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Abstract
We prove Q(n?) complexity lower bound for the general model of randomized com-
putation trees solving the Knapsack Problem, and more generally Restricted Integer
Programming. This is the first nontrivial lower bound proven for this model of com-
putation. The method of the proof depends crucially on the new technique for proving
lower bounds on the border complexity of a polynomial which could be of independent

interest.
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0 Introduction

We prove for the first time nonlinear lower bounds on the depth of randomized computation
trees (RCTs) (see e.g. [MT82], [S83], [M85a], [GKMS96]) recognizing sets like unions of
hyperplanes (i.e. linear arrangements) or intersections of halfspaces (polyhedra). As an
application we prove a quadratic lower bound on RCTs solving the knapsack problem, or

more generally, the restricted integer programming.

Obtaining general lower bounds for randomized computation was an open question for
a long time (see e.g. [MT82], [S83], [M85a, b, c], [KV88], [CKKLW95]). Only recently, a
nonlinear lower bound was proven in [GKMS96] for a weaker model of randomized d-decision
trees (d-RDT's), in which testing polynomials have degrees at most d (for 2-dimensional case
the lower bound was proven in [GK93], and for the generic arrangements a lower bound was
proved in [GK94]). In particular, for d-RDT's the lower bound (nlogn) was proven for the
Element Distinctness Problem, and also the lower bound (n?) was proven for the Knapsack
Problem ([GKMS96]). The main difficulty whith proving lower bounds on RCT’s is that
the degree of testing polynomials could be possibly exponential. Therefore, we develop in

the present paper a new method for obtaining complexity lower bounds for RCTs.

The method developed in the present paper cannot be directly applied for the Element
Distinctness Problem. In [BKL.93] (cf. also [GKMS96]), a linear depth RC'T was constructed
for a similar problem (permutation problem) {(z,y) € R*" : y is a permutation of x} beat-
ing therefore its deterministic €(n logn) lower bound (cf. [B83]). This example shows that
the (still open problem) of complexity of an RCT for the Element Distinctness is quite

delicate.

We also mention that a linear % lower bound for an RCT recognizing the arrangement
Ui<i<n{Xi = 0} or the “orthant” M <;<,{X; > 0} was proved in [GKMS96]. For a stronger
model of randomized analytic decision trees (RADT) a complexity upper bound O(log? n)
for testing N;<i<,{X: > 0} was proven in [GKS96] (for deterministic analytic decision trees
the exact com_pl_exity bound n was proved in [R72], [MPR94])

For deterministic models of decision and computation trees several methods for obtaining
lower bounds were developed earlier. The “topological” methods based on the number
of connected components ([SY82], [B83]), or more general, on the sum of Betti numbers
([BLY92], [Y94]), provide the lower bound (n?) for the Knapsack Problem and the lower
bound Q(nlogn) for the Element Distinctness Problem or the Permutation Problem. The
already mentioned example from [BKL93] shows that these “topological” bounds cannot be

directly extended to RCTs.
For testing a polyhedron (for which the topological methods are not applicable), the



differential-geometric method (involving the curvature) for obtaining complexity lower
bounds for deterministic computations was developed in [GKV95], which provides (log N)
lower bound for decision trees (see also [GKV95]) and Q(log N/ loglog N) for computation
trees, where IV is the number of all faces of the polyhedron.

We now briefly describe the content of the paper. In section 1 we introduce the notion
of the border complexity of a polynomial generalizing the notion of the border rank of a
tensor, cf. [S90], [B79], [BCLR79], and prove a lower bound on it in terms of the number of
connected components, which could be of independent interest.

In section 2 we prove the main theorem which provides a lower bound for an RCT
testing an arrangement or a polyhedron. For that purpose we use some tools (in particular,
the tree of flags) from [GKMS96], but the proof is different since the degree of RC'T's could
be exponential as we already mentioned.

In section 3 as an application of the main theorem we give a complexity quadratic lower
bound for RCT testing the Restricted Integer Programming and in particular, the Knapsack
Problem.

1 Lower bound on the border complexity

We start now with the technical development leading to the crucial for this paper lower
bound on the border complexity of a polynomial.

Let Hy,...,H,_1r C R"™ be hyperplanes such that their intersection I' = HiN---NH,_;
has the dimension dim [' = k. Fix arbitrary coordinates Zy,..., Z; in I'. Then treating
Hy, ..., H, j as the coordinate hyperplanes of the coordinates Y7,...,Y,,_, one gets the
coordinates Z1,..., 4k, Y1,..., Yok in R™.

For any polynomial f € R[Xy,...,X,] rewrite it in the coordinates

f(Z1, ..., Zk, Y1, ..., Yok) and following [GKMS96], define its leading term

7
My,

lm(f) = QZInl A Ylml ..‘Ynnir;c_k

0 # @ € R (with respect to the coordinate system Z1,..., 7k, Y1,...,Y,_1) as follows.
First, take the minimal integer m,,_; such that Ynnir}c_k occurs in the terms of f. Consider
the polynomial
1 _ /
Oi—éf =\ mn_k (Zh"'7Zk7Y17"'7Yn—k—170)e
Yn—k
]R[Zh HERS] Zk7 Y17 HERS] Yn—k—l]

which could be viewed as a polynomial on the hyperplane H,,_;. Observe that m,,_; depends

only on H,_; and not on Z,..., 2%, Y1,...,Y,_kr_1, since a linear transformation of the



coordinates Z1,..., Zk, Y1,..., Yn_k—1 changes the coefficients (being the polynomials from
R[Z1,..., 7, Y1, .., Yo_r_1]) of the expansion of f in the variable Y,_g, and a coefficient
vanishes identically if and only if it vanishes identically after the transformation. Then f()
is the coefficient of the expansion of f at the power YnTri"k_k

Second, take the minimal integer m,_j;_1 such that Y:i’}c__’“l_l occurs in the terms of

f(l). In other words, Y:l’,;__kl_l is the minimal power of Y,_r_; occurring in the terms

of f in which occurs the power Y:i’};k. Therefore, m,,_r, m,_r_1 depend only on the
hyperplanes H,,_y, H,—;—1 and not on Zy, ..., Z, Y1,...,Y,_k—2, since (as above) a linear
transformation of the coordinates 7y, ..., Zg, Y1, ..., Ya_k_2 changes the coefficients (being

the polynomials from R[Z1,..., Zs, Y1, ..., Ya_k_2]) of the expansion of f in the variables
Y,.—k, Yn_r_1 and a coefficient vanishes identically if and only if it vanishes identically after
the transformation. Denote by 0 # f) ¢ R[Zy,...,Z, Y1, .., Ya_s_2] the coefficient of

the expansion of f at the monomial Y"77%~" Y""=*_ Obviously

7@ = /Y VA Zi, Y Y, 0
— W ( 1yeeey Zky L1y e ey In—k—2, )

One could view f(?) as a polynomial on the (n — 2)-dimensional plane H,_; N H,_j_1.
Continuing in the similar way, we obtain consecutively the (non-negative) integers

My_ky My_k_1,...,m1 and the polynomials
0 % f(l) € ]R[Zh oy Dy Y1, -7Yn—k—l]

1 <! < n—k, by induction on [. Herewith, ¥""~%7'+! is the minimal power of Yo—k—i4+1

n—k—I[+1
occurring in the terms of f, in which occurs the monomial Ynni’}c__kl;l;r‘) <Y for each 1 <
[ < n—k. Notice that m,_g, ..., m,_r_; depend only on the hyperplanes H,,_r,..., H,__;
and not on Zy,...,Z;, Y1, ..., Yu_p_i—1. Then f) is the coefficient of the expansion of f
at the monomial Ynni’,;__’“l;lfl < Y™ and

» 0]

f(l+1) — (ﬁ) (Zl7 ey Zk, Yl, ey Yn_k_l_170)
n—k—I

Thus, f(l) depends only on H,,_p,...,H,_r_;and noton Zy,...,Z;,Y1,...,Y_r_;—1. One

could view f(l) as a polynomial on the (n — /)-dimensional plane H,_ N -+ N Hy_p_141.

. . / /
Continuing, we define also m, ..., m;.
!

Finally, the leading term Im(f) = aZInll - ZRY™M YR s the minimal term of
f in the lexicographical ordering with respect t(? the ordering 77 > --- > Zp; > Y1 > -+ >
Y,_1. The leading term Im(f() = ozZ;nll C Zp YL YR e refer to this equality
as the maintenance property (see also [GKMS96]).



Denote by Var(f) = Varf+Hn) (f) the number of positive (i.e. nonzero) integers
among my,_g, - .., m1. As we have shown above, Var(f) is independent from the coordinates
Ziy ..., Zy of I'. Obviously, Var(f) coincides with the number of 1 <[ < n — & such that
Yokt | fO, the latter condition is equivalent to that the variety {f() = 0} N(H,_z N
N Hy_p_141) contains the plane H,_xN---N H,_;_141 N H,_;_; (being a hyperplane in
H,_:N---N Hn—k—l-l—l)-

It is convenient (see also [GKMS96]) to reformulate the introduced concepts by means
of infinitesimals. Namely for a real closed field I (see e.g. [L65]) we say that an element
¢ transcendental over F' is an infinitesimal (relative to [I') if 0 < ¢ < a for any element
0 < a € F. This uniquely induces the order on the field F'(¢) of rational functions and

further on the real closure I'(¢) (see [L65]).

One could make the order in F'(g) clearer by embedding it in the larger real closed
field F(('/°°)) of Puiseux series (cf. e.g. [GV88]). A nonzero Puiseux series has the form
b="23">4 Bie'? where —0o < iy < oo is an integer, 3; € F for every integer 7; 8;, # 0 and
the denominator of the rational exponents § > 1is an integer. The order on F((g!/%°)) is
defined as follows: sgn(b) = sgn(f;,). When 75 > 1, then b is called an infinitesimal, when
19 < —1, then b is called infinitely large. For any not infinitely large b we define its standard
part st(b) = st.(b) € F as follows: when ig = 0, then st(b) = §;,, when iy > 1, then
st(b) = 0. In the natural way we extend the standard part to the vectors from (F((e1/)))"
and further to subsets in this space.

Now let €1 > €2 > ... > €,42 > 0 be infinitesimals, where £; is an infinitesimal relative
to IR; in general €,4; is an infinitesimal relative to R(ey,...,&;) forall 0 < i < n+1. Denote
the real closed field R; = ]R(eli.,ai), in particular, Rg = R. For an element b € R, 42
for brevity denote the standard part st;(b) = st.,_, (st - (ste,,,(b)---) € R; (provided
that it is definable).

sit1\"leiqa Ent2

Also we will use the Tarski’s transfer principle [T51]. Namely, for two real closed fields
Fy C F; a closed (so, without free variables) formula in the language of the first-order
theory of F} is true over F} if and only if this formula is true over Fj.

Tarski’s transfer principle implies that a semialgebraic set {fi > 0,..., f&, > 0, fr,+1 >
0,...,fr >0} C I", where the polynomials f; € F[Xy,..., X,] have the degrees deg(f;) <
d, has at most (min{2*, (£)"}d")%") connected components (cf. [GVS88]), relying on this
bound in case F' = R from [W68] (cf. also [BPR94]), which strenghtens the result of [M64].

Another application of Tarski’s transfer principle is the concept of the completion. Let
Fy C F; be real closed fields and ¥ be a formula (with quantifiers and, perhaps, with n free
variables) of the language of the first-order theory of the field F;. Then ¥ determines a

semialgebraic set V C FJ*. The completion V{¥2) C F}' is a semialgebraic set determined by



the same formula ¥ (obviously, V' C V(FZ’)). Tarski’s transfer principle entails, in particular,
that the number of connected components of V' is the same as the one of V(F2) (cf. [GV8S]).
One could easily see that for any point (zy, ..., zx) € ]R£+2 such that f(»=%) (21, ..y 28) #

0 (we utilize the introduced above notations) the following equality for the signs
ol .o sgn <f(”_k)(zl, .. .,zk)) =

sgn (F(21, -, 20,018, T insa) (1)
holds for any o4, ...,0,-r € {—1,1}. For any 1 < ¢ < n—k such that m; = 0 (1) holds also
for o; = 0, agreeing that 0° = 1. Moreover, the following polynomial identity holds:

FO (2, ) =

(7(Z1,...,Zk,€k+3,...,€n+2)) (2)
€his" Eniz

Stpy2

For a family of hyperplanes Hy,..., H,, C R" let S = Uj<i<n H; be an arrangement,
by Bo (Hi,...,Hy) we denote the number of connected components of the complement
R™ - S.

Following e.g. [S90] we define the complexity s = C(f) of a polynomial f €
R[X4,..., X,] as the length of the shortest straight-line program which computes f. Re-
call that the latter is a sequence of operations wy = Xy,...,u, = X,, then for every
n<j<s+nu; =1u; ©uj,, where for each 7 = 1,2 either u;, = u;, with j; < jor4; € R
and either ® = x or ©® = 4. To every u; by recursion on j one attaches in the natural way
a polynomial U; € R[Xjy,..., X,] (the value of u;). The straight-line program computes f
if Usen, = f.

Observe that one could consider also the division ® = / and the resulting rational
functions, but since we deal only with the signs of the testing functions in the computation
trees (see below), we could consider separately the computations of the numerators and
denominators of the rational functions by means of the straight-line programs without the
divisions.

For a polynomial g € R[Zy, ..., Z;] its border complexity C(g) (cf. [S90] for the notion
of the border rank) is the minimal C'(f) where f € R[Xy,..., X,,] for a certain n > k such
that ¢ = f(»=%)_ for suitable coordinates Zi,..., Zx, Y1,..., Y., which we treat as the
linear forms in X4,..., X,,.

The main result of this section is the following lower bound on the border complexity.

Proposition: Let for a polynomial g € R[Z, ..., Z] its border complexity C(g) < s.
Assume that Hy,..., H, C R’ are pairwise distinct hyperplanes such that the corre-
sponding linear functions Ly, | g, 1 < ¢ < m (where the zero set of Ly, is H;). Then
Bo(Hy, ..., H,,) < 20(s+k),



Proof: Let u; = X;, 1 <1 < nj u; = 4, ©uj,, n+1< 7 < n+ s be a straight-line
program which computes a certain polynomial f € R[Xy,..., X,] such that g = Fn=k) for
suitable coordinates Zy,..., Zk,Y1,...,Ya_kr (we utilize the introduced above notations).
Express X; = oz(li)Zl 44 ozgf)Zk + ﬁy)Yl 4. -ﬁfﬁkYn_k, 1 <7< n, where ay), ﬁ]@ € R.

Due to (2) for any point (21, ..., 2;) € R we have

7 21532k, €k R
g(Zl, . '7Zk) = Sty ( ( b 7;'; ’ +7:7317n_k 3 ’I'L+2) (3)
€r+3 " "Ent2

Denote u} = oz(li)zl + -+ ag)zk + ﬁy)fik_l_g + -+ ﬁfﬁkgn_,_g, 1 <7 < n. Introduce a
new variable Zy and two semialgebraic sets

k 1.
yV = {(20,2’17...,Zk,un+1,...7un+s) c Rnig-}- .

Uj:ﬂ;-1®ﬂ;-2,n—|—1§j§n—|—s,

where for each 7+ = 1,2 either

ﬂ;-, = u; when 1 < j; < n and
2 2

=1
Uj;

a i .
u; € R according to the straight-

= u;;, when n < j; < j, or

line program which computes f;
mi n+smn—k ) - 81) +
Ep+3 " Ena2
1\2
(zé—l—zf—}—---—l—zi—g—) < &9 };
1

(¢

V= {(ZO7Z17"'7Zk) € ]RIIH—l :

92(Z17"'7Zk) :51323+Z%+"'+Z]% = 5_}
1
Denote by [] : ]Rflisfl — ]Rflié the linear projection along the coordinates
Upt1,- -, Unts. LThe linear projection [] : V=[[(V) is an isomorphism of the semialge-

braic sets, since the projection

H(V) = {(2’0721, .. .,Zk) € Riié :

2

_ 2
(f(Zh---72k75k+37---75n+2)) —e |+

Mp—k

mi
€kt "Enit2

1
(zé+z%+---+z£—€—)2<sa}
1



and the inverse mapping is given by the polynomial mapping u; = ﬂ;l @ﬂ;z), n+1 < j < n+s.
Then V' C [T(V) because of (3).
Furthermore, sty ([T(V)) = V; the left side is definable since for any point (210’ coy 2E) €
Liez <ty

€1 €1

[1(V) the square of its euclidean norm ||z,,...,2x]|* = 23 + -+ 2} <
By the same reason lemma 1 from [GV88] states that the number N3 of the connected
components of V' does not exceed the number N4 of the connected components of [](V),
the latter coincides with the number of the connected components of V since it is isomorphic
to [T(V).

We claim that for any connected component W C R (which is an open set in the
euclidean topology) of the component R* — {g = 0} and an arbitrary point wy € W on
the boundary, there exists a point (z1,...,2x) € W) ]R’f from the completion w(Ra)
(as we have seen above from Tarski’s transfer principle, the connected components W of
the complement are in the bijective correspondence with their completions W) 5 W,
being the connected components of the complement {g = 0}(]R1) in ]le, the number of these
connected components we denote by Ng) such that g2(21, ..., 2;) = 1 and sto(zy, ..., 2;) =
wp (cf. lemma 3 from [GV88]). Indeed, pick out an arbitrary point w € W. Taking into
account that wg € 3(IV(R1)), so g(wg) = 0, and 0 < ¢g*(w) € R we conclude that g? attains
on W) any intermediate value from R; between 0 and g?(w) (using Tarski’s transfer

Ry)

principle), in particular, £;. Now take a point wy € wi being the nearest to wg such
that g2(wq) = &1 (its existence follows again from Tarski’s transfer principle). It suffices to
prove that sto(wy) = wp. Suppose the contrary. Then there exists 0 < r € R such that for

(R1) with the distance |wo — wq| < r the inequality g*(wz) < &1 holds.

any point wy € W
Since wo € W there exists a point w3 € W such that |Jwg — ws|| < r, then 0 < g?(ws3) € R
and we get a contradiction with the supposition, and that proves the claim.

Furthermore, since wg € R* and sto(z1,...,2k) = wp, there exists 0 < r; € R such that
the norm ||zy, ..., zz|| < ry, a fortiori |21, ..., 2| < i

Consider a semialgebraic set

Voz{(zh...,Zk) E]R]f 2% (21,0, 2p) :51}

Denote by Ny the number of the connected components of Vj containing a point w, with the
square of the euclidean norm ||w,|? < i The proved above claim states that the number

Ny does not exceed Ny, taking into account that

(Ry) _

Vo C (]R]C —{g9= O}) RY - ({g= 0})(]R1)

On the other hand, By(H;,..., Hy) < Ny, since Mici<m Ly, | g (evidently, in every

connected component, being an open set in the euclidean topology, of the complement of



the arrangement (]Rk —Ui<i<m HZ) D (]Rk —-{g= 0}), there exists a point at which g
does not vanish).

Obviously, Ny is less than or equal to the number Ny of the connected components of
the set

1
Vi :Voﬂ{(zl,...,zk) ERE: [z, 22 < g}

In its turn Vi = [To(V), where [T, : R¥*! — R¥ is the projection along the coordinate Zp.
Hence Ny < Ns.

Gathering the obtained chain of inequalities Bo(H1, ..., Hpn) < Ng < Np < Ny < N3 <
N4 for the numbers of the connected components, we conclude that Bo(Hy, ..., H,,) does
not exceed the number of connected components of V. The latter is less than 20(stk)
according to [W68] and Tarski’s transfer principle (see above).

The proposition is proved.

2 Lower bounds for randomized computation trees

Recall (see e.g. [B83]) that in the computation tree (C'T) testing polynomials are com-
puted along paths using the elementary arithmetic operations. In particular, for a testing
polynomial f; € R[Xy,...,X,] at the level ¢ (assuming that the root has the zero level) we
have C(f;) < i. Under RCT (cf. [MT82], [S83], [M85a,b,c]) we mean a collection of CT
T = {T,} and a probabilistic vector p, > 0, >_, po = 1 such that T, is chosen with the
probability p,. The main requirement is that for any input RCT gives a correct output
with the probability 1 —~ > % (7 is called the error probability of RCT).

For a hyperplane H C R™ by H* C R" denote the closed halfspace {Lg > 0}, where Ly
is a certain linear function with the zero set H. For a family of hyperplanes Hy,..., H,, the
intersections St = ﬂlgigmH{I— is called a polyhedron. An intersection I' = H;, N---NH; _,
is called k-face of ST if dim I' = dim(I'N S*) = k. By ¢x(S™) we denote the number of
k-faces of S*. Similary (and even simpler) for the arrangement S = Ut<i<m H; its k-face is
any k-dimensional intersection of the form I'= H; n---N H; _,. By ¢3(S5) we denote the

number of k-faces of S.

Now we are able to formulate the main result of this paper.

Theorem: Let there exist positive constants ¢y, ¢z, 3, ¢4 such that c3(1 — ¢1) < ¢z and
an arrangement § = S = Uj<i<m H; or a polyhedron § = St = mlSiSmH{F satisfy the

following properties:

1. ¢[c1n](5) > Q(m2");



2. for any k-face I' of § with k > cyn and any subfamily H; ,..., H; of Hy,..., H, with
at least ¢ > m® hyperplanes such that H;, 2 I for each 1 < j < g and the hyperplanes
H;NU, ..., H; NI in " are pairwise distinct, the number of the connected components
B(()F)(IL-1 NC,..., H;,NT) of the complement in I" of the arrangement Uy <;<,(H;, NT)

is greater than Q(m®™").

Then for any RCT recognizing S, its depth is greater than Q(nlogm).

Before proceeding to the proof of the theorem, we need some preparation.

First we fix the canonical representation of k-face I' in two cases: namely, of S and of
ST, respectively (see [GKMS96]). In the case of S take the maximal 7,_; < m such that
D I'and dim(H;,_, N H;
n — 2 (obviously ¢,_x_1 < i,—%) and so on we produce the indices i,,_ > ;1 > -+ > 11
such that I' = H,;
H;

H; _, DT, then the maximal ¢,_j_; such that H;

n—k—1 n—k—l)

. N---N H; . As the representation of I' we take the flag of planes:
n—kDHin—kai D---DHin_kﬂ---ﬂHh:F.
Now consider the case of S*. One can prove (see [GKMS96]) that for any k-face I there

n—k—1

exists a flag which we treat as a canonical representation of I':

Hin—k > Hin—k N Hin—k—l 20D Hin—k ARRNE Hil =TI

such that for each 1 <[ < k H; _
on [ implies that dim(H;

L NN H;
N---NH;

in—k > --- > 11 is the maximal with respect to the lexicographical ordering (similar to the

nepip1 18 (n — I)-face of St (the recursion

) =n —[). Moreover, this sequence of indices

n—=k n—k—I+1

case of S above) satisfying the latter property.

Fix k-face I' of S, where either S = S or § = St. Let H; , D H;
D H; _,
polynomials fi,..., fs € R[X1,..., X,] we define Var((fy,..., f,) to be the number of the
variables among Y7, ..., Y,_i (we utilize the notations introduced in section 1) which occur
in at least one of Im(f1),...,Im(fs), where H; L H;
of the coordinates Y1, ..., Y, g, respectively. Since Im(fi---f5) = Im(f1)---Im(fs) we get
that Var(Hél""’H‘n—k)(fl v f) = VarO(fy - £) = VarO(fr, ..., f).

For any CT T; we denote by Var(D)(T}) = Var(Hil""Hin—k)(Tl) the maximum of
Var(r)(fl -+~ fs) taken over all the paths of Ty, where fi,..., fs are testing polynomials

N H; D
N---NH; =TI be aflag which represents I' as described above. For a family of

n—k n—k—1

Ly are the coordinate hyperplanes

along the path.
The following lemma was proved in [GKMS96].

Lemma 1: Let T = {T,} be an RCT recognizing

a) an arrangement S = Ui<i<m H; such that I' = Mi<j<n—kHij 18 k-face of S, or



b) a polyhedron St = ﬂlSiSmHj such that for each 1 < [ < n — k& Ni<j<n—kHi; is
(k41— 1)-face of ST (denote I' = Ni<j<n—r Hi,)
with error probability ¥ < 1. Then ‘/ar(Hil""’H"n—k)(Ta) > (1 =2y)%(n — k) for a

fraction of % of all T,’s.

Remark: Notice that the conditions in a), b) are fulfilled if H; _, D H; _, NH;
D Hin—k
ST (see above).

An analogue of lemma 2 from [GKMS96] is the following lemma.

D)

N---NH; =T is the canonical flag representation of I' in both cases of S and

n—k—1

Lemma 2: Let S = S or § = ST satisfy the condition 2. of the theorem. Assume
that CT 7’ for some constant ¢ > 0, satisfies the inequality Var((T") > ¢(1 — ¢;)n for
at least M [cin]-faces I' of §. Then the depth ¢ of T’ fulfils either ¢ > Q(n logm) or
M < O(3'mt=ctestd)(1=c1)n) "\where a constant § > 0 could be made as close to zero as

desired.

The proof of lemma 2 differs from the proof of the analogous lemma 2 from [GKMS96]
proved for d-decision trees, in which the degrees of the testing polynomials do not exceed
d, rather than computation trees (considered in the present paper), in which the degrees of
the testing polynomials could be exponential in the depth t of CT. Therefore the main tool
in the proof of lemma 2 is the lower bound on the border complexity from the proposition
(see section 1).

Before proving lemma 2 we show how to deduce the theorem from lemmas 1 and 2.
Consider RCT {T,} recognizing S with error probability v < 3. Denote k = [¢;n]. Lemma
1, condition 1. of the theorem and counting imply the existence of 7T,, such that the
inequality Var((T,,) > (1 = 2v)%(n — k) is true for M = 5725.Q(m®") k-faces I' of S.

2(1-7)
Apply lemma 2 to CT T" = T,, with ¢ = (1 — 2y)2 If t > Q(n logm) the theorem is

proved, else since the error probability v could be made a positive constant as close to zero
as desired at the expence of increasing by a constant factor the depth of RCT [M85a,c],
take v such that (1 — c+6) < 2=%2U=21) Then lemma 2 entails that ¢ > Q(n logm), which

1—61
proves the theorem. Thus, it remains to prove lemma 2.

Proof of lemma 2: To each k-face I' of S satisfying the inequality Var® (T >
c(n—k), we correspond a path in 77 with the testing polynomials fi,..., fs € R[ X1, ..., X,]
such that Var(r)(fl o fs) > Var(r)(T’). Denote f = f1---f;. Consider a canonical

representation of I' by a flag (see above)

H,; D H; N H; D...DHin_kﬂ...ﬂHh:F

n—k n—k n—k—1
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Fix this path of T’ for the time being and consider all k-faces I' to which corresponds
this path. We arrange the representing flags of all these k-faces in a tree 7 which we call
the tree of flags (cf. the proof of lemma 2 from [GKMS96]). 7 has a root with the zero
level, each its path has the same length n — k (such trees are called regular), some of its
vertices are labeled.

We construct 7 by induction on the level of its vertices. The base of induction. For
each k-face T' to which corresponds the fixed path of T’, construct a vertex, being a son
of the root of 7, and to this vertex (of level 1) attach the hyperplane H; _
introduced above notations). Thus, to different sons of the root different hyperplanes are
attached. We label the constructed vertex if and only if Y,,_x|f (the latter means that the

linear function or the variable Y,,_, gives a contribution into Var(l)(f)). Besides, we assign

. (we utilize

to the constructed vertex the polynomial f(1) € R[Z,..., Zs, Y1,...,Y_z_1] (see section
1).

Now assume by induction on [ that [ < n — k levels of 7 are already constructed.
Consider any vertex v of 7 at [-th level. To the vertex v leads the partially labeled path

(from the root), to whose vertices the beginning elements of a flag are attached successively:

H;, _, D H;

D H;

e 1 Hin—k—l D...

N...NH; =14

n—k n—k—I+1

Finally, the polynomial f) € R[Zy,..., Z,Y1,...,Y_k_] is assigned to the vertex v.
Recall (see section 1) that f() is defined on (n — [)-plane I'y. Besides, v is either labeled or
not labeled.

Thus, to different vertices at the level [ are attached the different beginnings of flags.

At the inductive step we construct the sons of v. Namely, for any k-face I' with the
same beginning (4) of its representing flag consider the next element of its flag, let it
be I'h " H; _,_,. -
polynomial fU*tV) e R[Z,..., Zs, Y1,...,Yu_s_i—1]. We label this vertex if and only if

Yn_k_1|f(l) (recall that due to the maintainance property, see section 1, the latter condition

Construct a son of v to which we attach I'y N H;__ and assign the

means that the linear form or the variable Y, _;_; gives a contribution into Var("(f)).
This completes the inductive construction of 7. The leaves (or paths) of 7 correspond

bijectively to k-faces of § to which the fixed path of T” corresponds. To each leaf (or path)

of 7 which corresponds to k-face I' the flag representing I' H; _, D H; _, NH; D...D

H;, . N...NnH; =1 is attached along the path (which is partially labeled).

n—k—1

n—k

Now we proceed to estimating the number of leaves of 7. For a vertex v consider all
its labeled sons (we utilize the introduced above notations). Each labeled son corresponds

to a hyperplane H; such that the linear function LplnHi|f(l), where Lt np, is a certain

11



linear function on (n — [)-plane I'y with the zero set I'y N H;, being a hyperplane in I'y,
and to different sons correspond different hyperplanes I'y N H;. Consider the family H of
all such hyperplanes H;. First assume that it contains at least m® hyperplanes. Then
the condition 2. of the theorem implies that the number of the connected components
b= B(()Fl)({Hi N1} m,en) of the complement in 'y of the arrangement Uy, gy (H; N 1Ty) is
greater than Q(m™”). On the other hand the proposition (see section 1) entails that b <
20(stn—l) < 90(s+7) taking into account that the complexity C'(f) = C'(f1---fs) < 25 — 1.
This provides the lower bound on the depth of 77, namely, t > s > Q(nlogm), that proves
lemma 2. Thus, we can assume that any vertex v of 7 has less than m® labeled sons.
Besides the labeled sons, each vertex could have at most m unlabeled sons. Furthermore,
due to the maintenance property, along each path of 7 at least ¢(1—c¢q)n vertices are labeled

(see the inductive step above).

To estimate the number of leaves in 7 introduce an auxiliary magnitude M (R, Q) to be
the maximal possible number of the leaves in a regular tree (actually, we could stick with
subtrees of 7, so they are partially labeled) with the length of any path equal to R and with
at most ) unlabeled vertices along the path. One can assume w.l.o.g. that @ < R < m (if
@ > R then set M (R, Q) = 0, the inequality R < m holds since we consider the subtrees of
T, and to each path of 7 a flag of the length at most m is attached). Considering such a
tree and its subtrees with the roots being the sons (both unlabeled and labeled) of the root

of the tree, we get the following inductive inequality:

M(R,Q)<m-M(R-1,Q-1)+m*M(R-1,Q)

For the base of induction, obviously M (0,0) = 1. By induction on R we obtain the bound
M(R,Q) < -m®? -m(@ )R for arbitrary 6 > 0 and a suitable § > 0.

Substituting R = n — [ein], @ = (1 — ¢)(n — [e1n]), we conclude that the number of
the leaves of T is less than O (m(1=9)(1—et)nt(ca+8)(1=c1)ny for arbitrary § > 0.

To complete the proof of lemma 2 it remains to notice that the tree of flags 7 was
constructed for a fixed path of C'T T’; there are at most 3! paths of 77. On the other hand,
every k-face I' of S, satisfying the inequality Var(™) (T") > ¢(1 = ¢1)n, corresponds to one
of the leaves of a tree of flags constructed for one of the paths of 7’. Hence the number of
such k-faces M < O(3t - m(1—cteatd)(1=ci)ny,

12



3 Quadratic complexity lower bound for RCTs solving the

restricted integer programming

The restricted integer programming is the arrangement

L= U A{ex=1}cRr"
a€{0,....j—1}7"
of m = j” hyperplanes for some j > 2 (see e.g. [M85b]). For j = 2 L, o is the knapsack
problem.

As an application of the theorem we prove the following corollary.

Corollary: For any RCT solving the restricted integer programming L, ;, its depth is
greater than Q(n?log 7).

To check the conditions 1., 2. of the theorem first take 3 < ¢; < 1. Any k = [¢yn]-face
I' of L, ; can be given by n — k linear equations g1,..., gh—j of the form a X =1 from L, ;.
If other linear equations ¢i, ..., g, _, from the family L, ; give the same k-face I' then their
linear hulls coincide: L(g1,...,9n—%) = L(g},- -, 9, _%)-

Take a prime 7 < p < 2j. Let us show that the linear hull £(¢1,...,¢,—%) contains
at most p*~* linear equations from the family L, ;. Consider the linear equations from
(L(g1,--+y9n—k) N Ly ;) mod p (we treat the linear equations as their vectors of the coeffi-
cients). Then the results are pairwise distinct vectors, they constitute a family F C ]F;H'l,
choose among the elements from F a basis over Iy, it contains at most n — k elements (oth-
erwise, the preimages of F prior taking modp would be linear independent as well). All the
vectors from F are the linear combinations over I, of the elements of the basis, therefore, F
contains at most p"~* elements, thus the cardinality |£(g1, ..., gn_k) N Ln ;| = |F|] < p"~F.

Any (n — k)-tuple of the linearly independent linear equations from L, ; provides a

k-face. Therefore, any k-face is provided by less or equal to

pn_k < (n—k)2 < (2 . 1)(n—k)2
n—k) =P =4

number of (n — k)-tuples because of the shown above. On the other hand, denote by I,

1 <1 < n the number of linearly independent /-tuples from L, ;. Obviously, [; = j” — 1.

By induction on [ for | < n—1 we have [14; > I;(3" —pl) again because of the shown above.

Hence,



ol (1 e Rt <2j>“) _
jn

nl (2])1 -1
R

If I < % we have ((22]]_)11;]171 < %, i.e. I; > Q(j™). Substituting [ = n — k, we conclude that the

number of k-faces ¢ (L, ;) is greater than

, —01—51 TL2
s R
] c1)°n

for arbitrary & > 0. Thus, to satisfy the condition 1. in the theorem one can take
Cy = (1 — Cl)(2C1 — 1) — 51.
To justify the condition 2. in the theorem take any k;-face I' of L, ; where ky > k given

by n — kq linear equations g1,...,gn—%, from L, ;, and besides, ¢ > 7%" linear equations
hi,...,hy from L, ;. Take a certain 0 < ¢5 < 1 which will be specified later. Denote
kz = [esn]. There are () > Q5% =)"") ky-tuples from hy, . . ., hg for arbitrary 6 > 0. If

two kg-tuples h;,, ..., h;, and by, .. -,hlk2 give the same face in I' (i.e. a face of L, ;, being

ik

a subset of I'), the linear hulls coincide:

['(917-'-7gn—k17hi17-"7hik2) :['(917"-7gn—k17h117'-'7hlk2)

(cf. above). Therefore, for any face in T there are at most (pn_:;kz)) < (27)cs(n—kitesn)n guch

ka-tuples (since the latter linear hull contains at most p"~F1+k2 Jinear equations from L, ;,
see above). Furthermore, (2j)%("—k1tesn)n < j2es(l=ertes)n®  Thys the number of faces in T
of the subarrangement S() = Ui <i<q (TN{h; = 0}) is greater than €2 (jc5(c3_5_2+261_205)”2).

Now take ¢35 = %, then the requirement c3(1 — ¢;) < ¢y is fulfilled for small enough
d1 > 0. Since e¢3 — 2+ 2¢; > 0, one could choose ¢5 > 0 and § > 0 small enough to provide
cy=cs(cs =8 — 24 2¢1 — 2¢5) > 0.

Thus, we have proved so far that the number of faces in I' in the subarrangement S(@)
is greater than Q(j%"°). Take any 0 < ¢4 < ¢. The required bound 2. of the theorem on
the number of the connected components of the complement in I' of the subarrangement
ST B(()F) (TN {hy =0},..., 0N {h, = 0}) > Q") (and thereby the corollary) follows

from the following general remark.

Remark: For any arrangement S = |J;<;<,, H; C R” and 0 < £ < n — 1 the number
of k-faces in the arrangement ¢5(S) < Bo(Hq, ..., Hy).

Proof: Intersecting S with a generic (n — k)-plane, we reduce the remark to the case

k=0.
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Thus & = 0. Choose a generic hyperplane H and shift it parallel to itself. When it
contains a vertex v of S we show that there “appears” a new (in other words, not yet
sweeped) connected component of the complement R”™ — S with a vertex v and situated
.., H;,. Take the
., H;, . Let H have an equation

completely on one side of H. Indeed, let v = nlgjgn H;, for some H;,,.

coordinates system with the coordinate hyperplanes H;,,..
in these coordinates a1 X7 + -+ @, X,, = 0, each a; # 0, 1 <7 < n, since H is generic.
Then the “orthant” {o; X; > 0;1 < ¢ < n} (which is situated completely on one side of H)
contains a connected component of the complement R™ — S with a vertex in v.

So, to each vertex v of S corresponds a connected component of the complement R™ —S.
In addition, to the first (in the order of shifting H) vertex vy corresponds also at least one
more connected component situated in the “orthant” {a;X; < 0;1 < 7 < n} (so on the

other side of H) with a vertex in vy, this implies the strict inequality in the remark.

4 Open Problem

We were not able to prove any superlinear lower bound or a linear upper bound on the
Flement Distinctness(cf. [M85a], [GKMS96]) for randomized computational trees. Note
that the corresponding lower bound for randomized decision trees is Q(n log n), [GKMS96].
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