The Complexity of
Two-Dimensional
Compressed Pattern Matching

Piotr Berman * Marek Karpinski |
Lawrence L. Larmore *
Wojciech Plandowski * Wojciech Rytter §

TR-96-051
December 1996

Abstract

We study computational complexity of two-dimensional compressed pattern match-
ing problems. Among other things, we design an efficient randomized algorithm for
the equality problem of two compressed two-dimensional patterns as well as prove
computational hardness of the general two-dimensional compressed pattern match-

ing.

*Dept. of Computer Science & FEng., Pensylvania State University, University Park, PA16802, USA

Email:berman@cse.psu.edu
"Dept. of Computer Science, University of Bonn, 53117 Bonn, and the International Computer Science

Institute, Berkeley. Research partially done while visiting Dept. of Computer Science, Princeton University.
Research supported by DFG Grant KA 673/4-1, and by the ESPRIT BR Grants 7097 and EC-US 030 and

by DIMACS. Email: marek@cs.uni-bonn.de
{Department of Computer Science, University of Nevada, Las Vegas, NV 89154-4019. Research partially

supported by National Science Foundation grant CCR-9503441. Part of this work was done while the author

was visiting Dept. of Computer Science, University of Bonn. Email:1armore@cs.unlv.edu
$Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland. Supported by

the grant KBN 8T11C01208. Email:wojtekpl@mimuw.edu.pl and rytter@mimuw.edu.pl.

1 Introduction

We consider the complexity of problems for highly compressed 2-dimensional texts: com-
pressed pattern-matching (when the pattern is not compressed and the text is compressed)
and fully compressed pattern-matching (when also the pattern is compressed). First we
consider 2-dimensional compression in terms of straight-line programs, see [9]. It is a natu-
ral way for representing very highly compressed images, by describing larger parts in terms
of smaller (earlier described) ones. For 1-dimensional strings there exist polynomial-time
deterministic algorithms for similar types of compression [2, 6, 8, 9]. We show that the

complexity dramatically increases in a 2-dimensional setting:

e Compressed matching for two dimensional compressed images is NP-complete.
o Fully compressed matching for two dimensional compressed images is Y9 P-complete.

e Testing a given occurrence of a two dimensional compressed pattern is co-NP-complete.
On the other hand we show efficient algorithms for some related problems:

o Testing equality of two compressed two dimensional patterns (an application of alge-

braic techniques).

e Testing a given occurrence of an uncompressed pattern in a two dimensional com-

pressed image.

We also show the surprising fact that the compressed size of a subrectangle of a compressed

two dimensional array can grow exponentially, unlike the one dimensional case.

2 The setting

We consider algorithms for problems dealing with highly compressed images (two dimen-
sional arrays with entries from some finite alphabet). The objects considered are as much
as potentially exponentially compressed. In practice the compression ratio for images can
be much larger than in the one dimensional case.
Our main problem is the Fully Compressed Matching Problem:

Instance: Compress(P) and Compress(T)

Question: does P occur in 17

P is a rectangular pattern-image and T is a rectangular host-image. The Compressed
Matching Problem is essentially the same, the only difference being that P = Compress(P),
in other words, the pattern is uncompressed. Our results show that any attempt to deal

with highly compressed (potentially exponentially compressed) two dimensional texts should

fail algorithmically. The size of the problem is n + m, where n = |Compress(T)| and
m = |Compress(P)|. Let N determines the total uncompressed size of the problem. Note
that in general NV can be exponential with respect to n, and any algorithm which decom-

presses T takes exponential time in the worst case.

We consider also the problems of Pattern Checking:
test an occurrence of a pattern at one given position.

This problem has also its compressed and fully compressed versions.

The first type of compression we consider in this paper is in terms of straight-line pro-
grams (SLP’s), or equivalently, two dimensional context-free grammars generating single

objects with the following two operations:

A « BC, which concatenates images B and C' (both of equal height)
A «+ B & C, which puts image B on top of C' (both of equal length)

An SLP of size n consists of n statements of the above form, where the result of the last
statement is the compressed image. The only constants in our SLP’s are letters of the
alphabet, interpreted as 1 x 1 images. We will view SLP’s as compressed (descriptions of)
images. The complexity of basic string problems for one dimensional texts is polynomial.
Surprisingly, the complexity jumps if we pass to two dimensions. The compressed size of a
subrectangle of a compressed two dimensional array A can be exponential with respect to
the compressed size of A, though such a situation cannot occur in the 1-dimensional case.

The proof is omitted in this version.

Theorem 2.1 For each n there exists an SLP describing a text image A, and a subrectangle

B,, of A, such that the smallest SLP describing B,, has exponential size.

Example 1.

Hilbert’s curve can be viewed as an image exponentially compressible in terms of SLP’s.
An SLP which describes the nth Hilbert’s curve, H,,, uses six (terminal) symbols hl, F]
, M, [@, M, H. There are used 12 variables %, , 9, ., % ., [,
oM, 8, W, LNy Oy, Hy o, B Jforeach0<i<n. A
variable with index 7 represents a text square of size 2° x 2° containing part of a curve. The

dots in the boxes show the endpoints of the curve.

The 1 x 1 text squares are described as follows.

Do — [D, [jo — [D, BO — E, Bo — E,
:_—‘0 — E, mo — E, ‘C‘O — E, DO — E,
DO — E, DO — E, DO — E, DO — E,

The text squares for variables indexed by 7 > 1 are rotations of text squares for the variables

A Rl Al AlA A Al AP A A AL AR
| un J d d | un d d d
mn Il andias Il aedhas Il aadbes Ml and bas AN aedies Ih andbes D0 unlbes A0 s
i | g ARl | gy i i | g Rl o
R iy S W NI A i o i M iy W W W I RIS N
e o B e £
mn D B i B BN e Dl DD i e B B e A e B sl e B e B B N il
| 1 | N N Tl J | 1 Tt Tl J
mu B 1 [1 f 1 I il B W 1 [1 f 1 1T
ma el s i g S e g R e A Seg = A== RSy == Ar=a g
ARl AlllmA Al AlllmA
SN W N A A i i N i N A AN R W NN NN
R S N M o At W R M i M o At R A
B = O =
A Pl A P AR PN P A P AR
O Tl Tl 1 Tt Tl Tl 1 O
f_J' i S i I A S Rl S W R i Wil W R yy B L}
&3] £+] &3
A e Al Al ARSI P e A AR
L I 1 || HE Bp N L 111 || HENp N L 1L ||
mu B LT MM [110] mn BN e B BN 1T
AT e A E A P
m fan il Hlan B md s Nl Fund Fan D AR mndl Il as) M
o A e e
mn DE m B0 mm N0 mm R BB mm B mme B B mum N0 mmm B0 mmdil e B mm N0 mm B
| un == P AL A N Loy A an = A== |un|
mn Il andias 1N ==l M=z 00 e e liael Pand ezl T ee 0l e il and e Al s
i |y i 0 R S i A i N e | o
A E T S E T e 3
BT BT BT
anliae i il ias I andlasies] Tuadlaslies I aadlas has A aadlas|
d L I 1 171 1L I 1 111 1L 1L I 1 1L || ‘

s —(L 54)@(54 D'4)

Figure 1: The 5th Hilbert curve Hs is composed of four smaller square arrays according to

the rule above, it consists of 1024 (terminal) symbols.

&4, &), s . These variables are composed according to the rules:

e ey S Ty Doy,
i oy 8o o 8y i,
b — i i o i Doy

3 Compressed two dimensional pattern-matching

Recall that the compressed matching problem is to find, given an uncompressed pattern

and compressed text (image), whether the pattern occurs within the text.

In our constructions we will use, as a building block, images filled with one kind of letter
only, say a. We will use [a]é to denote such i x j image. It is easy to see that [a]’

% can be
compressed to a SLP of size O(log(7) + log(j)).

We will use I,.J,..., P,@, ... for uncompressed images, and 7, 7,..., P, Q, ... for com-
pressed ones. Given a compressed image R (uncompressed image R), we use R;; (R; ;)

to denote the symbol at position (¢, 7); if the position (¢, 7) is out of range, we will have

R;; = L. We will number the rows and columns starting from 0. We also use the conven-
tion that given a number m, m is a 0-1 vector (ag, ..., ax—1) such that m = Zf__ol 2'q;. The

length of m should be clear from context. Let Positions(P) = {(¢,5): P;; # L}.
First we consider Point test problem: compute the symbol 7, ; for given Z, ¢ and j.

Lemma 3.1 There exists a linear time algorithm for the point test problem.

Theorem 3.2 Compressed matching for two dimensional images is NP-complete.

Proof:

To see that the compressed matching is in NP, we can express this problem as the
following property of pattern P and image R:
H(Z,j){V(k, l) € POSitiO’nS(P) PkJ = Ri+k,j+l}-
The equality inside the braces can be tested in polynomial time (Lemma 3.1), hence we

have expressed the problem in the normal form for NP.

To show NP hardness, we will use a reduction from 3SAT. Consider a set of clauses
Co,...,Cr_1, where each clause is a Boolean function of some three variables from the set
{z0,...,2n—1}. The 3SAT question is whether there exists m such that C;(m) = 1 for
1=0,...,k—1.

Define an £x2" image A as follows: A;,, = C;(m). Then the 3SAT question is equivalent
to the following: does A contain a column consisting of k£ 1’s (i.e. the pattern [1]})? We
will reduce 3SAT to the compressed matching problem by showing how to compress A to a
SLP with O(kn) statements. Obviously, it suffices to show that we can compress any row
of A into a SLP with O(n) statements, because we can combine the compressed rows using

k © operations.

Consider then a row R of A corresponding to a clause C(zp, z;, z;) where h < ¢ < j.
Define 2(vo, . .., vp—1) = vy +2v; +4v;, then R, = C(2(m)). We will show how to compress
I defined by I,, = (m); then to obtain a SLP for R from SLP Z for I we simply replace

each constant ¢ with C'(a).
We omit an easy proof of the following fact.

Fact 3.3
I _ (((02h12h)2i—h—1 (22h32h)2i—h—1)2]—i—1 ((42h52h)2i—h—1 (62h72h)2i—h—1)2]—i—1)2n—]—1
To compress I, write a constant length SLP that computes all subexpressions of I, then

replace each statement of the form K + L2 with i statements L < LI followed by K « L.
One can see that this results in a SLP with O(n) statements. O

4 Fully compressed two dimensional pattern-matching

Recall that the fully compressed matching problem is to find, given a pattern and a text

that are both compressed, whether the pattern occurs within the text.

Theorem 4.1 (main result)

Fully compressed matching for two dimensional images is 35 P-complete.

Given compressed pattern P and compressed image Z, the positive answer to the fully

compressed two dimensional pattern matching question is equivalent to the following:
H(Z,j)V(k, l) € POSitiOTLS(P) {PkJ = Ii+k,j+l}

By Lemma 3.1, the equality in this formula can be checked in polynomial time, hence the

problem can be formulated in the normal form of 3§ problems.

This proof of ¥}'-hardness requires two lemmas.

Lemma 4.2 There exists a logspace function f such that for any SCNF formula F, f(F) =

(u,v,t), where u and v are vectors of non-negative integers, t is an integer and

Ve F(z)=3yur+ovy=t.

Proof: Assume that F has n variables, a clauses with three literals, b clauses with two
literals and c¢ clauses with one literal. Vector u will consists of n numbers and vector v
of 7a + 3b numbers. We will describe each of these numbers, (and ¢ as well) using the
identity d = d°...d(@+0+e=1) wwhere d*¥) is the fragment of d corresponding to clause Cf,.
The fragments corresponding to a clause with [literals will have length 2/. We describe in

detail the case of a clause with three literals, the other cases being similar, only simpler.

Assume that clause C} contains three variables, zj, z;, ;. The fragments of uy, u;, and
u; corresponding to C} are 000100, 000010 and 000001 respectively, while for [& {h, 1,5}
we have ugk) = 000000.

There are 7 truth assignments for (zj, z;, z;) that satisfy C'(k), for each one we have an

entry in vector v; if v; is the entry corresponding to a truth assignment (b, by, b2) for Cy,
then vl(k) = 100(1 — bg) (1 — b1)(1 — b2). Moreover, for k' # k we have vl(k,) =0...0.

Finally, t(!) = 100111.

Consider now z such that F'(z) is true. Then the fragment of 4z corresponding to a
clause Cy is 000bgb1by, where (bg, b1, bs) is a truth assignment satisfying Cj (note that =z
satisfies all the clauses of F). Let v; be the entry of v corresponding to this truth assignment,
and vy,,...,v,, be the entries corresponding to other truth assignments that may satisfy

Cr. Weset y; to 1 and yp,,...,y;, to 0; it is easy to see that the fragment of uz + vy

corresponding to C is 100111, the same as the corresponding fragment of ¢. Since this is

true for every fragment of ¢, we have uz 4+ vy = t.

Now suppose that there exists y such that uz4+vy = t. If for every clause C}, exactly one
of the entries corresponding to the truth assignments that satisfy C; has coefficient 1 in the
vector y, and if the addition is performed without carries, then each CY is satisfied. It is easy
to prove by induction that this is indeed the case (note that in our string representations

of numbers we write the least significant bit first). Details are left to the reader.

Finally, the method of creating (u,v,t) is so regular that it can be carried out by a

deterministic log-space Turing machine. O

Define the ¥;(Subset Sum) problem as follows: given is (u,v,t) where u and v are
vectors of positive integers and ¢ is an integer; the question is whether 3zVy uz 4+ vy # t,

where the quantifiers range over 0-1 vectors of appropriate length.
Lemma 4.3 The o (Subset Sum) problem is X5 complete.

Proof: Consider now an arbitrary property L of binary strings that belongs to X¥. In its

normal form, L is represented as

L(z) = 3InVy: P(z,y1,y2)

where P is a polynomial time predicate. Because PCNPNco-NP, the predicate P can be

represented as
P(‘r7y17y2) = _'(Ely3F(‘r7y17y27y3))
where F'is a 3CNF formula (computed using space which is logarithmic in the size of z in

unary). Let “” denote concatenation of vectors. By the previous lemma,

F(z,y1,y2,9y3) = Jya w(z -y1 - y2 - y3) +oya =1t

where (u,v,t) can be computed in logarithmic space from F. Define @, v,w and ¢ so that
w(z -y - y2 - y3) + vys = wzr + uy1v(y2 - Y3 - y4) and ¢ = t — wz. By substitution and De

Morgan laws we have,

L(z) = FyVye-(3ys3ys ul(z - y1 - y2 - y3) + vya = 1)
FyiVy2VysVya w(z - y1 - y2 - ys) +oya £t
Iy Yy VysVys wz + uyro(y2 - y3 - ya) #

= InV(y2-ys-va) wynv(ys-ys-ya) #1

Because the last of the above statements is an instance of 33(Subset Sum), we have shown
that L can be reduced to ¥;(Subset Sum). O

To prove that fully compressed two dimensional pattern matching is ¥ complete, it suffices

to show how to translate an instance of ¥y(Subset Sum). Consider an instance given by

(u,v,t). Recall the definition of 7" from our proof of co-NP completeness. Let U be the
image T" and let V be the image TV with all row reversed. Recall that dimensions of U
and V are 2”7 x (14 r) and 2™ x (1 + s) respectively, where m and n are the lengths of u

and v, while r and s are their sums. We define the pattern and the test as follows:

P 16[0]3n gm
SO — [O]EitU

Sl — ‘/[1]72"Tt

52 — [O]%:—r+s—t

T Rl 5 R2 5 R2

The subimages S;’s are stripes of the text T'. Observe first that T’ contains P if and only if
there exists a column of T, say ¢, that contains P. Because the length of P equals the sum
of heights of S; and Sy plus 1, P can start anywhere in the upper stripe So but only there.
Because P starts with 1, it must start within U, so ¢ = s — t 4+ a for some a > 0. Therefore
column ¢ consists of column a of U, column s—¢+a of V and zeros at the bottom—we can
easily exlude the case when this column crosses the middle stripe S; through the subimage

consisting of 1’s only.

Now, column a of U is column a of T, so a 1 exists in this column if and only if for some
z < 2" we have uZ = a. Moreover, column s —t+a of V is column s — (s —t —a) =t —a of
TV, we have all 0’s in this column if and only if vy # t — a for every y < 2™. Summarizing,
P occurs in T if and only if there exists z with the following property: for @ = wuz the
equality vy =t —a =a+ vy =t = uz + vy = t holds for no y. Therefore the positive
answer to our pattern matching problem is equivalent to the positive answer to the original

Y2 (Subset Sum) problem. This concludes the proof of Theorem 4.1.

5 Fully compressed pattern checking

The problem of fully compressed pattern checking at a given location is to check, given
pattern P and text R that are both compressed and a position within the text, whether P

occurs within R at this particular place.

Theorem 5.1 Fully compressed pattern checking for two dimensional images is co-NP-

complete.
Proof: We can use Lemma 3.1 to express this problem in the normal form of co-NP:
V(k,l) € Positions(P) Pk = Ritii+;-

To prove co-NP hardness, we will reduce co-(Subset Sum) to our problem. An instance

of co-(Subset Sum) is a vector of integer weights w = (wo, ..., w,—1) and a target integer

value ¢; the question is whether Vm < 2" wm # t. (Here wm stands for the inner product;
because m is a 0-1 vector, wm is a sum of a subset of the terms of w.) We can transform
this question to a pattern checking question in a natural manner. Let s = 1 + Z?:_Ol w;,
and let the image 7 consists of 0’s and 1’s, with 7,77 ; = 1 if and only if wm = 4. Then our
co-(Subset Sum) question is whether column ¢ of T consists of 0’s only. In terms of the

pattern checking problem, we specify the text 7%, the pattern [0]3.» and the position (,0).

To finish the proof, we need to compress T". Observe that row m of T™ contains exactly
one 1, at position wi. Moreover, for m < 2"~! we have w(m —I—Agn—l) = w(m) + w,_1.
Therefore when we split 7% into upper and lower halves (each with 2”71 rows), the pattern
of 1’s is very similar, the only difference being that in the lower half (with higher row
numbers) the 1’s are shifted by w,_; to the right. Moreover, if we remove the last w,_1
zeros from each row in the upper half, we obtain 7%("~1) an image defined just as T", but
where w(n — 1) = (wo, ..., w,—2). Applying this observation inductively, we can compute

TY as follows:

Tw0) 1
fori:<—0ton—1do
U+ TYO0]2; L+ [02.7Y0; Tvi+) « Us L

To obtain SLP for T% we combine 3n + 1 statements of the above program with SLP’s
that compute auxiliary images [O]i;. It is easy to see that the number of statements in the
resulting SLP is O(n? 4+ b), where b is the total number of bits in the binary representations

of the numbers in vector w. O

6 Equality testing

We reduce equality of two images A and B to equality of two polynomials Poly(A) and
Poly(B). The following basic theorem is a version of theorems given by Schwartz and
(independently) by Zippel [13].

Theorem 6.1 (nonzero-test theorem)
Let P be a nonzero polynomial of degree at most d. Assume that we assign to each variable

in P a random value from a set Q of integers of cardinality R. Then

Prob{P(z) #0 } > 1 — %.

We can assume that the symbols are integers in some small range, depending on the
alphabet. For an n X n image Z define its corresponding polynomial
Poly(7Z) = szzl Zidmiyj.

Theorem 6.2 There exists a linear time randomized algorithm for testing whether two

SLP’s compute the same image.

Proof: Observe that two images are equal if and only if their corresponding polynomials are
identical. Hence the equality of two images is reduced to testing whether Poly(A) — Poly(B)
is identically zero. This can be done efficiently by a randomized algorithm due to Theorem
6.1 and the following fact:

Fact 6.3 Let A, B, C be images corresponding to variables A, B, C' in some SLP.

o If A+ BSC then Poly(A) = Poly(C) - 219" B) 1 Poly(B).

o If A« BC then Poly(A) = Poly(C) - y"™"(5) 1 Poly(B).

7 Compressed pattern checking

Recall that the compressed pattern checking problem is to check whether an uncompressed
pattern P occurs at a position (z,y) of an image 7" given by an SLP 7. Let n be the size of
T and N be the size of T'. The compressed pattern checking problem can be solved easily
in polynomial time by using an algorithm for point test problem m -k times. By Lemma 3.1
there is an algorithm which solves the compressed pattern checking problem in O(n|P|)
time. We improve that by replacing n by log N logm. This is similar to the approach of
[6]. If the text image is not very highly compressed then log(N) is close to log(n). The
idea behind the algorithm is to consider point tests in groups, each group called a gquery.
Denote by V a text which is generated by a variable V. A query is a triple (V,p, R) where
V' is a variable in SLP 7, p is a position inside V and R is a subrectangle of the pattern
P. Denote by R’ the rectangle of the same shape as the rectangle R which is placed at
position p in V. We require that R’ abut one of the sides of the rectangle V. An answer
for a query is true or false depending on whether or not R = R. The queries are answered
by replacing them by equivalent “simpler” queries. We say that a query (V, p, R) is simpler
than a query (V',p/, R') if and only if |V| < |V'|. A query which contains a variable V is
called a V-query. An atomic queryis a query (V,p, R)such that Vis a 1 x 1 square. Clearly,

an atomic query can be answered in O(1) time.

The queries are divided into three classes: strip queries, edge queries, and corner queries.
Let (V,p,R) be a query. Denote by R’ a rectangle of the same shape as R and which is
positioned at p in V. Then (V,p, R) is a corner query if R contains at least one side of the
pattern or R is a corner subrectangle of the pattern and R’ is a corner subrectangle of V.
The query (V,p,R) is an edge query if R’ contains one side of V. There are four types of
edge queries depending on which side of V is contained in R'. They are called down, left,
right and up queries. The query (V,p, R) is a strip query if R is a strip of the pattern and
R’ is a strip of V.

The algorithm for the checking problem uses two procedures, Remove_Fdge_Queries(V, Q)
and Split(V,Q) where V is a variable in 7 and @ is a set of queries. The scheme of the

algorithm looks as follows.

Algorithm CHECKING
{ input: an SLP T, a pattern P and a position p }
{ output: true iff P occurs at p in a text described by 7 }
begin
Vi, Va, ..., V,:= sort variables in T on the sizes of their texts, in descending order
Q:={(V1,p,P)}
for i:=1 to n do
Q:=Remove_Fdge Queries(V;, Q) Q:=Split(V;,Q)
{there are now only atomic queries in Q} answer all atomic queries in @

end

The procedure Compress_FEdge_Queries(V,()) deals only with edge V -queries in Q. Its aim
is to eliminate, for each type of edge query separately, all edge V -queries except the query
which contains the largest subrectangle of the pattern. We describe how this procedure
works for left-edge queries. Let (V,(0,0),R) be a left-edge query and R be of maximal size
among all left-edge V -queries in Q. Let (V,(0,0),R’) be any other left-edge V -query. Then
rectangle of shape R’ positioned at (0,0) in V is a subrectangle of the rectangle of shape R
positioned at (0,0) in V. Hence, to answer both queries it is enough to answer the query
(V,(0,0),R) and to check whether the text R’ occurs in R at (0,0). Before removing each
edge query equality of appropriate rectangles is checked and if the rectangles do not match

then the procedure stops and the algorithm returns false.

Assume that A:=BC or A:=B & (' is an assignment for A. The Split(A, Q) procedure
replaces A-queriesin () by equivalent B-queries and C'-queries. Let (A, p, R) be an A-query
in). Consider a rectangle R of shape R positioned at p in A. Then division of A into B
and C' according to the assignment for A causes that either R to be wholly contained in B,
or wholly in C, or to be divided into two smaller rectangles one of which is in B and the

other in C'. In the latter case the split of a query is called a division of the query.

Fact 7.1 The total number of all divisions of queries during the work of the algorithm is
exactly |P| — 1.

For each variable, edge and corner queries are stored in a list. The data structure for
storing strip queries is more sophisticated. For each variable it is a 2-3-tree [1] in which keys
are positions of strip rectangles in the variable. Recall that 2-3 trees provide operations

split and join in O(logs) time where s is the number of elements in the tree.

Fact 7.2 In each step of algorithm CHECKING the set () contains at most four corner

10

queries and m Strip queries.

Implementation of the Split operation, if it is not a division, requires merging 2-3 trees
and this may result in a large number of splits of 2-3 trees. Fortunatelly, it is possible to

prove, using arguments similar to those of [6], to prove the following lemma.

Lemma 7.3 The number of splits of 2-3 trees in algorithm CHECKING is O(mlog N).
Theorem 7.4 The algorithm CHECKING works in O(|P|+ n+ (mlog N)(logm)) time.

Proof: By Fact 7.1, the total cost of all divisions is O(|P|). Total cost of all Splits which
are not divisions is determined by the number of all corner queries and all edge queries
which survive after Remove_Fdge_QQueries operation during the execution of the algorithm

and the number of splits of 2-3 trees. This gives, by Lemma 7.3, O(n + (mlog N)(log m)).
a

Open Problem: We have designed a fast randomized algorithm for the equality of two
compressed images, and we also conjecture that there is a deterministic polynomial time

algorithm for this problem.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algo-
rithms, Addison-Wesley, Reading, Mass., 1974.

[2] A. Amir, G. Benson and M. Farach, Let sleeping files lie: pattern-matching in Z-
compressed files, in SODA’9j.

[3] A. Amir, G. Benson, Efficient two dimensional compressed matching, Proc. of the 2nd
IEEE Data Compression Conference 279-288 (1992).

[4] A. Amir, G. Benson and M. Farach, Optimal two-dimensional compressed matching,
in ICALP’94 pp.215-225.

[5] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York
(1994).

[6] M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, in
STOC’95, pp. 703-712.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman (1979).

[8] L. Gasieniec, M. Karpinski, W. Plandowski and W. Rytter, Efficient Algorithms for
Compressed Strings. in proceedings of the SWAT’96 (1996).

[9] M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with short
description, in Combinatorial Pattern Matching, 1995.

11

[10] D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edition.
Addison-Wesley, 1981.

[11] A. Lempel and J. Ziv, On the complexity of finite sequences, IEFEFE Trans. on Inf.
Theory 22, 75-81 (1976).

[12] A. Lempel and J. Ziv, Compression of two-dimensional images sequences, Combinato-
rial algorithms on words (ed. A. Apostolico, Z.Galil) Springer Verlag (1985) 141-156.

[13] R. Motwani, P. Raghavan, Randomized algorithms, Cambridge University Press 1995.

[14] W. Plandowski, Testing equivalence of morphisms on context-free languages, ESA’94,
Lecture Notes in Computer Science 855, Springer-Verlag, 460-470 (1994).

[15] J. Storer, Data compression: methods and theory, Computer Science Press, Rockville,
Maryland, 1988.

[Zi] R.E. Zippel, Probabilistic algorithms for sparse polynomials, in EUROSAM 79, Lecture
Notes in Comp. Science 72, 216-226 (1979)

[16] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEFE
Trans. on Inf. Theory vo. 1T-23(3), 337-343, 1977.

12

