INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Optimal Trade-Offs Between Size
and Slowdown for Universal
Parallel Networks*

Friedhelm Meyer auf der Heide'*

Martin Storcht Rolf Wanka$
TR-96-052
December 1996

Abstract

A parallel processor network is called n-universal with slowdown s, if it can simulate
each computation of each constant-degree processor network with n processors with
slowdown s. We prove the following lower bound trade-off: For each constant-degree
n-universal network of size m with slowdown s, m - s = Q(nlogm) holds. Our trade-
off holds for a very general model of simulations. It covers all previously considered
models and all known techniques for simulations among networks. For m > n, this
improves a previous lower bound by a factor of loglogn, proved for a weaker simula-
tion model. For m < n, this is the first non-trivial lower bound for this problem. In
this case, this lower bound is asymptotically tight.

* Supported by DFG-Sonderforschungsbereich 376 “Massive Parallelitit,” by DFG Leibniz Grant
Me 872/6-1, and by EU ESPRIT Long Term Research Project 20244 (ALCOM-IT). A preliminary ver-
sion of this paper appeared in: Proc. 7th ACM Symposium on Parallel and Algorithms and Architectures
(SPAA), pp. 119-128; 1995. The full version will appear in: Mathematical Systems Theory (MST).

"Heinz Nixdorf Institute and Dept. of Mathematics and Computer Science, Paderborn University, 33095
Paderborn, Germany

temail: fmadh@uni-paderborn.de.

$International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704-1198, USA, email:
wanka@icsi.berkeley.edu. On leave from Heinz Nixdorf Institute and Dept. of Mathematics and Computer
Science, Paderborn University, 33095 Paderborn, Germany, email: wanka@uni-paderborn.de.

1 Introduction

The Problem. In the pastfew years, the model of parallel processor networks has received
much attention for solving time-critical tasks [11]. In this model of computation, the proces-
sors Py, ..., P, are interconnected via a fixed communication graph M = ({P1,..., P,}, E).
The edges of the graph represent communication links. Processors may communicate mes-
sages along these links. The number of links that a processor P has is called the degree
of P. The degree of M is defined as the largest degree of its processors. For technological
reasons, families of networks are required where the degree is bounded by a constant.

Usually, for special problems, special networks have been introduced. Famous constant-
degree networks are the meshes, the butterfly network, the cube-connected cycles network,
the shuffle-exchange network, and expander networks, to list only a few of them.

In order to compare the computation power of different networks, many simulations of a
network M7, the guest, on another network M,, the host, are proposed, for many interesting
networks My, My. We refer to these as special simulations.

As it is not feasible to tailor topologies of networks to specific process graphs or com-
munication patterns of parallel programs, Galil and Paul [6] have asked for constant-degree
universal networks that are able to simulate all constant-degree networks of size n without
slowing down the computation time substantially. More specifically, let ¢/ be the class of
all constant-degree networks with n processors. A constant-degree network M is called
n-universal with slowdown s, if for each G € U, M can simulate T steps of G in at most
s - T steps.

Previous Work. One approach for special simulations is the concept of embeddings. The
processors of the guest are statically mapped to the processors of the host. For this concept,
many results are known. See [16] for an overview.

With respect to universal parallel networks, Galil and Paul [6] show that each network
M of size m that can sort n numbers in time sort(n,m) is n-universal with slowdown
O(sort(n,m)). E.g., this means that constant-degree networks like the shuffle-exchange
network and the cube-connected cycles network, each of size n, are n-universal with slow-
down O(logn - (loglogn)?) using the algorithm presented in [5].

A more general approach is the concept of dynamic simulations (also sometimes called
emulations with redundancy). Such simulations allow that single guest processors are simu-
lated at several host processors, and that the set of simulating processors may vary during
the simulation. A model of this type was first considered by Meyer auf der Heide in [13].

For special simulations, there are several results indicating the strength of these simu-
lations, see [9, 18, 7, 8, 1]. E.g., the y/n X y/n-mesh can be simulated on an n-processor
butterfly network with constant slowdown [9], whereas an embedding has slowdown Q(logn),
as shown in [4, 3].

A more drastic difference is known for universal networks: In [14], an n'*°-processor uni-
versal network is presented which has constant slowdown only. The same result holds when
oblivious computations of the complete network of size n are simulated, instead of bounded
degree networks, as also shown in [14]. On the other hand, if only embeddings are allowed,
universal networks with constant slowdown have exponential size (upper and lower bound),
as shown in [13]. In [13], a butterfly-like network of size n!*# is presented that is n-universal

with slowdown O(loglogn). A similar result is obtained in [8]. In [8], a network of size n is
constructed that can simulate each planar network of size n with slowdown O(loglogn). For
restricted classes of bounded degree networks (those with polynomial spreading function,
i.e., networks where the size of the t-neighborhood of each node is bounded by a polyno-
mial in ¢), constant slowdown simulations even only need O(n - polylog n) size universal
networks [15].

Lower bounds for dynamic simulations between special networks are shown in [9]: If,
e.g., an m-processor butterfly network simulates an expander network of size n, it has a
slowdown of Q(%log’ﬁ)gm). Further results show that meshes of size m are not able to
simulate a variety of networks of size n with the load-induced slowdown of - only. For
proving these properties, congestion- and diameter-based arguments are used. Rappoport
shows in [17] that a multi-butterfly network of size n cannot be simulated efficiently by a
butterfly network of size O(n®), ¢ > 0.

Further lower bounds are shown in [10], where the communication bandwidth of guest
and host are investigated as criteria to exceed the load-induced bound on the slowdown.

All these techniques are not strong enough to prove lower bounds for universal networks.
E.g., no non-trivial lower bound for simulating an explicit network is known in case of an
expander host (which might be a good choice for a universal network).

In [13], a lower bound on the slowdown of a universal network of size m > n is shown
using a somewhat weaker model of simulation (which still captures all known simulations
for the case that the host is not smaller than the guest). It shows that slowdown s can only

be achieved if |
ogn
s =Qfn. —2")
s (n log log n)

In case of simulating non-oblivious computations of the complete network of size n, s =
Q(logn) holds, independent of m [14].

With the techniques from [14], it is possible to show the following upper bound trade-
off: For each £ > 1, there is a universal network of size n - £, whose slowdown fulfills:
s-logf = O(logn). Closing the gap between the lower bound and the upper bound trade-
off is still an open problem.

New Results. We present a lower bound on the trade-off between host size and slowdown
of universal networks. It is shown for any n-universal network M of size m with slowdown s
that

m-s=Q(nlogm) .

Our lower bound proof even holds if only computations of length [24/logm | have to be
simulated. Note that looking at too short computations is not sufficient, because the tech-
niques from [14] easily imply that a constant-degree network of size 20(1) . (consisting
of n constant-degree trees of depth t) suffices to simulate all length ¢ computations of all
networks from U with constant slowdown.

For m < n, our result is easily shown to be asymptotically tight (Section 2). For our
lower bound presented in Section 3, the underlying simulation model is some kind of pebble
game [9], the assumably most general simulation model currently known. The proof is a
counting argument inspired by the lower bounds in [13]. It improves the previous results in
the following ways:

1. The simulation model (see Section 3.1) is generalized: load > 1 is allowed, and steps
may be simulated asynchronously.

2. It extends the lower bound to small hosts (m < n).

3. The factor 1/loglogn is removed from the lower bound in the more general type of
simulation, making the bound optimal for m < n.

The result can be interpreted in the following ways: Improving the lower bound trade-off
of [13], we get for m > n, m-s = Q(nlogn). Thus, the size of a universal network with
slowdown O(1) is m = Q(nlogn).

For small universal networks (m < n), we obtain a slowdown s = €(-logm) that
exceeds the load-induced slowdown of > by a factor of logm, the minimum diameter of
any constant-degree network of size m. Also, as the matching upper bound in Section 2 is
done by a static embedding, it shows that dynamic embeddings do not yield an increase in
efficiency for universal networks if m < n, in contrast to the fact that they do increase the
efficiency, if m > n (see [14]).

2 Upper Bound

Before we focus on the lower bound, we show that networks that have good routing capa-
bilities are also good small universal networks. We describe an easy, intuitive simulation.
Note that each processor is allowed to communicate with at most one of its neighboring
processors during a single time step.

Let GG be an arbitrary network, and let each processor of GG hold at most A packets each
with a desired destination address. These packets have to be routed to their destinations.
Let each processor be the destination of at most h packets. This routing problem is called
an h-h routing problem. Let routec(h) denote the time to solve each h-h routing problem

on GG.

Theorem 2.1 Let m < n, and M be an arbitrary constant-degree network of size m. M is
an n-universal network with slowdown at most O(routey(~)).

Proof: Let G € U be a network that has to be simulated by M. Let f be a mapping of
the nodes of to the nodes of M such that each node @ of M gets at most [-] of the
nodes of G. The simulation is step by step. @ simulates the internal computations of its
guests sequentially. If a processor P of (G wants to communicate with its neighbor P’, the
processor) of M with f(P) = @ generates a packet with destination f(P’). Obviously,

the desired communication of the guest processors forms an []-[2] routing problem. O

By Theorem 2.1, we can conclude in the following way that for m < n, the butterfly
network of size m is n-universal with slowdown O(logm). Because the guest has con-
stant degree, the []-[2] routing problem that may arise can be solved by routing O()
permutations that depend on G only, and, therefore, are known in advance. For the neces-
sary techniques, see [11, Section 3.2.2]. The off-line routing problem can be solved in time
O(logm) ([19]). Note that because of the lower bound shown in Section 3, this slowdown
is asymptotically optimal.

Theorem 2.1 is also true if the complete network is simulated. In contrast to the above
construction, we now need an online routing algorithm for the []-[2] relations, because
they are no longer known in advance. There are several randomized routing algorithms
known, e.g., for the butterfly network (see [11]). Efficient deterministic algorithms for
the h-h routing problem are known, e.g., for the constant-degree network one obtains by
applying Leighton’s Columnsort approach [12] to the AKS sorting circuit [2] and using

parallel sorting as routing mechanism.

3 Lower Bound

3.1 The Simulation Model

The simulation of T steps of a guest network G € U’ by T’ steps on a host network M of
size m is modeled by a pebble game. Let P = {Py,..., P,} be the set of nodes of G, and
let @ = {Q1,...,Qn} be the set of processors of M. For every node P; of G and every
guest time step ¢, there are pebbles of type (F;,¢). A pebble of type (F;,t) stands for the
configuration of guest processor P; at time ¢.

A simulation is performed as follows: At the beginning, each processor of M contains
all the initial pebbles (P1,0),(P2,0),...,(P,,0). In every host time step, every processor
@ of M can perform one of the following operations:

e Generate a pebble of type (P;,t). This is allowed only if pebbles of the types (P;,t —
1),(Py,t=1),(Py,t=1),...,(F;,,t—1) are contained in @, where {P;,, P;,, ..., F;,}
are the neighbors of P; in G. These pebbles are called predecessors of (P;,1).

e Send a copy of one arbitrary pebble contained in) to a neighboring processor. Note
that after this step both processors contain a pebble of that type. Pebbles do not get
lost.

e Receive a pebble from a neighbor. Only one pebble can be received at one time step.

After the T’ host time steps, pebbles of types (P, T),...,(P,,T) must be generated on at
least one processor, each. They are called final pebbles.

As both the host and the guest are constant-degree networks, it is not a restriction that
in one step of the guest the next configuration of a P; depends on all its neighbors, whereas
the host processors are allowed to communicate with one neighbor only.

A protocol § of a simulation is a listing of the operations performed on every processor
at every step.

For ease of explanation, let us make a couple of definitions for a given simulation protocol
5. Remember that a processor keeps every pebble it generated or received for the entire
simulation. Let [n]:= {1,...,n}, forall n € IN. Yor 7 € [n], t € [T], let

o Qs(1,t):={j € [m]| @; contains a pebble of type (F;,1) at the end of S}.
o Q%(1,t):={j € Qs(i,t) | Q; generates a pebble of type (F;,t+ 1) in some step of 5}.

Qs(1,t) is the set of representatives of P; at guest time t in simulation protocol S, and
Q(i,t) is the set of generators of P; at guest time t + 1 in simulation protocol S.

Let d be the degree of the universal network M. For a guest graph G € U’, consider a
simulation of T steps of G by T" steps of M. Then s :=T'/T is the slowdown and
m _1'-m

ki=s. — =

n T-n

is the inefficiency of the simulation. Note that even in the case of m > n, the slowdown
s = -k is at least 1.

A simulation protocol, or simply a simulation, is called k-inefficient, if it simulates a
graph G € U’ on our fixed network M with inefficiency at most k.

Note that this computation model is very powerful because here it takes unit time only
to transmit a full configuration of a processor along a link to a neighboring processor, and
because the computation of the next configuration is also assumed to consume one step only.
Lower bounds holding for this model clearly also hold for models where the bandwidth of
the links is bounded.

3.2 The Lower Bound Proof

In this section, we will prove our main result:
Theorem 3.1 If M is n-universal with slowdown s, then m -s = Q(n-logm).

For our proof, we only consider computations of length 7" > [2/log m | steps executed
on regular networks with n processors having degree ¢ = 16. Let this class of networks be
denoted by U’. Consider an m-processor network M with degree d that simulates all T-step
computations of all networks from ¢’ in at most T/ =T - 2 - k steps.

We have to show that k, the inefficiency, is Q(log m). We proceed as follows: We count
the number |U’| of networks with n vertices of constant-degree ¢, and the number D(k)
of networks from U’ that have a k-inefficient simulation by M. We have to determine the
minimum k with D(k) = |U'|. Counting |U'| is simple. It has already been done in [13].
Bounding the number D(k) is a difficult task and will be done in the rest of this section.

Our approach to computing D(k) is as follows: Consider a computation of length 7" on
some network G € U’, and its k-inefficient simulation on M. Fix some g < 7. The only
information about S we are going to consider is, for each i € {1,...,n}

e Qs(7,10), the set of representatives of P; at guest time step #g, i. e., the set of processors
that know the configuration of P; after ty steps of the computation of M,

e one b; € Qg(1, 1) such that @, simulates the (o + 1)st step of P;, i.e., b; € Q(i,%).

This information will be called a fragment consistent with 5. More formally, a fragment is
defined as follows:

Definition 3.2 A fragment is a triple (B,5',D) with
e B=(By,...,B,), B C[m],
o B =(by,...,b,), b; € By,
¢ D=(Dy,...,D,), D;={i"€[n]| b; € By}.

Given a simulation protocol S of T steps of a graph G € U' by T' steps of M, we say
that a fragment (B,B',D) is consistent with S, if there is a to € [T] such that B =
(Qs(1,t0),...,Qs(n,t9)) and b; € Q(i,tg) for all i € [n]. 1ty is called a critical time
step of that fragment.

Note that adding D to the fragment is redundant, because it is uniquely defined by B
and B’. We add it for convenience only.

Clearly, a fragment can be consistent with simulations of more than one network from
U'. The following lemma shows that it is consistent with not too many G € U’. Tor a
fixed fragment (B,B’,D), let X denote the number of different graphs from &’ that have a
simulation on M consistent with (8,B',D). X is called the multiplicity of (B,5',D).

Lemma 3.3 For a fized fragment (B, B, D),

q(%)

1
1 2C

Proof: Assume that the graphs G € U’ are represented as directed graphs, where each
%c incoming and %c outgoing edges. Note that such an orientation of the edges
exists because ¢ is even and G is c-regular (it can be obtained by walking along a Eulerian
Tour). G is completely described by listing, for all P; of G, the %c edges leaving P;.

Let (B,B’,D) be a fragment of a simulation of G by M. Because for some ty € [T],
processor @y, of M generates a pebble of type (P;,fp+1), Qs, has to contain, for all neighbors
P, of P;, pebbles of type (P, ty). Therefore, i/ € D; for all these P;. Thus there are only

(|CD/;|) possibilities to choose the edges leaving P;. This proves the lemma. |

node has

Our next goal is to find a set of fragments with the following properties:
e The set is small.

e lor (almost) each G € U’, it contains a fragment (B, 5, D).

e This fragment has small multiplicity, i.e., the D;’s are small.

The following Main Lemma states the properties of such a set of fragments. In order to
keep the set small, we only consider simulations of networks G € ¢’ that contain a certain
subgraph Gg. This property guarantees a certain minimum spreading of information of G
(along the edges of G). Therefore, it also imposes some structure on the simulation, which
is of central importance for the proof of the Main Lemma.

Let U[Go] := {G € U' | Gy is a subgraph of G}. For a set A, IP(A) denotes its power

set.

Lemma 3.4 (Main Lemma) There is a graph Gy with n nodes of degree 12 such that
the following holds: There are constants q,7 € IN, 0 < v < 1, a set A C P([m])" with
|A| < 27" such that every k-inefficient simulation protocol of a graph G € U[Gy] is
consistent with a fragment (B,B', D) with

1. BI(Bl,BQ,...,Bn)EA

3. |Dy| < 2 holds for at least yn many i € [n].
vm

The elements of A describe parts of all possible k-inefficient simulation protocols. As |A]
is not too large, this helps us to keep the number of graphs small that can be simulated
k-inefficiently. The construction of the appropriate subgraph Gy and the proof of the
Main Lemma is the most involved part of the lower bound proof. This will be done in
Subsection 3.3.

Assume Lemma 3.4 to be true for a moment. Let G(k) C U[G] denote the set of graphs,
for which a k-inefficient simulation exists. Then we conclude:

Lemma 3.5 .
ce=12

2
G < 1AL (4B e
mzV =2 "
Proof: Consider the fragments consistent with k-inefficient simulations for graphs G €
G(k), and chosen according to Lemma 3.4. Let Y be the number of such fragments. Let the
multiplicity of any such fragment be bounded by X. By Lemma 3.4, we know that every
graph G € G(k) has at least one such fragment. Thus we conclude |G(k)| < X -Y. The

proof is completed by showing the Proposition 3.6.

Proposition 3.6

(a) Y <|A[-(¢- k)"
e=12
n_ 2
(b) X S 1 c—12
m2Y "z "
Proof:

(a) Consider the fragments (B,B’,D) chosen according to Lemma 3.4. Because B € A,
there are only |.A| possible choices for B = (By, Bs, ..., B,). Now let B be fixed. As b; € B;
for all ¢ € [n], we have only

sl < (-3 1m1) " < (Z20) = by

possible choices for the (by,by,...,b,) = B'. B and B’ already define D.

(b) Let (B,B’,D) be a fixed fragment chosen according to Lemma 3.4. We want to bound
X, the multiplicity of (B,B’,D), i.e., count the graphs that have k-inefficient simulations
consistent with (B, B, D).

Every graph G' € G(k) contains the fixed regular subgraph Gy with degree 12. Thus, G
can be uniquely determined by the residual graph G' := G\ Go. G’ is regular with even
degree ¢ — 12. Combining Lemma 3.3 and the Main Lemma, part (3), we get:

o (1D
X S <c¢—12

IN

IN
i
O
L§‘3
o
~—
1 32
3
TN
O
o |
-
[\~
~—
oy
|
2
3

This finishes the proof of Lemma 3.5. |

Proof: (of Theorem 3.1):
In [13], it is shown that there is a § > 0 with

c—12

U[Gol| = >

n 2—5%)

In Lemma 3.5, we have upper bounded the number of graphs in U[Gg], for which a k-

inefficient simulation exists. If our network M is universal for &’ with slowdown -k, it is

also universal for U[Gy]. Thus, |G(k)| = |U[Gp]| must hold. We get:

c—12

n-3 n_2—6~n S QTnk(qk)n .

Let 7' € IN such that
(q . k,)n . 25~n . 27’~n-k < 27"~n-k)

It follows

—12
m%7.62 n <2r’~n~k

and consequently

1 — 12
k> 27 -"/-CT -logm = Q(log m).

3.3 Proof of the Main Lemma

We describe a T-step computation of a network GG by the following graph:

Definition 3.7 Let G = (P, F) be a graph. The dependency graph of T steps of G is the
graph I'q := (Vr, Er,,) with vertices Vr, = Px{0,...,T} and directed edges ((P, 1), (P, t+
1)) for allt € {0,...,T =1}, if P = P or {P,P'} € E. Then (P,t) is a predecessor of
(P',t+1), denoted with (P,t) — (P',t+1).

(P,t) is an i-th predecessor of (P, t+1), if there is a directed path from (P,t) to (P',t+1)
in U'g. We denote this with (P,t) — (P',t +1).

Note that for any subgraph G C G, I', is a subgraph of I'g.

We have to define a small class A of sets of representatives such that for every k-inefficient
simulation protocol S of a graph G' € U[Gy], we can find a guest time step to for which the
tuple of sets of representatives for guest time step #g, (Qs(1,%0), Qs(2,%0),...,9s(n, o)),
belongs to A. Clearly, choosing the Qg(7,1) arbitrarily from the m processors would yield

a too large set A:
= m r ,
< [Qs(ito)l _ ., O(n-k)
I <|Qs(i,to)|) <Ilm m

i=1 =1
We will reduce the number of choices by defining a small set R of nodes, and, for some
z, embed their ({g — z)-pebbles randomly into M, i.e., choose the sets Qg(i,tg —) for
each i € R. R must be selected such that for each i € [n] there is ig € R such that
(P, to —) — (P;,t9). This implies that the (P;,y)-pebbles cannot travel “too far” from
their respective z-th predecessor of type (P;,,%o — z), which makes counting significantly
easier.

A pebble dependency (P,,t) — (P,,t+ 1) always arises from an edge {P,, P,} € Eg,
unless u = v. As the only edges we know for sure are the edges of the fixed subgraph Gy, we
manufacture the required paths of length z in I'g from the well known edges of its subgraph
I'g

0"

The Definition of Gy

In this part of the proof, we will define the graph Go. We will show some graph theoretic
properties for its dependency graph I'g, that we will make use of in the next subsection.

Definition 3.8 Assume that n is a square of an integer N = /n. The graph H = ([N] x
[N], E) with £ = {{(z,y),(z, ")} | |e —2'|+|y—¥y'| =1, and z,2",y,y € [N]} is called
an n-mesh.

If E also contains the edges {{(z,1),(z,N)},{(1,z),(N,z)} |z € [N]}, then H is called
an n-torus.

For a < N, we define an (a,n)-multitorus to be an n-torus in which each a x a-submesh
is extended by edges to form an a X a-torus.

For0 < a<1andf >1, a graph G = (V, E) is said to be an (o, 3)-expander, if for
all A CV with |A| < a-|V|, the set of neighbors of A contains at least 3 -|A| nodes.

Definition 3.9 Let a := /logm. W.lo.g., we assume n > 4a® to be a square of an
integer. We define our fized subgraph as Go := (Vy, Eo) with Vo = P and edges Eg := E1UFE;
where Ey contains the edges of a (2a,n)-multitorus, and Ez contains the edges of a 4-regular
(a, B)-expander graph of sizen, and 0 < a < 1, and 3 > 1. Fvery node of G has degree 12.

Ay e
/!74’777 77777 - 2 ‘
pan | | | JTogm

A Ry \y
_ T e _

‘ | v 4;5?‘ — + /
| L/ \y/
} s — ‘“7
L/iiii 777777 77y/7 viogm
0 to—\/logm to T

Lﬂ/_)

=a

Figure 1: A dependency tree in I'g,.

The expander properties will be used in Lemma 3.15 to prove part (3) of the Main
Lemma.

W.l.o.g., we assume that n is a multiple of 4a?. We partition Gy into (4a?)-tori
T1,75,...,7, C Gg such that every node of GGy is contained in one of these tori. Thus,
h < ;25. The diameter of each torus is a.

For the rest of this paragraph, it is convenient to identify a graph G = (Vi, Eg) with
its nodes. We simply write v € GG instead of v € Viz and |G| := |Vg|.

Lemma 3.10 For each t > a, for each j € [h], and each P; € T;, ', contains a binary
tree of size at most 48a*, rooted at (P;,t — a) with leaves T; x {t}. It is called T;;, the
dependency tree rooted at (P;,t — a).

Proof: It can be shown that for any copy 7 of a (4a?)-torus and a fixed vertex P; € 7,
there is a dependency tree 71" rooted at (F;,0) in I'7 with the above properties. This is done
by recursively partitioning the torus into 4 submeshes. Connect the center P; of 7 to the
centers of the 4 submeshes by paths in I'g,. At the lowest level of the recursion, every node
of 7 will be reached. Although this is not hard to prove, we will not give the details of the
proof in this paper.

Because the torus 7 is symmetric, any P; € 7 can be chosen to be the root (P, — a)
of the dependency tree. O

For example, we have illustrated a dependency tree in Figure 1.

Properties of Simulations of Gy

Definition 3.11 For a given k-inefficient simulation protocol S of a graph G € U[Gy], and
for any (P;,t) € I'g, call ¢;y := |Qs(i,t)| the weight of node (P;,t). Let

Wy = E Qi !

(Pil,t/)GTz‘yt

be the weight of dependency tree T’ ¢.

10

As we mentioned before, we have to find a guest time step tg for which there are not

too many choices for the sets of representatives Qg(1,%9), Qs(2,%0),. .., Qs(n, o).
For some suitable tg € [T], we select nodes rq,..., 7, € [n] with P, € 7; for each j € [h].
They form the previously mentioned set R = {ry,...,rs}. The nodesin R := {(P;,to—a) |

BTN A el e

As every node of (G is contained in one torus, the leaves of these h trees cover the entire
set P x {to}. Thus for each i € [n], there is j € [A] such that (P, ,tg — a) — (P;,to).

The number of pebbles used in the simulation of a graph G is at most the number of
operations performed by the host M, namely 77 -m = T -n - k. Thus only k pebbles on
average of any type (P;,t) come up during the simulation. By averaging, we will prove the
existence of suitable g, r1, ...,y such that the average weight of the respective dependency

trees is O(k - |T;, 1,|), and the average weight of any root of these trees is O(k).

i € R} are the roots of the dependency trees T,

Lemma 3.12 Consider a k-inefficient simulation protocol S of a graph G € U[Gy]. There is
a set Zg of quest time steps with |Zg| > T[4, and, for eachty € Zg, there are ri,r9,... .75 €
[n] with P,, € Th, Pr, € T3, ..., P, € T}, such that the following inequalities hold (recall

that a = \/logm):

h
n
(1) qu],to—a S 8_2 k
i=1 @
h
(2) wpy < 384-n-k
j=1

Proof: Assume T > 2a.

Y

t=a+1 ;=1 PeT;

T
S 3 i H(W) €T | (Piyt) € Ty p}]

t=a+1 PG
T T
2 2
< D D we48at <48’ 3 D g
t=a+1 FeG t=a+1 P,eG

< 48a®>-n-k-T

T

because Z Z gt < m-T =n-k-T.
t=1 P,eG

Let

h
Zhi={te{a+1,...,TH > > wiy <48¢° -n-k-T 72},
J=1 FeT;

and

7" ={tefa+1,...,T}] Z Gig—a <n-k-T- 7} .
P, eG

11

Then |Z'| > 3(T'—a), and | Z"| > 3(T—a). Set Zs := Z'NZ". Verify that |Zs| > 1(T—a) >
T/4. Let tyg € Zg be fixed. Then:

h
Z Wit < 384a%-n -k
1=1PeT;
qi,to—a S 8n : k
FPeG

For each j € [h], let
Vj’ := {P; € T; | there are a® nodes Py € T; with w;4, < Wir 10}
V]-" :={P; € 7; | there are a® nodes Py € T; with gi1o—0 < Girtg—a}-

It follows |V!| > 2|7;| > 3a® and |V/'| > 3a®. As |T;| > 4a* and V/,V/" C T;, this implies
that [V N V]| > 2a*. Choose P,; € VinV/. To complete the proof, we conclude:

Properties (1) and (2) of the Main Lemma

With the help of Lemma 3.12, we can define the set A from the Main Lemma. Let A :=
{(Qs(1,t0),...,Q9s(n,t0)) | G € U[Gy], S is a k-inefficient simulation protocol for G,
to € Zs}. Remember that d is the (constant) degree of M; ¢;+, w;; are as in Definition 3.11.

Lemma 3.13 Consider any k-inefficient simulation protocol S of a graph G € U[Gy]. Then
for every tg € Zs, and for every fragment (B, B', D) consistent with S with critical time step
to, we have

1. Be A
2. 314ty < q-n-k holds for q := 384

3. |A| < 27 holds for v := 3472 4 384 logd.

In particular, this shows that for each tq € Zs, (Q(1,%),...,Q(n,%)) is a candidate for
the sequence B satisfying (1) and (2) of the Main Lemma.

Proof:
Part (1): By the definition of A, it is clear that each fragment (B, 5’, D) consistent with §
and with B = (Q(1,t),...,Q(n,ty)) satisfies B € A.

12

Part (2): Choose tg € Zg and rq,...,r, according to Lemma 3.12. Because the nodes
P x {to} C I'q are the leaves of the dependency trees T}, so,...,T}, 1, it follows from

Lemma 3.12 that
h

S Gine <3 w4 <3841 k.

=1 7=1

Part (3): For any k-inefficient simulation protocol S of a graph G' € U[G], fix to,71,..., 74
as chosen according to Lemma 3.12. Let R := {rq,...,rs}. Let ' = (Vg, EF) be the forest
Tyt U---UT,, v € I'g. Every node of I’ has indegree 1 and outdegree at most 2, and
|Vr| < h-48a? < 12n. Let R denote the set of roots of F.

As P x {to} C Vg, the product of the number of choices for Q(i,t), taken over all
(P;,t) € Vi, is an upper bound on |A|.

Proposition 3.14

(a) (i) There are at most 28"K/198™ possibilities to choose the weights q; ; for all i € R.

(ii) Fizt € R. If ¢;+ is fized, then there are at most (qmt) choices of a Q(i,t) that
can appear in k-inefficient simulation protocols. 7

(b) (i) There are at most 238%™k possibilities to choose all weights q;; for all (P;,t) €
VE\R.
(i) For (P;,t) € VF\R, let (Py;y,t—1) be its predecessor in I'. Assuming Q(f(i),1—
1) being fized, there are at most

9Uf(i),e—1 . 92it | Jit
choices for Q(i,t) that can appear in k-inefficient simulation protocols.

Proof:

(a)(ii) is clear, (a)(i) and (b)(i) follow directly from Lemma 3.12. It remains to prove (b)(ii):
Pebbles of type (P;,t) can only be generated on processors @); with j € Q(f(i),t — 1).

From @;, they can be sent to neighboring processors of M. Thus every processor @;,

J' € Q(i,t), must have a path to some Q;, j € Q(f(i),t — 1), in M consisting of processors

with index in Q(%,t) only.

It is easy to show that there are only

2Uf(i),e—1 . 92it | it

different subforests of fixed size ¢; ; in M such that every connected component contains a
processor @); with 7 € Q(f(¢),t—1). O

Now it is easy to prove part(3) of Lemma 3.13:

13

e The number of choices for the sets Q(7,%), 7 € R, is less than

28~n~k/logm . H (m)
icr \%it

S 287’Lk . H mqi’t
1€ER
< 98-k mzz‘eR it
< 28~n~k . ,n18~n~k/ logm
< 28nk . 28nk — 216-7’L-k

e The number of choices for the sets Q(7,t), (F;,t) € VF \ R is less than

2384~n~k . H (22q¢,t L d%it . QQf(i),t—l)

(P t)eEVE\R
< 2384~n~k i 22~384~n~k i d384~n~k H 22~q¢7t
(Pi,t)EVR
< 2(3456+38410gd)~n-k
The lemma is proved by multiplying these two numbers. |

Property (3) of the Main Lemma

We will show part (3) of the Main Lemma by making use of the («, #)-expander in Gy, and

the fact that for a given simulation protocol 5, a suitable ¢y can be chosen from a large set
Z3.

Lemma 3.15 Consider a k-inefficient simulation protocol S for a graph G € U[Gy]. There
is a fragment (B,B',D) consistent with S at some critical time step tg € Zg that satisfies
property (3) of the Main Lemma with v = 1o - (1 — %) > 0.

This lemma completes the proof of the Main Lemma, because any such fragment with
critical time step ty € Zg satisfies properties (1) and (2) of the Main Lemma, according to
Lemma 3.12.

Proof: By contradiction: Assume that the lemma is false. Let {5 € Zg5. We want to define
a fragment (B,B’,D) consistent with S with critical time step t5. By the choice of g,
B =(Q(1,tg),...,Q(n,ty)) is uniquely defined. We are still free to choose the generating
pebbles by € Q'(1,19),...,b, € Q'(n,tg) for B'.

Let P(j,t):={i € [n]| j € Q(i,1)} for all § € [m], t € [T]. The choice of the b; defines
D; :=P(b;, o) for the sequence D. By assumption, none of these choices for the b; satisfies
property (3) of the Main Lemma, thus for at least (1 —) -n many i € [n]:

Vi€ Qi to): |P(4,t0)| >

Bk

We call the corresponding pebbles (P;, o) heavy.

14

Let us denote pebbles of types (P1,t),...,(P,,t) as t-pebbles.
Since g € Zs, we can conclude from Lemma 3.13 that 370, |P(j,%0)] = Y°iq Gity <
384nk. By averaging, it follows that there are at most 27% = 384y/m -k processors j € [m]

with |P(j,t0)| > \/LH We call these processors tg-heavy. A heavy generating pebble (P, 1)
can only emerge on the subset Q'(7,ty) of the set of {y-heavy processors, which is small.

The key idea of the proof is to see that, in order for the simulation to proceed, a lot of
generating tg-pebbles have to be produced in a certain host time frame, some of which must
be heavy and cost one of the #3-heavy processors one step. This is true for every tg € Zg,
and the time frames for the different #y3’s do not overlap. There are a lot of heavy tg-pebbles
to be produced on only few tg-heavy processors, thus each time frame must be long.

Let Zg = {t1,t2,...,t;} with £ > T'/4 and, for all j € [{], t; < t;41. We will divide the
simulation time (host time) into parts.

Definition 3.16 Fort € [T], 7 € [T'], let E«(7) := {i € [n]| after T host time steps of the
simulation, a generating pebble of type (P;,t) exists}.

Of course, Ey(1) C Eu(7') for anyt' <t and 7" > 7. Let e;(7) := |Ey(7)|. For j € [{], let
7j:=min{7 € [T"] | e;,_1(7) > an}

be the earliest time in the simulation at which at least an different generating (t;—1)-pebbles
exist.

Proposition 3.17 ¢ (7;) < % -n holds for every j € [{].

Proof: Assume e;,(7;) > 5 - n. Because 7; is chosen as minimum of a set of suitable time
steps, e;,1(7; — 1) < a - n holds. Thus, e; (7;) < a - n.

On the other hand, the ¢;-pebbles can be generated only if the (¢; — 1)-pebbles of all of
their neighbor nodes did exist after the previous simulation step. We apply the expansion
property of G to conclude in contradiction that e;, _1(7; —1) > 8-, () > 3+ % ‘n=a-n.

O

Thus, between host time steps 7; and 7;41, at least an — %n = a(l - %)n different
generating t;-pebbles have to be produced. Because t; € Zg, at most yn = %a(l - %)
of these are not heavy, the remaining %a(l — %) heavy pebbles must be produced on the
384y/m - k many t;-heavy processors of M. Therefore,

Ta(l- %)n

T T2 T m k

This is true for all j € [¢], and £ > T'/4. Hence, we get:

1
ﬁk-TZ /_ia(l_ﬁ)n Z
m 384y/m - k 4
a(1- %)
2 B’
- 3072 Vm

and finally,

This finishes the proof of Lemma 3.15. |

4

Conclusions

We have seen that for each n-universal network M with size m < n, there is a “bad” network
G of size n for which the simulation cannot perform better than a simple embedding on the
butterfly network. The inefficiency is log m, the diameter of M. This result was obtained by
using a non-constructive counting method on the number of graphs that can be simulated
with a given slowdown under the pebble game simulation model.

For universal networks, some open questions still remain. In the case of m > n, it is not

known how many processors are needed for a simulation algorithm with slowdown O(1).
This paper shows that m = Q(nlogn) in this case; in [14], it is shown that m = O(n!*®)

for any € > 0.

References

[1]

2]

[3]

[5]

Alf-Christian Achilles. Optimal emulation of meshes on meshes of trees. In Proceedings
of the International Conference on Parallel Processing (FURO-PAR), pages 193-204,
1995.

M. Ajtai, J. Komlés, and E. Szemerédi. Sorting in ¢-logn parallel steps. Combinatorica,
3:1-19, 1983.

Sandeep N. Bhatt, Fan R. K. Chung, Jia-Wei Hong, F'. Thomson Leighton, Bojana
Obrenié, Arnold L. Rosenberg, and Eric J. Schwabe. Optimal emulations by Butterfly-
like networks. Journal of the ACM, 43:293-330, 1996.

Sandeep N. Bhatt, FFan R. K. Chung, Jia-Wei Hong, I. Thomson Leighton, and
Arnold L. Rosenberg. Optimal simulations by Butterfly networks. In Proceedings
of the 20th ACM Symposium on Theory of Computing (STOC), pages 192-204, 1988.

Robert Cypher and C. Greg Plaxton. Deterministic sorting in nearly logarithmic time
on the hypercube and related computers. Journal of Computer and System Sciences,
47:501-548, 1993.

Zvi Galil and Wolfgang Paul. An efficient general-purpose parallel computer. Journal
of the ACM, 30:360-387, 1983.

Christos Kaklamanis, Danny Krizanc, and Satish Rao. New graph decompositions
and fast emulations in hypercubes and butterflies. In Proceedings of the 5th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 325-334, 1993.

16

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Christos Kaklamanis, Danny Krizanc, and Satish Rao. Universal emulations with
sublogarithmic slowdown. In Proceeding of the 3/th IEFE Symposium on Foundations
of Computer Science (FOCS), pages 341-350, 1993.

Richard Koch, Tom Leighton, Bruce Maggs, Satish Rao, and Arnold Rosenberg. Work-
preserving emulations of fixed-connection networks. In Proceedings of the 21st ACM
Symposium on Theory of Computing (STOC), pages 227-240, 1989.

Clyde P. Kruskal and Kevin J. Rappoport. Bandwidth-based lower bounds on slowdown
for efficient emulations of fixed-connection networks. In Proceedings of the 6th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 132-139, 1994.

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

Tom Leighton. Tight bounds on the complexity of parallel sorting. IFEE Transactions
on Computers, 34:344-354, 1985.

Friedhelm Meyer auf der Heide. Efficiency of universal parallel computers. Acta Infor-
matica, 19:269-296, 1983.

Friedhelm Meyer auf der Heide. Efficient simulations among several models of parallel
computers. STAM Journal on Computing, 15:106-119, 1986.

Friedhelm Meyer auf der Heide and Rolf Wanka. Time-optimal simulations of networks
by universal parallel computers. In Proceedings of the 6th Symposium on Theoretical
Aspects of Computer Science (STACS), pages 120-131, 1989.

Burkhard Monien and Hal Sudborough. Embedding one interconnection network in
another. Computing, 7:257-282, 1990.

Kevin J. Rappoport. On the slowdown of efficient simulations of multibutterflies on
butterflies and butterfly-derived networks. In Proceedings of the 8th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 176-182, 1996.

Eric J. Schwabe. On the computational equivalence of hypercube-derived networks. In
Proceedings of 2nd ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 388-397, 1990.

A. Waksman. A permuting network. Journal of the ACM, 15:159-163, 1968.

17

