beestlv
While the communication between master andesia based on the X protocol, there
exists one major diérence between the protocol that is used between client ared aad/
the protocol that is used between master aneskr some information requests, the
client is interested only in the reply from the primary serin those cases, it is not
necessary for the sla to send the replies from the additional sete the mastefnstead,
the information contained in those replies is stored in the $ta the mapping of future
requests. @ male the LBX proxy verk with the slae, it needs to be modified to accept
this behaior. This is the major task for the igt@ation of LBX into the distribted
architecture.

-

~

X Sener 1 X Sener 2
X Protocol LBX/X Protocol between X Protocol
Master (XpleXer 1) and
X Protocol | LBX Proxy 1 Slave (XpleXer 2).
g |
LBX XpleXer 1 LBX XpleXer 2
- P ~—P
LBX/X Protocol between | LBX Proxy 2| X Protocol
Master (XpleXer 2) and
X Protocol Slave (XpleXer 1). X Protocol
X Client 1 X Client 2

K LAN 1 / K LAN 2 /

Figure 32 Architecture of thedistributed XpleXer with LBX

The combined inggration of LBX into the centralized and the distitbd part wuld
provide full support for the distrildable architecture of the XpleXer

6.2 The New Low Bandwidth X

The final LBX standard for protocokvsion 1.0 [6] vas published in January 1997, after
the prototype intgration was completed. This sectiorvgs an gerview of the additional
features of the final standard.

A lot of work has been done to enable short circuiting of AllocColor and
AllocNamedColor requests for the case where the short circuiting cache of the proxy is
empty In order to ma& this possible, a mechanism called colormap grabbing has been
developed. Colormap grabbing alis the proxy to gin control @er a colormap, when a

68

Future Work

client connected to that proxy starts issuing AllocColor or AllocNamedColor requests. In
order to grab a colormap, the proxy issues an LbxGrabCmap request. Ereegigs to

this request with the description of the grabbed colormap. Thereafter the proxy controls
the colormap: It is allwed to allocate colors in the colormap and to reply to AllocColor or
AllocNamedColor requests without contacting the sefirst. The semr is updated with
regard to the status of the colormap by the org-wequest LbxAllocColor that contains

the same data as the AllocColor request. The LbxAllocColor request is sent by the proxy
as a substitution for short circuited AllocColor and AllocNamedColor requests. If other
clients try to allocate colors in a grabbed colormap, the esersends an
LbxReleaseCmapEwnt to the proxyUpon receiing this eent, the proxy passes the
control of the colormap back to the serby sending an LbxReleaseCmap. Other clients
are allaved to deallocate colors in a grabbed colormap. If the counter for a specific
colorcell reaches zero, the seninforms the proxy by sending an LbxFreeCelksity

Another corenient feature that has been added to the LBX standard &y @aowntern

more than one atom with a single round-trip request. This is done by using the
LbxInternAtoms request. itth the presence of this request, the cache prefill for property
name to atom mapping can be done in a single round-trip request.

With colormap grabbing and cache prefill, the fulveo of short circuiting can be used
right after the start of the proxyhe time necessary for the prefill of the atom cache can be
dramatically reduced by using LbxInternAtoms. An additional LbxLookupColors request
would be ‘ery desirable to reduce the whole cache prefill mround trips.

Arbitrary algorithms can be used for the stream compression of theLBX. The
implementation praded by the X Consortium supports the DERIEAcompressed data
format [13], which is a combination of the LZW algorithm and fehain coding. The
usage of the DEFLPE compressed data format should not significantly change the
compression performance of LBX because of its similarity to the LZW compression that
is used by the wrk-in-progress @rsion of LBX.

The remaining parts of thewd_BX standard are similar to those of therk-in-progress
version described in Chapter 4. The main problem with agretien of the n& LBX
standard into application sharingwd therefore be the irdeation of colormap grabbing.
The algorithms for colormap grabbing require thevidledge about actions of clients that
are directly connected to the senAs eplained in Chapter 5, the same reasonegmted
the intgration of tag usage into the prototype. A proposal @f tios problem could be
solved is presented in section 6.3.

69

Future Work

6.3 A Transparent Architecture for Low Bandwidth X

One of the main disadwtages of LBX is that the architecture is not transparent to the X
window ervironment of the useiith the architecture proposed by LBX/egeyone who
wants to use LBX must install ameX sener. This is hardly optimal, taking into account
the huge installed base of X sers and the lge number of operating systems and
hardware platforms to which the X semvcode has been portedrRpplication sharing, a
transparent architectureowld be gen more important, since only the transparent parts of
LBX can be intgrated into application sharing. &y interesting question is therefore:

“Can the LBX architecture be ceerted into a transparent architecture, retaining support
for all compression and short circuiting mechanisms?”

To answer this question one has to reconsidéy a non-transparent architecture is
proposed for LBX. The reason is that the X servas information about all connected
clients. A pseudo client, as it is used by XRemote or HBX/FHBX, does n& ha
information about clients that are directly connected to theese€Fhis information is
essential for tag usage and colormap grabbing.

If it were possible to ge the pseudo client information about all clients of aeseall

LBX mechanisms could be used with a transparent architectuve.thtopseudo client

could get this information is stvm in Figure 33. Thedy idea is that no clienteuld be
allowed to connect directly to the servEven local clients wuld use the LBX pseudo
client to communicate with the real servihe LBX pseudo client @uld forward most of

the requests unchanged from local clients to theesgdnly requests thatfaict tag usage

or colormap grabbing suld be @amined closer and appropriate actions —e lik
invalidating tags, requesting property data or handling requests for grabbed colormaps —
would be takn.

Remote X Clien
Low-Bandwidth or
High-Lateng Connectiol
X LBX - - -------- - - LBX X Sener

Protocol Proxy

Pseudo Clienr——
X protocol with X Protocol
LBX extension
Remote X Clier X Protocol

Local X Client

Figure 33 Transparent architecturefor LBX

70

Future Work

For an integration into application sharing, the XpleXer could do the job of the pseudo
client in addition to its usual application-sharing functionality. With the guarantee that all
clients of the primary server connect through the XpleXer, all LBX mechanisms could be
integrated into application sharing.

6.4 Combining Different X Protocol Enhancement and
Compression Techniques

As shown in Chapter 4, both the HBX/FHBX/dxpc and the LBX approach have different
advantages. HBX/FHBX/dxpc usually achieves a higher compression rate, while LBX
supports short circuiting and motion event suppression as well as superior tag usage and
image compression. A combination of the different X protocol enhancement and
compression techniques is therefore desirable.

Figure 34 proposes the functional layers for acombination of LBX and HBX/FHBX/dxpc.
The LBX preprocessing layer of the combination would be responsible for short
circuiting, tag usage, reencoding of images and motion event suppression. A
HBX/FHBX/dxpc layer would replace the delta compaction and compression layers of
LBX. The data received from the preprocessing layer would be compressed in the
HBX/FHBX/dxpc layer by using prediction based compression.

Requests Replies, Events, Errors
LBX Preprocessing Layer LBX Preprocessing Layer
(Short Circuiting, Teg Usage, Reencoding (Short Circuiting, Tag Usage, Reencoding
and Motion Event Suppression) and Motion Event Suppression)
HBX/FHBX/dxpc Layer HBX/FHBX/dxpc Layer
(Prediction Based Compression) (Prediction Based Compression)
I - . I
| Existing Transport Service |

Pseudo Server (Proxy) Pseudo Client

Figure 34 Functional layersfor a combination of LBX and HBX/FHBX/dxpc

Such a combination of different X protocol enhancement and compression techniques
should be able to achieve an average compression rate higher than the one of
HBX/FHBX/dxpc, and synchronicity reduction rates equal to those of LBX.

71

Future Work

6.5 Transport Layer Support

This thesis focuses on the optimization of the X protocol being used aisting
transport services. kaever, the used transport services dadia significant impact on
synchronicity and bandwidth of X-based application sharingv&rd error correction and
multicast are tw examples, where transport layer services could enhance the
communication for application sharing.

6.5.1 Forward Error Correction

With the usage of TCRhe aerage round-trip delay depends not only on the Igtdnt

also on the loss rate of the underlying ratew When a client issues a round-trip request,

it waits until it receres the reply from the sew If paclket loss occurs either for the
request or the replyhe round-trip delay is increased by the time TCP needs for a time-out
and retransmission of the lost patkOne-vay requests are less sengtio the loss rate of

the netvark since the client does notveeto wait for a reply to the request. Because of this
difference between round-trip and onaywequests, the X protocol can be considered to
have two priorities: a higher priority for data that belongs to a round-trip request and a
lower one for the remaining data. If applied to the higher priority dataafdrerror
correction could reduce the round-trip delay for lossy agterby decreasing the number

of retransmissions. It should be interesting teesticate hov existing forward error
correction schemes BKPET [1] could be used to enhance the X protocol performance.

6.5.2 Multicast

A reliable multicast protocol could tremendously reduce the required bandwidth for the
data sent from the master to thevelm Application-sharing sessions with man
participants wuld basically require a similar amount of bandwidth as sessions vath tw
participants. Only the data that is sent from theeddo the masterauld require unicast.

This is not a major limitation, since usually only the connection to thve siathe input

token holder is acte. All other slaes filter the replies, errors angeats from their
seners and do not send them to the magiecombined intgration of multicast and X
protocol enhancement and compression techniques into the XpleXer should result in an
optimal reduction of the used bandwidth.

72

Future Work

6.6 Graceful Quality Degradation

For very lov-bandwidth connections k&modem or cellular modem connections, the user
might be interested in trading quality for speed.

Since the transfer of images is one of the most bandwidth-consumivigess;tit would

be interesting to westicgate hev graceful dgradation of image quality could be included
in X protocol enhancement and compression. In this ggrgeaceful dgradation wuld
mean a reduction in quality while retaining the essential information for the Tuser
algorithms for graceful dgadation wuld have to work in real time: intercepting the
image sent by the client, performing gracefujrdelation of the image and then sending
the dgraded imagewer the lav-bandwidth connection to the servThe dgradation of
images could be performed by reducing the number of colors, by reducing the resolution,
or by emplging existing lossy image compression techniques. A similar problem is
currently been westicated for vorld wide web accessver lowv-bandwidth connections
[15].

Another example where graceful quality gimdation might be acceptable for the user is
the refreshing of windes. Usually the application is astk to repaint the content of a
window, as soon as parts of it thatveabeen obscured become visible eO& \ery low-
bandwidth connection it might maksense to let the user decide when to repaint which
window. Typically a user wuld request the refreshing of a wimdafter finishing winda
manipulation (resizing, mang, raising and kvering windavs).

Other parts of X might qualify for graceful qualitygtadation also. Garall, it should be
very interesting to >amine the impact of graceful quality gtadation on the used
bandwidth and the peregid quality

73

Future Work

74

Conclusion

7 Conclusion

The topic of this thesis is the igt@tion of protocol enhancement and compression into X-
based application sharing.

Application sharing is “... a technology which a#® two or more users located at
geographically dferent places to synchronoushpoik with a single-user application, i.e.
online and at the same time” [24) Tale this technology\ailable to the netark-based

X Window System, seeral diferent softvare products hee been deeloped. As shan in

this thesis, virtually all of them use a protocol similar to the iid&iv System protocol to
display the output of a single user application on more than one screen andu® recei
response from more than one udéowever, this protocol vas designed to be ruwver a

fast LAN. Used wer a high-latengc or a lav-bandwidth connection, it leads to serious
delays and loss of interadgty. In these evironments, the start-up of a standard
application lilke Netscape can easily taknore than 90 secondsorHow-bandwidth or
high-lateng connections, the X protocol must be enhanced in order for X-based
application sharing to become awamsal cooperation technolagy

In this thesis, xsting approaches to enhance the X protocol fartb@ndwidth or high-
latengy connections were veewed and an intgration of one of those approaches into the
XpleXer, an application-sharing productvédoped by Siemens,as presented.

The X protocol enhancement and compression approaches that were summarized in this
thesis are: XRemote, o Bandwidth X (LBX), Higher Bandwidth X, &St Higher
Bandwidth X and dxpc.df the intgration, LBX was the compression method of choice,
since it is the only approach that supports high-lgtecannections by eliminating
synchronous X protocol requests. LBX uses stream and delta compression as well as
several request specific algorithms to reduce the amount of data that must beesent o
low-bandwidth connection. Higher Bandwidth Xagt Higher Bandwidth X and dxpc use
prediction based compression to avhidetter compression results as LBX.wéwer,

none of them supports high-latgnmonnections.

In order to prge that LBX can be intgated into application sharing, a prototype
integration into the XpleXer has been doneveéal modifications had been necessary to

fit LBX into the nev ervironment, including changes to the LBX protocol. In order to
make LBX more eficient, cache prefill and LZW paek kuffering were added to the
original LBX. The werall compression rate of the prototype gn&gion is about 3.3:1, and

at the start-up of an application, up to 74% of the synchronous X protocol requests can be

75

Conclusion

eliminated. With these results, application sharingeo lov-bandwidth or high-lateryc
connections is considerably impex.

While working on the prototype inggation, seeral areas of future avk were identified.
These areas include further impements for X protocol enhancement and compression
as well as adanced, product-leel integration of those techniques into application sharing.
The prototype intgration only scratches the sack of what is possible. A future product-
level intggration should be able to acheecompression rates of at least 6:1 witheayv
stable rate of eliminated synchronous X protocol requests.

76

References

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Albanese, J. Blomed. Edmonds, M. LubyPriority Encoding Tansmission,"
Technical Report TR-94-039, International Computer Science Instituteg|Berk
http://lwwwiicsi.berleley.edu/PET/pet-documents.html, August 1994.

M. Altenhofen, B. Neideak-Lutz, P Tallett, "Upgrading a winde system for
tutoring functions," Internal Report, DEC Karlsruhe, 1990.

T. C. Bell, J. G. Cleary. H. Witten, "Text Compression," Prentice Hall,
Englevood Cliffs, NJ, 1990.

J. E. Baldeschweilefl. Gutekunst, B. PlattngtA surwey of X Protocol
Multiplexors,"” ACM SIGCOMM Computer Communication Rew, pp. 16-24,
ftp://ftp.tik.ee.ethz.ch/pub/projects/cio/papers/Baldesch93.ps, April 1993.

CCITT, "Recommendation.®, Facsimile coding schemes and coding control
functions four Group 4aicsimile apparatus,ol. VII - Fascicle VII.3, 48-57.

D. Corverse, J. Fulton, C. KantayieD. Lemle, R. Mor K. Packard, R. e, D.
Tonogaai, "Low Bandwidth X Extension, ProtocokY¥sion 1.0," X Consortium
Standard, X11R6.3 documentation, ftp://ftp.g/pub/R6.3/xc/doc/specs/
Xext/lbx.mif, January 1997.

D. Cornelius, "XRemote: a serial line protocol for X," 6th Annuale¢hnical
Conference, Boston, MA, 1992.

S. Carlsen, "TIFF Rasion 6.0, Section 9:&kBits Compression,"
http://lwww.igd.fhg.de/www/projects/icib/it/detto/compay/aldus/
read.htmi#SEC_9, June 1992.

J. Danskin, PHanrahan, "Compression Performance of the XRemote Protocol,"
1994 Data Compression Conference. Full papeesghiiical Report CS-TR-441-
94, Department of Computer Science, Princetorvéssity, Princeton, NJ,
http://www.cs.dartmouth.edu/~jmd/decs/DECSpage.html, January 1994.

77

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

78

J. Danskin, "Higher Bandwidth X,"@M Multimedia 94, Second @M
International Conference on Multimedia, 15-20 October 1994, San Francisco,
CA, pp 89-96, http://wwwves.dartmouth.edu/~jmd/decs/DECSpage.html.

J. Danskin, "Compressing The X Graphics Protocol,” PhD Thesis, Department of
Computer Science, Princeton Maisity, Princeton, NJ. ¥ailable as Princeton
Technical Report CS-TR-465-94, http://wvea.dartmouth.edu/~jmd/decs/
DECSpage.html, Neember 1994.

J. Danskin, D. Gessel, Q. Zhanga$t Higher Bandwidth X," International
Multimedia Networking Conference, Aizu Japan, http://wwea.dartmouth.edu/
~jmd/decs/DECSpage.html, Sept 27-29, 1995.

P. Deutsch, "DEFLAE Compressed DataoFmat Specificationersion 1.3,"
RFC 1951, May 1996.

J. Fulton, C. Kantarjie "An Update on Lev Bandwidth X (LBX)," Proceedings
of the 7th Annual X &chnical Conference, O’Reilly and Associates, January
1993.

A. Fox, E. Brever, "Reducing WWW Latencand Bandwidth Requirements by
Real-Tme Distillation," Fifth International \&ld Wide Web Conference,d®is
France, http://www5conf.inria.fr/fich_html/papers/P48éBxen.html, May 6-
10, 1996.

D. Garfinlel, B. Welti, T. Yip, "HP SharedX: A @ol for Real-Tme
Collaboration," Hevlett-Packard Journal April 1994, pp.23-36.

l. Greif, "ComputetSupported Cooperat Work: A Book of Readings Morgan
Kaufmann Pub. Co., Palo Alto, CA, May 1988.

T. Gutekunst, "A Distribted and Poligz-Free General-Purpose Shareth@éw
System," IEEE/&AM Transactions on Netwking, ftp://ftp.tik.ee.ethz.ch/pub/
projects/cio/papers/Gutekunst95.ps, February 1995, pp. 51-62.

G. Hoffmann, "Xy: Unterstlitzungon Telekooperation und Mobilitat im X
Window System,” Study report, Computer Science Departmehnical
University Berlin, 1993.

References

[20] E. Israel, E. Brtune, "The X Vihdow System Semr," Digital Press, Burlington,
MA, 1992.

[21] V. Jacobson, "Compressing TCP/IP Headers fov-Epeed Serial Links," RFC
1144, February 1990.

[22] O. Jones, "Introduction to the Xiddown System," Prentice-Hall International,
Inc., London, 1991.

[23] G. McGreor, "PPP Internet Protocol Control Protocol (IPCP)," RFC 1332, May
1992.

[24] W. Minenko, "Advanced Design of Etient Application Sharing Systems under
X Window," Ph.D. Thesis, Department of Computer Scienceyésaity Ulm,
January 1996.

[25] A. Nye, "Wlume 0: X Protocol Reference Manual," The Xndbw System
Series, O'Reilly & Associates, Inc., 1990.

[26] A. Nye, "Wlume 1: Xlib Programming Manual,” The Xikdow System Series,
O'Reilly & Associates, Inc., 1990.

[27] K. Packard, "Design and Implementation of LBX: An Experiment Based
Standard," Proceedings of the 8th Annuale¢Anical Conference, O’Reilly and
Associates, January 1994.

[28] T. Raita, J. €uhola, "Predictie Text Compression by Hashing," Proceedings of
the 10th Annual &M SIGIR conference on Research and&@epment in
Information Retrigal, Nev Orleans, 3-5 June 1987, pp.223-233.

[29] J. Zwv, A. Lempel, "A Unversal Algorithm for Sequential Data Compression,”
IEEE Transactions on Information Theoiyay 1977, pp. 337-343.

79

References

80

