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| ntroduction

1 Motivation

“A network connects a number of diswiied points and enables communication between
them..”. With currently 10,000,000 hosts and 100,000 neks [32], the Internet represents a
powerful heterogeneous communication netkvspanning the wholeavid. The rapid greth

of the Internet transformed it from a field for scientific research to a mass mediurarfatasy

use. Wth increasing bandwidth and decreasing transmission delay researcherbdmm
tempted to eploit the Internet for something it had not been designed for: real-time multimedia
communication. Recent delopments [24], [36] and [44] demonstrate thatimmments lile
video and audio broadcasting, teleconferencing and full dupl@timedia communication
over the Internet are basically feasible wéger, the obtained results for video and audio com-
munication are still of mediocre quali#ll these tools sdér from the &ct that the Internet, as
the underlying transmission neivk, does not support real-time data streams.

Audio plays a big role for thesev@ronments and is usually the most important component in a
multimedia communication. The appearance of numerous ‘Internet Phones' [28] that allo
bidirectional point to pointaice connections reflects the strong demand for this kind of audio
applications. Realizing a rabt audio transmission scheme for the Internet still remains a major
task for research.

2 Overview

Distributing real-time data, and specifically audio datermetworks that do not prade guar-
anteed resources such as bandwidth or guaranteed performance measures such as maximur
delay or maximum loss rate is considered in the\ioiig.

Audio communicationeer paclet switched netarks - like the Internet - is often deaded due

to paclet losses andarying packt arrval times. From one point in the netik the audio data

is sent in pacdts to another point. One important characteristic of aghasktched netark is

the delay required to deér a packt from a source to a destination. Each pagenerated by a
source is routed to the destination via a sequence of intermediate nadakle\frocessing

and gueueing delays at each hop on thg @ the destination sum up to aying end-to-end

delay Packets may be rejected at intermediate nodes becausé@f twverflow or they may be
discarded because of transmission errors. Hence, another important characteristic ef a pack
switched netwrk is its packt loss rate [4]. It appears that the quality of audioveedd from a
source to a destination depends essentially on the number of lostyactl of the delayawi-

ations between successipaclets [6]. Therefore one often encounters substantially reduced




Channel requirements for real-time audio communication

audio quality Unprotected streams of audio data aegy\sensitie tovards transmissiorail-

ures and the drop foih quality is enormous. Our goal is to emplencoding mechanisms that

malke this quality dgradation more graceful.

Two approaches kia emeged to support real-time applicationgeo paclet switched and lossy
networks. One approach is tatend current protocols and switch scheduling disciplines to pro-
vide the desired performance guarantees. This approach requires that admission control, polic-
ing, reseration, and sophisticated scheduling mechanisms are implemented in tloeknetw
The design, analysis, anglatuation of such mechanisms is an\&tiesearch area [5]. The

other approach is to adapt applications to the servicadew by the netark. The idea is to

have audio coders and decoders that adapt to the dateynee and loss characteristics of the
network. This amounts to delop mechanisms that eliminate or at least minimize the impact of
paclet loss and delay jitter on the quality of audiodsied to the destination.

Efficient play-out adjustment mechanismyddeen desloped that minimize the impact of
varying packt arrval times [35]. Havever, minimizing the impact of paek loss on the audio
qguality remains an aet research task. Measurements of the @aldss process for audio
streams wer the Internet indicate that loss periods usuallglire only a small number of con-
secutve paclets when the Internet load isndo medium. This suggests that open loop error
correction schemes based on fard/ error correction are adequate to reconstruct lost audio
paclets [6].

Two different scenarios broadcasting like Internet radio antull duplex communication like

Internet telephon - have to be kpt in mind. Br broadcasting the encoding procedure is
allowed to be time consuming, whereas in full ddglemmunication processing delay is criti-

cal. We are looking into protection scheme®IRET [33] and the one used for RE86] in the

MICE project [30] in order to cope with both situationse e inestigating hav efficient

these protection schemes yide graceful quality dgradation in the presence of pathoss

and hev much delay thgare introducing. In order to allograceful dgradation the encoding

of the audio signal has to be layered. Then the FEC mechanisms transmit the more important
layers of the codification with redundandistributed among sesral consecwie paclets. This

way paclet loss does notfaict the signal reconstruction at the destination. A major part of this
paper focuses on a hierarchical encoding of audio signals using transform coding. The codecs
developed here empjovarious vavelet transforms, thedarier transform and the discrete
cosine transform for a layered and compressed representation of an audio signal. These coders
allow the perfect reconstruction of the original signal from the complete encoding information,
whereas a reconstruction from fragments of the encoding yields into a gracgadaten of

audio quality depending on the amount of data lost.

The net three sections still ke an introductory charactéihe first irvesticate the require-

ments that real-time audio communication imposes on the transmission channel. Then we dem-
onstrate that paei switched netarks like the Internet do not accomplish these requirements
and finally we outline possible methods terome these limitations. The last section is dedi-
cated to gie a general vig of the structure and thegamization of the thesis.

3 Channel requirementsfor real-time audio communication

Real-time audio communication is something that happesrywhere. Hw it should happen
over a packt switched and lossy netwk like the Internet can be&mined by looking at some
real world examples. The userxpects real-time audio communicatioveo the Internet to be
like real-time audio communicationer ary other media. At first we determine thecalulary
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Introduction

that is used in the folleing since most of thesexgressions do not ke a sharply defined
meaning.

Definition 1

Communication is the process of exchanging information between two or more points. A
sender transforms information into a communication signal which is transmitted in form
of a transmission signal to a receiver. The communication signal and the transmission
signal may be identical. The medium which is used for transmission is called channel.
Depending on the quality of the channel the transmission signal received by the receiver
is more or less identical to the one sent by the sender.

A communication is unidirectional if all points are either senders or receivers and it is
bidirectional if they are both. A bidirectional communication can be either full duplex or
half duplex. In a full duplex communication each point is able to send and receive simul-
taneously whereas only one point can send at a time in a half duplex communication.

Definition 2
A communication is real-time when it mimics the properties of a face to face communica-
tion between human beings.

The communication signal in audio communication is the sowav@,vgince this is the only
signal that is perceable by the human eakudio signal, sound signal, music signal or speech
signal are common syngms that refer to the soundave in audio communication. A sound
wave is continuous and contains a continuous stream of information. Therefore the channel for
a real-time audio communication is required to be isochronous.

Conclusion 1
A channel for real-time audio communication has to assure a continuous and isochro-
nous transmission of the sound wave.

_The transmission_signal for aqdio com_munication IS not sub-= 0
ject to awy restrictions. Besides using the soundvev | , ANV /\ .
directly, there are techniques thatpéore radio vaves, elec- N2V
tromagnetic \ves or gen light beams to transmit the (trans- |, =t B AN AN,
formed) audio signal. The transmission can be either analog 'V |} '

or digital, corresponding to a continuous or a discrete repraGurE 1. (a) analog, (b) digital
sentation of the soundawe (see figurd). In case of an ana- reresentation of asound wave
log transmission, the transmission signal is a continuous

transformation of the soundame. For a digital transmission the sound signal is sampledyin re
ular time interals. Then the discrete samplalues are encoded (usually blockwise) into the
transmission signal.

We look at a real orld example for
a bidirectional audio communica- _
tion. When tw people are dining 'g ) ) ) ) ) ) ) ) ) ) ) ) ) ) i’)
in a restaurant, talking with each N .

other they are haing a full duple Fanamision Sanal  sending

communication. This olously is a _ e PN
real-time communication since a Kﬁ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ?
face to &ce comersation corre- N\ receiing

sponds to our definition of realq FiGuRE 2. bidirectional full-duplex communication
time. The communication is full
duplex because both people are able to speak and listen simultaneously (se2)figach
partner acts as a sender when saying something, and asrarred®n hearing something. The

Q)

11



Channel requirements for real-time audio communication

spealer is transforming the information which consists of@g, sentences, laughter etc. into a
sound vave - the communication signal. Since th® tyuests are talking directly to each other

the transmission signal is the same as the communication signal. The channel that transmits the
sound veve is the pisical surrounding of the tvspeakrs.

In a usual dinner caersation one

sender
understands what the opposit =

recever

e
party says, although the communi- ’9 ) -
cation can be disturbed by a num- )))))))

ber of reasons. The atress may %%)&)m w
interrupt a talk by asking, whethet W \))\))\ \

the dessert should be sedv Or % \

one tries to xplain something

while swallowing a huge portion of | |gyre 3. interference of a speech signal

‘nachos con guacamole’. These
incidents interfere with the communication either before or while the communication signal is
produced. W want to focus on disturbances thateaf the transmission signal on itsayv
through the channel. Some ximan musicians may play decent salsgthims in the back-
ground and impair the ceersation this \@y. The speech signal ag the mouth of the
spealer interferes with the music signal before it\as at the listeners ear (see figByeThe
transmission signal is altered while passing through the channel.

interference

Even if no band is playing music -
and the room is almost quiet, thg —

communication between the dw -
restaurant guests is slightly dist ? ) ) ) ) ) ) ) ) ) ) ) ) )) w
turbed because the signal is weak- ~
ened on its wy to the recipient. | FIGURE 4. diminishing of a speech signal receier
Talking to a third person that is din-
ing at another table in the restaurant confirms this conclusion. The speech signgltlea
mouth of the speak is diminished before it ames at the listeners ear (see figdiyeAgain the
transmission signal is altered while passing through the channel. The area betweerp#re tw
sons is obiously not an ideal channel. The condition of the channel has a direct impaaigo
for unidirectional audio com- /

the quality of the transmitted audio signal.

munication. A radio station \ ' ))M )

broadcasts a program which ? )) )) recei/ers/

can be receed by a lage ™~
\ J )

number of people. As in the %\/ ' ) w
/

last xample the communica-

tion signal is a sound ave.

But unlike in the last)eample | FIGURE 5. unidirectional communication communication signal
the transmission signal is no

the same as the communication signal. The station uses a @@idorransmit the program
instead (imagine a radio station using a soua¢kly. Prior to sending, the soundwe is trans-
formed into a radio ave and after receing it is retransformed to a soundwe (see figuré).
Again the plysical surrounding is the channel for broadcasting the raalie.vA thunderstorm,

Radio broadcasts on the othet
hand are a typlcal Xample communication signal ransmission signal

sender

12



Introduction

the neighbours bran hair dryer or a lge distance to the radiower influence the conditions
of this channel. Altering the transmission signal - that is the radwe wdirectly afects the
sound vave.

The quality of the channel has a direct impact ow tHwe a| 0

transmission signal is altered during transmission. Bec usﬁ/\ /\ M\
the transmission signal encodes the communication signal] U \/ \/
a modification of the first results in an alteration of the la tS“h

ter. For understanding the influence that the quality of th a
channel has on the audio signal, we must oleskeoth, the S(t) \/ \\/ \//
way the audio signal is encoded into the transmission sign

and the vay decreasing channel quality modifies the trans-1 \A/ \/
mission signal s(0

For analog transmission methods thieets of bad channel M M
conditions are noticeable immediateBeclining (impro- ! W Wf \Aﬁ

ing) _(_:har_mel condltlon_s d.lrectly increase (decrea_se) tr;?aGURE 6. graceful degradation of
modification of the audio signal. This gracefufdedation | an audio signals quality

of the audio signals quality is illustrated in figéreFor
digital transmission methods, éildigital ISDN telephone, the befaur is only slightly difer-
ent. Whereas small losses in channel quality do nat &fects on the audio signal, the distor-
tion increases more rapidly withonse channel conditions than in the analog case.

The human ear is able to tolerate distortion in an audio signal up to a cegt@e.d& have to
differentiate between noise that is not audible, noise that is audildlakes the signal intelli-

gible and noise that distorts the audio signal up to total unintelligibilitg transition between

these states is gradual. Continuously increasing the amount of distortion results into a graceful
degradation of the audio signals intelligibility from perfect to not understandable.

With decreasing channel quality the amount of distortion increases continuously and therefore
gracefully dgrades the quality of the audio communication. This ierg gesired belvéour -

the quality of the audio communication adapts to the quality of the channel.

Speaking about the quality of a channelasyvgeneral. W want to distinguish between téf-

ent qualities that a channeferfs.

Definition 3

The quality of a channel is determined by the qualities of its properties. These properties
are:

- bandwidth

- transmission delay

- correctness of information

- transmission of information

The deterioration of the channel quality in ouotieal world examples vas in &ct the versen-

ing of only one of the channels properties. Decreasing channel quakitysaineant decreasing
correctness whereas the other channel properties remained unaltered. The channel guaranteec
transmission with the same bandwidth and the same transmission delay throughout the commu-
nication. It was the decreasing correctness of the transmitted signal that resulted in a graceful
degradation of the audio signal. The stable channel properties assured a continuous and isoch-
ronous transmission of the audio signal.

Conclusion 2
An ideal channel for real-time audio communication provides a guaranteed bandwidth
and a constant transmission delay and assures a continuous and isochronous transmis-

13



Channel characteristics of patlswitched netarks

sion of the audio signal. Worsening channel conditions affect only the correctness of the
transmission signal.

4 Channel characteristics of packet switched networks

Paclket switched and lossy netvks such as the Internet do novéary of the characteristics a
channel for real-time audio communication shoulehd he Internet does not assure a contin-
uous and isochronous transmission of the audio signabr8eming of the channel conditions
does not déct the correctness of informatioryttbandwidth and transmission delay ver
the transmission of information at all.

Using the Internet for the transmission of a continuous audio signal requires to split the audio
signal into single paaks an send them one by one as depicted in figubelossy netwrk

audio signal paclets
Internet recever

o < —/ /
— I
MIP i A/% | -
microphone sender - - Mt
FIGURE 7. transmission of a continuous audio —_ /

signal over the Internet spealer

such as the Internet does not\pde ary guarantees for the transmission of the p&gkso that
unpredictable losses will occur inably. Obviously, one could use a netrk protocol that
retransmits the data wheme paclets are lost. Hoever, the use of such reliable protocols €lik
TCP over IP) [23] usually results in increased transmission delay and the lack of coetrol o
the detection and handling of losses. In case of frequent lossetgpackumulate at the send-
ing side while the protocoldeps on trying to retransmit preusly lost packts. for a real-time
audio communication thealue of a paokt of audio information is strongly dependent on its
actuality A protocol that stores and therefore delays the most recent audetgachrder to
transmit older ones that already lost thailue for the communication is definitely ineligible. It
is for this reason that most audio communication ssofwwses unreliable protocols @iklDP
over IP) as the preferred mode of transmission. In tlaig l@sses can be detected and dealt
with if necessaryand the application can decide whether retransmission is both necessary and
tractable [9].

The successful transmission of a petcknd the transmis-
sion delay depends on numeroagtors, lile the actual /\ /\ f\
traffic load of the netark, the chosen path of the patk \/
through the netark, the condition of routersatpvays and | so e \/
physical links. These circumstances reagaclet losses WD( /\ f\
practically unaoidable and unpredictable and introduce|a \_/ UV\,.tter\/
variation in packt arrval delays (jitter). =0 qﬂpackﬂ '037]

As a channel for the transmission of real-time audio data

s(t)

the Internet should ka the same beli@ur that we hee | u Upaclet loss
obsenred for the tw real world examples. Vith decreasing /|ﬂ t
channel quality there should be a gracefujrddation in U V \l UVjitter \J

the audio qualityFor paclet switched netarks decreasing ,

. . .. FIGURE 8. abrupt degradation of
channel quality means an increase of patiss and jitter | an audio signal
An unprotected stream of audio patkis \ery sensitre
towards transmissioraflures and paeX loss or jitter cause not a gracefult b drastic drop 6f

14



Introduction

in audio quality Bad channel conditions result into an interrupted audio signal as depicted in
figure8. In the former scenarios decreasing channel quality meant a contingoadatien of

the audio signals correctness. In the actual case decreasing channel quality means that some
parts of the signal are completely lost, whereas the other remaining parts are still absolutely
correct.

The reason for this is theay the audio information is transmitted combined with thg Wis

lost. Each paakt corresponds to a small time intaref the audio signal and consegatpack-

ets correspond to consemétitime interals. The representation of the audio signaveresin-

gle paclet is totally disjunct to that in gnother packt. All paclets together describe the
complete audio signal. It is immediate that the loss of a singlepaglals the loss of the cor-
responding time inteal of the audio signal.

It is desirable to protect the audio information in @ywhat the loss of paeks dgrades the
quality gracefully

5 Graceful degradation for packet switched networks

In this paper we present dwtransmission schemes for real-time audio communicatien o
paclet switched netarks that model the beWiaur in regard to decreasing channel quality
which other real-time communication channelgehd\Mth decreasing channel quality there is a
graceful dgradation of the quality of the transmitted audio signal.

For paclet switched netarks like the Internet decreasing channel quality means increasing
paclet loss and jitterFor achieing the desired graceful geadation we hae to assure that loss

of paclets results into a decreasing correctness and not into a partly loss of the audio signal. In
figure9 this diference is depicted graphically

How can we turn the abruptgiedation of audio quality into &
graceful one? &ket loss means the loss of parts of the endod-
ing information. Vith an encoding scheme where each part of
the encoded information directly corresponds to a time inter- N\ :

t

\)L}U\/audiosignal \}\
HENEEVEEEEE

quantizing) for instance spreads the information about the|sig- 5% packis
nal evenly over the codification. & a signal that is sample
with 8 kHz each sample represents 0.125 ms of the signal| The /\

) \}“\ :

s(b),

loss of 300 samples for instance equals the loss of 37.5 m$)of \}
the audio signal in time.

Therefore we need an audio encoding scheme thatsatite
reconstructions of the audio signal afetiént levels of qual-
ity. Layered audio encoding schemes are designed to deal will
the loss of encoding information. Such an encoding scheme m\
concentrates the rouglverall shape of the audio signal - thed) \J T —t
average information - in one portion of the codification and V \}
keeps the detail information in the remaining part. A more dis- (ot o
tinguished classification inevy coarse, coarse, fine anery | FIGURE 9. theoriginal signal (a)
fine can yield een better results. A reconstruction from fradl 330 Pso) &g adraceiul (©
ments of the encoding information gracefullygoides the

sound quality depending on the amount of detail data lost.

L] OO0 1
w |
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Structure of the thesis

A major focus of this paper is to discuss and teettg a layered audio encoding scheme with
exactly these properties.

How can we assure that patkoss dects the detail information first?2oF a layered audio
encoding scheme some parts of the codification are more important than others. As described
before the quality of the audio signalgdades gracefully depending on the amount of detalil
data lost. Since the loss of patkis unpredictable theay we transmit the encoding has to
assure that detail information is lost first.

The two approaches to discuss both introduce redurydi@mprotect the more important parts

of the codification. One such resilient scheme - the Priority Encodargsihission (PET) [33]

- was deeloped by researchers from the International Computer Science Institute (ICSI) at
Berkeley. The other approachas designed within the ESPRIT project ‘Multimedia ¢méted
Conferencing for European Researchers’ (MICE) [30] at thedudsity College London (UCL)

and has already been successfullygraéed into the ‘Reliable Audioobl’ (RAT) [36].

6 Structureof thethesis

This paper claims to be a stand-alone introduction into the problewlsdad with real-time
transmission of multimedia informatiorver lossy pacit switched netarks focusing on the

case of audio communication.

In chaptell we provide the necessary kmtedge about audio processing and gackvitched
networks. The impact of netwvk limitations tavards real-time audio communication anatw
approaches that reduce/eliminate those saenned in chaptdtl. There we will see that the
existing standard audio encoding schemes are not perfectly suited for the protection of audio
streams aginst packt loss. In the remaining chapters we discuss andl@® nev audio
codecs that he the desired properties. These audio coders are based on transforms of the
audio signal within the time-frequendomain. In chaptdl/ the mathematical background of
time-frequeng analysis is gien, while chapte¥ concentrates on ‘aelets’ - a certainagmily

of transformations that are ary flexible tool for the time-frequecanalysis of audio signals.

The usefulness of these transforms for audio encoding purposes is caredlligted in
chapteVI, where finally the resulting meand eficient audio codecs are presented.

After all the achieed results are briefly summarized and the direction of current and future
research wark is outlined in chaptevll.
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Background

This chapter is meant to pide the necessary background Wiexge for the reader about dig-

ital representation, processing and storage of audio signals and about the propertiest of pack
switched netwrks like the Internet.

The first section ges a basic introduction into theaywaudio signals are processed for subse-
guent digital treatment. In the second section we describe somentonal audio encoding
schemes and the quality that can be aguaising them. The third section introduces the trans-
mission concepts of the Internet, while the&treection concentrates on the problems related to
the characteristics of such a patkwitched netark. Through the measurements in the last
section we try to characterize the petckoss behdour of the Internet.

1 Digital audio signal piocessing

The analog signal one reges from a microphone represents a souagewhrough a continu-

ous electrical eltage with arying amplitude. &r digital signal processing purposes it is neces-
sary to transfer this time continuous audio signal into a discrete representation. Vérsicon

of an analog signal, such as the audio signal from a microphone, to a form in which it may dig-
itally stored or manipulated requires three distinct processes: filtering, sampling and quantiz-
ing. Filtering is concerned with reducing the information in the signal to a capable amount.

audio signal sampler quantifier
microphone / -
/ A B
o\ e - (— B
filter digital samples

s(t) s(t) s(t) s(t)

s VA N t
r y

FIGURE 10. filtering, sampling and quantizing of an audio signal

Sampling is concerned with the capture of an analogue quantity of the signal at a certain instant
in time. Quantizing is concerned with the representation of this quantity by a digithlofv
finite length [22]. In figurd 0 these three processes are depicted graphically
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1.1 Filtering and Sampling

Sampling can be roughly defined as the capture of a continucarsiyny amplitude at pre-
cisely determined moments in time. Usually signals are sampled in equal distant tind steps

In this case a signal is said to be sampled with the sampling frggéigrre 1/ (At), the recip-

rocal of the time stept. The number of samples &k per second is called the sampling rate.
Telephone speech fokample is sampled 8000 times per second resulting in a sample rate of
8 kHz.

The Nyquist sampling theorem: For sampling a signal in time step$ there is a special fre-
queng f. - called the Nyquist critical frequepe given by f . = 1/(2At) or f, = f /2. If

a continuous functios(t) sampled in time step&t happens to be bandwidth limited to fre-
quencies smaller than the Nyquist critical frequeig, then the functiors(t) is completely
determined by its samples.

The Nyquist theorem states that the necessary minimum sampling fregaénice the high-

est frequeng of the signal. If a signal contains frequencies higher than the Nyquist critical fre-
gueng it is not possible to accurately reconstruct the signal from its samples. A direct corollary
of this is that the maximum frequgnof a signal that can be represented is half the sampling
frequeng.

Since audio signals by nature are not band-limitey nmest be filtered prior to sampling. The

8 kHz sampled telephone signal fotaenple is band-limited to a 3kHz band ranging from
300Hz to 3400Hz, although a bandwidth ofkHz would be possible.

1.2 Quantizing

At some point the sampled analogue amplitude has to verted to a digital wrd of finite
length. This quantization process is generally done immediately after the sampler so that subse-
guent signal manipulation can be done digitally

Every sample is
rounded up or den
to the closest fid
guantization leel.

Using 8 bits as the
digital word length R | ||
LN L1 t l ' t

for every sample
results in 256 dfer-

s(t) s(t)

linear quantized logarithmic quantized

ent quantization le | samples a) samples b)
els. Common rd \
length used for digi- .
tal audio are 8, 12 S —— Budio signar amplee™ R

and 16 bits. Each
sample of the quan
tized signal difers from the original sample by the fdifence between the rounded and the
original value. The error that is systematically introduced tlay 18 called quantization error
Using more bits per sample increases the number of quantizaté® d#ad reduces the quanti-
zation error The step size between the quantizatioelkedoes not ha to be uniform. Espe-
cially for audio signals it mads sense to use a &ghmic scale to reduce the distortion ratio of
the quantized signal (see figurg). A logarithmic scale lavers the quantization error for small

FIGURE 11. (a) linear and (b) logarithmic quantizing of a sampled

18



Background

amplitudes and - as a tradd-efraises it for lager amplitudes. Since the human ear is much
more sensitie tovards the disturbance of soft sounds thavatds noise in loud sounds, non-
uniform step sizes between the quantizatierlkeimprae the audible quality of the signal.

To quantize telephone speech a 13 bit uniform quantifier (i.e. 8192 reconstruetis) ie
necessary to puade toll quality Using a lo@rithmic scheme it is possible to obtain toll quality
speech with a 8 bit l@githmic quantifier

In the pr@ious methods each samplaswjuantized independently from its neighbouring sam-
ples. Rate distortion theory tells us that this is not the mbsieet method of quantizing the
input data. It is alays more dicient to quantize the data in blocksrofsamples. The process
is simply an gtension of the praous scalar quantization methods described@bdith scalar
guantization the input sample is treated as a number on the real Aumalzerd is rounded bf
to predetermined discrete pointsithWector quantization on the other hand, the block of
samples is treated asadimensional ector and is quantized to predetermined points imthe
dimensional space.

Vector quantization canwdys outperform scalar quantization.wwer, it is more sensie to
transmission errors and usuallyatves a much greater computational comipyethan scalar
guantization. The audio encoding scheme®bped by the author useator quantization.

1.3 Digital filters
A Finite Impulse Response (FIR) filter - which is used in chapteproduces an outpw,
that is the weighted sum of the current and past inguts

m
Wn = COVn—m+ +Cm—1vn—1+cmvn = z CiVn—m+i
i=0

The weightsc; are called filter coéitients. The FIR filter applied to a continuous sampled sig-
nal as depicted in figurE3 results in a filtered signal with attnides that depend on the chosen
filter coeficients.

The FIR filter is not the one used for filter=
ing prior to sampling. This band-limiting i
done earlier by analog filters directly g
the analog signal. The frequgnesponse
of a FIR filter determines which frequen-
cies are kpt in the filtered signal and thy
which frequencies are discarded throug:
filtering. This characteristic is typically
illustrated by a frequegycresponse cues
as in figurel2. The normalized frequeync
on the x-axis ranges from 0 to 0.5. Multi-
plied with the sample rate of the filterec

Signa| it ranges from the zero frequgno % 005 o1 015 02 025 03 035 04 045 05

Normalized Frequency

the NquSt critical frequerycf c* FIGURE 12. the frequency esponse cue of a Finite
Impulse Respond filter

FIR-Filter
1.5 T

U

3

—
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Magnitude
.
T

o
o

A Quadrate Mirror Filter (QMF) is a spe-
cially designed pair of distineg Finite Impulse Response filters. The freqyeresponses of
the two FIR filters separate the high-frequerand the lar-frequeny components of the input
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FIGURE 13. a Finite Impulse Respond filter with six filter coefficients applied to a signal

signal. The diiding point is usually halfay between 0 Hz and half the sampling rate of the
input signal. The output of both thenepass filter and the high-pass filter is decimated loy tw
That is, @ery other output sample of the filter isgt and the others are discarded as depicted in
figure14. This process is calledwn-sampling by tw. The output of a QMF filter pair alis

a perfect reconstruction of the original input signal using a corresponding pair of reconstruction
filters. The preiously davn-sampled outputalues need to be upsampled by first inserting
zeros between the cdiefents as shown in figurks. The process ofiapass and high-pass fil-

|
! ay ag a, a, 8 | T~ low-pass filtered and
- subsampled signal

FIR filter .
(low-pass) signal
T~ hy[n [h g hs| — yZ
e [ [ [ T T | —
Vg (Vg |V [Vig | Vg [ Vg [Vog [ Voo [Vog [ Vo | vy | Vo [ Vs |V | Vs | Vs | Vs | Vg [Vogt
—_—— _——1 =
[ [ [ T T 1
/ 90919219394 |95 | ———>
FIR filter
(high-pass)
- = high-pass filtered and
: d_4 d_3 d—2 d—l dO / subsampled signal
FIGURE 14. a Quadrate Mirror Filter pair applied to a signal
10 Jay|0 a0 ]a, 0 lay|0 ag|0 a0 |a|0 a|0|a 0
V- T T T T 1 —
hlo hll h'2 h'3 h'4 h'5 » upsampled lw-pass
inserted zeros signal

FIR filter

reconstructed signal

-—F—-=- /
|
A Vr Vs V3 [V2|Va | Vo

9| Vg [Vor |V |Vos | Ve | Vo

FIR filter

T~

' ' ' ' ' ' upsampled high-pass
9019119219394 |95| ———> /signal

- == PR

|
10 |d_y| 0 |dg| O |d,| 0 [dy| 0 |dy|O|dy| O |dy| 0 |dy|O][d,]|O]

FIGURE 15. perfect reconstruction of the signal with a coresponding pair of filters
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tering with succesge davn-sampling and its wrerse is typically illustrated as subband filtering
[34] like in figurel®6.

low-pass filtered

1

h > ( : :) subband signal > ( :) > h
signal reconstructed signal

g ] ( ) high-pass filtered » <: :> > g'

subband signal

FIGURE 16. sutband filtering and its inverse

2 Standard audio codecs

On the 14th of february 1876 Adander Graham Bell filed an application with the UseRt
Office for an ‘electric-speaking telephone’. The name comes from the Grrek Vor ‘far’
(tele) and ‘wice’ (phone). Nwadays the telephone sets the standard for full guypeson to
person audio communication. The actual telephone sigiiahads from about 300z to
3400Hz, producing a bandwidth of 316, which is based on the distance between the deci-
sive highest and l@est frequeng of the humaneice. The nominal bit rate for toll or telephone
quality speech is 6Kbps which conforms thevailable bandwidth on ISDN telephone lines.
The telephone signal is uniformly sampled with 8000 samples per second b#imgo8store

the sample alue.

There are quality orientated strgites for an impreement of the audio signal. Especially when
considering high-quality audio transmissions it is necessary to increase the transmitted fre-
gueng bandwidth and/or to use more bits for storing the sangilees. Br digital CD audio
quality the signal is sampled 44100 times per second and the saiyas &re stored with 16

bits depth.

Due to the bandwidth restrictions on the Internet there are numeréeremlifstandards for

voice and audio encodingailable. Most of them prade the means to achlie toll quality
speech at bit rates beneathkbps. Some of the most common are introduced here:

Pulse Code Modulation.Pulse Code Modulation (PCM) is the simplest type of audio encod-
ing. It is essentially just a quantization process at sampling rates ranging usually between 8000
and 48000 samples per secondr khear PCM the samplealues are quantized with a linear
guantization function into either 8, 12 or 16 bits, whiev PCM uses only 8its and a log-

rithmic quantization function to amplify an audio signal. This results intofantee dynamic

range of 1dits and a higher resolution for small signal amplitudesath the International
Telegraph and &lephone Consulta® Committee's (CCITT) G.711 standard defindst&law

PCM as the standard method of coding telephone speech.

Differ ential Pulse Code ModulationBecause PCM mas no assumptions about the nature

of the waveform to be coded, it avks \ery well for aly kind of signal. Haever, when coding
speech or music there is ary high correlation between adjacent samples. This correlation
could be used to reduce the resulting bit rate. One simple method of doing this is to transmit
only the diferences between each sample. ThisetBhce signal will haee a much lwer
dynamic range than the original signal, so it can fextfely quantized using a quantifier with
fewer reconstruction iels. For this method the pveous sample is being used to predict the
value of the present sample. \@iusly the prediction is impked if a lager block of audio
samples is used to makhe prediction. This technique is kvioas diferential pulse code mod-
ulation (DPCM).
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Adaptive Differential Pulse Code Modulation. With DPCM both the predictor and the quan-
tifier remain fixed in time. Greater fiiency could be achied if the quantifier wuld adapt to

the changing statistics of the prediction residual. Furtharsgcould be made if the predictor
itself would adapt to the audio signal. Thiswld ensure that the mean squared prediction error
was being continually minimized independently of the speakd the speech signal.

Adaptive differential pulse code modulation (ADPCM) isry useful for coding speech at
medium bit rates. ADPCM is a prediati coding scheme thax@oits the correlation between
neighbouring samples to compress the audio signal using a feedibdckalaptation scheme
for both the quantifier and the predictdhe coder with 16it linear PCM at 8000 samples per
second as input produces bit rates of eitheédats, 32kbps or 1&bps depending on the codec
ADPCM6, ADPCM4 or ADPCM2 respewtly. The computational complgy is very lov and

we can get almost toll-quality speech withi&ps whereas ADPCM2 results in arfy dis-
torted signal. The CCITT has formalized an ADPCM standard for coding telephone speech
with 32kbps. This is the G.721 standard.

GSM. This is a Rgular Pulse Excited Linear Predieti Coder (RPE-LPC) that is used by
GSM (Global System Mobile) telephones to reduce the data rateabtoa &f almost fig com-
pared to ISDN telephone. The speech signahisled into 20 millisecond inteals, each of
which is encoded with 264 Bits,viig a total bit rate of 13.Rbps. The result is only slightly
beneath toll-quality speechytihe computational compliey of this coder is immense.

coding scheme relative CPU cost bandwidth
16 bit linear PCM 1 128 kbps
8 bitulaw PCM 1 64 kbps
ADPCM6 13 48 kbps
ADPCM4 11 32 kbps
ADPCM2 9 16 kbps
GSM 1200 13.2 kbps
LPC 110 4.8 kbps

TABLE 1. relative CPU cost and bandwidth requirements of various coders

LPC. The Linear Predicte Coding (LPC) reduces the data rate by more thaatarfof 12 It
results in a signal that isay belav toll quality. Several LPC standards Y& been defined that
yield into bit rates don to 1kbps. The most common used LPC encoder with a bit rate of
4.8kbps achiees the greatest geee of compression among standard codetg s computa-
tional extremely intense. This synthetic quality speech coding algorithm is generally consid-
ered to contain about 60% of the information content of the speech signalerak shape of

the frequeng spectrum is preseed at the xpense of short-term amplitude and pitemiation

[19]. An LPC coder fits speech into a simple analytic model of tvalvtract, then thres

away the speech ance&ps only the parameters of the best-fit model. An LPC decoder uses
those parameters to generate synthetic speech that is usually Aresg-similar to the origi-

nal. The result is intelligible di sounds lik a machine is talking. LPC compression is
extremely sensitie to high frequencnoise and clipping caused by setting the audio inpet le

too high. Users with high pitcheaizes may not be able to use LPC compression at all: it just
loses too much high-frequgnmformation.

The relatve CPU costs and the bandwidth requirements of the standard audio codecs are listed
in tablel on page2. For paclet audio systems thesefdilent codecs result in enormous size
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differences for the respeai paclets. In tabl€ we summarizedxample packt sizes for dif-
ferent time interals using &rious coders at a sampling rate &fi+&.

coding scheme 20ms 32ms 40 ms 64 ms 80 ms
160 samples 256 samples 320 samples 512 samples 640 samples

16 bit linear PCM 320 bytes 512 bytes 640 bytes 1024 bytes 1280 bytes
8 bitplaw PCM 160 bytes 256 bytes 320 bytes 512 bytes 640 bytes
ADPCM6 120 bytes 192 bytes 240 bytes 384 bytes 480 bytes
ADPCM4 80 bytes 128 bytes 160 bytes 256 bytes 320 bytes
ADPCM2 40 bytes 64 bytes 80 bytes 128 bytes 160 bytes
GSM 33 bytes = ---meee- a 66 bytes = ---meee- 99 bytes
LPC 12 bytes = - 24 bytes = - 48 bytes

TABLE 2. size of audio packets
a. only multiples of 160 can be encoded

3 Transmission over theInternet

Designed for a scenario where asynchronous transmission of data embodies the only form of
communication, the Internet - a patlswitched netark - lacks support for real-time commu-
nication [5]. The Internet Protocol (IP) [20] uses paslkcalled IP datagrams of a certain size,
which is dictated by the pBical netvork, as the atomic units of communication betweenm tw
hosts in the netark. These paaits - equipped with a destination address - are routed connec-
tionless from the sending to the rageg host. The transmission of IP datagranfersfneither
reliability nor ary other quality of service parameters (QoS). The gckay arsie damaged,

out of order duplicated, or not at all with aakying unpredictable transmission deldis

makes the Internet an unreliable and lossy oekw

The User Datagram Prot -
col (UDP) [20] is layered UDP [ 0 XY M —— yop gatagram

directly abwe the Internet sender pacletlos {fpag”}e”‘ed into
Protocol (IP). It acts as the 7 |P datagrams

application interice of the Q
Internet  that directly

ref_lects its transm|SS|or phys.ca| netvork
philosoply but abstracts recever out of 0%%( of order
from the plysical ewiron- | ;pp (] Y, |

ment. Fansmission of datd rGuRE 17. the User Datagram Protocol
happens in terms of paets
called UDP datagrams with a maximum size of 65535 bytes, which may be fragmented into
several IP datagrams. The dedry of UDP datagrams is not guaranteed, consecpiclets

may arrve out of order andven duplicate paeks may be receed. In case of transmission
errors a pacalt is discarded by the protocol (UDPprRhe application there is no fdifence
whether a paakt is lost during transmission and therefore does vent arrve or whether an
erroneous paek does arvie kut is silently discarded. This scenario is illustrated in figutre

An UDP datagram and the corresponding IP datagram fragments are depicted by rectangles
filled with the same pattern.

UDP datagram lost
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The Transmission Contro
Protocol (TCP) [20] is a TCP s L1 | 1~ 7¢P packt
reliable byte-stream proto sender pacletlost,  paclet retransmitted

col layered abee the Inter- V4 \

net Protocol (IP). It dérs IP 1% e t
applications virtual con-

IP Eff I;'] léf

€ Nz /

nections that guarantee th

correct in order delery of recever ourof order deein order tut delayeq  PYSICAlnenrk
_— \
data. The protocol handlesTCP T Y [Im

failures that occur in the IR
layer and uses sophist
cated retransmission strgtes in case of paekloss or damage.

D
FIGURE 18. the Transport Control Protocol de”\,e(d it delayed

4 Transmission problems

Employing some standard audio coding algorithm audio applications group theimgner
stream of code wrds into packts for transmissionver the netwrk. The underlying transport
architecture imposes\seral problems:

Packet loss. When transmitting wer unreliable netarks like the Internet losses will almost
inevitably occur The loss of paaits is a persistent problem, particularlyey the increasing
popularity and therefore increasing lead, of the Internet. Possiénys wf combatting conges-

tion include bandwidth reseation and mees tavards an intgrated service management on

the Internet. Theseauld require wide scaled changes to be agreed upon and implemented, so
that these solutions will only beailable in the medium to long term [19].

Transmission delay. Researches in the field of audio communicatiomehandicated that
humans can tolerate end-to-end delays between 150 to 300 msarpartwcorersation [9].

The end-to-end delay is the féifence between the time the audio signal is produced by the
sender and the time it is played at the nemeMWhereas for local area neaivks the transmis-

sion delay is almost gégible, it can be as high as 180 ms and more from the United states to
countries in Europe. Mé&to the transmission delay there is another delay that is systematically
introduced through the pagtzing of audio data. Since a sender has to collect enough audio
data to fill a pact before sending it, lger packts add more delay than shorter ones do. F

full duplex audio communication paets usually contain 20 to 80 ms of the audio signad. F
unidirectional communication lé&radio broadcasts delay is not a constraint at all.

Jitter. Audio paclets are usually sent out agugar time interals. Havever, at the receing

end packts do not arvie with fixed delays. Thisariation in packt arrval delays is called jit-

ter. Each pact generated by a source is routed to the destination via a sequence of intermedi-
ate nodes. afiable processing and queueing delays at each hop orathtwhe destination

sum up to aarying end-to-end delay

Bandwidth. The Internet does not pridle a guaranteed bandwidth for the transmission of data.
The aailable bandwidth depends on numerocagtdrs. Being routed from hop to hop petsk
may be rejected at intermediate nodes becauseffdr loverflov or they may be discarded
because of transmission errors. The actual bandwidth cem be estimatedxactly - at the
receving end it can be calculated with the amount of rexkdata within the past time intafv
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5 Packet loss statistics

In this section, we characterize the patdioss process of audio streams seet the Internet
using measurements done by other researchers as welssgtions by the author

In southern France the researchers Bolot, Crepin agal Garcia hee done a number of mea-
surements between INRIA Sophia Antipolis and thevehsity Collge London (UCL) in the
UK, which were presented in [4], [5], [6] and [7]. In alperiments 320-byte paets are used
that were sent periodicallywery 40 ms seconds. The plots in fighBeby courtesy of Jean-
Chrysostome Bolot skotypical results for 30000 conseatly sent pacsts. The left picture
illustrates the number of subsequently lost péskneasured at 3:00 pm. Thesiiage loss rate
of 0.21 is quite high because the INRIA-UCL connection isvihedoaded during daytime.
However, it appears that most loss periodgine only one or tw paclets. This obseation is
confirmed by looking at the corresponding freqyedistribution on the right. It shes the
number of occurrences of consecutie losses for diérentn. The slope of the distniftion
decreases linearly near the origin. Since the figure wdom a logrithmic scale, this indi-
cates that the probability decreases geometricadiyavay from the origin [7].
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FIGURE 19. the packet loss measurementsfor 30000 packets of 320 bytes sent every 40 ms between the INRIA
(France) and the UCL (United Kingdom) by courtesy of Jean-Chrysostome Bolot

Several measurements done by the author and Hartmut Chodura are to presente nsed
a small ping tool written by Hartmut that alls to send UDP datagrams of eligible size at some
eligible clock rate from one host to the oth@en the receing side the arval of the packts is
obsered and the occurrence of pathkoss is recorded.

An intercontinental test series from the Fraunhddistitut fur Graphische Dateararbeitung at
Darmstadt/German(FhG) to the International Computer Science Institute atdbgrkJSA
(ICSI) confirmed the results of Bolot and Garcia. At 3 pm PWT 14894 UDRefsack 400
bytes were sent with a 40 ms clock raterothis link. On the whole 583 pagis were lost
resulting into an\erage loss rate of 0.04. The aglént plots of this measurement (fig@@
show that the frequencdistribution of the number of consectgly lost packts is similar to
that described alve, even though the relatte amount of lost paeits was more than fertimes
smaller

To investicate the influence the sending clock rate hastds packt loss the same measure-
ments (figur€l on page®6) have been tagn with a packt size and a clock rate both reduced
by the fictor 4. Vith UDP paclets of 100 bytes senvery 10 ms the resulting bandwidth is
identical to the one from the last test run. Of course the number of transmittetspaitkin
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FIGURE 20. thepacket loss measurements for 14894 packets of 400 bytes sent every 40 ms between the FhG
(Germany) and the I CSI (United States)

the same time period is four times higherom a total of 59599 sent pa&t& 3567 did not
arrive at the receer which equals arnvarage loss rate of 0.06. No doubt - this number alone
does not aller ary statements whether more small patskat a higher clock rateveaa smaller
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FIGURE 21. the packet loss measurements for 59599 packets of 100 bytes sent every 10 ms between the FhG
(Germany) and the ICSl (United States)
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throughput of data than less bigger petskat a laver clock rate. W did quite a couple of tests
not only oser the intercontinental link between the FhG and the IQBalso within the United
States from the Center for Research in Computer Graphics (CRCG)vidd?ree at the East
coast to the ICSI on the st coast. Although it could not be proofed it seemed as i sraall
paclets performed wse than feer big packts in respect to amount of data per time. Other
researchers share this opinion and talk about thepaaet rather than size-of-pagknetvork
penalty for small paaks’ [19]. More &actly this should mean that for p&t& belav the frag-
mentation size (remember that one UDP datagram may be fragmentedveral #e data-
grams) the number of paets has a much bigger impaciverds the paak loss probability
than the paalt size. Thinking about the increased I@den and the raised protocelenhead
for mary small packts, these statements/baa rational foundation.
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Scenarios

In the folloving we briefly introduce the &y existing applications are already using the Inter-
net to establish audio communication. Oncaimgve point out wir audio communicationver
heterogeneous and possibly lossy meks like the Internet still is a problem-child. Then we
present tw different approaches thatercome these problems.

The first section deals with thefefts of common transmission problems of the Internet on the
encoded audio stream and the standard solutions to cope with them.xTlh@aeections
introduce tvo very different transmission schemes that master theanktiwnitations by add-

ing redundangto the audio encoding. Whereas the first of this transmission schemesrkan w
with corventional audio encodings, the other requires theldpment of a completely ne
audio codec.

1 Simpletransmission

A simple audio application processes the audio signal with a common audio codec, groups the
code vords into packts of a fied size and sends them immediatelgrahe netwrk. On the
receving side arwing audio packts are decoded and fed into the audioageright avay. How

paclet loss and jitter in paek arrval times afect the receted audio signal is depicted graphi-

cally in figure22. Bandwidth limitations der@de the transmission in form of additional patck

loss, so that it results into the same outconmedikdinary pacét loss.

time intenal encoded into each patk

~® |~ paclet containing
encoded audio sign

Internet
paclet loss
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|M<j_\4\~j_”\/ \ "j—”% % "j—’“ﬂ—”\/ %
pacletizing t\ issi jit loss of audio \
i ransmission ii
delay (fixed) delay arying) Jitter signal jitter

FIGURE 22. simpleaudio application affected by packet loss, jitter and delay

The audio quality stérs heaily from interruptions in the audio signal. é\vill introduce
methods that fight the interruption through jitter and that turn the interruption througét pack
loss into a dgradation in audio quality
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Fighting the transmission jitter. At the recering side the paeks do not arve in uniform
time intenals. Consequently the reger must introduce an artificiainooth out delay to repair

time intenal encoded into each pastk o
s(t) audio signal

~ /

e | [e | [>® | — paclet containing
encoded audio signal

Internet
s(t)

recever t
pacletizing \ smooth out \ .
delay (fied) transmission delay loss of audio
delay (\arying) signal

FIGURE 23. fighting the transmission jitter using a smooth out delay

the netvork eflects. This enables the sample play-out to retain without interruptions. If the
maximum end-to-end delag,,,, between the source and a destination isvkmadhen it is
enough to delay the play-out time ekey paclet by an amount such that all patkare played
backd,,, after thg have been sent by the source wéwer, the \alue ofd ., is not knavn in
adwance for netwrks such as the Internet.

For interactve audio the necessary smooth out delgy, can become too lge. The goal then
becomes that of delaying the play-out time by an amount such that mostsphak been
receved before their scheduled play-back time. The smooth out delay may be set too high -
leading to unnecessary delay - or to loleading to losses due to late aafs - if the delay and
jitter processes in the netvk are not well understood [4]. A rough estimate of the reconstruc-
tion delay required to smooth out patlarrival times is tw paclets worth in ms, although the
true \alue can be substantially in@ess of this rule of thumb [19]. packetizing delay equal to

the size of one paek is incurred at the transmittesince the samples for a pathhae to be
collected before the pagkcan be sent. Therefore a minimum of three g@igokorth of delay is
incurred on an end-to-end basis, beforetthesmission delay of the netwark has been tah

into account. In figur@3 this mechanism is depicted graphicalize introduced smooth out
delay will be enough to reca most of the paédts in time, bt some will alvays arnve too late

to be played back and can be considered lost.

For broadcast applications jitter in patkarrval times does not impose a majarrden. A
smooth out delay of geral seconds can be introduced to assure tieat late packts arrve in

time to be played back.

max

Fighting the packet loss.Evidence from rgular users of audio applicationgeo the Internet
indicates that mediocre audio quality is essentially dugdessve paclet losses. This mak it
important to implement an fefient loss receery mechanism. Repair methods for petdioss
can be either recar-only techniques or combined channel and source techniquesvétecei
only techniques are those that try to reconstruct the missymgese: of the audio signal solely
at the receter. Combined source and channel techniques are those that try éatmakystem
robust to loss by either arranging for the transmitter to code the audio signal in saglas o
be rolust to packt loss, and/or by transmitting redundant information about the signal. These
techniques generally shasignificant impreement eer recever only techniques [19]. The tw
transmission schemes that will be introduced in the lastseetions of this chapter are com-
bined source and channel techniques.
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Recever-only techniques construct a suitabte

dummy packt for each lost paek, so that the /\/\ AN /\/\ AN A

loss is as imperceptible as possible. v&mm | @) v,
tional methods use either silence, white nojse VIV VY

lost encoding replaced

or the last correctly recsd packt as a sub- with silence
stitution for lost packts like depicted in 0 NA A /7N S N\ N
figure24. Silence substitution is afored YRRV VY
because it is simple to implemenytoise o oroaing replaced

substitution and paek repetition hae shovn /
a subjectte improvement e@er this method| © vﬂvﬂvﬂvgmwmww%@
[46] However, these mechanismsif when lost encoding replaced

with last receied paclet

paclet sizes are lge and/or the loss rate is

high.Amqre detailedmlanatiqn of receer 0 /\/\ N N\ \/\ NN
only techniques can be found in [18]. VR'RAVANY/ANY/ARVARY

A loss receery scheme using combinedgure 24. (a) original signal, (b) silence

source and channel techniques is requiregsipstitution, (c) noise substitution, (d) packet repetition
the number of lost audio pasts is higher than

tolerated by the listener at the destination. Lossvesgois typically achieed in one of tw

ways. Wth closed loop mechanisms such as Automatic Repeat Request (ARQ) mechanisms,
paclets not receed at the destination are retransmittedthVdpen loop mechanisms such as
Forward Error Correction (FEC) mechanisms, redundant information is transmitted along with
the original information so that lost original data can bewexsal from the redundant informa-

tion.

ARQ mechanisms are generally not acceptable for real-time audio applications because the
increase the end-to-end latgnEEC is an attracte alternatre to ARQ for preiding reliability

without increasing latenc[2]. However, the potential of FEC mechanisms to nemofrom

losses depends crucially on the characteristics of theepluds process in the nai. FEC
mechanisms are moref@ftive when lost paeits are dispersed throughout the stream of pack-
ets sent from a source to a destination [7]. Thus, it is importantatoage the correlation
between succes& paclet losses, or equalently the distribition of the number of consecu-
tively lost packts. The measurements of peckoss that we ve@ done earlier indicate that

FEC methods are particularly well suited for audio applicatioss the Internet.

2 Piggyback protected transmission

In this chapter we introduce aiward Error Correction scheme (FEC) thatsadeeloped in

the ESPRIT projects ‘Multimedia Irgeated Conferencing for European Researchers’ (MICE)
[30] an European funded project at the \é@nsity College London and ‘Remote Language
Teaching for SupeANET’ (ReLaTe) [37]. The mechanismasg implemented in the Rost

Audio Tool (RAT) [36] written by Micky Hardman and Isidor &uwvelas from the department of
computer science at the Warsity Collgge London. The project MICE ended in September
1995 lut the nev project ‘Multimedia European Research Conferencingyhateon’ (MERCI)

[29] started in December 1995 with the aim of continuing the research themes of MICE. An
almost parallel deelopment that incorporates a retouchedsion of the samedfwvard Error
Correction scheme is Free Phone [16]. Free Phone is an audio conferencing tool for the Internet
designed by members of the High-Speed Métimg group at INRIA. Andrés &ja-Garcia
wrote the core code of Free Phone whias\irst released in April 1996 as a part of his Ph.D.
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thesis supervised by Jean Bolot. Therkvon Free Phone has been carried out within the
MERCI project.

When askd hav we should refer to this FEC scheme, Jean Bolot said ,| refer to the FEC
scheme as ‘the MICE FEC scheme*' because weloeed it within the MICE project (of
which INRIA and UCL are part). | guess you could you refer to it as a piggybacking FEC
scheme.“. W decided to call it ‘piggyback protected transmission’.

Many FEC mechanisms proposed in the literatuvelire exclusive-OR operations. The idea is
to send eery nth paclet a redundant paekobtained by>xlusive-ORing the othen paclets
[39]. This mechanism can reer from a single loss within a series of paclets, lut it
increases the sending rate of the source lagt@ifof1/n, and it adds lategcsincen paclets
have to be receied before the lost paekcan be reconstructed.

The approach deloped by the MICE researchers is a rather simple scheme. The idea is to
append the most important information ks audio paokt piggybackd to the follaving

paclet. In case a paekwas lost a lav resolution ersion can be reconstructed as soon as the
next paclet arrves. In other wrds with @ery paclet n a redundantersion of the pnaous

paclet n—1 is sent. When audio is transmitted using an PCM or an ADPCM encoding, the
redundant &rsion is typically obtained with aviobit rate codec such as LPC or GSM. This
mechanism can reeer from isolated paek losses. If paek n is lost, the destinationaits for

paclet n+ 1, decodes the redundant information and sends the reconstructed samples to the
audio driver. This mechanism is only feasible because ofdbenstruction delay introduced at

the recearing side as depicted in figug®. Then the audio output consists of a mixture of PCM,
LPC, GSM or ADPCM coded speech. The subyectjuality of this reconstructed speech has
been carefully waluated within the MICE project at the UCL. The resultsastitat the audio
guality as measured by intelligibility hardly decreases as the loss rate reaches80When a

s(t) time intenal 0 time intenal 1 time intenal 2 time intenal 3 time intenal 4 audio signal
A o A A A A AT AL

oo
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~e oo
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I~ oo ~_ paclet containing encoding of

3 3| 4 audio signal for time inteat 4
and redundarnycof audio signal
paclet loss paclet loss for time intenal 3

r———n

“ I R A N = O N D
o, - 122
T /N 0 ) /\/m% e

| - -l \/ -} \/ ; —
~— A~~~ " imeinteral 0 time intenal T—__time intenal 2 time intenal 3
pacletizing reconstruction
delay delay

X A using the redundangvsion for
FIGURE 25. the RAT approach - every packet includes a redundant version play-back because of pagtkoss

of the previous onefor the caseit islost during transmission

relatively low quality LPC coder is used to obtain the redundant information. LPC esya v
CPU-intenste coding algorithm. Hweever, it adds ery little overhead to wery audio pacét.
The used LPC codec increased the bandwidth by only 4.8 kbps. But this approacisipb
fails if paclet losses areunsty and consecwi paclets are lost.

Even though most loss periodsvaive one pacst it is important to reaer from multiple
losses. This is intuitely clear since longer loss periodvéa lager impact on the audio qual-

ity than shorter periods do. Bolot has found in [7] that in high loss and high load situations, the
most important task of an audio tool is to dedidecent quality audio to the destination. Thus,
the approach is to increase the amount of reduydzantied in each paek Faced with con-
secutve losses of tew or more paadts it is immediate toxéend the preious approach by add-
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ing to every paclet n not only a redundantevsion of the pngous packt n—1 but also
redundant grsions of other pugous paclkts as depicted in figug6. As redundant information

time intenal 0 time intenal 1 time intenal 2 time intenal 3 time intenal 4 audio signal

s(t)T _—
A LA WA O\ B4 \/ v
oeofe [o[ere [~ |99 SabdI Sabd b ~~_ Paclet containing encoding of
0 ol 1 0|1 2 0|1{2] 3 1(2|3] 4 audio signal for time inteal 4
and redundarycof audio signal
pacl;st loss for time intenals 1, 2 and 3
olofe] e [orelel o ! lo’ej0 @ | lerem a7 ele]
— I I I I
s(t)T 0 Lo 1) ol 2 joitl2) 3] I 3\4§%\/
AN A K
W N N < = Lt yam .
e time intenal 0 time intenal 1 time intenal 2|
pacletizing reconstruction
delay delay

. using the redundangvsions of one paek copes
FIGURE 26. an extended RAT approach - every packet includes with the loss of three conseatipaclets

redundant versions of several previous packets

of every paclet n we use LPC, GSM or ADPCM codeérgions of the paegtsn—1, n—2
andn-—3. Even though this scheme can reconstruct three congeqatclet losses one has to
obsenre the hugeeconstruction delay that needs to be introduced at the néogiside. In case

the redundant information of paatkn includes packt n—i, the reconstruction delay istimes

the length of a pa@k. In other wrds the receing side must delay the play-out of path —i

until paclet n arrived. Otherwise the redundant information about pak-i carried within

packet n would arrive too late to reconstruct the lost peick—i .

There are dferent combinations to attach redundaatsions of preious packts to a current
paclet, kut clearly adding more redundant information increases the CPU usage and the band-
width requirements. W follow the notation used by Bolot andgé Garcia in [7] and use
throughout the rest of the paper (coding algorithm, redundant algorjphto(ndicate that the
audio packt n includes as redundant information pack —i encoded with the appropriate
coding algorithm. Possible combinations of main and redundant information associated with
CPU costs, bandwidth requirements and delay are listed in3aBk expected adding redun-

combination relative CPU cost delay bandwidth
(PCM) 1 1 64 kbps
(PCM, GSM(1)) 1201 2 77 kbps
(PCM, LPC(1)) 111 2 69 kbps
(ADPCM4, LPC(1)) 121 2 37 kbps
(ADPCM4, LPC(1), LPC(2)) 121 3 42 kbps
(ADPCM4, LPC(1), LPC(3)) 121 4 42 kbps
(ADPCM4, LPC(1), LPC(2), LPC(3)) 121 4 A7 kbps

TABLE 3. relative CPU cost and bandwidth requirements of various coders

dant information increases the CPU costs, the bandwidth requirements and thevdelate
that the last f&@ combinations in the table are clearlyedkills if the netvork load is lev and
paclet losses are rare occurrences. Mechanisms that adjust the amount of redaddadat

the source based on the loss process in theonle® measured at the destination are required.
Such mechanisms are described in [7] anck teeen successful implemented in [16].

We want to tale a closer look on the redundant information that is addegety sent packt in
the approach of Bolot and his research teamr. iAstance the encoding combination
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(ADPCM4, LPC(1), LPC(2), LPC(3)) - which can cope with the loss of three consepaitk-

ets - transmits a lot akdundant redundancy in case only one paekis lost. Suppose pagtn

is lost, then we can either use the redundargion included in pagtn+ 1, or the one from
paclet n+ 2 or else we choose the one in petak+ 3. Three timesxactly the same redun-
dant information about the lost p&thk is receved. This is what &as meant withredundant
redundang. One cop would hare been sticient - receting the same redundanension of
paclet n three times does not impr@the audio quality of its play-back. Only one g@pused

to reconstruct the lost pagkat a lav audio quality while the other tw copies are simply dis-
carded. Our idea is straight faavd. The added redundanshould be made less redundant so
that recering more than one redundarersion of pac&t n increases the quality of the recon-
struction. Suppose we receithe packtsn+1, n+2 andn+ 3, each of them carrying a
redundant grsion of packt n. It is desirable to combine the three redundancies in order to get
a reconstruction of better qualifijhe same holds when redgeg only pacletn+ 1 and packt

n+ 3. Then we use the redundant information af fvaclets to reconstruct the lost patk.

The standard audio codecs enygld by Bolot and ®ja-Garcia do not qualify for this
approach. These encoding schemeskveither with the complete encoding information or not
at all. What is needed is a codec thatvedldhe reconstruction of the audio signal independent
from the receied amount of encoding information. The quality of the reconstructed signal
should increase when more encoding informatiowaslable. Such an audio encoding scheme
is presented in chapt¥i.

Considering the ter scenarios broadcasting and full dxptsmmunication the transmission
scheme introduced here is designed for the lditerder to kep the imposed end-to-end delay

as minimal as possiblaifures in case ofursty losses are accepted. This ssmkense for time

critical communication Wt for broadcast application the end-to-end delay is not a constraint at
all. In such a scenario we can spent much more time on collection, processing and protection of
the audio signal. Then it is possible to spread the encoding informagoa tager number of
paclets so thatven frequent consecué paclet losses do notfafct the continuous reconstruc-

tion of the audio signal.

3 Priority encoded transmission

The work done by the author looks into emyltg a diferent Forward Error Correction
scheme to protect the audio signahiagt the impact of paek loss. V@ want to compare this
approach with the one of the MICE researchers aathame the adantages and disadrtages
of both schemes in dérent scenarios.

A novel approach named Priority Encodingaiismission (PET) recently proposed in [1] and
described briefly in [26] is anfefient Forward Error Correction scheme (FEC) thatyides a
general and fleble method to cope with paekloss. It has been designed for real-time data
streams that consist ofvaral parts with dierent importance. The user has the ability to assign
different loss probabilities to each parts of the data stream. Then PET protects these parts with
the appropriate redundanand thus guarantees, that the more important pans &efore the

less important ones. The PET mechanism digie all parts of the data stream together with
the added redundaynover a certain number paets. The recging side is able to reger the
transmitted information in priority ordebased on the number of patk receied. This vay
paclet loss at first &kcts the less important parts of the data stream yielding into a graceful
degradation of its quality

It is immediate that the data streams accomplished by t¢ingaFd Error Correction scheme
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needs to hae the follaving characteristics: The data stream must be layered ay ahat some
layers are more important than others. The data stream must retalueffor the receer
even if not all layers do ané. Consequently the layers with thevésst importance are the first
to be lost with wrsening netwrk conditions.

Another important feature of PET is to alldoroadcasting in heterogeneous ratsg and to
recevers with widely diferent capabilities. This isevy suitable for multicast applications
where information is sent through a lossy media to multiplevexsewith \astly diferent pro-
cessing paers and storage capabilities which are connected with widelyng bandwidth
capacities. E&n users with minimal resources or in congested parts of thenketl be able
to recwver basic information, whereas users with high bandwidth connections gacctan-
puting resources will obtain high quality data.

The first step when using Prior=
ity Encoding Tansmission is sgmentl segment 2 segment 3
-

partitioning the data that need message T T I NN
to be transmitted. These pof-
tions are the basic units called overhead\\ / /
messages, which are encoded ([ T

one at a time. A message then ([

is split into sgments which ar
dispersed using erasure codeSpaclets

priority of sggment 1: 0.50
priority of sggment 2: 0.66

([ e priority of sgment 3: 0.83

[27] into a certain number o [T T
paclets as depicted i (1 I
flgure27. D:l:l:-

This message striping Process, - oc > petm
respects the user assigned pw

ority for each sgment. The
given priority \alue equals the fraction of patk from a message that is needed tovercthe
respectre sgment. Rgarding the preious example in figure27 sgment 1 can be reeered
from ary of three packts from the total of six paeks. Although the ggment 1 encompasses
only around 11.54 % of the total message utecs a sixth of the encoding. Sinceyahree
paclets are already dudient to recoer sgment 1, the werall overhead sent for genent 1 is

essage striping process

segment  fraction of message priority fraction of encoding® redundancy added packets needed

1 11.54 % 0.50 16.66 % 100 % 30f6
2 30.77 % 0.66 33.33% 50 % 4 0f 6
3 57.69 % 0.83 50.00 % 20 % 50f6

TABLE 4. PET information distribution
a. not including the eerhead of PET

100%. The correspondinges for the other genents are listed in tab#ein priority order
The total encoding length adds up to 138.46 % of the original message, not includivgrthe o
head of PET

Due to lursty losses good quality video transmission with MPE& tossy netwrks like the
Internet vas impractical. This forced the data communication industry to broadcast video using
motion JPEG, which requiresvazal times the transmission rate of MPEG. eksion of PET
was applied to the transmission of MPEG videerdhe Internet. In typicakamples there as
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a dramatic impreement of picture quality in the presence of losses when RiSTused, \een
though the werall data sent as increased by only 20%ex the original length [26].
Implemented in the framerk of VIC, a video conferencing tool, each group of pictures
(GOP) of the MPEG encodingas mapped on one message. The messagas@mented into
GOP headetthe I-frames, the P-frames and the B-frames. The priority for egohese vas
decreasing in this ordeso that in case of pagkloss the B- and P-frames were lost first. The
dependencies among f@ifent types of frames directly pided a somehat natural priority
scheme for PETFor a detailed description of this approach see [27].

Employing PET for an impreement in the transmission of audio datardossy netwrks is a
major issue of this papdrooking through the common audio codecs introduced earlier there is
not one that afhow would provide a natural layering as it is needed fagrsenting the audio
information. These codecs do not yide a graceful dgradation of audio quality when less
than the complete original codification ia#dable. A significant part of theaxk done by the
author vas to deelop a layered audio encoding scheme that is suited to be protected.by PET

Again we consider the case of broadcast and full dugdexmunication. Somexample calcu-
lations will shav that the PET approach is only limited qualified to protect time critical real-
time audio communication.

Let us assume a pastkzing delay of 64ns would be still acceptable. This roughly equals the
delay that is introduced by the piggyback protected transmission scheme avitedundant
paclets at a paak size of 20ns. Let us furthermore assuman layered audio encoding
scheme with three layers and arer@age bit rate of 4kbps. The bottom most layer with a bit
rate of 9kbps should be protected with 50% priaritiye net layer with a bit rate of 1Bbps
should be protected with 80% priority and the last layer of the same bit rate remains unpro-
tected. The bit rate of the protected audio stream is approximat&lyp8Qvithout adding the
PET overhead. Then 480 bytes of audio information and redugdactumulate within 64ns

for one PET message, which we may spreaat six packts. Then we may lose one patk
while still receving the second layer and up to three pg€kor leeping the bottom most layer
This might look promising Uit a closer imestigation and a comparison to the RApproach
(ADPCM, LPC(1), LPC(2)) with the same delay and wdp bit rate shas some disadn-
tages. The piggybacking scheme sends threeepmdt 168 bytes while the PET approach
sends six paaks of 80 bytes. The piggybacking scheme can loseotw of the three paeks
without an interrupt in the audio signal, the PET approach can lose three out of six. Because of
the ‘perpaclet rather than size-of-pagknetvork penalty for small paeks’ - see “Bcket loss
statistics” on page5 - they are more likly to be lost. Furthermore the PET algorithm is rather
comple and has not been designed to deal with @imosf such a small size, according to Prof.
Michael Luby who is one of the wrentors of PET

The big adantage of PET\er other Brward Error Correction schemes becomes visible in the
broadcast scenario. There we are able to collect almost arbitrary much data for a PET message
so that the striping mechanism can produce a big number dftpanfka reasonable size. Sup-

pose we aller a delay of fie seconds and use the same coder and the sameutictriif pri-

orities as before. Then the data for one PET message accumulates to roughly 38000 bytes
which may be striped into 76 patk of 500 bytes. As long as not more than half of them are

lost a reconstruction of the audio signal atva duality is possible. &1 this calculation we may

lose as manas 15 out of the total of 76 pastk and still be able to reconstruct the audio signal
from two layers of the encoding.

1. This layered audio encoding scheme is presented in chépfEne bit rate used in thisxample calculation
has a realistic foundation. Theagtly achieed \alues are gen on pag®0.
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Time-freguency analysis

This chapter is meant to piide the reader with a theoretical kvledge bgond of what is
actually needed to understand the concepts farstadudio transmission. As mentioned earlier

a major part of the wrk done by the authoras to deelop an audio encoding scheme with the
necessary properties to allgraceful dgradation of quality in the presence of loss of the cod-
ification. Here we present the mathematical background ftarelift possible representations

of audio signals in the time-frequgnplane. The discrete case vhmey an audio signal repre-
sented by sampleectors ofn values - is of specific interest for us. The appendix contains a
short tutorial on linear algebra for those who are aatiliar with the concepts of aegtor
space.

It may be noted that the standard audio codecs introduced earlier represent an audio signal
directly in the time domain and/or compress it within the time domain using prediction meth-
ods.

1 Continuoussignals

In signal processing one deals with what is both result and measuremenysicalgrocess -

a signal. A signal as it is usually measured, describes a process through a continuously in time
varying \alue h. Therefore a signal is simply a functibiit) of time. Then this functiom(t)
describes the pisical process in thiéme domain. The same process can be specified iffirtae

guency domain by gwing its amplitudeH (generally a complenumber indicating the phase

also) as a function of frequen€, that isH(f) . For mary purposes it is useful to think bft)

and H(f) as being tw representations of the same function. One goes back andrdorw
between these twrepresentations by means of tloeifer transform equations:

H(f) = J'_O;h(t)esztdt h(t) = LZH(f)e—sztdf

Adapting the concept of a&etor space from linear algebra the sigm@) can be seen as act

tor of the infinite dimensionalector space of all square igtable functiond,(R). There are
numerous dierent bases for thesetor space.,(R) and thus eery signalh(t) can be repre-
sented by a coordinateestor (h(t))g relatve to some basi8. The Furier transform goes

back and fonard between the absolute time localized standard basis and the absolute fre-
queny localized Burier basis. Of course the coordinagetor (h(t))g has an infinite number

of coeficients which taks avay its practical use for most applications. But it should be men-
tioned that a coordinatesgtor (h(t))g - an infinite tupel of real numbers - can be treatesldik
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vector of the infinite gctor spaceR . It is immediate thatwery signalh(t) can be eactly
approximated by aector of R”

2 Discretesignals

In digital signal processing it is not possible torkwith continuous signals. Therefore a time
continuous signah(t) is first band-limited and then sampled igukar time stepdt. In the-
ory sampling is done by a calution of the signah(t) with a so called dirac impul¥t) . A
dirac distrilution is defined as:

(oo for t=0 _ . o
5t = 0. _ with the characteristic [~ 8(t)dt = 1
10 otherwise —oo

The sample alue of the signah(t) at the moment, is calculated with:

h(t) = I:o h(t)3(t -t )t

This results into a sampled sigrgk,) wheret, = kAt for k = —, ..., 0. This is an infinite
and steady stream of discrete samm&uesh, = h(t,) that represent the original signal.
When the time stepAt are small enough, so that the sampling frequeinc= 1/At is twice

the highest frequegoof the signalh(t), then the samplealuesh, completely determine the
signal.

In most cases subsequent processing of the signal uses discrete transformations. Since discrete
transformations wrk on a finite number of samples, the steady stream of discrete sahple v
uesh, with kK = —o, ..., 00 is chopped up into inteals of n samples with a time duration of

T = nAt. This sgmentation of the sampled sigrigl,) results into sequencgb,) from h,

to h,_, of n samples that represent the sigh@él) within the corresponding time intev
The xample in figure28 depicts the whole process graphically

For subsequent transformations it is useful to treat the seqhgntoeh,,_, of n samples - a
finite tupel of real numbers - as actor h of the finiten-dimensional ector spaceR . The
corresponding coordinateetor (h)s = h addresses thegment of the signal in respect to the
absolutely time localized standard baSisThe &pression ‘absolute time localized® should be
intuitively clear Each codfcient of the coordinateector (h)s addresses a certain samp|e
through the corresponding basectore, from the basisS. Each sampld, describes the sig-
nal h(t) at a distinct - absolute localized - moment in time. The basi®rse, of the basisS
correspond to dirac impulségt —t,) wheret, is the moment the samplig was talen.

The connection between a signal approximatea [sample alues and aactor of the ector
spaceR” is immediate. Generally speakingyasignalh(t) of L,(R) that is represented by
sample alues can be treated asnadimensional ector Therefore then-dimensional ector
spaceRn contains all signal representations witlsamples.
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Example: A continuous signal is
sampled in regular time steps At
resulting into a sampled signal h(t,) - /
an endless stream of discrete sample
values h, = h(t,)
A sequence (h,) of 16 sample values
hO to h15 represents the continuous t
signal h(t) within the corresponding u
time interval of length T = 16At. signal sampled
The 16 sample values hy to h;g of Gapgular e
the time continuous signal h(t) can y
be treated as the coefficients of a vec-

UL

h(t)

signal

tor h of the finite vector space R .
The identical coordinate vector | +-+4 1| G
(h)s = h addresses the segment of l
the signal in respect to the absolutely (hy) h

time localized standard basis S. The
basis vectors €, to €5 correspond to
the dirac functions O(t—ty) to o A
O(t—t;5) where t, is the moment 13
sample hy was taken.

hia his
e
h‘5h hg ’

Each of then sample alues describgs.thleg'cGorﬁ’tﬁE 28 gtgr‘faﬁ”oce’fo} sampling and segmenting
signal at a specific moment of infinite

short duration in time. A single sample directly corresponds to a specific dirac impulse. The
basis ectorse, of the basisS that are addressed by thesample alues act as a set afiluling

blocks that approximate the signal. The time localization of thatny blocks is still infinite

short. For a withn points uniformly sampled signal it medk sense to widen the time localiza-
tion of the lilding blocks up to the duratioAt of one sampling step. The duratidy
becomes the unit of length for the representation of the sampled signal. Threbdbis ec-

tors &, cover the represented sampling in@&r™ with the thinnest patches alNed by the
duration of the sampling steps. Furthermore the width of the visible andnef®ortion of the

time plane becomes times the unit of length and thereforenisin figure29 this shall become
more clear

Example: The function h(t) from the T - 16At = 16unis

last example was represented by 16 thy) —m—m————— =
sample values. The illustration of the
basis vectors €, of the vector space
R16 is widened to building blocks of
the time duration At. Then we use
blocks rathe[ than impulses to illustrate L —H_l t
the vector h or the sequence (hy) At =1 unit

graphically.

FIGURE 29. Thetimeduration of one sampling step
becomesthe unit length of the representation.
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The time-frequencplane

3 Thetime-frequency plane

A signal can be represented either in the time domain;or
in the frequeng domain, or else soméere in between
in the time-frequencdomain. Whether a representation | —
is localized in time, in frequeg©r in both time and fre
gueng, depends on whichuidding blocks the represen
tation uses to describe the signal. Thas&limg blocks
called time-frequency atoms @(t) are functions which
act as the basis functions for the respectepresenta- 3 ,
tion. The idealized time-frequenglane illustrates the .}ﬁ?ﬁ:&hﬂ“ﬂ?
properties time and frequgnof the time-frequenc

atoms. A basis function is represented by a rectangle it
this plane with its sides parallel to the time and fre-
gueng axis. Lets call such a rectangle iaformation
cell. The range in time and the frequgrovered by the

time-frequeng atoms corresponds to the sides of the ,—I—l d

cell. These time and the frequgnmeasurements con . ,_\_17
tain uncertainty and Heisenlgés inequality preents us E';H;Eﬁl'aﬁgf”ma“o” cellsin thetime-
from making the product of the uncertainties smaller

than a fixed constant [21]. The total signalvper defined as

uncertainty
in time
ITRemn

frequeny

A

time

—
E|¢—>|

total power = J’oo @(t)2dt

of each hilding block is encoded by the darkness of the rectangles ddierplots of three
arbitrary orthogonal basis functions arevadnaschematically at the bottom of figud@. The
location of these time-frequen@atoms in the time-frequenglane is illustrated in the graph
above. The two at the left hae small time uncertaintyub big frequeng uncertainty The wider
waveform at the right has smaller frequgnmcertainty so its information cell is not so tall as
the ones for the namaer waveforms. It also contains more eggrso its cell is dase than the
preceding tw. A family of time-frequeng atoms that completely gers the time-frequegc
plane is a basis for representiny argnal ofL,(R) . An orthogonal basis is depicted as aero
of disjoint rectangles in this idealization.

Since we only deal with signals of finitely nygpooints, we can construct a finitergion of the
time-frequeng plane. If the signal is uniformly sampled ratpoints and we takthe unit of
length to be one sampling step, then the width of the visible andme¢lgortion of the time-
frequeng plane isn. A sequencéc,,) of n values spans the sampled sighgt,) with a par-
ticular family of n time-frequeng atomsq,,(t) with:

n-1

h(t,) = Z Crn®m(ty) for O<k<n
m=20

In case thedmily of n time-frequeng atomsq,,(t) corresponds to the dirac impulses that
were used to sample the signal, the sequgnge that spans the sampled signal equals the
sequencégh,) of n taken samples.

It may be noted that for discrete signals samplenl points the time-frequegcatomsq,,(t)

are also no continuous functionst Bpproximating sequences,, ,) or vectorsg,, with n val-

ues.
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Time-frequenyg analysis

The representation of a signal that fis
obtained by sampling in uniform tim
steps is absolutely localized in time. The
basis functions or the time-frequen
atoms of this representation Vea the
same time-frequenc characteristics a
the corresponding dirac impulses.
dirac impulse is absolutely time localized
and has absolutely no localization in fre- time time

queng. This basis is called the stand IGURE 31. The standard basis (left) and the Gurier basis
basis. right) tile a finite version of the time-frequency plane.
The Fourier basis on the other hand has optimal frequésealization, it no time localiza-
tion. The dirac basis and theWier basis ceer the time-frequencplane by the thinnest
patches allved by the sampling steps as depicted in fi@dreBoth bases are orthogonal and
the information cells of their time-frequgnatoms are a disjunct wer of the finite time-fre-
queny plane. The total signal per of a time-frequencatom@,(t) is calculated - since we
are in the discrete domain - with

frequeny
frequeny

n-1

total power = Z (przn, K
k=0

where @, is the respeate \alue of @.,(t) at the moment, . If the total paver is 1 for all
building blocks@,(t) the corresponding basis is normalized.

The wavelet theory in the né chapter introduces nefamilies of time-frequencatoms that
are also orthogonal tilings of the time-frequeptane with a dferent localization in time and
frequeng.
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Wavelets

This chapter presents themelet theory folleving the chronological order of its wkdopment
during the last thirty years. The emphasis that is put on the discrete case results famh the f
that later the introducedawelet transforms are applied to discrete signal representations.

1 Thewavelet transform

Some ‘ery good introductions into theamelet transform are gén in [17], [41] and [45]. In
this literature the continuousamelet transform is usually introduced firstitlove want to con-
centrate on the definitions for the discretavalet transform. & repeat the definition of the
Fourier transform for a quick comparison of thetiransforms.

1.1 Thediscrete wavelet transform

The discrete avelet transform (WWT) transforms a function from the time domain, where the
basis ectors correspond to dirac impulEx) to the time-frequercdomain, where the basis
vectors are dilations and translations of a mother scaling fungfion and a mother avelet

Y(x) yielding into a hierarchically decomposition that describes a function in terms of coarse
approximation and detail information ranging from broad to mafi®].

Thewavelet basis. The DT uses a set of scaling functiorp]?,’ «(X) and a set of avelets
W, «(X) as an orthogonal basis for representing other functions. Each scaling fup]gg(oq)

is a dilated and translated@rgion of a mother scaling functigp{x) and respecte each \ave-

let ;. «(X) is ais dilated and translatedrsion of a mother awelet y(x) . The scaling func-
tion and the \avelet are functions that satisfy certain requirements. These requirements assure
that the set of dilations and translations of the mother scaling fungfionand the mother
wavelet (x) define an orthogonal basis. The namavelet’ comes from the requirement that
it should intgrate to zero - aing abwe and bela the x-axis.

The choice of the mother scaling functigx) and the mother awelet P(x) determines a
wavelet basis. Therefore the attiibs of a vavelet basis depend on the atiriés of the corre-
sponding mother functions. These atitds are localization in time, localization in frequgnc
degree of smoothness, compact support, symmetry and the numlagisifiag moments [25].
Probably the most important characteristic is that scaling functions aredete are simulta-
neously localized in time and in frequgnc
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The wavelet transform

1.2 Thediscrete Fourier transform

A function in the time domain, where the basesters correspond to the dirac functi@{s)

is transformed by the discretewier transform (DFT) into a function in the frequglomain,

where the basisectors are sines and cosines. The function can then be analyzed for its fre-
guengy content. The &urier coeficients of the transformed function represent the canttah

of each sine and cosine function at each frequenc

The Fourier basis. Sines and cosines of fifent frequencies are used by the DFT as an
orthogonal basis for representing other functions. The frequencies of basis functions are equal
distant distrilnted wer the representable spectrum. Thus each freguspmears as one basis
function which also can be phase shifted between 0 &nd 2

1.3 Thediscrete wavelet transform versusthediscrete Fourier transform

Both, the VT and the DFTtransform a function or a signat
from the representation in the time domain into éedkht
representation.d¥ the DV'T this nev domain contains basis ~_ *°
functions that are scaling functions andvelets. lor the, 3
DFT this nev domain contain basis functions that are sinegg
and cosines.
The similarity of both transforms is the frequgnacaliza-
tion of the basis functions in the domain transformed to] The 00 ——F——=—— 100 125
dissimilarity is that the functions of theavelet basis are 1, Coeficients
also localized in time, whereas the sine and cosine functibps
of the Fourier basis are not. ®
Sharp local transitions of the signal in the time domain resulg °°
in numerous high frequepcomponents in its DFT transfor- g 04
mation. This is because the sharp time localizedesgk  , A
modeled with smooth unlocalized sines and cosines| The
‘unlocalization* in time of each contuiting sines and %% 3 50 75100 125
cosines function produces changesrgwhere in the time 10

domain. Thus the durier transform of the signal does ) 0.8
corvey ary information about the localization in time of the § -
sharp transition. The dérent results obtained when apply- €
ing the DNVT and the DFT to a signal or a function with a
sharp irrgularity are illustrated in figur@2. Represented by o2
128 coeficients the top most plot depicts the signal in|the , A“Mnn/\mwwmn/\/\m
time domain. The plots beloshav the coeficients that rep 0 % Vericiems O
resent the same signal in respect toamelet basis and i, gure 32 asignal with a sharp
respect to thedurier basis. Both transformationsveabeenirregularity (a) transformed with the
normalized so that all basigstors hae a signal paer of 1/ PWT () and theDFT (c)

It is very nice to see that the complete signavgothat the original signal had in its sharp spik
is almost genly distrituted wer all coeficients of the Burier transform.

magni

0.4

1.4 Example

To get a sense fothe discrete avelet transform decomposes a function or a signal ieng v
helpful to follov a simple gample step by step.
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A function sampled with the eight

values 2, 6, 9, 7, 1, 3, 4 and 8 jis the standard bas the wavelet basiB
represented by the eutor 2% 4x
ua=(26,917134,8) of the 6x 1 8x
vector spaceR . The standard 9x ) 2 x —
basisS of R® is the collection of _ 7 x - _ 6 x —
unit vectorse, to &g, which corre- (@s{ 1 - (@8 (5. =

spond to the dirac functions 3x - 1x 3
o(t—t;) to d(t—tg) respectiely, 4 x | —1x =
wheret; is the moment sampla 8x - -2 T
\(/)\:casu t?rllenr.e;rggctcc;grc:;]neat:teac}]t g;r d the wavelet basiB' the wavelet basiB"
basis S is olviously identical 6x 1 5x 1 '
(s =(26,97,1,3,4,8). 4x L Ix—

The wavelet decomposition hapt _zz |—||_,,_| _iz'_| —
pens in seeral iterations. Esry |(U)g{ 5, — — (Mg { Hx —
iteration means an orthogonal 1% T 1x 1

basis transformation. 1% — 1x -
Summing and halving the entrigs —2x T —2x ——
of (O)s=(26,97134,8) | = | =
pairwise together results in thlegilfcfsel.rJeRrI]Et \?vs;i/eltgtebgasselg g(l:tényrzr?;tgg standard basis S and the tee

average codicients a; to a,
namely 4, 8, 2 and 6. The detail information thaisviost in this eraging process will be
stored in the detail cogfients.

Differenzing and halving the entries of thector (U)g pairwise together results in the detail
coeficientsd, tod, namely -2, 1, -1 and -2o§jether theserage codicientsa; and the detail
coeficients d; build the coordinate actor (0)g = (4,8, 2,6,-2,1,-1,-2) in respect to the
nev basisB. The old basisS and the n& basisB are depicted graphically in figugs. A
reconstruction of all the cdefientsu; of the original ector (0)g is done easilyThe first entry
u, of the \ector(0)g is calculated withu; = a; +d;, the second withi, = a, —d,, the third
with u; = a, +d,.

An interesting feature is a reconstruction that omits the detaifideats. This results in a
coarse approximation of the originaaotor at a laver resolution.

The full wavelet decomposition is aclwed by repeating the process of summing arféreinhz-
ing recursiely on the gerage codicients is depicted in figurg4. The ngt iteration splits the
coeficientsa,; to a, into the aerage codicientsaa; andaa, and the detail cobfientsad,
and ad,. The detail codicients d, to d, are lept yielding into another coordinateoctor
(U)g = (6,4,-2,-2,-2,1,-1,-2) regarding to another mebasisB'. A reconstruction that
uses onlyaa, andaa, produces anven coarser image of the originalotor

The final step decomposes theei@ge codicients aa; andaa, into one aerage codicient
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The wavelet transform

aaa; and one detail coifient aad;. This results in the final coordinateector

a reconstruction using only
(U)S = ( 2, 6, 9, 7, 1, 3, 4, 8 ) *If—" ﬂ the average codicients
e —— | /

N

a, a, ag a,| d; d, d; d,

(U)B = ( 41 8) 21 61 -21 1) _1) -2 ) I_'_| 1 I_I
/\ a reconstruction using onl
the detail codfcients

(Wg=(6, 4 -2, -2, -2, 1, -1, -2) |

3

) aaajjaad|
(Wg=(5 1, -2, -2, -2, 1, -1, -2)

FIGURE 34. thewavelet transform decomposing a function

(W)g = (51,-2,-2,-2,1,-1,-2) regarding to the basi8". The diferent bases of each
decomposition step are st in figure33.

The wavelet transform of the originalector (U)g is defined as thevarage codicients of the
lowest resolution and the detail cheknts in order of increasing resolution. Therefore the
coordinate ector (0)g. = (5,1,-2,-2,-2,1,-1,-2) is the vavelet transform of theeactor
(0)g. We better say thaft)g. is the full wavelet transform oft)g down to the bottom most
possible lgel of decomposition. The avelet decomposition can stop atyaesolution lgel.
The wavelet transform(t)g = (6,4,-2,-2,-2,1,-1,-2) omits the final step of the full
wavelet decomposition and theavelet transform(t)g = (4,8, 2,6,-2,1,-1,-2) applies
just one decomposition step to the originattor (U).

One vay to ‘compress’ the avelet representation
of the function by omitting the smallest chef M
cients beneath a certain threshold. This meqis. =(5,1,22,-2,1,-1,-2)| o
simply to set them to zero. This ‘compression’|is =l
lossy since the function reconstructed from the e deeaaed cdetents u
‘compressed’ avelet representation dfrs from | G2 2\%@ p
the original function. The higher the rate of com-° T 1
pression, meaning more cbeients are set t five discarded coBtients
zero, the bigger is the @#rence between th
original and the ‘compressed’ function. Thighg = (5.2, -X M2
trade-of is depicted graphically in figurgs.

~

FIGURE 35. Increasing wavelet compression

1.5 Themother scaling function ¢(x) and the aver age spaces Vv,

A discrete orthogonal multiresolution analysis (MRA) R is an increasing sequence of
closed subspacetéj of R" which approximateRn from coarse to fine.df the discrete MRA n
has to be a peer of two.

The following properties describe a discrete multiresolution analysis:
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1. voOv,0v,0..... 0 Viog,n
2. v(X) OV - V(2x) OV
3. v(x) DVJ- = Vv(2x-1) DVJ-+1

4. A mother scaling functiop(x) with a non @anishing intgral eists that is an orthonormal
basis forV,,.

Since(x) O V,0V; asequencéh,} exists such that the mother scaling functipix) sat-
isfies a refinement equation:

o(x) = ZZ h @(2x—k) 1)
The following equations can be proofed:

th =1 J’(p(x)dx =1

It is immediate that the functiong(2x) and @(2x—1)form an orthogonal basis for, and
more general that the collection of functioh$(2’x—k)|0< k<2 —1} is an orthogonal
basis of V.. Normalized to an orthonormal basis fof; the basis functions are
{(pj,k(x)|0< k<?2! —1} where the scaling functiorqaj,k(x) are dilated, translated and nor-
malized \ersions of the mother scaling functig(x) :

9, (0 = J2lg2'x—K)
together with (1) follavs
P(X) = @ 0(X) = /23 iy m(X)
and more general i

@, k(X) = «/éz N®; 41, m+ 21(X)

1.6 Themother wavelet y(x) and the detail spaces w;

We defineW, to be the orthogonal complementsf in V; . ,. HenceW, is also a subspace
of V;,, and satisfies:

Vier = ViOW,

where the symboll stands for the direct sum. In otheords, W, has the missing details to
go fromV; toV,, .

The properties that held foverage spaces ¥ato be reritten for the detail spaces:

1. w,0V;,,

2. WoOW, OW, 0O...... O Wiiog,n) -1

3. Wiiog,m—1H - OW,O0W, OW,

4. w(x) OW; = w(2x) OV, , ;
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The wavelet transform

5. w(x) OW, = w(2x—1) 0OV, ,
6. A mother vavelet Y(x), with a \anishing intgral, ists that is an orthonormal basis for
W, .

Since(x) OW,0V, asequencég,} exists such that the motheravelet P(x) satisfies a
refinement equation:

W(x) = 2Z@MP(ZX—k)
The following equations can be proofed:

ng =0 IqJ(x)dx =0

For orthogonal scaling functions an(m\wllets then coeficientsg, are connected to the ctef
cientshy through the equatiog, = (=1) h,_,. Itis immediate that the functions(2x) and
P(2x—1) form an orthogonal basis f&W,; and more general that the collection of functions
{ l]J(ZJX— k)|0<k< A 1} is an orthogonal basis,wj . Normalized to an orthonormal basis
for W. the basis functions ar{anj7k(x)|0< k<2'-1} where the avelets qu,k(x) are
dilated, translated and normalizegfsions of the motherawvelet (x) :

W) = 2 w(@x—k)

1.7 Thefast wavelet transform

Any functiont vj(x) OV, can be written as the linear combination of the scaling functions
®;, k(x) and ay function wj(x) W can be written as the linear combination of tlagelets
lijlk(X). Sincevj+l is equal toV,,, = V;0W, ary function vj+1(x) UV, can be
written uniquely as the sum of a functiur(x) OV, and a functionNJ-(x) Ow;:

Vi 1(X) = vj(X) +w;(x)

21t _q 2l_1 2l_1

Z aj+1‘k(pj+1’k(x) = Z aj,k(pj,k(x)"' z Bj,kwj,k(x)
k=0 k=0 k=0

In other words, we hae two representations of the functiqu+1(x), one as an element in
V;., and associated with the sequefcg , ; ,} , and another as a sum of element¥in
and W, associated with the sequen(ﬁ@s]l b and{ [31-, «} - The follaving relations sho how
to pass between these representations:

Ajk = E]"J'+1|(PJ',|<(X)D: E]"j+1|«/§zhm([’ (x)0= «/ézhmaj+1,m+2k (2)
m m

j+1,m+2k

1. for the discrete case these aeetmrS\Tj OV, of the \ector spac®”
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and similar.
Bj,k = Eyj+1|l-|Jj,k(X)D: Nj+1l’\/izgm(pj+l,m+2k(x)D: ’\/ézgmaj+1,m+2k 3)
m m
The opposite direction from thlEL  and thij, K to the(xj +1 k Is equally easy:
4)

Ajea, k= ’\/ézhmaj,m-l-’\/ézgmp’j,m
m m

When applied recungely, these formulae define thast wavelet transform. The relation (2)
and (3) define the foravd transform, while (4) defines thevémse transform. The scheme of
decomposition and reconstruction are illustrated graphically in fRfusend in figur&7.

Opo %1 G2 Ooneg Ty ¥y
On_g,0 %n-1,1 @ 4 0 Pr-1,0 Pn-11 Bo_y ot
N )
44' \:\
Opo Qg1 Opp Opg [Boo Boi Boz Bas
O19 Opq [Bro P11
Oo,0 |Poo
FIGURE 36. thewavelet decomposition
Ao, |Bo,o
O19 Opq [Bro Bia
Opo Qg1 Opp Opg [Boo By Boo Baos
‘:.\ 4
\;‘5 N R
Oh-1,0 %n-11 On-12-1] [Pn-10Pn-11 Pn-12-1
Opo An1 Gy Un2-3 Op2-2 Up2_g
FIGURE 37. thewavelet reconstruction
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The wavelet transform

1.8 Computing the discrete wavelet transform

Let the original function be represented tysample wlues, that is aectoru of R". In the
view of linear algebra the\WT is an basis transformation from the standard fasesa wave-
let basisW. Any basis transformation iR" can be realized with a transformation mafix
The wavelet decompositioru could be calculated witfia],, = D[U]g, where[U]g is the
coordinate matrix ofi relatve toS and[0],, is the coordinate matrix af relatve toW. The
inverse DVT that restores the original representatf@jg from the vavelet decomposition
[T],y is done with the werse of the transformation matrix. Because tiéTDs usually a nor-
malized orthogonal transform, the transformation mdixiis orthonormal and its ierseD

is its transpos® . The wavelet compositiorf 0] 5 could be calculated witpt] g = DT[U]W.
This would be a computationakpensve way to compute the WT. The transform of aector

of th2e lengthn requiresn™ multiplications andn™ summations resulting in a compiy of
o(n).

Now recall the introductoryxample gven in the first section of this chaptérsaid that the
wavelet transform is done in\geral iterations and that each iteration is an orthogonal basis
transformation. The basis transformation matrix for each of those iterations is a sparse matrix.
We carry on with thisxample and she how each iteration is done using a sparse transforma-
tion matrix.

It is immediate that the first transformation matrix transforms dotovt that represents the
sampled functions into the coordinatector (U) . The transformation matrix transforms from

the standard basB to the basi8. The second iteration uses a matrix that transforms from the
basisB to another basiB'.

(0505 0 0 0 0 0 O

2 4
0 0 0505 0 0 0 O0f[6 8

0 0 0 0 0505 0 O]9 2

(G, = Dlalg=| 0 0 O 0 0 0 0505/7_|6
05-05 0 0 0 0 0 of[1] [-=2

0 0 05-05 0 0 0 0|3 1

0 0 0 0 05-050 0|4 |1

0 0 0 0 0 0 05-05|8] [-=2

0505 0 0 0 0 0 O0]f4 6

0O 0 0505 0 0 0 Of[8 4

0505 0 0 0 0 0 O0ffl2 |2

(Gly = Daly=| ¢ © 05-050 0 0 06 _|2
0 0 0 0 1 0 0 o0]f-=2 |2

0O 0 0 0 0 1 0 oOf[1 1

0 0 0 0 0 0 1 of[-1] |«

o 0o 0 0 0 0 o0 1]|-2 [=2

0505 0 0 0 0 O O0]l6 5

05050 0 0 0 0 O0]f4 1

0 0 1 0 0 0 0 o0f=2 |2

(@, =Dag=| 0 0 0 1 0 0 0 02 _|=2
0O 0 0 0 1 0 0 o0f[=2 |2

0O 0 0 0 0 1 0 oOf[1 1

0o 0 0 0 0 0 1 of[-1 |«

0 0 0 0 0 0 0 1]-2 |2
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The last iteration results into the finadwelet decomposition of theeetoru. It is a basis trans-
formation from the basi8' to the basiBB". Obviously we could hee done these three basis
transformation in one step.

If the matrixD transforms from the basf to B, the matrixD' from the basidB to the basis

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125|| 2 5

0.125 0.125 0.125 0.125 —0.125-0.125-0.125-0.125 | 6 1

025 025 —025 025 O O O 0 ||9] |=2

(0], = D'DD[alg=D"[alg=| © © O 0 025 025 -025-0257|_ |2
05 =05 0 ©0 0 0 o0 0 |[[1] |[=

o o0 05 05 0 0 0 0 |3 1

o 0 0 0 05 05 0 0 [[4] |«

o o o o0 o0 0 05 -05|8 |2

B' and the transformation frofd' to the basiB" is done by the matri", then the matrix
D™ = D"D'D transforms theeactoru directly to its representation ingard to the basi8".

Ingrid Daubechies has disared that the avelet transform can be implemented with a spe-
cially designed pair of Finite Impulse Response (FIR) filters called Quadrature Mirror Filter
(QMF), see “Digital filters” on pag9. A FIR filter performs the dot product between the filter
coeficients and the discrete samples in the tapped delay line of theTiileact of passing a

set of discrete samples, representing a signal, through a FIR filter is a discvelatmmof

the signal with the filters cdafients [10]. Then the aelet decomposition can be done with
the compleity of O(n) as depicted in figui@8. The aeraging as we called it earlier corre-

first iteration second iteration third iteration
— T T — - _ _ — — — - _ ~ \
-2 1 -1 -2 - -2 -2 o 1
\ L _ - = - = L —~ N \
high-pass (dferenzing) filter [U]B” o N \
\ wavelet transform coéitients \\
0.5-0.5 0.5/-0.5 05105 |
I I I I I I ]|
2169|713 |4]8 4 18|26 6 | 4 /l
[a] I I I I I I |
discsretesampl{ 0.5|0.5 0.5(0.5 0.5/0.5 | ’
/ I
low-pass (seraging) filter ‘\Cé \G> \§> / |
I T P s |
4 8 2 6 6 4 \ 5 y
N
FIGURE 38. thewavelet decomposition using a Quadrate Mirror Filter pair

sponds to the i@-pass filtering and respeatly the diferenzing corresponds to the high-pass
filtering. In this &ample the length of each of theawIR filters is tvo.

2 TheHaar waveet

The simplest avelet basis that as already used in 1930 bgu® Levy is called the Haar ave-

let. He found it superior to theobrier basis for studying small complicated details in the
Brownian motion. In the introductoryxample we already used the Haaavelet transform,
although - for the sakof clarity - the basisectors were not normalized.
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The Haar vavelet

The Haar vavelet transform has aew good time resolution, ever, its resolution in the other
domain - the frequegyadomain - is @ry poor

2.1 The Haar scaling function

The Haar mother scaling function is defined by
Eﬂ for 0sx<1
o(x) =
[p otherwise

and satisfies the refinement equation
o(x) = Zth(p(Zx—k) . 2@L (2x)+2(p(2x 1)d

for hy = 1 andh, = 1. Resulting in the normalized filter Ctﬁefents:

2 172 1
= J2hy, = — 2h, = —
oy = 2 = /2 [

The resulting FIR filter that is used to com=
pute one half of the avelet transform hag s
a frequeng response as depicted iIn
figure39. Olyiously its localization in fre-
gueng is not good. dgether with the FIR
filter for the Haar wvelet it males a
Quadrature Mirror Filter pair
Some dilated and translatedrsions of the
Haar mother scaling function are shoin | ost
figure40. Note that for the sakof clarity
the basis functions ke not been normal;
ized. In case the Haaramelet transform is
actually applied to a-dimensional gctor | o oo o1 i 02 oz o5 0w o4 oss o5
that represents a function sampledrat| Ficure 39. the frequency esponse of the FIR filter ér
points, the Haar scaling functions ame | the Haar scaling function
dimensional ectors. Thg are the basis
vectors that span the spacég to V,, ,. Given an 8-dimensionalector the spaces range
betweenV, andV,. The correspondlng Haar scaling functions that span each of these spaces

FIR-Filter
T

Magnitude

14 14 14 14
0.8+ 0.8+ 0.8+ 0.8+
0.6+ 0.6+ 0.6+ 0.6+
0.44 0.44 0.44 041
0.2+ 024 024 0.2+
O b O by O bt 0t
02]020 05 10 02]020 05 10 02]020 05 10 021020 05 1.0
-0.44 -0.44 -0.44 -0.44
-0.64 -0.64 -0.64 -0.64
-0.81 -0.84 -0.84 0.8
14 14 14 14
®,0(%) = @(X) @y 1(0) = J20(2x-1) @1, 0(¥) = J20(2x) @y, 1(0) = Ap(4x—1)
FIGURE 40. different Haar scaling functions

are shwn in figure4l on pagél.
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(O G I
Vo § @000 | | @000 [ @00 1
® 100 [ ] 0300 ][]
V21 g .00 1 @3,3(%) N
Qo[ L a0 [ ] Va @3, 4(X) [ ]
! g T CO B ¥3,5() N

o0 [

FIGURE 41. the Haar scaling functions that span the spaceg\o V3 @3,7(X) S

2.2 The Haar waelet

The Haar mother avelet is defined by

1
< -
1 for 0_X<2

IN

x<1

O

a
W(x) = Erl for %

O

O

0 otherwise

and satisfies the refinement equation
_ e 1 O
W00 = 23 Guo(2x-k) = 250(2) ~50(2x - 1)

for g, = 1 andg, = —1. Resulting in the normalized filter c@efents:

2 2
1 1

The resulting FIR filter for the Haarawe-
let has a frequeyaesponse as depicted Jn 15
figure42. What held for the FIR filter fo
the Haar scaling function is also true here
The localization in frequeras not good.
Some dilated and translateersions of the
Haar mother wvelet are sheon in
figure43. Note that for the sakof clarity
the basis functions kia not been normaly os/
ized. Again, in case the Haarauelet trans-
form is actually applied to an-
dimensional ector that represents a fun
tion Samp|ed an points’ the Haar swe- % 005 o1 015 02 025 03 035 04 045 05

Normalized Frequency

lets aren-dimensional ectors. Th? are FIGURE 42. the frequency lesponse of the FIR filter ér
the Haar wavelet

FIR-Filter
T

Magnitude

7
'
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The Daubechies avelet

the basis gctors that span the spaddg to W,y ;1. Given an 8-dimensionalector the

14 14 14 14

0.8+ 0.8+ 0.8+ 0.8+

0.6+ 0.6+ 0.6+ 0.6+

0.4+ 0.44 0.4+ 0.44

0.2+ 0.2+ 0.2+ 0.2+

0+ 1+ + 0 —+——+H—+++—+—+— 0 —+——F—++—— O —+——+H—p+—+—+—

021020 05 1o 021-020 | 05 1.0 02/020 05| 10 024020 |05 1.0

0.4+ 0.4+ -0.44 0.4+

-0.6+ -0.6+ -0.6+ -0.6+

-0.8+ -0.8+ -0.8+ -0.8+

14 14 14 14

Wo,0(X) = W) Wo,o(X) = /2(2x) Wo,0(0) = 20(2x=1) "W o(x) = JAY(4x-1)

FIGURE 43. different Haar wavelets

spaces range betweg¥,, andW,. The corresponding Haarauelets that span each of these
spaces are sham in figure44.

Wog Yo, o(X) iz, OEX; /_|—,|_|—'7
2,1X
[ w
Wl '~|Jl, O(X) ,7 2 llsz 2(X) |_|—,
Py (%) ]

—, Lpz, 3(X) 4,_|_/

FIGURE 44. theHaar waveletsthat span the spacesWyto W,

3 The Daubechies wavel et

Until Daubechies’ ground breakingovk the Haar \avelet was thought to be the onlyawelet
to have compact support (a finite number of filter ¢ioefnts) and to form an orthonormal mul-
tiresolution analysis. The Daubechieavelets liild a whole &mily of wavelets. Thg are dis-
tinguished by an indethat equals the number of filter ctie@fnts for decomposition and
reconstruction. At this point we will introduce the Daubechies4 scaling function amdietv
since thg are realized with a Quadrature Mirror Filter of the shortest length.

3.1 The Daubechies scaling function

There is no closed form for the Daubechies mother scaling functioveMdoa recursie dis-
play algorithm can be used to dr#he graph of it [43]. The Daubechies mother scaling func-
tion satisfies the refinement equation

o(x) = ZZ h @(2x=k)

= 22 “/écp(ZX) ¥ 8“/_(p(2x 1) +3= “/écp(Zx 1)+ 8“/_(p(2x 1)d
for hy = 1+ “/é 3+8A/§’ h, = 3_—8“/5’ andhg = 1- “/é . Resulting in the normalized
filter coeﬂmgnts
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co—A/iho—li-“/:_3 c:ﬁh:3+“/§ czzﬁh—3“/§

4.2 ' Yoap 4.2

The resulting FIR filter that is used to co
pute one half of the avelet transform hag s
a frequeng response as depicted in
figure45. Olviously its localization in fre-
queng is already better than that of the
Haar scaling function. dgether with the
FIR filter for the Daubechies awvelet it
malkes a Quadrature Mirror Filter pair

FIR-Filter
T

Magnitude

0.5

Some dilated and translatedrsions of the
Daubechies mother scaling function ar
shavn in figure46. As we said, the
Daubechies scaling function is definedp ... . . . . . . .

. . . : 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
a recursre algorithm. The depictedew Normalized Frequency
sions of the Sca“ng function are calculatet/GURE 45. the frequency esponse of the FIR filter ér

. . the Daubechies scaling function

on an interal of 2048 points. The mother
scaling functiong, ,(x) covers the com-

0.1 0.1} 0.1}
@, 1(X) @3 1(X) @3 5(X)
0.0f 0.0 0.0
-0.1 . J 0.1 . J .01 . .
0 1000 2000 0 1000 2000 0 1000 2000
FIGURE 46. different Daubechies scaling functions

plete interal in the same ay the mother Haar scaling function does it. The same that holds for
the Haar vavelet transform is alid for the Daubechies avelet transform. Applied to a-
dimensional gctor that represents a function sampled pbints, the Daubechies scaling func-
tions aren-dimensional ectors. Thg are the basisectors that span the spadég to V,,, ,

Given an 8-dimensionalector the spaces range betweéy and V,;. The correspondlng
Daubechies scaling functions that span each of these spacesvanarsfigure47 on pag&4.
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(O N I
Vo g @p,0(X) T ' Qo) IM— ™ Q.0 L
@ () _— 1 @3, 2(%) [
V2
G0 1 @3 3(x) [ ]
V3
vV @y, o(X) Mt— 0, 3(x) |_,—_l_'_\_l @3 2(X) [
Yoo 00 o 03, 5(%) M
0 6(X) I I
FIGURE 47. the Daubechies scaling functions that span the spacegty' V3 ®3,7(x) I

3.2 The Daubechies weelet

There is consequently also no closed form for the Daubechies maheletw In the same
manner a recung algorithm is used to calculate it. The Daubechies motheglet satisfies

the refinement equation

P(x) = ZZ h, @(2x —Kk)

= 251+[3q1(2x)+ [Lp(2x 1)+ 3 [Lp(2x 1)+ % flp(zx e
for gy = 1-3 .0y = —%3’, 5 = ?%8“/?’ andg; = _Mg Resulting in the normal-
ized filter cogficients:

= gy il o sy = 2B o= g, = BB
= 2h, —1;’ Jf

The resulting FIR filter for the Daubechie
wavelet has a frequexc response as
depicted in figuré8. What held for the
FIR filter for the Daubechies scaling fun
tion is also true here. The localization |r
frequeny is already better than the fre
gueng localization of the Haar avelet.

S
FIR-Filter
T

15

\ll

Magnitude

Some dilated and translateersions of the
Daubechies mother avelet are shon in

figure49. The depicted ersions of the
wavelet are agin calculated on an inteal
of 2048 points. It is immediate that moth

wavelet Y, o(x) covers the complete

i i » FIGURE 48. the frequency esponse of the FIR filter ér
internval as well. On applying the the Dabachies ety

0.5

D

0 I I I I I I
0.2 0.25 0.3 0.35 0.4 0.45

Normalized Frequency

I I I
0 0.05 0.1 0.15 0.5
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Daubechies avelet transform to @&-dimensional ector that represents a function sampled at

0.1

0.0

-0.1
0

llJz, 1(X)

1 01

0.0

ng, 1(X)

1 01

lng, 6(X)

0.0

1000

- -0.1
2000 O

FIGURE 49. different Daubechies weelets

1000

0.1
2000 O

1000

2000

n points, the Daubechiesaxelets aren-dimensional ectors. Thg are the basisectors that
span the spaced/, to W, ,_;. Given an 8-dimensionalector the spaces range between

n
W, andW,. The correspondi

ng Daubechieavelets that span each of these spaces armensho

1

Wo§ W00 |

Uy o(X) ._I_'_\—\_,_,—\—
Py 1(X) |_,_.—\_._I_'_\—

FIGURE 50. the Daubechies weelets that span the spaces Yo W,

Waol) [
TPPYE B [
T P i
Wos0 T

in figure50.

3.3 Other Daubechies weelets and scaling functions

As we said the Daubechieswelets liild a whole &mily of wavelets. In this section weamt
to take a brief look hev other members of thisamily look like and what the dérences
between the members are. The Daubechiem&let is the ‘shortest’ avelet in the &mily
meaning that it has the least number of FIR filterfawehts - &actly four Actually the Haar
wavelet is sometimes referred to be the smallest member ofthiy/fIn this case it is called
Daubechies2 wvelet - olviously it has only tw filter coeficients. The Daubechies6,
Daubechies8, Daubechies10, ... and so on consequewdly-Ha filters with 6, 8, 10, ... and so
on coeficients respectely. The frequeng localization of the Daubechies4avelet was

Haar

Daubechies4
Daubechies6
Daubechies8

Daubechies10

Daubechies12

0.70710678, 0.70710678
0.48296291, 0.83651630, 0.22414386, -0.12940952

0.33267055, 0.80689150, 0.45987750, -0.13501102, -0.08544127, 0.03522629
0.23037781, 0.71484657, 0.63088076, -0.02798376, -0.18703481, 0.03084138,

0.03288301, -0.01059740

0.16010239, 0.60382926, 0.72430852, 0.13842814, -0.24229488, -0.03224486,

0.07757149, -0.00624149, -0.01258075, 0.00333572

0.11154074, 0.49462389, 0.75113390, 0.31525035, -0.22626469, -0.12976686,
0.09750160, 0.02752286, -0.03158203, 0.00055384, 0.00477725, -0.00107730

TABLE 5. FIR filter coefficients for the Daubechies family
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The Daubechies avelet

already better than that of the Haaavelet. W& will see that the localization in frequgnc
increases with the length of the filt@herefore the ‘longer’ awelets of the Daubechiearhily

have a better localization in this domain. But it is immediate that with increasing filter length
the localization in the time domain becomes pooféle Daubechies8 avelet and scaling

3) 0.1 b) 0.1
Qs 3(X) Y3, 3(X)
0.0 0.0
0.1 -0.1
c) 0 1000 2000 d) 0 1000 2000

FIR-Filter
15 T

FIR-Filter
15 T

Magnitude
Magnitude

0.5

o

I I I I I I I I 0 I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Frequency Normalized Frequency

FIGURE 51. (a) some Daubechies8 scaling function, (b) some Daubechies8ealet, (c) the frequency esponse of
the low-pass FIR filter, (d) the frequency esponse of the high-pass FIR filter

function are gien in figures1l. There are also the frequgnesponses of the corresponding
low-pass and high-pass FIR filter illustrated. As said earlier the localization in the frequenc
domain imprees with the length of the filteFhe two filters do a more accurate job in splitting
the signal into tw subbands.

The frequeng response and the immediate increase of frequiecalization is summarized in
figure52 on pag&7.
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FIR-Filter FIR-Filter FIR-Filter

Magnitude
Magnitu
Magnitu

0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
Normalized Frequency Normalized Frequency Normalized Frequency

FIR-Filter FIR-Filter

Magnitude
Magnitude

FIGURE 52. increasing frequency  °5
localization of the lav-pass FIR
filter for the Haar, Daub4, Daubs8,
Daub12 and Daub20 weelet

transform 0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
Normalized Frequency Normalized Frequency

We hae nav [ : :
. information cells of basisectors
examined the| addressed by high-pass dagénts

frequeny a) b) c)

response of the

FIR filters used| _ o .

for the wavelet | g g

transform in|& E g

detail. One has tg |

keep in mind that / | /’

the vavelet [ time | time I time

i information cells of basisectors the iteratve decomposition hadd the the final iteration )
tranSform applles addressed by Wo-pass codicients  frequeny uncertainty and doubled theresults into basisactors with the lvest
th ose F| R f”terS time uncertainty time and the highest frequeniocalization

i FIGURE 53. the idealized tiling of the time-fequency plane by the basisectors of the
recursyely onto wavelet transform after one (a), two (b) and three iterative decomposition steps
the signal. The

transform codifcients that are result from the first eotution of the signal samples with the
filters coeficients address basigetors with a frequenclocalization equal to the frequenc
response of the FIR filters. Itenadly the FIR filters are appliedwards the pngous lov-pass
coeficients. The basisectors addressed by the resulting tioieints of the second ceolution
have a more precise localization in frequertit therefore lose their time localization. Illus-
trated by the corresponding information cells in the time-frequplane (see figurg3) with
every decomposition step the uncertainty in freqyaadalved while the uncertainty in time is
doubled.
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The wave paclet transform

4 Thewave packet transform

It turns out that the discr
wavelet transform is actually [a®o0 %1 %2 @3 @34 @35 P36 P37

=3

—

subset of a dr more ‘ersatilg £y
transform, the ave paclet transt | 20 %21 %2 %3 (Vo0 Uo1 Wop U
form (WPT). Deeloped by 28

Ronald Coifman of ¥le Unier-| | %0 @1 ] [¥io  W14]
sity, the wave paclet transform

generalizes the time-frequen m Wo.0

analysis of the wawvelet trans:FIGURE 54. wavelet splitting scheme
form. It yields into a &mily of
orthonormal transform basis where thavelet transform is only one member [11].

We see that the classical multiresolution analysisis

obtained by splitting a spad¢; into two orthogo- | FISPRE > the
. g of

nal subspace‘s’j _1 andW; _, . and then doing the the time-frequency

same for the space; _, recursiely [25]. At each planeby the

step of the recursion the subspabgsare spanned

by scaling functionsp, , and the subspac#¥; are

spanned by avelets; , . And at each step of th

recursion the direct sum

V,Ow,0W,,,0..0W,;_; forms an time

orthonormal basis for the spa®e. The corresponding orthonormal basestors are the scal-

ing functions of the subspadg and the avelets of the subspac#¥; to W;_; . In figure54

on pageb8 we gve a schematic representation of a space and its subspaces after using splitting

over three recursions. The top rectangle represents the'¥pau®d each other rectangle corre-

sponds to a certain subspace\of. The splitting is done by a Quadrature Mirror Filter pair

The slanted lines between the rectangles indicate the splitting. The left refers to-fresso

filter and the right refers to the high-pass filiére wavelet decomposition can wabe vieved

as a partial graph of a binary tree. In the idealized time-fregy#ane the \avelet transform

basis can be illustrated as in figd®on pag&8s.

frequeny

D

The wave paclets are the basi

as shwvn in figure56. Each rect-

functions that we obtain if we V3
also split thew,; spaces. So staft- £y
ing from a spaceV. the wave Va I Wa I
paclet decomposition can b £3 £\
represented as a full binary tlefe Va I W, I

AN AN AN
angle is a direct sum of the ay

subspaces denoted by its Ch#rGURE 56. wave packet splitting scheme
dren. The bold rectangles then

correspond to the avelet multiresolution analysis. Thisawelet transform basis is actually a
subset of asaimily of bases formed by theave paclet transform.
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Any disjunct ceer of rectangles

forms an orthonormal basis

the spaceV;. In figure57 two
example bases are shn. Th

first one is a so called subb
basis since it splits the deco
posed function in four equ
spaces frequemyc bands. Al
basis ectors within a rectang
have the same frequen
response. Since each splitt
iteration dvides the input sign:
through lav-pass and high-pa
filtkering into two frequenyg

bands,n recursvely applied itert

ations to the signal result into
subband representation witl

a

Qr V3
r'aN
AN AN
i |1 |1 |1 |
| AN AN AN AN
e
C V3
ng ey
1 |
AN AN
| |
it e | e T

FIGURE 57. two orthonormal bases from the wave packet library

frequeng bands.

The second wwe paclet basis from

figure57 is also a decomposition in fou
frequeng bands. But here the bands a
not equal spaced. The ¢gr rectangle cor-

responds to the basiseators with the
highest time and theJeest frequeng res-
olution. The follaving two rectangles
from the bottom of the library ke the

lowest time resolution and the highest fre-
gueny resolution. And consequently th
middle sized rectangle on the right coh

i

aﬁ

frequeny

frequeny

time

IGURE 58. theidealized tiling of the time-frequency plane
y the two wave packet bases from above

time

tains basis &ctors with a medium time resolution and a medium frequeesolution. In
figure58 the decomposition of the original function in time and frequenmponents gard-
ing to these tw wave paclet bases is illustrated using the idealized time-frequplane.

We can &tend the introductory awelet decompositionxample as depicted in figus® on
page60. Then we hze a library of transform bases to choose from. A function that is repre-
sented byn sample alues &pands into a library o Elogzn transform coéfments The num-

ber of possible transform bases &wlage - there is a choice from more thah different
bases [14]. Here we @8 sample alues which gpands into8 [log,8 = 8 [B = 24 coefi-
cients. Each of these cdiefents addresses a basector which we call awe paclet. These
basis ectors include the avelets and scaling functions that were the basigors for the
wavelet transform. W can generate one of the 24 basgstars by filling the tree witl®‘s
except for a singlel and calculate the recomposition.
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The wave paclet transform

There are tw motvations for the choice of a specific

wave paclet basis. Either we ant to transformafuncy 2 6 9 7 1 3 4 ¢
tion into a basis with specific characteristics in the

time-frequeng plane or we &nt to use antransform /\

basis that allws high compression. The first approac_
is used for analyzing or modifying certain attrids of 6 2 1 -1 -2
a function in the time-frequepaomain. Then a fed /\ /\

wave paclet basis is chosen that yields into the desired

decomposition. The other approach adapts the ch )%ﬁ%

number of codicients needed for representing the /\ /\ /\ /\

@WMWWWMW
-1 05-05 -1

basis to the respeeé function in order to minimize the

function.

Recall hav we compressed theauelet representatior

of a function in figure5 on pag&4. We do the same FiguRE 59. the decomposition of a

here lut choose a basis from theawe paclet library Ltggonintothewavepacketlibrary of

e

that either alles a higher compression or results in-a

more accurate reconstruction. In figé@ we use tw

VAN

AN NN

aaalaad,|adafadd [daa,dad,|dda,|ddd
5 1 -2 0 -1 05-05-1

VANEVAN

L1 ] SEVIGEN m

aaa faad,|ada fadd,
5 1 -2 0

one discarded coéient

/\ (5, 1,-2>Q{1, 0.5,-0.5,-1)

three discarded cdéfients

(5, 1,2;{,1}45@.5,-1)

one discarded coiéfient

/
/\ (5,1,2)4,-05,-1.5,-1.5, 0.5) |

three discarded cdéfients

/\ /\-05-15-1505  &12XHLSL50) |

FIGURE 60. two different wave packet basesrepresent and compress a function

i

i

nl

different wave paclet bases to represent themple function as depicted by the decomposition
tree on the right. Then we compress this representation by discarding at first one and then three
transform codicients. The reconstruction of the function from its compressed representation in

the respectie wave paclet basis is shin on the right.

For compression purposes it is desirable to chooseva paclet basis that concentrates the

most information about the decomposed function in onlyatfansform codicients. ¢ can

choose the set of cdigients to represent the function with respect to a certain criterion. This

procedure is called best basis selection and one can dasigeérch algorithm that neakse
of the tree structure. The best basis search algorithsnpnoposed by Wkerhauser and Coif-

man in [13] and [12].
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We nav define a real-aiued cost functionall on the ectors that represent our functions and
search for its minimumwer all bases in theave paclet library Such a functional should, for
practical reasons, describe the concentration of information or the number fifiemisf
required to accurately describe the function. By this we mearMbhstiould be lage when all
coeficients are roughly of the same size and small wherual liev coeficients are ngligi-
ble. A mapM from wvectorsu O R" to R is called an addite information cost function if
M(0) = 0 andM(tu) = Z M(u,) . If we have a \ectortu R" and an orthonormal basi
for the \ector spaceRn, Written as a matrix of vectors, then(l)g = BU is the \ector of
coeficients ofu in the orthonormal basiB. The information cost dfi in the basiB is calcu-
lated withM (B0) . The best basiB from a library of bases relaé toM for a \ectoru is that
for which M(B) is minimal.

We e&plain the best basis alg
rithm of Wickerhauser and Coif-
man using a small xample,
Suppose that theeetor b [ R®
has been »@panded into thge
library of wave paclet bases.
Then an admissible basis of this
library is ary disjoint horizontal
cover of rectangles. Since thEIGURE 61. wave packet library of bases
library of bases - depicted in

figure6l - is a tree, we can find the best basis w&atdM by traversing through it. \& choose

the bottom most m of rectangles as the start basis. At each step of the algorithm the chosen
subset of rectangles will be a disjoinveoand thus an admissible basi fivst calculate and

store the information costs of all eight rectangT(%sto T? from the bottom. In t2he m%bo/e

the search is started.e/¢alculate the information costs of each parent rectdrigle T; and
compare them to the sum of information costs the stored with their twin dyadic daughters.

For the rectanglég these are the twrectanlglesTg andT? or in general the tavdaughters of

the parent rectangl&;" areT'g}+l and T;?:l. When the costs for the parent are smalley the
are stored and the parent rectangle enters the actual selected basis, repjacctpagles
belov. Otherwise the sum of information costs of the wlaughters is stored and the basis
selection remains unaltered. Proceeding iteetiron by row this process ends when we reach
the rectangle at the top which corresponds to the original signal. In @égwe pagél this
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FIGURE 62. thebest basis search in a wave packet library of three decomposition levels using some arbitrary
chosen values as the information costs of each rectangle

best basis search is illustrated with a smgéneple. Wthin a wave paclet library of three
decomposition beels the best basis is selected in respect to some (here arbitrary) cost function
M. The \alues that are written in the rectangles of the left most tree stand for the resulting
information costs using this cost function. At fourfeiiént steps of the algorithm the actual
selected basis is slva marled with bold rectangles. The algorithm terminates in the right most
tree presenting the basis with the smallest information costs.
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The wave paclet transform

Two more things need to be discussed here in further detail. One the one hand we introduce dif-
ferent cost function® and on the other hand we spend some thoughts wrtdhstore the

wave paclet basis that as chosen by the algorithm.

Some useful measures of information according to Coifman ackeYMauser [15] are:

number above a threshold. Set an arbitrary threshokl and count the coidients of the ec-
tor 0 whose absolutealue exceedse. This is an addie measure of information. It\gs the
number of codicients needed to transmit the signal to acourac The eperience of the
author has shwn that for compression purposes tladue ofe is of great importance. Espe-
cially if this value is set to high the best basis search can turn intosh basis searchoFsig-
nals with unpredictable oavying enegy the threshold should adapt to the signal.

bit counts. Choose an arbitrarg >0 and count the binary digits i||_'1uk|/sJ. Summing wer
k gives an addiie measure of information. It corresponds to the number of bits needed to
transmit the signal to accusae.

Shannon entrop%/. The, Shannon-@&ver entroy of a \ector o is H(U) = —Z pelog py
wherep, = |u/"/||tll and the summand is interpretedGator ary u, = 0. THiSentroy is
a well-knavn measure of the information of a distriion, kut is not additre. We may also use
the L2IogL2 norm denoted byh(do) = —z |uk|2Iog|uk|2 with the same cwoention for
u, = 0 rather than the entrgpSee [13] for ffore information.

The wave paclet transform is said to perfornery good for compression purposes because the
transform basis adapts itself to the function through the best basis search. Since tlaiésisis v
from transform to transform the information whiclave paclets are addressed by the trans-
form coeficients has to be transmitted as wellickérhauser proposes in [47] the foliog:
After expansion into \ave paclet coeficients and compression by discarding the small ones, it
IS necessary to transmit the suimg values as well as their position in the dyadiearoSup-
pose that the function consistsrokamples each bits long and thus requiringp bits of stor-
age. When transformed into the optimal basis, say thatrondf the codiicients exceed the
cutoff. Since no cheating is alled, the codicients can only contaib bits each. Specifying
their positions withirlog,n timesn coeficients taleslog,n +log_log,n bits. This adds up to
n'(b +log,n +log,log,n) bits. The compression ratio [47] can be computed with:

' log,n + log.log,n
_n 2 2 92 ]
P = n%'-'- b 0

It is immediate that the compression ratio decreases immediately with increasing

When the number of discarded doménts ranges between 0% and 70% theximgdeapproach

of Wickerhauser contains to much redundants one sees in tabfthere are te other
approaches that can reduce the needed bit rate. Betlaakdging bit field to determine the

used vave paclet basis. The picture in figué8 on pagé3 is probably the easiestaw to

explain hav a wave paclet basis for a function consisting of samples is &tiently repre-

sented withn bits. Ewery rectangle has a corresponding Bitept for those from the bottom

most rav. The bit that corresponds to rectan'gTIi@ has the inde number2™ +i. A bit is set

when the corresponding rectangle needs to be computed from its daughters. B3fitnane

are two example vave paclet bases on the left with an illustration of their respedit fields

on the right. Whether the bits - enumerated from 1 to 7 - are set or not indicates the thickness of
the rectangle. In case a rectangle is bold the corresponding bit is set, otherwise it is zero. There
is no bit with the inde number O.
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FIGURE 63. indexing a wae paclet basis flom the library of bases thiough a bit field

n 10% 25% 50%
256 (@) 26%(8+3) =286 (a) 64*(8+3) = 704 (a) 128*(8+3) = 1408
(b) 256+26*8 = 464 (b) 256+64*8 = 768 (b) 256+128*8 = 1280
(C) 256+256 =512 (C) 256+256 = 512 (C) 256+256 = 512

65536 (a) 6554*(16+4) = 131080 (@) 16384*(16+4) = 327680 (@) 32768*(16+4) = 655360
(b) 65536+6554*16 = 170400 (b) 65536+16384*16 = 327680(b) 65536+32768*16 = 589824
(c) 65536+65536= 131072  (c) 65536+65536= 131072  (c) 65536+65536= 131072
TABLE 6. The number of bits needed to transmit the positions of 10%, 25% or 50% of the
coefficients br a wave packet expansion with 256 (65536) samples using #e different methods.
Method (a) is the one poposed by Wckerhauser method (b) indexes the wee paclet basis lut then
addresses each sample separatetyethod (c) indexes the wae packet basis and uses a bit field to
determine the transmitted coefficients
Even though the ave paclet basis is determined, the dogénts position within the array of
wave paclet coeficients needs to be specified. Theotdifferent wvays to do so result into
method (b) and (c) from tab&on pageé3. In method (b)\ery coeficient is accompanied by
its location within the coétient array For an array of lengtim this can be done witlog,n
bits. Then the compression ratio - which still decreases with increasingan be computed
with:

n IogznD 1

p=nd 5 0
However, for most cases method (c) is morcegnt. An indeing bit field of n bits contains
the position information about all cdiefents. In case the cdifient at position in the array is
transmitted, bit numberr in the bit field is set to 1. It is @lous that for this approach the order
in which the codicients are arranged is dictated by the order of the 1's in the bit field. Here the
resulting compression ratio is calculated by:

n

-n,1
p_n+b+

1
b
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The wave level transform

5 Thewavelevel transform

The wave paclet basis in the top of

figure57 on pag&9 consists of rect-2) | V3 |

angles from one decompositionvés £

only. It is what we before called a sub- | Y 11 ]

band basis. In the folang we will | | | | | | |

call a wave paclet decomposition that AN AN 7N #X

chooses all transform cdigients P

from the same fizgd decompositio

level a wave level transform. The 2 | Vs |
7X

there is no best basis search and a| | | |

fixed subband basis becomes |the AN AN

transform basis which is determined 11 11 1 |

by the chosen filter and the decompo- | ﬁ | ﬂ | TT | TT |

sition depth of the awe level trans:

form. In figure64 the three possibleg | A |

subband bases of theave level trans- X

form for the spac#/; are shan.

I | R
I  —  —

FIGURE 64. thethreepossible subband basis of the wave level
transform: decomposition level one (a), decomposition level two
(b), decomposition level three (c)
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VI

Audio encoding schemes

In this chapter some weand eficient audio encoding schemes are about to be presented. The
main features of these encoders argibile bit rates, graceful deadation, layering, sample
rate independence and small computational caoxitpleThey are the result of the authors
research wrk at the International Computer Science Institute at@erkThe initial concepts

for the design and structure of these codecs were catettibby Hartmut Chodura from the
Fraunhofer Institut fir Graphische Daterarbeitung at Darmstadt.

Up to nav there did notxdst an audio coder with an output rate that can be controliedao

wide range of bit rates. with a relaly fine granularity The usual &y to work around this
problem is to use a panoply of audio codecs. As mentioned earlier there are &©@Ms v
ADPCM, GSM and LPC coders. This neakit possible to choose the coding scheme with a bit
rate that is closest to that desiredweeer, the granularity of the rate adjustment is coarse. Fur-
thermore some of the encoders (LPC) put constraints on the possible sampling rate which
malkes them impractical for wideband speech or high-quality audio transmissions [8].

Before we introduced twvdifferent Forward Error Correction schemesrRhe first approach -
sending lov resolution ersions of préous packts sort of piggybadd on gery current

paclet - it was necessary to empldifferent audio encoders. One for producing the main infor-
mation about the audio signal and one for producing the redundeme audio codec intro-
duced here simplifies this procedure. This encoding scheme can produce both at once - the
main and the redundant information. The redungdhat allavs the reconstruction of avio
resolution ersions is simply a specific fraction from the encoding of the main information.

For the second approach - using Priority Encodethdmission - it ®s necessary to use an
encoding scheme consisting ofveral layers with dierent importance. Theelx word was
graceful dgradation. Since thereas no such codec for real-time audio streavadiable there

was the need to delop a layered audio encoding scheme.

Even though our audio codecs caarlwwith ary sampling rate, most of theviestication was
done with audio signals sampled at 8000 Hz. Some oxirsting encoding schemes onlyowk
at this fixed sampling rate. Measuring thdi@éncy of our coders is easjewhen there are
some standards that we can compare them withcémputational reasons the sampéues
are transformed into floating poirdlues between -1.0 and 1.0.

1 Transform coding

The coding techniques that are enygld here are kiwvan as transform coding (TC). In trans-
form coding systems each block of audio samples is transformed independently from all other
blocks into a set of transform céefents. This method is also referred to aster quantizing.
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The operation applied to the block of audio samples is a simple basis transformation. Then a
subset of the transform cdiefents is quantized and transmitted. Auadrse transform is tak

at the recefer to obtain the corresponding block of reconstructed audio samples. The tradi-
tional aim of transform coding is to compress the amount of data needed to represent an audio
signal [49]. V& etend this aim and use transform coding for a compressed and layered repre-
sentation of an audio signal.

We arrangen successie audio samples into theetort - an element oR". This \ectort is

the representation of the block of audio samplgardkéng to the standard basss Therefore

we better use the notation of a coordinatetor (U)s. Transform coding is a basis transforma-

tion from the standard basg&into some other basB. That is the transformation of theator

(O)g to a\ector(0)g. The idea is to hee a better set of basisators for representing the block

of audio samples than the standard b8siBetter means that more information about the audio
signal can be represented by addressing less lesms. This yields into a compressed repre-
sentation of the audio signal. Better also means that using justa$és ectors results into an
approximation of the audio signal with a granularity depending on the amount of used basis
vectors. This yields into a layered representation of the audio signal.

We will investicate the basis of the discreteufier transform (DFT), the basis of the discrete
cosine transform (DCT), the basis of the discreteelet transform (WT), the basis of the
discrete vave level transform (W) and the library of bases of theawe paclet transform
(WPT). Whereas the DFT and the DCT aredixransforms the WT and the WI are deter-

mined by the choice of the mother scaling function and the motheiet or simpler - by the
corresponding Quadrature Mirror Filter paiihe WPT is een more flgible since on the one

hand &ery QMF pair yields into a dérent library of bases and on the other hand there are
more than2" possible bases in each library for thedimensional case. The basisctors of
various transforms for the case= 8 are shwn in figure65.

a) b) c) d) e) f)

FIGURE 65. basis ectors of \arious transforms: (a) standard basis, (b) DFT basis, (c) DCT basis, (dMDT basis
(Haar filter), (e) DWT basis (Daubechies4 filter), (f) a sutand WPT basis (Daubechies4 filter)
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2 Transforming audio signals

In the folloving we will apply seeral transforms twards an audio signal and analyse the
results in consideration of compression and layeringoidevsignal will serg as the test data

for our investigations. In figuré6 on pag&7 we can see a plot representing thiee signal of

the sentence ‘Let’ have some cdée’ spolen by the authorThe length of the recording is
roughly two seconds of speech, which equals 16384 audio samples at a sampling rate of 8kHz.
The first zoomed ggnent contains 2048 samples which is approximately a quarter of a second
and corresponds to theovd ‘some’ and the lggnning of the wrd ‘coffee’. The second
zoomed sgment focuses on the ‘c’ sound of therd ‘coffee’. This part is made of 256 sample

0.1
I
0.0 |
' |
I
0.05 L/— 4
/
0.2 /
-0.1 /
0 5000 10000 15000 7250 7750 8250 8750 9250
FIGURE 66. The sentence ‘Les hare some coffee’ .04 ’
spoken by the author at different zoom levels. Top
left the complete sentenceapresented by 16384
audio samples at a sampling rate of 8000 Hzop
right a zoom of the word ‘some’ and the beginning of
the word ‘coffee’ and bottom right a close-up of the
‘c’ sound of the word ‘coffee’ represented by 256
sample \alues. '
-0.04
8875 8975 9075

values meaning 32 ms in time.

In the folloving we will apply diferent transforms teards these tovsgments and discuss the
meaning of the produced representations. Since all of the introduced transforms can be seen as
simple basis transformations, th@ense operation doesvalys &its. When leaing the trans-

form coeficients unchanged, the original signal canec#y reconstructed through the corre-
sponding retransform. But of course it is not our intention teeléhe transform cofe€ients
unchanged. The aims are:

Compression:The representation in the transformed domain can be basically compressed in
two ways. Tansform codicients with a ery small @lue hae only a ery small impact on the
recomposition of the signal. Thereforeytlean be omitted without causing a major distortion

of the signal. The amount of data is compressed because only the information abept the k
transform codicients has to be transmitted. On the reiogj side the discarded cdiefents are
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Transforming audio signals

assumed to be zerorahsmitting just the important cdiefents raises another question.wo
does the receing side knav, which coeficients hae been transmitted? Either the omitting of
coeficients is position independent, then each transmittedicieets has to be accompanied
by its position within the arraylhis additional information atously reduces the obtained
compression rate, since it has to be transmitted as well. Position dependent discarding of trans-
form coeficients would be much more f€ient, hut this method does not &lhe alue of the
coeficient into consideration.

Besides omitting coétients the number of bits for representing each of them plays a major
role for compression. TheVier bits are used to encode thefatiént codicient values the
greater is the achred compression ratio. But quantizing tredues of the coétients intro-
duces a quantization errdJsing less bits and therefore less quantizatieeldesystematically
increases the quantization error

Layering: To present a layered audio encoding schea® tive motiation for our vork. Lay-

ering means splitting the encoding information inteesal layers. The bottom most layer has

to be already a stand-alone codification of the audio signal, containing the xaugh shape

of the audio signal. Retransforming this layer should result into a signal that is close to the orig-
inal one. This means the retransformed audio signal should be at least intelligible. The remain-
ing layers - thexact number is arbitrary - should add layer by layer more of the signals detail
information to the codification. Consequently a reconstruction including all encoding layers
should allev the perfect reconstruction of the audio signal. Then omitting layer by layer of the
codification results into recompositions of the audio signal fgrdiit resolution leels.

For the sample ector containing 2048 samples - an elemenROT™ - the decomposition
through the VT into scaling functions andawelets start at the spasg ;. The other sample
vector with 256 samples - an elemenfb?° - starts at the spadé; . The resulting coétients

after a Daubechies8awelet decompositionwer the total of 11 or 8 \els respectely are
shawvn in figure67.

For a sample rate of 80®k the normalized frequepon the x-axis of the frequeypcesponse
graph ranges from Bz to 4000Hz. One vay to compress the representations in respect to the
wavelet basis wuld be to omit the coiéients that correspond to the high frequencies. Look-
ing at the plot one may think this is a good idea, since thé@eafs forw,, (W) are com-
paratvely small. This is because the frequespectrum of the humaroie ranges mainly
between 50Hz and 150Hz. But this procedure - whichould be a position dependent dis-
carding of codfcients - equals a band-limiting of the audio signal witlery vbad lev-pass fil-

ter. This fact becomes immediately clear in figé& For this way of compression a full
wavelet decomposition is an unnecessary computatiorahead. Only the first iteration that
splits V4, (Vg) into V,, andW,, (V, andW,) would be already sfi€ient. But - the com-
pressed signal is of poor quali§ecause of the missing high frequencies the resulting signal
sounds hollwv. Furthermore the remainingwefrequeng signal sounds distorted since the
used lov-pass filter is not a perfect one.

The follonving graphic shan in figure69 on pag&9 elucidates whthe wavelet decomposi-
tion yields into a higher compressed representation of the audio signal. The alelokgeot
both - the samples of the original representation and th&éaeets of the \avelet transform -
are sorted and plotted in decreasing orBspecially for the audio gment with 2048 sample
values the desired result is visible. A big number offemefts is almost zero and there are a
few with a \ery lage \alue. This behaour almost dictates the design of the compression
scheme that we are about to present. One has to recall that both - ebcleoef the vavelet
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The frequeng response of the basigators for both trans-
forms is depicted on the right. The 1024 (128yslets that 35
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components of the signal. Then the 512 (6&yelets that £
span the spac#/y (W) contain the ne lower frequeng §”
band. Consequently the 256 (32pwelets that span the 2
spaceWg (Ws) correspond to the foNaing lower band  1sy
and so on.

FIGURE 67. the wavelet transform coefficients and the ~ °®f
frequency esponse of the coesponding basis gctors. o
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transform and each sample of the original signal - address a lagis n respect to some
basis. IBr the vavelet coeficients this is the avelet basis and for the samplalwes it is the
standard basis. All the basisctors are of the same length: one. Then the audio signal is com-
posed by a linear combination of all basextors multiplied with the corresponding doef
cients in rgard to the respee® basis. In case such a daeént is \ery small the appropriate

0.1 0.0

0.05

wavelet representation 0.02 wavelet representation

original representation original representation

e e
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0.0
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FIGURE 69. The absolute alues of both - the samples of the originalepresentation and the coefficients of the
Daubechies8 weelet transform - are sorted and plotted in deceasing order The left graph contain the speech
segment of 2048 samples, the right plot the shorter segment of 256 sampalkigs.

basis ector does not addewy much tavards this linear combination. Discarding this €ieef
cient - meaning setting it to zero - has only a small impact on the shape of the audio signal. The
compression is achred by discarding a certain number of ¢méfnts according to their abso-
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lute value. There are basically twvays to do that: Either omitting all cdiefents belav a cer-

tain threshold or else discarding a certain percentage ofvtlestiealued codicients. The first
method yields into aariable amount of encoding information, the latter assures an codification
at a steady bit rate.

In figure70 on pag€1 and in figurél on paged2 the second idea is appliedvirds the tw
sample audio ggnents. Rather than talking about discarding a certain percentage of transform
coeficients we talk aboutdeping a certain percentage. Both figures illustrate the same sce-
nario: The left upper most graph s¥sthe original audio signal with its Daubechies¥elet
transform on the right. Belothree diferent signal reconstructions that use the highest 40%,
20% or 5% of the avelet transform coétients are shen. The graphs on the right list thepk
coeficients and in the graphs on the left the corresponding signal reconstruction is plotted. The
increasing compressiorewy nicely yields into a graceful geadation of the conformity with

the original signal. As one mighkgect - looking at the audio signals plot - auditory test series
confirm that this directly results into a gracefugagalation of the audio qualityhe obsered
behaiour gives us eerything that we anted:

» graceful dgradation: The quality of the audio signal can be controlled by the number of
transform codicients used for reconstruction. Using more/less faoefts directly
increases/decreases the aebikquality The level of quality is infinitely wariable from
excellent to mediocre.

* layering: As a direct outcome of gracefubdadation layering is achied when grouping
the coeficients in order of their importance togeth&n encoding scheme with three lay-
ers for @ample can use the highest 10% of &ioents for the bottom most layehe net
20% to liild the second layer and group another 30% together for the third layer
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FIGURE 70. The top left graph shavs the original audio signal with its Daubechies8 weelet transform on the
right. Below three different signal reconstructions that use the highest 40%, 20% or 5% of the walet transform
coefficients ae shavn. The graphs on the right list the lept coefficients and in the graphs on the left the
corresponding signal econstruction is plotted.
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FIGURE 71. The top left graph shavs the original audio signal with its Daubechies8 weelet transform on the
right. Below three different signal reconstructions that use the highest 40%, 20% or 5% of the walet transform
coefficients ae shavn. The graphs on the right list the lept coefficients and in the graphs on the left the
corresponding signal econstruction is plotted.
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 variable bit rate: The number of transmitted Goents olviously influences the amount
of encoding information. Analog to gracefulgiadation using more/less cbeients
directly increases/decreases the needed bandwidth.

The Daubechies8 avelet transform is just one of mardifferent transforms that can be
exploited for this purpose. The xtestep is to find the transform that outperforms all of the oth-
ers gven a set of criteria.

An objectve criteria for a suitable transform basis is the slope of the graph of the sorfed coef
cients. A steep descent of this graph and thusge laumber of coétients close to zero will

allow a high compression rate with almost no distortion of the audio signal. The computational
compleity is also an importantattor for our choice. The encoding scheme is thought to be
applied tevards real-time audio communication, thus thailable CPU pwer acts as a con-
straint on our choice. Another andvidusly e/en more important criteria is the subjeeti
judge through the human ear

In the nat two sections seeral transforms are compared in respect to these criteria. The first
section deals with the objeati measurements, ékthe descent of the graph of the sorted coef-
ficients or the computational comgity. The second section tries talidate these results with

the help auditory test seriesv@ independent tools written by the authorwlkm compare the
sound quality for speech communication usirgious transforms at dé@rent compression
ratios.

3 Competing objectively

Recalling the obseation from figure69 on pag&9 we use the slope of the graph of the sorted
transform codicients as an objeet criteria for choosing the best basis transformation. More
precisely we use the amount of the signalsgrahat is represented by the highest ftcehts

as the criteria. Experimentalidence has shen that some of these transforms contain enough
signal information within the highest 50% of the transform famehts to allev a perfect
reconstruction for speech signals. Perfect in the sense that there is no autbbdsodif
between the original and the reconstructed signal. Using a sample recording we will calculate
the percentile amount of the signalsveo that is kept within the highest 5%, 10%, 20%, 30%

and 50% codicients of each representation.

When working on only one block of sample data our results will noiatieneral statements
about the applied transforms. On the one hand the sample could be biased - meaning this spe-
cific sggment of speech is not a good represearggtr common speech signals. On the other
hand the resulting plots of the sorted transformfmeiits look rather irgular Therefore we

do a certain number of conseeatiransforms and calculate thenesage. Hwever, this evalu-

ation scenario isair from being perfect. The author - who recorded bisevas test data (see
figure 72 on pag@4) - does not claim to kia specifically representaéi wice. Furthermore we
were talking about audio compressiont then use only speech signals to judge therdift
transformations. & justify this with the dct that our objecte statements will be proofed
through auditory xperiments. The focus on speech signals is due to time limitations and the
certainty that the momentary researabrikvof Hartmut Chodura at the Fraunhofer Institut for
Computer Graphics applies the results addehere tavards high-quality audio.

In the folloning we are going to use the notationBWT<filter> (<minus>) and
‘WLT <filter> (<minus>) for denoting either a discreteamelet transform or a awelet level
transform that decomposes the signal with the fifdter> up to the bottom most minus

73



Competing objectiely

0 25000 50000 75000 100000

FIGURE 72. A recording with a duration of 15.36 seconds of the author®ice which equals 122880 samplealues
at a sampling rate of 8000 Hz is the test dataif competing objectiely.

<minus> decomposition kel. For instance ‘DVT Daub4(0) stands for a discrete awelet
transform with the Daubechies4 filteres all decomposition leels, whereas ‘WL Daub8(2)’
indicates that the Daubechies8 filter is used iragevievel transform which omits the lastaw
decomposition steps. A similar notation for the WP W& T <filter> (<threshold>) meaning
that a vave paclet transform wrks with the filter<filter> and uses the threshotthreshold>
for its cost-function in the best-basis search.

Like before we wrk with the two block length of 2048 and 256 samples. The whole sample
seggment contains 122880 samples which equals a recording duration of 15.36 seconds. The
average wer all transformations on this audiayseent is made of 60 single transforms for the
2048 sample blocks and 480 independent transforms for the smaller 256 sample blocks. In
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original representation original representation
/ DWT Haar2 (0) / DWT Haar2 (0)
DWT Daub4 (0) DWT Daub4 (0)
DWT Daub8 (0
0.01 DWT Daub8 (0) 0.01 ©

DWT D 2
DWT Daub20 (0) aub20 (0)

DWT Vaid24 (0) DWT Vaid24 (0)
0.0 0.0
0 500 1000 1500 2000 0 50 100 150 200 250

FIGURE 73. Compare to figure 69 on paget9. Here an average aver 60 consecutie transformations of the speech
segment (figue 72) with 2048 sample blocks andwer 480 transbrm with 256 sample blocks is computed.

figure 73 the results of applyingWT with various filters to the samplegaent are shen. It

may be noted that all\DTs decompose the sample signalvddo the bottom mostVel. For

the average case it seems that the block size does not influence the outcome of the transform at
all. As a first result we notify that with increasing filter length the plot of the sorted transform
coeficients becomes steepdiowever, the resulting dference between the Daubechies8,
Daubechies20 andaWlyanathan24 transform igifly small compared to the éfence in their
complity. A more &act picture about the performance of théedént transforms is gen in

table7 on page’5. The table mads it immediately clear whthe highest 50% of the transform
coeficients allav an almost perfect reconstruction of the speech signal. Our choice - assuming
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transform 5% 10% 20% 30% 50% CPU
none 39.14 27.61 56.30 44.57 75.52 65.95 85.88 78.64 95.69 92.91 140
DWT Haar2 (0) 68.55 59.12 82.98 76.19 93.14 89.26 96.77 94.34 99.22 98.47 373

DWT Daub4 (0) 73.25 63.59 86.58 79.98 95.08 91.66 97.78 95.79 99.59 98.90 471
DWT Daub8 (0) 75.49 66.31 88.11 82.04 95.72 92.57 98.07 96.22 99.55 99.01 533
DWT Daub20 (0) 76.42 67.14 88.71 82.61 96.03 92.82 98.23 96.43 99.59 99.08 2485
DWT Vaid24 (0) 76.63 67.74 89.02 83.00 96.12 92.88 98.26 96.40 99.60 99.07 2888

TABLE 7. The percentile amount of the total signal paer contained in the highest 5%, 10%, 20%,
30% and 50% coefficients per block dr the DWT transform with various filters. The first number
results br a transform block length of 2048 samples taking 60 single trarmimations for the sample
signal. Doing the same in 480 tranefmations with smaller 256 sample blocks yields into the second
given value. The rlative CPU costs a@ a coarse indication of the transfrms complexity.

we are subject to computational constraints - could be W& With the Daubechies8 filter

But there are still a lot of other transformationsxamine.

Using the same scenario we compare thé@ \athd the WPT with the WT in figure74. For all
three transforms first the Daubechies8 and then #idy&hathan24 filter are the soniet
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WLT Daub8 (0) WLT Daub8 (0)

WPT Daub8 (0.001)
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0.0 0.0
0
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FIGURE 74. The same scenario as in figef73 on pager4. The discete wavelet transform, the wave level transform
and the wave paclet transform are compased using the Daubechies8 (top) and theailyanathan24 filter (bottom).

arbitrary choices. In tabi the graphical results areag underpinned bywvaluating hev

much of the signal peer the highest cofi€ients contain. W can state immediately that the
wave paclet transform - using the same filter - clearly outperforms all other transforms. This is
not surprising since the WPT computes a library of transform bases that contains both - the
basis of the WT and the basis of the WLIn regard to computational complgy the WPT
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transform 5% 10% 20% 30% 50% CPU
DWT Daub8 (0) 75.49 66.31 88.11 82.04 95.72 92.57 98.07 96.22 99.55 99.01 533
WLT Daub8 (0) 74.01 70.85 85.74 85.03 94.02 94.01 97.09 97.05 99.30 99.29 1758
WPT Daub8 (0.001) 79.35 72.27 90.13 86.47 96.63 95.16 98.65 97.91 99.81 99.67 2373
DWT Vaid24 (0) 76.63 67.74 89.02 83.00 96.12 92.88 98.26 96.40 99.60 99.07 2888
WLT Vaid24 (0) 77.71 7435 88.07 87.23 95.28 95.15 97.79 97.69 99.49 99.45 14743
WPT Vaid24 (0.001) 83.21 71.93 92.48 87.18 97.57 95.83 99.05 98.29 99.86 99.74 15448

TABLE 8. The procentual amount of the total signal paer contained in the highest 5%, 10%, 20%,

30% and 50% coefficients per blockdr the discrete wavelet transform, the wave level transform and

the wave paclet transform using the Daubechies8 and the aidyanathan24 filter. Compare to table7

on page7s.
and the WI are almost equalent - at least for the case where thelWdbes a full decomposi-
tion of the sample block @ to the bottom mostVel. This is because then thewe level
transform computesxactly the same amount of transform dméénts. Whereas the computa
tional overhead for the best basis search is compatatsmall, the performance isay better
when using a best base instead of edigubband base.
Nevertheless the awe paclet transform is rglected in the follwing considerations. This is
due to thedct that the information about the actual chosarewaclet basis has to accompan
the kept coeficients. This uneoidable @erhead of information t&s avay the practical use of
the WPT for compression purposes. The competig\wevel transform for instance definitely
outperforms the ave paclet transform in respect to compression, when the amount of bits
needed to specify theawe paclet bases is wrested into keping a higher percentage of trans-
form coeficients instead.

The «pectation of the author - based otperimental kna/ledge - vas that the WL would

always outperform the WT. This holds true for the transforms of the 256 sample blatKpb

the transform of 2048 sample blocks the opposite is the case. In some situations the
‘WLT Daub8(0)’ turns out to beeen worse than the simple \WT Daub4(0)’. We suspect

that the full decomposition of the sample blockvddo the bottom most Vel may not avays

be the best choice. In figur®& we irvesticate the behaour of the WIT for different depths of
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FIGURE 75. The same scenario again. Herwave level transforms with the Daubechies8 filter ae compared at
differ ent decomposition depths
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decomposition. Our assumptions are immediately confirmr@dhE transform with lge sam-

transform 5% 10% 20% 30% 50% CPU
WLT Daub8 (0) 74.01 70.86 85.74 85.03 94.02 94.01 97.09 97.05 99.30 99.29 1758
WLT Daub8 (1) 75.89 69.74 87.07 84.64 94.69 93.95 97.46 97.07 99.40 99.31 1556
WLT Daub8 (2) 77.72 68.57 88.46 84.17 95.41 93.92 97.86 97.09 99.51 99.34 1357
WLT Daub8 (3) 79.38 68.75 89.97 84.51 96.29 94.29 98.32 97.35 99.63 99.42 1192
WLT Daub8 (4) 79.58 68.49 90.39 84.73 96.58 94.38 98.49 97.41 99.67 99.44 962
WLT Daub8 (5) 77.87 65.20 89.97 82.55 96.62 93.45 98.55 96.97 99.70 99.33 766
WLT Daub8 (6) 77.91 53.41 90.17 75.10 96.77 91.23 98.63 95.88 99.72 99.04 617
WLT Daub8 (7) 77.76 40.03 89.99 60.75 96.76 82.48 98.63 92.06 99.71 98.39 532

TABLE 9. The procentual amount of the total signal paer contained in the highest 5%, 10%, 20%,
30% and 50% coefficients per blockdr WLT at differ ent decomposition depths (compar to table7).

ple blocks the ‘WIL Daub8(0)’ has actually the arst results. The ‘WL Daub8(6)’ would be

a much better choice that furthermore needs less than half the computation time. The plot on
the right tells us that for the transform with small sample blocks therl ‘BAub8(0)’ is
already almost the best choicearFa more ract performance erification of the indiidual
WLTs at diferent decomposition depths see téblen page’7.

Once the decision about the used filter is made both\W€ &nd the WIL hare one dgree of
freedom left - the decomposition depth. fBiEnt decomposition depths result intofetiént
transform bases. Thus thé\X and the WIL can also be seen as a library of bases, although
this library is ery small. l6r sample blocks of Iengmn each of the transformsfefs n trans-
form bases to choose fromeWould turn the discreteaumelet transform (VT) into a best dis-
crete vavelet transform (BVT) and the vave level transform (W) into a best \ave level
transform (BWM) by applying the best basis algorithm of the WPT to their small libraries of
bases. In figur@6 we hae done this for the WIL The eact results can be obtained in tabe

transform 5% 10% 20% 30% 50% CPU
BWLT Daub8 (.0005)77.92 67.60 90.16 83.94 96.79 94.15 98.64 97.36 99.72 99.45 2096
BWLT Daub8 (.001) 78.18 68.08 90.27 84.38 96.82 94.42 98.66 97.46 99.73 99.47 2096
BWLT Daub8 (.005) 79.18 70.76 90.69 85.84 96.91 94.76 98.67 97.60 99.72 99.46 2096

TABLE 10. The percentile amount of the total signal pwer contained in the highest 5%, 10%, 20%,
30% and 50% coefficients per block using the best wa level transform with a best basis seath over
all decomposition levels.

The performance of the BWLis at least as good as the best possibld Whnsform using a
fixed decomposition \@l. The big adantage is that one does novédo worry whether the
chosen decompositionvel is suitable. The bestJel search taés care that avel is chosen
that (almost) maximizes the performance of theTWILhe increase in computationafat is
acceptable and canen be reduced because of the fwlltg obserations. In tabld1 we sum-
marized some other results of the begtllsearch. & the abwe scenario we counted the num-
ber of times each decompositiorvéé was declared to be the best in respect to the used
threshold for the cost function. The result is unmistakable and has érdfeetvby using dier-

ent filters and arious transform block lengths. The decomposition depths 9, 10 and/d1 ha
been a seldom choice of the bestlesearch. The same measuremente lheen taé&n using

the \aidyanathan24 filterThey are listed in tablé2 and she the same characteristics. A
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FIGURE 76. The wave level transform extended by a best basis algorithmwer all possible decomposition depths i
compared to wave level transforms at fixed decomposition leels.
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0

transform 1 2 3 4 5 6 7 8 9 10 11
BWLT Daub8 (.0005) 0 3 0 22 3 62 19100 18114 1361 4 55 2 63 0 - 1 --- 0 --
BWLT Daub8 (.001) 0 0 0 23 4 61 20108 2594 3 65 6 60 2 69 O --- O --- 0 --
BWLT Daub8 (.005) 0 1 0 4 3 44 1887 1676 1163 5 91 5115 1 - 0 -- 1 --

TABLE 11. The number of times each decomposition Vel was chosen by the best basis sehr
algorithm of the best wave level transform. The left number corresponds to the 60 transfrms with a
block length of 2048 and the right number coresponds to the 480 transirms with 256 samples.

transform 1 2 3 4 5 6 7 8 9 10 11
BWLT Vaid24 (.0005)0 3 0 39 8 8 1584 16 77 1763 2 64 1 69 0 - 1 --- 0 --
BWLT Vaid24 (.001) 0 0 0 22 6 77 1878 2390 9 58 2 70 180 O --- 0O --- 1 --
BWLT Vaid24 (.005) 0 1 0 6 3 50 1766 1859 1070 7 80 3148 0 --- 0 --- 2 --

TABLE 12. The same measwements of the best basis sear algorithm for the best wae level
transform as in table11 using the \aidyanathan24 instead of the Daubechies8 filter

transform 5% 10% 20% 30% 50% CPU
BWLT Daub8 (.0005)77.79 66.97 90.11 83.71 96.79 94.09 98.64 97.34 99.72 99.45 1217
BWLT Daub8 (.001) 77.89 66.92 90.17 83.85 96.81 94.27 98.65 97.42 99.72 99.47 1217
BWLT Daub8 (.005) 78.04 68.82 90.23 84.98 96.86 94.58 98.67 97.54 99.72 99.47 1217

TABLE 13. The procentual amount of the total signal paer contained in the highest 5%, 10%, 20%,
30% and 50% coefficients per block using the best wa level transform with a best basis searh that
is restricted to the five first decomposition leels.

direct and useful result of these obsdions is to stop the BWLalgorithm after reaching the
8th decomposition el or ezen earlier In tablel3 the results are siwa that were obtained
with the best \ave level transform decomposing only the firstefilevels. The decrease in per-
formance is minimal and is confined to the 5%, 10% and 20% case. Theedat@duction in
computational complaty on the other hand is significant.

The adantage we dma from the &ct that the bottom most decompositiovels do not yield
into suitable transform bases is the reduced computatiofuat. €fhis statement is already
pretty satisfying, neertheless we ant to spend some thoughts on the reasonitig like that.
As we learned earliebasis ectors from the bottom of the decomposition treeeha good
localization in frequenchbut are little localized in time, whereas the bassters after only a
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few iterations of decomposition are less freqyeloralized for the benefit of a good time
localization. D male this more clear we fa illustrated the time localization and the fre-
gqueny localization of seeral basis gctors from the Daubechies&we level transform in
figure77 on pag&9. Calculated on a 2048 sample block these are starting from the top a basis
vector of the - bottom most - @enth decomposition Wel, one of the ninth, one of theveath

and the last one of the fifth. Thefdifence in time location between the bagster from the
eleventh and the basigetor from the fifth decompositionviel is olvious. Haiing in mind the

shape of anverage speech signal as it is depicted in figéren pagé7 it is intuitively under-
standable that time localized basextors are more suited to represent speech signals than the
non time localized ones.

Later - when we westicate the performance of thedier transform in respect to compression

of speech signals - our conclusion will kedigtated. The basisectors of the &urier transform

have no time localization at all. Nertheless the durier transform will yield into a good
decomposition of the speech signal when the transform block length is small. Because then it is
the small block length which assures disigint time localization in igard to the complete sig-

nal. The same reason caused the good performance of thei$Mig the bottom most decom-
position level for the transform block length of 256 sampleseriethough the basisutors

were not time localized within the transform intpvin respect to the speech signal their time
range vas limited to the transform block length.

Traditionally the Burier transform has either been simply diicieint tool for accomplishing
certain common manipulations of data or been of intrinsic interest itself (or the related fre-
gueng spectrum). Using thedarier transform for a layered audio compression scheme we
combine these tavusages. The audio data is manipulated in thei€ domain inw@areness of

the related frequemncspectrum.

The net step is to carry out the same measurements which weedase for the arious vave-

let transforms with the FFT (and for the sak completeness with the DCT). The performance
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FIGURE 78. The absolute alues of the transbrm coefficients - aeraged oer many consecutre transformations -
of the FFT, the WLT Daub8 (0) and the BWLT Daub8(0.005) ae plotted in deceasing order

of the FFT - illustrated in figuré8 - is more or less l&kwe predicted earlieFor the lage
transform block of 2048 samples a representation of the signal through jusbfatie highest
FFT transform coditients does not seem to bdi@ént. A surprise is thexeellent result for
the 256 sample block case. In concentrating theepof the signal within a small number of
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coeficients the FFT easily outperforms the WLThe eact results are gen in tablel4

transform 5% 10% 20% 30% 50% CPU
WLT Daub8 (0) 74.01 70.86 85.74 85.03 94.02 94.01 97.09 97.05 99.30 99.29 1758
BWLT Daub8 (.005) 79.18 70.76 90.69 85.84 96.91 94.76 98.67 97.60 99.72 99.46 2096
FFT 79.35 75.28 89.08 87.86 96.70 95.44 97.99 97.81 99.54 99.47 617
DCT 79.08 75.88 89.01 88.38 95.70 95.75 98.00 98.03 99.55 99.56 1348

TABLE 14. The percentile amount of the total signal pwer contained in the highest 5%, 10%, 20%,
30% and 50% coefficients per block. Theesults br FFT and for the DCT are compaed with earlier
measuements

together with some earlier takk measurements. The FFT on small transform block performs
way better than all theaviations of vavelet transforms we ha investicated sodr. In particular

we can observthat the FFT captures alreadyry much signal information within the highest
5% or 10% of the transform cdiefents. This leads to the assumption that the FFT may be well
suited for &tremely high compression rates. Later we will introduce an FFT based encoding
scheme that confirms this assumption. The only competing transform is the WPT orTthe WL
using the Midyanathan24 filteBut this transform uses more than twenty times the computa-
tion time of the FFTAs an @ample, gen the most étient implementation of the WLalgo-

rithm has not beeragt enough to transformkBiz sampled speech in real-time on a SUN sparc
station 10 with the &dyanathan24 filter

To be complete the performance of the discrete cosine transform (D&ST)inaluded in
table14 on pagél. The discrete cosine transform is said to outperformastedurier trans-

form in terms of speech compression [42]. The results for the transform of 256 sample blocks
verify this statement. The basisctors of the DCT he - like the FFT basisectors - abso-
lutely no time localization within the transform intalvThis &plains the similar bel@ur of

DCT and FFT in rgard to the transform block length.

4 Competing subjectvely

The measurements &k so &r resulted in a lot of ddérent numbers and a couple of nice
graphics. Hw steep the decline of a plotted grapaswand he precise the statements about
the capture of signal peer hare been, can at most impress oyesand our brain - not our
ears. Een though all numerical results forcible suggest that especially transform X will per-
form outstanding, the human ear - little impressed - raayr ftransform Y with the notery
scientific proof: it simply sounds better

The amount of signal peer that is captured by a certain number of ficiehts in respect to the
chosen transform basis is definitely a rational criteria to judge about the remaining amount of
signal information. But it gies no gidence about the importance of the lost information for the
audible quality of the signal. The besayto prave our theoretical considerations is to use our
ears - or better the ears of a number of listeners - as.a jury
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ulaw PCM sampled FIGURE 79. theuser interface of WAV
at 8kHz can be
played back. The control elements belfmr configuring the audio de&e are self-describing.
Thesample number-slider (2) allavs to choose the number of samples thateraale transform
block. It is a constraint of all possible transforms that the block size isver @d two. The
compression-button (3) actrates and deaetaites the transform and the compression of the
audio signal. Theudtons (4) + (5) determine together with the slider (6) andulterbbar (7)

the performed transform. Either awelet transform (WT), a wave level transform (W) or a

wave paclet transform (WPT) decompose each transform block using the number of decompo-
sition levels as determined by the slider (6). The number in btagkforms about the possible
decomposition depth. If a highewvéd of decomposition is chosen the transform is domwendo

to the bottom most lel. Selecting théest base-button (5) actrates the best basis search for
each transform. The QMF filter for the three transform$TDWLT and WPT is chosen on the
button bar (7). Choosing either FFT or DCT raslall other settings insignificant. In this case
either the &st Fourier transform or the discrete cosine transform is performed.

Unless some of the transform clo@énts are discarded none of the transforms will alter the
output signal. What we call compression is (up te)eothing lut discarding of coétients.

The compression-sliders (8) + (9) allev position independent and thatton bar beneath (10)
allows position dependent discarding of dméEnts. Thethreshold compression (8) discards all
coeficients belav a certain threshold which results inaaying compression rate. Thbsolute
compression (9) discards a constant percentage of tiaesb codicients. Wth the lutton bar

(10) the user is able txgerience hav position dependent discarding of doménts afects the

82



Audio encoding schemes

output signal. The 16uttons together correspond to the complete transform blockiatioty

the first lutton on the left will set one sixteenth of the transformfaments to zero. In order to
use this kind of compression in a meaningfalywit is necessary to kmohow the transform
coeficients are arranged within the transform ingr¥When a signal is compressed its recon-
struction from the remaining transform clogénts difers from the original signal. In the top
right corner of the user intexée the error label (11)wgs a coarse measurement of a mean
error history We calculate the mean error with

n-1
1

k=0

wheren is the number of samples, thei-th coeficient of the original sampleector andd;
the i -th coeficient of the reconstructeceutor Since this &lue \aries too quickly with eery
other transformation, we rather display an eradu® that is anweerage wer the history of the
mean error with

e, = 0,99, +0,01e

The error label (11) shes the alue e, multiplied with a scalingéctor of 100.

The two big luttons (12) + (13) open twseparate windwes. Thesignal viewer (12) is a small
strip chart for a real-time visualization of either the signalfaoeits - lutton (2) deactiated -
or the transform coé€ients - lutton (2) actrated. In figure80 two screen shots of the signal

a) : b)

[®] signal Viewer

o =mall

63 A 63 A
W display | sort Dismizs W display M sort Dismizs
~. big J ~ big J

o =mall

FIGURE 80. The signal viewer shas the coefficients of a Daubechies8 wealet transform with 50%
absolute compession (a) without and (b) with actrated sort option.

viewer are shan. It should be noted that the strip chart depicts only absalies: Théase
viewer (13) is of releance for the ave paclet transform. On one hand it adls to illustrate the
wave paclet bases that are result of the best bases search. On the other hand it is the means for
explicitly selecting a certain basis for eawe paclet transform and use it asdt basis. See
figure81 on pagé4 for an gample screen shot. The same illustration with rectangéss w
already used when theavelet theory vas introduced, see “Theawe paclet transform” on
page58The two top rectangles correspond to the first decompositigal &nd from the top to
the bottom seen decomposition \els are shen. The codicients of the eight decomposition
level are used when none of the abdevels was selected. Wh simply clicking on the appro-
priate rectangles the user can compose an arbitrary basis foatbeaclet transform. The
library of bases of the ave paclet transform includes the transform basis of both taeslet
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FIGURE 81. Thebaseviewer used to select a certain basisfrom the wave packet library of bases. Thisdecompo-
sition has eight levels. The bottom most level isnot shown, but is always used when no higher level was selected.

transform and the ave level transform. The selected basis of figBPecorresponds to aawe-
let basis at the sixth decompositiowde Using this selection as aduk basis for the awe
paclet transform calculatexactly the same transform as a simpkvelet transform den to
the sixth decompositionVel. A wave level transform is calculated when a complete af
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FIGURE 82. Thebase viewer used to select the wavelet basis at the sixth decomposition level.

rectangles in the base wier windav is actvated. In respect to computational comxilethese
simulations are much morgpensve than the original transform algorithms.

When wave paclet transforms are performed in the best base modeuttend (1) + (2) all

to keep track on the best base choice. Pressingdhéutton (1) captures and displays the
chosen basis of the lastwve paclet transform. Wh the history-button (2) the frequeyceach

of the rectangle componentsasvchosen to belong to the best basis is illustrated. According to
the number of times recently used the rectangle is colored fieretif red shades (see
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FIGURE 83. Thebaseviewer illustratesthe frequency with which a rectangle was chosen to belong to the best basis.

figure83). This will allov statements about bases that are a preferred choice from the library of
wave paclet bases. The cleaution (3) resets the state of the basevere- all rectangles are
deactvated.

The auditory results fulfilled thexpectations we had after thevastigations about the capture
of signal paver, but were also surprising in some points. It éwdifficult to male ary state-
ments about the quality of the audio signal in the self hear mode. The test persons - who simul-
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taneously heard theimm voice and the compressed signal reconstruction via the headphones -
always werestimated the intelligibility of the audio signal. Therefore we used a prerecorded
speech sample of the authomsce and taped the results from applyirgious transforms with
different absolute compression rates. In the test scenario each of the resulting audasfiles w
played back seeral times to gie the listening test persons time to compare ttierdiit trans-
forms. The competing transforms were judged in three independent runs at fiereatditbm-
pression ratios.

As a rule wer the thumb it can be said that the transforms that capture more sigmeal po
within the highest coétients result in better signal reconstructions. But in most cases - espe-
cially when these diérence is small - the imprement vas not noticeable. The bestwe
paclet transform for instance did not perform better than theevievel transform. @ male

this more immediate we tried the folling: After using the best ave paclet transform for a
short moment an arbitrary best basesveaptured and retained for conseeutransforms. In

most cases thereas no audible decrease in audio qualitye discrete avelet transform pro-
duced for all compression ratios unmistakable thestwesults of all tested transformsr khe
remaining vave level and vave paclet transforms the resultas - in respect to computational
constraints - gry promising. Een though the objest comparison before predicted better
results for longer quadrature mirror filters (which enormously increase the computational com-
plexity), the auditory gperiments did noterify this. The Daubechies8 filter performed quite
well and @en the long "idyanathan24 filterhich is said to be optimized for speech compres-
sion [48], had almost ner evidently better results. Arnow, with a computational compliy

that - for an aerage wrk station - does not allo its calculation in real-time the
Vaidyanathan24 filter is of no practical use for our audio codec. Ini8Hlee results of the
auditory test series are briefly summarized. The length of the transform AscR5& sample

transform % quality @ intelligible description
DWT Daub8 (0) 50 ++ yes slight scratching
20 - hardly scratching, hissing, hollo
5 no noisy
WLT Daub8 (0) 50 +++ yes perfect
20 ++ yes hissing, some bell l& sounds
5 - almost scratching, hissing, some belldilsounds, hollw
BWPT Daub8 (0.005) 50 +++ yes perfect
20 ++ yes like WLT Daub8 (0)
5 - almost like WLT Daub8 (0)
FFT 50 +++ yes perfect
20 + yes mary bell like sounds
5 0 yes strong bell lile sounds, hollw

TABLE 15. The quality of the reconstructed audio signal after discarding all bt 50%, 20% and 5%
of the coefficients ér certain transforms. The same measwments with the \aidyanathan24 filter

were slightly better for the DWT and almost identical for the WLT and the BWPT.
a. subjectve judgement of quality by the test persons

values.

As a first conclusion of the obtained results we wilvepncentrate on twvtransforms: the
wave level transform with the Daubechies8 filter and the FFT transforith. he Daubechies8
filter the WLT offers a &irly good compression while the computation&brefremains accept-
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able. The FFT is interesting because it seems txtbengely well suited to alle intelligible
signals at ery high compression rates.

5 Compressing the transbrm coefficients

We were talking about compression ratios although we actualidtalkout the percentage of
not discarded transform cdiefents. In this section we learn about thigetiénce and about the
difficulties involved in achiging a real compression. The real compression @at[d7] for a
block of audio samples is calculated with:

number of bits needed to store the compressed block of saitiples
number of bits needed to store the uncompressed blaokdad samples

p:

For our experiments the used audio samples are gléai PCM \alues which are simply stored

one after one in a block of audio samples. In this case the number of bits needed to store the
uncompressed block @f audio samples i8n.

In order to hge a uniform scaled representation of the audio signal thep&amtPCM audio
samples are transformed linear into floating poathi@s between -1.0 and 1.0. Applying one of

the introduced transformswards a block oh audio samples yields into a block mftrans-

form coeficients in floating point representation. A certain amount of these transforfia coef
cients is discarded. Mothe \alue of the remaining cdefients and their position within the

block needs to be stored with less tiganbits. With the idea of a layered encoding in mind this
storage should furthermore alldo separate the encoding into pieces ded#nt priority

Efficient coding of the coefficient positionsior each of the dpt coeficients the position has
to be transmitted along with thalue. For a block ofn transform codicients there are tw
ways to do this:

1. A bit field of n bits informs which coéitients are kpt and which coétient were dis-
carded. It is immediate that the cli@énts hae to be arranged in the same order as the set
bits in the bit field. This approachvalys uses the same amount of bits for positioning
regardless from the number o€ft coeficients. Thus it is inditient when the number of
kept coeficients is ery small. [er a layered encoding scheme each layer needs/iitm
field of lengthn.

2. Specifying the position of a cdafient within a block ofn transform codicients can be
done withlog,n bits per codicient. For large block sizes this approach is only attractt
the number of coétients is ery small. It is a big agntage that the storage order of the
coeficients remains a free choice. This reakt possible to store the cheients sorted by
their value - a chance for further compression as we will see Htere is noxra informa-
tion needed for layered encoding schemes.

Efficient coding of the coefficient alues.Storing the transform cd@fients in their present
representation as floaales will definitely not result in grcompression. The mpossibilities

for a more compact storage of thesdues are described here. The Gomints that are subject
to transmission are a certain amount of those with the highest absalluge Therefore both
approaches start with an array that contains the absalute of the coditients while the sign

is stored somehere else. & layered codecs the described procedure is applied to tHe coef
cients of each layer separately
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1. Supposemax is the biggest andhin the smallest alue in the array of coitients. The
straight forvard approach is to map the rardjé = max—min linear onto an ingger num-
beri of b bits. Then for some cdéfient ¢ this mapping is calculated with:

_ c—min,b
— dif 2

Of course the d$et \aluesmin anddif or min andmax have to be kpt as well. Extend-
ing the intger number by a proceeding bit al®to specify the sign of the respeetcoefi-
cient. In case the cdefient was ngative we simply ad® *1 to the numbet .

The folloving small &ample shws that the linear quantization of transform @cefnts
into anb-bit integer number yields into a pooxm@oitation of the2" possible code wrds.
Top left in figure84 the sorted cokfients of an eeraged WIL for a transform block length

FIGURE 84. The plot on the left hand side shes
the coefficients of a wee level transform sorted in
descending order of absolutealue. Their values
have been aeraged wer 480 transbrms with a
block size of 256 samples. The twgraphics belav
0.04 show the distribution of the highest 128 transfrm
coefficients after mapping them onto 6-bit integer
numbers from O to 63 using linear (left) and
logarithmic (right) quantization.

the highest 50% of the transform
0.02 coeficients

0.0

0 50 100 150 200 250

100

of 256 samples are sha. Applying the introduced method of linear quantization with 6 bits
towards the highest 50% of the ci@ents distrilutes the 128 quantizedlbes rather irig

ular over the 64 possible codeovds. The graph in the bottom left of figud4 illustrates this
distribution. In the right picture this distiition is more uniform. It is much closer to the
ideal distritution that is denoted by the dotted line in both graphics. Here we useatighlog
mic quantization to map the ciefents onto the intger numbers.

Let max contain the natural l@githm of the highest co@fient and consequently bain

the natural logrithm of the lavest codfiicient from all that are subject to quantizationtiw
dif = max—min each codicient ¢ is mapped onto an irger numberi of b bits using
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the formula
- In(c) —min
dif

2b

Is is immediate that @jn the ofset \aluesmin anddif or min andmax are necessary for
the inverse calculation.drecord the sign of each cbeient the same method as before may
be used.

When the quantized transform cii@énts are arranged in a sorted order transmitting only
the small diference between twconsecutie values can decrease the needed bit rate. Three
bits per codicient would be enough for ouxample since the biggesawation between tav
successie numbers is sen.

. This method introduced here depends
the approach used to specify the &ee
cient positions. It only wks with the
coeficient values arranged in a sortgdso
order Thus the bit field approach for posi-
tioning is out of the question.
The idea is to approximate the slope of {
graph of the sorted transform chegnts.
Using some interpolating functions th
describe the cuev dravn by the codi-
cients in sorted order is one possibilit
We instead xploit the already quantized
and sorted array of transform chagnts.
Selecting a number of representati
points of support reduces the amount
storage data enormouslyn figure85 on
page88 a \ery coarse approximation with
four supporting point is illustrated. The

points are chosen at &# positions at 10%, 20%, 40% and 70% of the iatdength start-

ing at zero. The highest (at 0%) andvést (at 100%) coé€ient can alvays be recon-
structed from the ddet \alues. Fied positions for the supporting points do netajs gve

the best results. In thexample we reach a better approximation if the first interpolating
point would be at 5% and not at 10%. A more sophisticated approawhl flexible adapt

the actual positions of these points to the signal so that the approximation error is mini-
mized. This is subject of furtheniestication.

UT1

f 60
offset \alue

four interpolating points
10% __—

100

FIGURE 85. After quantizing the highest 128 transfrm
gpefficients logarithmic onto 6-bit integer numbers fom

to 63 the esulting graph is intempolated with four
supporting points. These ae at fixed positions at 10%,
20%, 40% and 70% of the inteval length.

40

50

6 The new audio codecs

Here we finally present three audio codecs that are result ofvastigations. All three audio
encoders ha been implemented and perforriraordinary well in real-time on audio signals
sampled at &Hz. Our research group is presently applying these codeasds high-quality

audio with sampling rates up to BRiz.

6.1 One lagr wave compression

This audio codec is completely independent from the chosen transform bagevekavith

the gwven computational constraints it looses real-time capability on a SUN sparc station 10 if
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the length of the quadrature mirror filter for a Wexceeds 12. dgether with either a WIL
using the Daubechies8 filter at eight decompositivaléeor a simple FFT the coder seems to
perform at its best.dt the WLT this performance is independent from the transform block size,
while the results for the FFT gebwse for transforms with more than 512 samples (&tldz8
sampling rate).

The audio codec pvides an audio stream at axilde bit rate ranging from 64 kbpswn to

less than 6 kbps. lixploits a combination of these three ideas:

1. For specifying the coétient positions the bit field approach is used.

2. A free eligible percentage of the highest @icednts is logrithmically quantized into an
integer number with a selectable number of bits.

3. Position dependent discarding of doef,
cients is ofered. Then less bits are necgd:*

sary to specify the positions.oF high 002 range 0 >
compression ratios it mak sense to omit
the high frequencies components of the —l >

audio signal. Then the highesalved
coeficients are not selected out of 3
coeficients (range 0) from the transfori
block kut of those from the left half (range
1) or een only from the left most quarte
(range 2) of the transform cdiefent
array as described in figug® on pag&9.
This is because for allavelet transforms|™ 50 100 150 200 250
the resulting coditients are arranged INFIGURE 86. A WLT transform using the Daubechies8
the array in a wy that more left onesfierand & secompostton lees ofan atey of 256 aucl
address lwver frequeng components and the highest \alued coefficients ae chosen fom.

more right ones address higher frequenc
components of the signal.

The audio coder &drs three \ays to ary the bit rate:

» the percentage ofpt coeficients
» the number of bits for storing each dosént
» the range the coktients are selected from.

In table16 some gample calculations with dérent parameters are listed.

% b r quantized coefficients offset values position field total p bit rate

50 5 0 256 *(5+1)=1536 bhits 2*8 =16 bits 512 bits 2064 bits 0.504 32.25 kbps
30 5 0 154*(5+1)=924 bits 2*8 =16 hits 512 hits 1452 bits 0.354 22.69 kbps
30 3 0 154*(3+1)=616hbits 2*8 =16 bits 512 bits 1144 bits 0.279 17.86 kbps
20 3 0 102*(3+1) =408 bits 2*8=16 bhits 512 bits 936 bits 0.229 14.63 kbps
20 3 1 102*(3+1) =408 bits 2*8 =16 hits 256 bits 680 bits 0.166 10.63 kbps

TABLE 16. When coding audio signals in blocks of 512 samples thalbwing bit rates are achieved

by varying the percentage (%) of lept coefficients, the number of bits (b)dr storing each coefficient
and the range (r) the coefficients a selected fom. The reference br the compression ratiop are 8bit

ulaw PCM values with a bit rate of 64 kbps.
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% b r quantized coefficients offset values position field total p bit rate
10 3 1 51*(3+1) =204 bits 2*8 =16 bits 256 bits 476 bits  0.116 7.44 kbps
10 3 2 51*(3+1) = 204 bits 2*8 =16 bits 128 bits 348 bits  0.085 5.44 kbps

TABLE 16. When coding audio signals in blocks of 512 samples thalbwing bit rates are achieved

by varying the percentage (%) of lept coefficients, the number of bits (b)dr storing each coefficient
and the range (r) the coefficients a selected fom. The reference br the compression ratiop are 8bit

plaw PCM values with a bit rate of 64 kbps.

6.2 Multi layer wave compression

Here we present a layered audio encoding scheme with three layweseldwo, four, five or

more layers can be realized in the same mawgain the coder is independent from the cho-

sen transform basis.

A possible approach is toVv&athe bottom most layer containing the highest 10%, the second
layer the net highest 20% and the last layer another 20% of thdicesits. The ract percent-

ages are not of immediate interest here and could be arranged to yield the quality layering intel-
ligible/good/perfect. Each layer isgamnized in the sameay. The position of eery coeficient

is specified withlog,n bits wheren is the transform block length. Axtea bit indicates the

sign of each coétient. The used approach for positioning &kous to arrange the absolute
values of the coétients in decreasing ordeks before logrithmic quantization is used to map

the \values onto an inger number ob bits. Since the cof€ients are in sorted order interpola-

tion can be used to reduce the amount of storage data. In8igume pag®1 the method of
guantizing and interpolation is shio for two layers. The original sorted transform dmeénts

and their sgmentation into three layers are illustrated in the upper graph. The the dilatytw

ers are quantized separately into 3-bitgetenumbers. The sonvlat arbitrary approximation

with four supporting points mak it clear that the interpolation method yields into more accu-
rate results than absolute quantizing. This is because linear interpolation brings back all the
intermediate &lue steps between thedtknumber of quantization leks.

layer % b i supporting points offset values sign positions total

0 10 3 2 8*3=24hits 2*8=16 bhits 51 bits 51 *9 =459 bits 550 hits

1 20 2 8 * 2 = 16 hits 2*8 =16 bits 102 bits 102 *9 =918 bits 1052 bits

2 20 2 8 * 2 = 16 bits 2*8=16bits 102 bits 102 * 9 =918 bits 1052 bits
compression ratiop  0.648 bitrate  41.47 kbps 2654 bits

TABLE 17. For a block of 512 audio samples encoded with the layers the resulting bit rate is
calculated. For each layer the percentage (%) of lept coefficients, the number of bits (b)dr storing

each supporting point and an intepolation factor (i) are eligible. The intepolation factor 0 means no
inter polation, then all quantized coefficients a kept. A factor 1 corresponds to an appoximation

with 16 supporting points, with factor 2 only 8 points ae used and ér factor 3 the interpolation is
done with 4 points.

Some calculations about the bit rate whidsvachieed using this encoding scheme are pre-
sented in tabl&7. Compared to the one layer approach we need less bits for quantizing of the
coeficients. The reason is that the compledtug range of the highest 50% of the ticefnts

is divided in three section of which each is quantized separately withnt®fset \alues.

Although the resulting bit rates of this encoder are not\vasakthe rates of the codec intro-
duced before, it ¢érs a very nice propertyThe codification of layer O is the most important
part of the encoding. Adding layer 1 and furthermore layer 2 increases the quality of the audio
signal lut in worst case situations a signal reconstructed using only layer O is acceptable. F
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FIGURE 87. The already well knovn plot on the
left hand side shavs the coefficients of a wee level
transform sorted in descending order of absolute
value. Belav is a zoom of the highest 10% and a
zoom of the next highest 20% of the coefficients
with their corr esponding map onto a 3-bit integer
number. The quantized \alues ae interpolated
with four supporting points.

The way the logarithmic mapping from transform
coefficients onto integer numbers is calculated in
thr ee steps is shen beneath.
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lossy data transmission this yields to an almost natural approach that protects this layer with a
higher priority a@inst loss than the remainingdvwayers.

6.3 High FFT compression

The cowincing performance of this encoding schenaswa big surprise for all of us. Rainer
Storn of SIEMENS, whose dissertatiomasvabout arious FFT algorithms, said hevee heard

of an approach that used tlast Fourier transform the ay we do it for audio compressiororF

us it was surprising to see that such a simple and straighafdreploitation of a FFT algo-

rithm would perform that well. In general the same methods as before are used to compress the
transform codicients that represent the audio signal. Theedéhce is that we takadantage

of some special characteristic of tlastf Fourier transform that ale further compression. &/

first introduce this special characteristic arglain the codec later

The discrete 6urier transform and its werse from a @ctorh with n coeficients into a ector

H with as welln coeficients are defined as:

n-1 n-1
_ —21ikm/n _1 —2mimk/n
k=0 m=0

In our case theactorh represents the audio sigriglt) sampled in rgular time stepét . For
a vector with n coeficients the length of the sample intarvs nAt and h, = h(t,) with
t, = kAt for k = 0,1,...,n—=1. Consequently computing theolirier transformH of h
results into the frequepaepresentation of audio signBl(f) sampled in rgular frequeng
stepsAf. ThenH,, = H(f,) with f = m/(nAt) for m = —n/2,...,n/2. The atreme
values ofm correspondactly to the Nyquist critical frequepcange—f. to f.. If you are
really on the ball, you will hae noticed that there aret+ 1 and notn values ofm. It turns out
that the tvo extreme \alues ofm are equal - this reduces the counnto

Up to nav we hae talen the viev that the inde m varies from—n/2 to n/2. You can easily
see that the discreteotrier transform is periodic irm with the periodn. Therefore
H_, = H,_, and with this covention in mind, one generally lets tine in H_ vary one
complete period fron® to n—1. Then them of theH ‘s and thek of theh, ‘s vary over the
same range.dHowing this conention the zero frequepcorresponds tm = 0, positve fre-
quenciesO< f < f_. correspond to thealuesl1<ms<n/2-1, while ngative frequencies
—f.<f<0 correspond ton/2+1<m<n-1. The walue m = n/2 corresponds to both
f=f,andf = —f_.

In all these definitions thke, ‘s and theH ,'s are thought to be complealues. In the case of
audio signals the functioh(t) in the time domain happens tovhRaa special symmetrjt is
purely real, meaningm(h,) = 0 fork = 0,1, ..., n—1. In the frequengcdomain these sym-
metry leads to the propertiesm(H,) = 0, im(H,,, =0 and H,=H,_, for
1<ms<n/2-1 [31]. Exploiting these characteristicsector ofn real numbers ~v&n though
they are thought to be complenumbers to compute a complealued Burier transform - is
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mapped onto anotheesgtor of onlyn real numbers. In figur@8 these mapping is illustrated

input FFT input FFT output output
(real-valued) (complex-valued) (comple-valued) (real-valued)
toring th BEient
h(t,) R H(f )
0.125 0125 0 3ty =0 1] o 3fg=0 1 |re(Hq)
0 0 0 [3t =At FFT 0 0|[3f, = 1/(8At) 0 |re(H,)
0.125 0125 0 [}ty = 2At —>7 0 05[]3f, = 2/(8At) 0 [re(H,)
0.25 025 0 [3t3 = 3At Hp= S G2riknve [[0 0 3y = 3/(8At) 0 [re(Hj)
— = K
0.125 0125 0 [3t,=4at ™ S o[ 0 [3f, =24/(8A1) 0 |re(H,)
0 0 0 |3tg=5At 0 0 [Jfs=-3/(8A1) | O [im(Hy)
0.125 0125 0 [}t = 6At 0 -05[}fg=-2/(8At) | 0.5 |im(H,)
| 0.25] 1025 0 [3t; = 7At L 0 0 [3f,=-1/(80t) | O Jim(Hy)
\ /N
real imaginary real imaginary
FIGURE 88. The Fourier transform of a signal represented bya im(Hg) =0 Hy = H_7
sample \ector with eight real-valued entries esults into a im(H,) =0 H,=H,
transform vector with as well eight eal-valued entries by 4 2- 76
exploiting the existing symmetries. Hy = Hg

with a small @ample.

For high audio compression the zero freqyehg and the Nyquist frequendf ,,, = +f_ are
omitted from the bginning. The contribtion of the remaining frequencids to f, 5 _; is
determined through the compleoeficientsH, to H 5 _;, whose real and imaginary com-
ponents are stored separately in the output aB#carding transform cotients the one
layer wave compression scheme together with the FFT transform did mothtiskrelation into
account. There a cdafient was discarded according to his absolwkig so that real compo-
nents could be omitted while corresponding imaginary parts remained anersee Mere we
compute the absolutele of each pair of real and imaginary ¢ioefnt and lkeep the highest
complex numbers. What we do is transforming the complembersH, to H,,,, _, into the
polar representation with:

amp(H,) = Jre(H )2 +im(H)?>  phs(H,) = ata

For both - the rectangular and the polar representation(nth@)/2 comple coeficients are

stored inn—2 real numbers. The profit we get from eitheeging a complecoeficient com-

plete or discarding the real and the imaginary part concerns the positioning. Instead of distin-
guishing n—2 real numbers it is enough to specify the position(iof2)/2 comple
coeficients which needs only half the amount of information.

The coder uses the bit field approach for positioning and quantizes the abahlateof the

kept comple& coeficients - the amplitude - l@githmically into intger numbers o& bits. The

phase information of each cfiefent is mapped linear onto an igee number ofp bits. The

% a p r quantizedamplitude offset quantized phase positions total p bit rate
25 4 4 0 64*4=256bits 16 bits 64 * 4 = 256 bits 256 bits 784 bits 0.191 12.25 kbps
20 3 3 0 51*3=153bits 16 bits 51 * 3 = 153 bits 256 bits 578 bits 0.141 9.03 kbps

TABLE 18. These calculation ae based on encoding blocks of 512 audio samples. The gesmtage
(%) of kept coefficients (eal and imaginary component count as one coefficient each), the number of
bits (a) for storing each amplitude, the number of bits (p)dr storing the corresponding phase and the
range (r) the coefficients ae selected fom are the parameters to ary the bit rate.
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% a p r quantizedamplitude offset quantized phase positions total p bit rate

15 2 3 1 39*2=78hits 16 bits 39 * 3 =117 bits 128 hits 339 hits 0.083 5.30 kbps
10 2 3 1 26*2=52bhits 16 bits 26 * 3 =78 bits 128 bits 274 bits 0.067 4.28 kbps
10 2 3 2 26*2=52bhits 16 bits 26 * 3 =78 bits 64 bits 210 bits 0.051 3.28 kbps

TABLE 18. These calculation ae based on encoding blocks of 512 audio samples. The qestage
(%) of kept coefficients (eal and imaginary component count as one coefficient each), the number of
bits (a) for storing each amplitude, the number of bits (p)dr storing the corresponding phase and the
range (r) the coefficients ae selected fom are the parameters to ary the bit rate.
resulting compression ratios yields into audio streams at bit ratew as lare as high 3.28
kbps. In the ne section we imesticate the quality and the intelligibility of the audio signal at

these compression rates.

7 Auditory testing

In our eperience the best test scenario feestications about the distortion and intelligibility

of an audio signhal compressed through the introduced methods is a fuk gopieto-point
communication. @ compare the quality of dérent encoding schemes the play back of prere-
corded sound files is well suited. Especially tovalktatements about the intelligibility agny

high compression ratios this approaelisf when the test person has heard the audio samples
before.

This and the dct that our encoders were designed twkwhand in hand with protection
schemes that makthe audio stream robt aginst transmission errors were the mwaition for
implementing VVAU.

7.1 The Wave Audio Unit (WAU)

The Wave Audio Unit is an audio tool for full dupdeoint-to-point communication. It acts as

an perimental test-bed for bothviesticating the audio codecs introduced abdand applying
different protection schemesaards them. Rather thammaining implementation details we

give an @erview about the concepts and the design of the tool. The cooperation of the single

recv . rotect sen:
audiolO P protect netlO
LI " hgapistect gy

send

¢

\ send %, send

—pp» audio deice to
network e
.

...........
4 by

’ . \ .
«1]-- network to audio '~ indata transform \ inpack )
device 0 Mteeeaiaueet

FIGURE 89. A schematic illustration of the cooperation between the single components of the® Audio Unit.

~ -
----------
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components is depicted graphically in fig8& The user inteaice directly interacts with each
of the components according to the actions by the (dber @ents are triggered on aral of
data either at from the netwk or from the audio dece.

Audio deviceto network: Arriving data at the audio diee triggers anwent that calls theecv
function of theaudiolO. The data is read into tleetdata object and in case enough data is
present therotect function of theprotect object is called. Depending on the chosen protection
scheme theack function of either th&lOT, theRAT or thePET object is called. The respegi
objects stand for diérent schemes of protectiddOT - the currently only already implemented
object - means no protectioRAT incorporates the approach from the MICE project REd
applies the message striping schenveatds the encoding. The three objects use the function-
ality of thetransform object to carry out the selected transform, compress this representation
according to the chosengtee and fill one paekt (or more folPET) from theoutpack object

with the codification. Wh the send command of theetlO object the contents of thatpack
object are transmittedver the netwrk.

Network to audio device: When packts arrve from the netwrk they are read by theecv
function of thenetlO object into thanpack object andunprotect is called. Theorotect object
detects the protection method and callsuihyack function of the corresponding object. The
paclet is uncompressed and - using the methods ofr éineform object - retransformed and
stored into thendata object. The final call of theend function from theaudiol O object hands
the reconstructed audio signakeo to the audio dece.

The user intedce of the \@ve Audio
Unit - which is \ery similar to the one of

WAV - can be seen in figu@0. The EXIT haar2
number of arious transformations ag Audio Control daubd
reduced to those that naksense for, Record Level: 2@ ~ daubs
compression. The ave paclet trans- 1 o . clauba
form for instance ws omitted because Volume Level: 5B daub10
of the enormous amount of additional |/ [T | Sibeseshers | o s
information about the awe paclet basis Transform Control daubild
which males it ineficient for our com- # Mave Level Humbsr of Samples: S12 daubls
pression schemes. The remaining | uauelet | 1 daub1s
adjustments &ér the same possibilities el s I deb20

to select a transformation as irAW ~ Hene | R

The innwations are the protection con- [T rrrrrrrrrr

trol (1) and the net control (2). At this, |  Protection Control

coife
coifl2
coifll

point only the protection less NO|1 | * nor v FET e beul18
option is &ailable. Future releases will options | optlanE | | el
offer the tvwo protection schemes PE[Tl) _ [ ————»  net controi ——
and RA as thg were markd out ~ Mone —
before. The straight foravd design of| 3__ | send + Recv # SendeRecy + Laor| ..o
the net control alls unidirectional and lacal part? 5555 test3
bidirectional netwrk connections to remots porct [J21 1. i5d. . de: 5555 et

another host. The tool reges data on| 4

the local port (3) and sends it to the _
remote host (4) FIGURE 90. theuser interface of WAU

CC <0< < ¢ ¢ (€L

FFT

95



Auditory testing

The three dierent codecs that were

introduced in the sections beforevha MOT options

been implementedxactly as describec ~ DLl

and are accessible via the options win- ¢ 4 bit ADPCM

dow of NOT (see figur@®l). Further- 5 — one layer compression

more standard 8 bjtlaw PCM (1) and « First 507 Sbit  range @

an ADPCM coder (2) are fafred to | T T T

allow quality comparisons. The naming multi layer compression

of the control panel corresponds to the first 107 6 bit  interpolation @
names used when the codecs were |1 T
described. &r the high FFT comprest s mext 287 6 bit  inmterpolation B
sion (3) it may be noted that the lbit- | I P

slider determines the number of birs nesxt 267 6 bit  imterpolstion 8
used to quantize the amplitude, while | |

the rightbit-slider is for the number of 3— high fft compression

bits for the phase. «r first 487 5hit Shit range @
Some statistics are displayed at the bot- | [ N T A S N R
tom of the windw (4). These inform frame length: 64 ms

about the time inteat length and the] 4 —FT——» packet size: 261 hutes
number of byteS in one paik the handwidth: 32,62 kbit/s
achieved bit rate and the time needed for needed tine: 2032 usee
computation. FIGURE 91. TheNOT optionswindow

7.2 Auditory results

The quality ealuations were done betweenot®UN sparc 10 stations using head sets and
room microphones. A later release of thev&/Audio Unit does also includes a GSM and a
LPC coder at 13.2 kbps and 4.8 kbps bit rate res@bgetirhis enabled the test persons to enak
a direct comparison between some state of the art speech codecs anddareloped encod-
ings.

one layer compression. This encoder came up with the most impressing resuggetier with
either the vave level transform using the Daubechies8 filter or the discrete cosine transform
there vas no audible diérence in quality at 32 kbps compared to ADPCM codec with the same
bit rate. The computational compiy which is roughly ten times higher is the price weéa

to pay for the infinitely ariable graduation in both bit rate and qualibgreasing reduction of

the encoders bit rate results in gracefigrddation audio quality with an understandable signal
down to 5.44 kbps. In contrast to LPC where the encodext\sounds lig ‘Mickey Mouse' is
talking with our codec the speats characteristicoice can be recognizeden at high com-
pression ratios. The geadation of the signals quality is - especially for theTWhkery natural.
Noise and distortion is added in the same manner as ialkdewalkie communication that
exceeds the maximal distance.

multi layer compression. At a bit rate of roughly 42 kbps this encoding yields into a transpar-
ent compression of a 8 hitaw PCM signal sampled atkHz. The big adantage are the three
independent layers that can be stored, protected and transmitted sedasaiglpnly the bot-

tom most layer results in an already understandable audio signal at 8.59 kbps. When adding
layer 1 the necessary bandwidth increases to 25.03 kbps with a signal quality that is already
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fairly good. The used transformations wereaiagthe vave level transform with the
Daubechies8 filter and thadt Fourier transform.

high FFT compression. In respect to intelligible audio signals atviest bit rates and smallest
computational complaty we were able to beat the LPC coder with 4.8 kbpgh \AImost the

same computational per our coder produces (sometimes rather hard) understandable audio
signals at 3.28 kbps. Increasing the bit rate to 4.28 kbps results into a throughout intelligible
voice signal with strange background noise.dsuwhe test persongperience that the commu-
nication was better after the ear became used to this compression method. The distortion is eas-
ier to distinguish from the speech signal because of its abnormal nature. The ringingbell-lik
background noise led a test person to sayy,ldee you calling from outer space?’.

Generally the LPC coderas the preferred choice - not for reasons of understandabiiity
because of less disturbing noise. The LPC compressed signal sounds astgercammon
statement. Neertheless as soon as the bit rate for high FFT compressiennaereased to
5.30kbps and abee the audio quality impxed a lot - something which is not possible with the
LPC coderFurthermore we are able to apply the same compression algorithm to audio streams
with a higher sampling rate - @aig something which is not possible with the LPC coder

Summing up the meencoders outperform theiwals through fleibility. When a fine granular-

ity of different bit rates is needed the one layer compression is the first choice. Otherwise the
panoply of audio codecs &k8 bit law PCM (at64 kbps), ADPCM (aB2kbps), GSM
(at13.2kbps) and LPC (at.8 kbps) may be bettewhen a layered encoding scheme is needed
the multi layer compression is the first choiceweeer, combining ADPCM or GSM with

LPC simulates a tavlayer encoding, that alis the reconstruction of the audio signal ab tw
quality levels using either the one or the other lay®hen compression atv@st bit rates is
needed the high FFT compression is an altammati LPC when some Hility in bit rate is
desired. Wo very important adantages of our codecs are independence from the sample rate
and unlimited capability to with gnkind of audio signal. Mang towvards higher sampling
rates and/or music signals all three coders outperform ADPCM, GSM and LPC wiéh ha
been designed to compress speech signal&tdr 8
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VII

Resumeé

1 Conclusion

This thesis addressed quality orientated imenoents for multimedia connectiongeo paclet
switched and lossy nebtsks. The problems wolved in establishing real-time communication
over netvorks such as the Internetvegabeen igesticated and the definite netvk characteris-
tics that cause these problemsénbeen clearly maed out. The quality of audio communica-
tion essentially depends on the number of ptchkost and on theawiation in packt arrval
times. Eficient mechanism to minimize the impact of delay jitterehalready been proposed
in literature, whereas dealing with patkoss remains an aati research area.

The measurements about the pdkss rate for audio streamgeo the Internet shveed that

the number of consecud lost packt usually is small. This rigorously pred that open loop
mechanisms that add redundgamn the sending side are suited to cope with the loss of infor-
mation. W presented tavtransmission concepts thaeocome these netwk limitations using
forward error correction schemes.

The ‘piggyback protected transmissionasvintroduced - a resilient scheme that has already
shaved its usefulness in imprmg full duplex audio communication. The ‘priority encoded
transmission’, which had mer been applied to audio streams beforas \&amined for its
capability in protecting the transmission of audio datx tossy netwrks.

We shaeved that for time critical point-to-point communication the compaebtisimple ‘pick-
a-back protected transmission’ is a better choice than ‘priority encoded transmission‘. In a
broadcast scenario on the other hand whege ldelays are acceptable the PET approach will
yield in better results because of itsustmess agjnst long pacét loss periods and its capacity
to transmit to receers with widely diferent netwark bandwidth.

In order to apply the ‘priority encoded transmissiomdods audio streams, itas necessary to
develop a layered audio encoding scheme. A major part of thesis is concerned with discussing
and analyzing diérent transformations of an audio signal in respect to time and frgquenc
Finally we are able to present an audio codec that we ti@eloped from scratch and that
yields into a compressed and layered representation of the audio signal. In contrast to common
standard codecs this encoding scheme is well suiteddotagether with PET

Furthermore we demonstratedahour nev encoding scheme impres the performance of the
‘piggyback protected transmission‘. Through diminishing the reduydan¢he redundant
information a better audio quality can be aghein case of isolated paatkosses.
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2 Current work

The Wave Audio Unit (WAU) - written to allav quality test for the deeloped audio codecs and

to investigate the impreement in audio quality through téfent protection schemes - is cur-
rently enhanced for alang various sampling rates. &\ook into rolist transmission of audio
sampled at higher rates with a higher freqyeamendwidth for high-quality audio communica-

tion. The promising results of our audio encoding schemeskbz&ampled audio ant to be
validated with sampling rates up to Bdz. A mechanism as proposed in literature to eliminate
the impact of delay jitter is about to be implemented. Furthermore we look into speeding up the
encoding algorithms and into minimizing the aehiae bit rates. Other standard audio codecs
are intgrated in the \&e Audio Unit to simplify comparisons of audio quality

3 Futurework

A very interesting task is the igpation of psychoacustical technique®likequeng and time
masking into our audio codecsitiWthese methods the auditory model of the human ear can be
exploited for further compression. There is a limit to the sefigitof the ear and if sounds are
too weak thg will not be detected. This is kmm as the threshold of audibilityhis threshold
varies with frequencand it can be increased alyayiven frequeng by the presence of a tg
signal at a nearby\er frequeng. This phenomenon is called masking and it is already widely
used in speech coding. Sinha amflk have used such techniques for transparent compres-
sion of high-quality audio [40]. Tlyeemplo/ed the vave paclet transform to split the audio
signal in the necessacyitical frequency bands [3].

Furthermore the piggyback protected transmission as proposed in the papers of Bolot should be
implemented. Subsequently the imggment in audio quality using our encoding schemes
instead of standard codecs can euated.

Enhancing the \&e Audio Unit for a broadcasting option, so that we can apply the PET pro-
tection tavards our layered audio representation, is @enirtask. The PET code definitely
needs to be cleaned up and we think about optimizing it for our requirements. Rigtiteno
overhead in both - computation time and additional coding information - is too heyknilW
need a scenario that simulates the patdss behdour of the Internet so that applicationselik
‘Internet radio’ using our protection schemes can be tested. It will be interesting to compare the
achieved results to applications that are alreadbilable. ‘RealAudid™ for example is a com-
mercial product that already aNs radio like audio connectionsser the Internet at bit rates of
14.4 and 28.8bps. Havever the quality - especially for music transmissions - is still at best
mediocre. W think that with our approach much better audio quality is possible.
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Appendix
A short tutorial on linear algebra

This chapter is not meant toveathe reader going through all the faliag definitions. It is
thought to ser as a reference for the used nomenclature. Simply reading througkhethe gi
examples may be an adequataywo refresh the necessary mathematicahkeage.

A.1 Vector space
A collection{v,, v,, v5, ...} of elements is aector space/ over the real numbemR if:

1. for all a, b0 R and for allo, vV holdsat + bv [0 V. This praides closure under linear
combinations.

2. there aists an unique elemer@ 0V such that for alla 0V holds Ou = 0 and for all
oV holdsO+0 = 0.
The elements of/ are called gctors, and the eleme@tof V is called the zeroactor

Example: The vector spaces R2 and R3 and their geometrical meaning should be familiar
to the reader. The elements of the more general vector space R are sequences of n real
numbers (Uq, Uy, ..., U,) .

Another vector space is the space of al| square mtegrable functions LZ(R) where the vec-
tors are functions f(X) that satlsfyI [f(X)] 2Ox < o0

A.2 Inner product and orthogonality

An inner productl..|...C on a \ector spacé/ is ary map fromV x V to R that is:

1. symmetric, meaning for ail, v V holds¥ju= [@mvC

2. bilinear, meaning for alb, b J R and allt, v, w 0 V holds[ad + bviw = allijwH b¥wC
3. positive definite, meaning for ail# 0 OV holds@|u=> 0

The most important use of the inner product is to formalize the idea of orthogofhaityec-
tors U, v of a \ector spacev with the inner productl..|...C are said to be orthogonal if
[@v= 0.

Example: Dealing with vectors V = (Vq, Vo, ..., V,) and O = (U, Uy, ..., U,) of the
n . . _
vector space R the common used inner product is [W[v[]= UV + UV, + .+ ULv, .
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Norms and normalization

The inner product of twg vectors U = T(X) and V = g(X) of the vector space L,(K) is
defined as [MvO= I f(x)g(x)dx.

A.3 Normsand normalization

A norm||...|| on a \ector spacé/ is ary map fromV to R with:
1. foralluz00V holds ||g]| >0

2. foralladR and for allu OV holds||atl| = al|ul|

3. for the null \ector0 0V holds||0l| = 0

The most important use of the norm is to formalize the idea of the lengtreofa ¥ vector
0 with ||0]] = 1 is said to be normalized.

Example: For the vector space Rn and the vector space LZ(R) the most frequently used
norm is the L, norm. The definition of the L, norm uses the inner product of a vector

space resulting in |[T]|, = /AL,

A.4 Linear independence

A collection{ by, by, bs, ...} of vectors from a ector space/ is said to be linear independent
if:

with ¢4, C,, C5, ... OR.
It is easy to shw that orthogonal ectors must be linear independent, suggesting that orthogo-
nality is a strong form of linear independence.

A.5 Basisand dimension

A collection { by, by, b3, ...} of linear independentectors from a ector spaceV forms a
basis B for the \ector spaceV, if every wector aV can be written as

U = ¢;by +c,bp+ c3bg + ... with ¢, €y, €5, ... O R. The scalarg,, c,, c5, ... are the coordi-
nates and theector (U)g = (c4, Cy, Cg, -..) is the corresponding coordinatector for the ec-

tor O in the \ector spacé/ in respect to the basi. It should be noted that coordinatectors
depend not only on the badsbut also on the order in which the basectors are written. A
change in the order of the basextors result in a corresponding change of order for the entries
in the coordinate ectors. When talking about a coordinagetor (0)g of a \ector spaceV,

one must beware of the rgarding basiB.

A basisB is an orthogonal basis if all basisctors are mutually orthogonal. It is orthonormal
if in addition all basis @ctors are normalized.

If a basisB for a \ector spacé/ has a finite number of basisatorsb;, b, bs, ..., b,, thenV

is finite-dimensional and its dimensionns Otherwise the ector spacé/ is said to be infinite-
dimensional.

Example: For the vector space Rn the collection S = {él, e €3 ..., én} with
e =(,00,..0), & =(0,10,..0), .. , & =1(000,...,1) forms a
orthonormal basis. The basis S is called the standard basis S of Rn. The coordinate vec-
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tor of any vector U LI R with U = (U4, Uy, Ug, ..., U,)) relative to the standard basis S is
(U)S = (ul, Uy, Ug, ..., un) , because every vector U L[] Rn can be written as
U = u& +Uu,e, + ... +U,&,. Regarding to the standard basis S every vector U [] R"
and its coordinate vector (U)g are the same, resulting in 0 = (U)g. It should be empha-
sized that in general a vector and its coordinate vector are not the same. The equality is a
special situation that occurs only with the standard basis S for R". Since the vector space
R" has a finite number of basis vectors, it is finite dimensional.

A.6 Vector subspace

A subsetU of a \ector spacé/ is said to be a subspace\of writtenU 0OV, if U itself is a
vector space. @en a \ector space&/ and a subspadd, there alvays «ists a ector subspace
W of V such that:

1. every elemenw of V can be written as a linear combinatior= U+ W of an element in
U and elemenw in W.

2. the representation in 1 is uniqgge U n W = {0} . This is called the direct sum decomposi-
tion of V and is written a¥ = U + W.

3. one can choos®/ so thatU OW. In this caseery element in U is orthogonal to\ery
elementw in W. This is called the orthogonal decomposition\bfand is written as
V =UOW.

A.7 Basstransformation

Recall that ifB = {by, by, ...} is a basis for aactor space/, then eery vectoru 0V can be
expressed uniquely as a linear combinatiorr c,b; +c,b, + ... of the basis ectors. The
scalarsc,, c,, ... are the coordinates af relatve to B and the ector (U)g = (¢4, Cy, ...) IS

the coordinate ector ofu relatve toB. We define

to be the coordinate matrix of relatve toB.

If we change the basis for &ator space/ from some old basi8 = {by, by, ...} to some
new basisB' = {by', b, ...}, then the old coordinate matrjxi]; of a \ectort is related to
the nev coordinate matrifu]g by the equation

[Ulg = P[U]g

where the columns d? are the coordinate matrices of thevrigasis ectors relatie to the old
basis. The matriP is called the transition matrix from the baBisto the basi®8 and can be
expressed in terms of its columeators as

P = [[ByTg [B51 [BsTg -\
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Basis transformation

If the matrlixP is the transition matrix from a bads to a basidB thenP is invertible and its
inverseP ~ is the transition matrix from the badisto the basiB'. This relation is gpressed
by the analog equation.

A change from an orthonormal bagisto another orthonormal badBs results into a transfor-
mation matrixP that has a nice property making itgdrseP easy to find. The irerseP ™

-1 T
of this matrix is its simply its transpo$e resultinginP = = P
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