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Abstract
This paper studies small space-bounded interactive proof systems (IPSs) using public
coin tosses, respectively Turing machines with both nondeterministic and probabilistic
states, that works with bounded number of rounds of interactions. For this model of
computations new impossibility results are shown. As a consequence we prove that
for sublogarithmic space bounds, IPSs working in & rounds are less powerful than
systems of 2k*~1 rounds of interactions. It is well known that such a property does
not hold for polynomial time bounds. Babai showed that in this case any constant
number of rounds can be reduced to 2 rounds.
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1 Introduction

Interactive proof systems (IPSs) working in constant space seems to be very powerful devices. Dwork
and Stockmeyer ([DwSt92]) showed that any language recognized in deterministic exponential time
has an TIPS, where the verifier is a probabilistic finite automaton. The power of computation of
constant-space-bounded IPSs becomes more realistic when the random moves of the verifier are
known to the prover, as it is the case for Arthur-Merlin games, resp. for Turing machines with both
nondeterministic and probabilistic states. Condon ([Co89]) proved that any language recognized
by such system is in P even when the verifier works in logarithmic space. Hence the difference
between the privet and the public coin tossing is significant. This property does not hold for the
corresponding polynomial time classes (see [GoSi86]).

In their paper [DwSt92], Dwork and Stockmeyer showed some further separating results proving
a number of strong lower bounds for probabilistic finite automata and for small space-bounded IPSs
tossing public coin. They proved for example that the language

CENTER = {wlz : w,z€{0,1}* and |w|=|z|},

cannot be recognized by a sublogarithmic space-bounded probabilistic Turing machine with any
error probability € < 1/2. On the other hand, there exists a constant-space-bounded interactive
proof system (with public coin flips) for CENTER: in [DwSt92] a protocol for this language is given.
Thus at least in case of sublogarithmic space bounds interactive proof systems enable the verifier to
accept something it cannot accept on its own. It seems, however, that to accept CENTER in constant
space, a huge number of rounds of interactions is crucial. The protocol of [DwSt92], for example,
works in exponential number of rounds and it is unknown if the language can be recognized in
smaller number of interactions. Hence, the lower and upper bound results of [DwSt92] prove that 1
probabilistic round is less powerful than exponential number of rounds and it is open whether there
is also a difference in power of computations between IPSs of R and resp. R’ interactions for any
function R and R/, with 1 < R < R’ < exp. In the paper we will prove that for space bounds in
SUBLOG = Q(llog) No(log) the problem has a positive answer for any function R(n) < k and
R'(n) > 2k*~1 where k is an arbitrary constant. Here llog denotes the logarithmic function log
iterated twice.

We refer to TMs which have both probabilistic and nondeterministic states as stochastic Turing
machines (STMs). Denote by AM Space(S) the set of languages that can be accepted by STMs,
equivalently by public coin TPSs, with space S. Let M A Space(S), resp. AMySpace(S), denote the
set of languages that can be accepted by such machines making at most & — 1 alternations between
nondeterministic and probabilistic configurations, equivalently making at most £ — 1 interaction, and
starting in nondeterministic, resp. probabilistic, mode (for such a machine we also say that it works
in k rounds). BPSpace(S) denotes the class of languages accepted by S-space-bounded probabilistic
TMs with bounded error. Then language CENTER yields the separations

BPSpace(S) = AM;Space(S) C AM Space(S)

for any S € o(log). In this paper we strengthen these result for S € SUBLOG showing an infinite
hierarchy of AMySpace(S) complexity classes between AM;Space(S) and AM Space(S).
Let BIN(m) := bin(0)# bin(1)# bin(2)# . . . # bin(m), where bin(7) is the binary representation
of the number . We define for any positive integer &
PATTERN; = {Wi#..  #Wi#u#BIN2Y) : Wi,... Wi, uc {0,1,%}F, ju|=d
for some d € IN, and u is a substring of W;, fori=1,... k } .

One of the main results of this paper says that for any integer k& > 2

PATTERNyx—1 & AMjSpace(o(log)) U M ApSpace(o(log)) . ()



To prove these lower bounds we show that any stochastic Turing machine M accepting an input
Widt ... #Wpeo1 #u#BIN(2¢) € PATTERN,x—: in k tounds, alternates between a nondeterministic
and probabilistic move on some block WW; with very small probability. Using methods of [DwSt92]
we choose the string W; in such a way that M cannot distinguish in one round this specific string
from some ”wrong” string. Hence, if one replaces W; by the wrong string, M to detect this difference
has to alternate on this string; otherwise it behaves as previously. But because M alternates on the
1-th block with very small probability hence it can detect the difference with small probability, too.

From (1) it follows that PATTERN; cannot be accepted by 2-round STMs. In [LiRe96] we showed
a little bit more for such machines. Namely, we proved that any o(log )-space-bounded STM cannot
recognize even PATTERN; in 2 rounds when starting in probabilistic mode. On the other hand this
language is in M AsSpace(llog). Hence an optimal lower bound on the number of rounds has been
founded in this case. Using a method of Freivalds ([Fr79]), we generalize in this paper the upper
bound for recognizing PATTERN; as follows:

PATTERN;, € M AspSpace(llog) , (2)

for any k > 2. Note that the above upper bound does not match our lower bound (1). In fact the
gap is rather large.
Therefore, we obtain the following separations:

Theorem 1 For any integer k > 2 it holds that
M Agpr-1Space(llog) € AMypSpace(o(log)) U M ApSpace(o(log) .

This implies that round/alternation hierarchy for sublogarithmic space-bounded AM} machines is
infinite, similar as for standard alternating TMs (see e.g. [LiRe96a]):

Corollary 1 For any function S € SUBLOG and any integer k > 2
AMySpace(S) U M ApSpace(S) C M Aspr-1Space(S) .

This property does not hold for the corresponding polynomial time classes AMTime(POL).
Here, POL denotes the set of all polynomials. In [Ba85] Babai has shown that for polynomial time
any constant number of rounds can be reduced to two rounds, that is

AM>Time(POL) = AMiTime(POL) ,

for any integer k£ > 2.

In the paper it is also shown an astonishing lower bound on space and on the number of rounds
for recognizing the complement of PATTERN;. Though the language is in M A3 Space(llog ), we prove
that that for any integer function R € O(log /llog), its complement

PATTERN; ¢ AMpgSpace(o(log)) . (3)

Obviously, this result implies the following

Theorem 2 For any S € SUBLOG, and for any integer function R, with 3 < R € O(log /llog)
the classes AMpSpace(S) and M ArSpace(S) are not closed under complement.

The remainder of this paper is organized as follows. In Section 2 some definitions and notions
are introduced. Section 3 contains the proofs of our lower bound results (1) and (3). In Section 4 a
machine for PATTERN}, is described what proves (2).



2 Definitions

A computation of a stochastic machine M on an input X can be described by a computation tree.
In a probabilistic state a stochastic machine M chooses among the successor configurations with
equal probability. To define acceptance of X, for each nondeterministic configuration one chooses a
successor that maximizes the probability of reaching an accepting leaf. The acceptance probability
of X is then given by the acceptance probability of the starting configuration in this truncated tree.
M accepts a language L in space S if

e for all X € L, the probability that M accepts X is more than 3/4,

e every X ¢ L is accepted with probability less than 1/4, and

e M never uses more than S(|X|) space.
We say that M accepts the language L in R rounds if with any input X M makes at most R(|X]|)—1
alternations between nondeterministic and probabilistic configurations. The above machines are
equivalent the to S-space-bounded IPSs using public coin tosses and working with R rounds of
interactions between verifier and prover (see [DwSt92] for a formal definition of S-space-bounded
IPSs).

Let M be an STM. We will assume that M is equipped with a two-way read-only input tape and
a single read-write work tape. A memory state of M is an ordered triple @ = (¢, u,7), where ¢ is a
state of M, u a string over the work tape alphabet, and i a position in u (the location of the work
tape head). By || we denote the length of the string u of the memory state a. A configuration of M
on an input X is a pair («, j) consisting of a memory state a and a position j with 0 < j < |X|+1 of
the input head. j = 0 or j = |X|+ 1 means that this head scans the left, resp. the right end-marker.
Let h(a, j) def J be the function describing the input head position for an configuration («, ). We
say that a configuration (e, j), with @ = (q, u, 1), is nondeterministic, probabilistic (or random),
accepting or rejecting, according to q.

We call a phase of computation of M a probabilistic (or random) round if M starts the phase in
a probabilistic configuration and makes only probabilistic steps during the phase and finally reaches
a non-probabilistic configuration. Analogously we call a phase of computation a nondeterministic
round if M starts in a nondeterministic configuration and performing only nondeterministic steps
during the phase reaches probabilistic, accepting or rejecting state. Let for a probabilistic configu-
ration ¢ and a nondeterministic, accepting or rejecting configuration configuration ¢’

Rle, ¢, X]

denote the probability that M with X on its input tape and starting in ¢ reaches the configuration
¢ in a probabilistic round. Let for a nondeterministic configuration ¢

N(e, ', X)

be 1 if M starting in ¢ on the input X reaches the configuration ¢’ in a nondeterministic round;
otherwise N(e, ¢, X) = 0. Denote by
.Ak [C, X]

the probability that M accepts the input X in & or less rounds starting in configuration c¢. Formally
let for the accepting configuration ¢, Ag[e, X] := 1 and for the rejecting ¢, Ag[e, X] := 0. Then for
any k > 1 if ¢ is probabilistic, then

Aple, X] == Y Rle,d X] - Ap[d, X]

1
¢’ —nondet.
or accept



and if ¢ i1s nondeterministic, then

Aple, X] == max  {Ap_1[c', X] : N(c, ¢, X) }.
¢’ —random
or accept

Let  Ag[X] := Agleo, X], where ¢g be the initial configuration of M.

3 Lower Bounds

In this section we give proofs of our impossibility results:

Theorem 3 For any S € o(log), an S-space-bounded STM cannot recognize
(1) the language PATTERNyx—1 in k rounds, for any integer k > 2, and
(2) the complement of PATTERN; in R rounds, for any R € O(log /llog).

We start with definitions and technical preliminaries that were originally be showed in [DwSt92] for
probabilistic Turing machines. Here we extend them for STMs.

The word probabilities of M on a word Z over the input alphabet of M is defined as follows. A
starting condition for the word probability is a pair (o, ) where « is a probabilistic memory state
of M and h € {Left, Right} what means that M starts according to the value of A on the leftmost
or on the rightmost symbol of Z in memory state a. A stopping condition for the word probability
is either:

- a pair (a, h) as above meaning that in a probabilistic round the input head falls off according
to h the leftmost, resp. the right most symbol of Z with M in memory state «,

- 7 Accept” meaning that M in a probabilistic round halts in the accepting state before the input
head falls off either end of 7,

- ”Reject” meaning that M in a probabilistic round halts in the rejecting state before the input

head falls off either end of 7,

- 7 Alter” meaning that within Z M alternates from a probabilistic to a nondeterministic round,
or

- ”Loop” meaning that within Z the probabilistic computation of M loops forever.

For each starting condition o and each stopping condition 7, let p(Z, o, ) be the probability that
stopping condition occurs given that M started in starting condition o on Z.

Computations of a probabilistic round of M are modeled by Markov chains with finite state
space, say 1,2,...,s for some s. A particular Markov chain is completely defined by its matrix
R= {rij}lgi,jgs of transition probabilities. If the Markov chain is in state z, then it next moves to
state j with probability r;;. The chains we consider have the designated starting state, say, state
1, and some set Tg of trapping states, so 4+ = 1 for all t € Tg. For t € Tg, let p*[¢, R] denote the
probability that Markov chain R is trapped in state ¢ when started in state 1.

Let 8 > 1. Say that two numbers r and r’ are (B-close if either r = ' = 0, 0or r > 0, ' > 0, and
Bt < r/r" < B. Two Markov chains R = {rij}1<ij<s and R’ = {rgj}lfi,jfs are f-close if r;; and

/

r;; are f-close for all pairs 1, j.

Lemma 1 (([DwSt92])) Let R and R' be two s-state Markov chains which are 3-close, and let ¢
be a trapping state of both R and R'. Then p*[t, R] and p*[t, R'] are 3*-close where z = 2s.



We characterize a word 7 according to a nondeterministic round of M on Z by word transitions.
As previously, a starting condition for the word transition is a pair («, h) where « is a nondeter-
ministic memory state of M and h € {Left, Right}. A stopping condition for the word transition
is either a pair (a, h) as above, ” Accept” meaning that M in a nondeterministic round halts in the
accepting state before the input head falls off either end of Z, or ”Reject” meaning that M in a
nondeterministic round halts in the rejecting state before the input head falls off either end of Z.
For each starting condition ¢ and each stopping condition 7, the word transition ¢(7, o, 7) equals to
1 if M starting in ¢ can reach 7 on Z during a nondeterministic round; otherwise it is 0.

3.1 Constant Number of Rounds

In this section a proof for Theorem 3(1) will be given. Let £ > 2 be arbitrary integer and assume
that M is a STM, of space complexity S € o(log) that works in £ rounds. Moreover, let n be
sufficiently large integer of the form 2%, In the section we will consider the input words of the form

Wy 1k Wy k.. .0k wlyn# .. .#wkk—l’l L wkk_lyn#u#BIl\I(n) s (1)

with w; j,u € {0, 1}%. Tt will be proved that if M accepts with high probability an input of this form
that belongs to PATTERN,x-1 than M has to accept with probability exceeding 1/4 an input which
does not belong to the language.

Denote by N the length of considered inputs, i.e. let

N = k*=Y(nd + n) + d + 1 4 [BIN(n)|,

and let Vol(N) be the number of possible memory states of the machine M on input words of length
N. Note that Vol(N) < 20(S(N)) " We will consider the word probabilities and the word transitions
restricting the starting and the stopping conditions generated by memory states « to states with
|| < S(N). Let us fix some order of the pairs (o, 7) of starting and stopping conditions for word
probabilities as well as some order of the pairs (o, 7) for word transitions. Let p(7) be the vector of
the word probabilities and let f(Z) be the vector of the word transitions according to these orderings.
Define

po= 27VR (ii)

Lemma 2 There exist two words
W = wy xwg *...%xw, F# and W = wy *xwWs *...xw, # ,

with w;, w; € {0,1}4, for j = 1,...,n, and {wy,wa, ..., wy} \ {W1,Wa,..., Wy} # O such that
f(W) = f(W) and (W) and p(W) are componentwise 2#-close.

To prove the lemma one can adapt a counting argument of [DwSt92]. Now let us fix two words W
and W as in the lemma above. Because word transitions of W and W are the same it means that for
any string X and Y, with |[XWY| = N, M cannot distinguish W from W in one nondeterministic
round when starting on the prefix X or on the suffix Y. For a probabilistic round an analogous
property holds for v defined as follows

v = 22u(10\7ol(N)+20) ) (111)
Lemma 3 Let XWY be an input siring of the length N, and let ¢ and ¢’ be configurations such
that h(c),h(c') € [0..|X[JU[|XW |+ 1..N + 1]. Then it holds that

(a) N(c,d', XWY)=N(c,d', XWY) and Ai[c, XWY] = Ai[c, XWY] , if c is nondeterministic,

and



(b) the probabilities Rlc,c', XWY] and R[c, ', XWY], resp., Ailc, XWY] and Ay[c, XWY], are

v-close if ¢ 1s probabilistic.

Proof. A proof of (a) is straightforward and we will omit it here at all. For (4) we will sketch only
a proof for configurations with h(c) < |X| and h(c") > |XW|+ 1. The other cases can be showed in
a very similar way.

We will describe Markov chains Ry and Ry which model the probabilistic round of the machine
M on inputs XWY and XWY, respectively, when M starts in configuration ¢. This configuration
will correspond to the starting state of this Markov chains and configuration ¢’ will correspond to
their trapping state.

Let us denote the prefix of X of the length h(c) by X7 and let the remaining part of X will
be denoted by Xs. Similarly, let Y7 be the prefix of Y such that M in configuration ¢’ reads the
last symbol of Y7 and let Y5 be a suffix such that Y = Y7 Y5. Each Markov chain we describe has
s = 10-Vol(N)+ 20 states. The first 10 - Vol(N) states have the form (a, h), where « is a memory
state of the length bounded by S(N) and h is a position of the first or the last symbol of words
$X1, Xa, W, Y1, Y29 on the input tape containing the string X1 XoWY1Ys (remember that the
left end-marker has position 0, and the last one — the position N + 1). An intuitive meaning of a
state (o, h) of the chain Ry is: start M in configuration («, h) on the input X; XoWY1Ys. The
meaning of state (a, h) for the chain Ry is analogous. The next twenty states are the following:
Accept;, Reject;, Alter; and Loop;, for j = 1,...,5. For chain Ry they mean that the probabilis-
tic computation of M accepts, rejects, alternate or loops forever within $X;, X5, W, Y;, Y58,
respectively. For Ry the meaning is analogous.

The transition probabilities r;; of Ry for non-trapping states ¢ are obtained from word probabili-
ties of M on the substrings: $X1, X», W, Y1, Y»2$. More precisely, the transitions r;; such that states
1, j are applied both to the same substring are equal to an appropriate word probabilities of M on this
substring. E.g. if i = (o, | X1 XoW|) and j = (8,|X1X2| + 1) then r;; = p(W, (o, Right), (8, Left))
since the position | X7 X2W| and |X1X3| + 1 means the rightmost resp., the leftmost symbol of the
substring W. Remaining values r;;, i.e. transitions for states i, j connecting with two different
substrings are defined as follows. If i = (a1, h1) and j = (g, ha) then the transition equals to the
probability that M reaches in one step the configuration (asq, hs) starting in (aq, h1). Otherwise
r;; = 0. The transition probabilities of Ry are obtained analogously.

The states Accept;, Reject;, Alter;, Loop;, for j = 1,...,5 as well as all states (o, h), with non-
probabilistic «, are defined to be trapping states for both Ry and Ry For any trapping state ¢
the transitions r; ; are defined to be 1.

Let the memory state of ¢ (¢') be a, (e, resp.). Then the initial state of each chain is (., h(c)).
Note that according to the definition of the trapping states, (a.s, h(c')) is a trapping state of both
Markov chains.

W.lo.g. let us assume that the first symbols of W and W are the same. Remember that the last
symbols of the both words are equal, too. Hence a transition for any pair of states ¢, j connecting
with two different substrings, is the same in considered chains. From this and from the fact that
F(W) and (W) are componentwise 2#-close we have that chains Ry and Ry are 2#-close. Now,
using Lemma 1 we obtain that for the configuration ¢’ the probabilities p*[{a., h(¢')), Rw] and

p*[{acr, h(c')), Ry are 22*#-close, what proves (b). d
Let for the strings W = wi*xws*...*w, # and W = w * Wy * ... % Wy #, w be a word
such that w € {w1,ws,...,w,}\ {W1,Ws, ..., W} . Define, for short, W := W W ... W W , for
—_— ——
j times

any integer j > 0 and @ := #w#BIN(n). Obviously W/ i € PATTERN; but for any i, with 1 < i < j,
if in W74 one replaces the i-th substring W by W then the new input string does not belong to
PATTERN; any more. Below we show that if M accepts in k rounds then there is an integer ¢ such that
the probability that M accepts the input Wi-lWW* ™ =i does not decrease drastically according
to the probability that M accepts wE ™ .



Lemma 4 (Key) There exists integer i, with 1 < i < k¥~ such that

A WTTWWH T ) > R e A W )

Proof. Proceeding by induction on the number of rounds r we will show a more general fact. Let U
and V be words over the input alphabet of M such that the string UW*" ™ "V is of the form (i) and
let A be a set of configurations such that

(#) all non-accepting configuration of A are either probabilistic or nondeterministic and for any

¢ € A, machine M on the input string UWE Ty scans, with the input head position h(c),
the prefix U or the suffix V,i.e. h(c) < |U| or h(c) > [UW* ™ + 1.

Additionally, let us assign to each configuration ¢ € A a non-negative real p.. The only condition

we will assume is that ECEA pe < 1. The intuitive meaning of the number p,. is: start the machine

M in configuration ¢ with probability p..

Fact. For any r, with 1 < r < k, there exists integer i,, with 1 < i, < k"1, such that for

Z = UW""'V and Z, = UWr—TWWr T iy

Z pc'AT[Cﬂzr] > (1_1/1‘7 E pc'

ceA cEA

where ¥ = |r/2] if A has no probabilistic states and 7 = [r/2], otherwise.

For r := k, A := {cg}, where ¢ is the initial configuration, p., := 1 and for the empty word U
and V := w this fact proves the lemma.

Proof of Fact. We proceed by induction on r. Assume first that » = 1 and A does not contain
probabilistic states. Then by Lemma 3(a) we have that A;[c, UWV] = Ai[e, UWV] for any ¢ € A.
For » = 1 and the set A that does not contain nondeterministic states, by Lemma 3(4) we conclude
that the probabilities Ai[c, UWV] and A;[c, UWV] are y-close. This means that A;[c, UWV] >
v~ YA [c, UWV] for any ¢ € A. Hence for r = 1 the fact holds. Below we will prove that it holds for
any r > 1.

We will consider two cases. Assume first that A does not contain nondeterministic states. Let
for the input Z, B be the set of all nondeterministic and accepting configurations. Define for any

¢’ € B the real
= Z pe - Rle,c, 7] .
cEA
According to the definition of A it holds that

Z pc'-Ar[ Z Pc r 1C Z] (IV)

cEA ceEB

Partition next the set B into k + 1 subsets Bg, By,..., By as follows: let for j = 1,...k
B;j := {c€B: [UWU~VF7" < h(e) < [UW*F |},

andlet By := {c€ B: h(c) < |U| or |[UW*™'| < h(c)}. Clearly, by the pigeon-hole-principle,
there exists integer 7, with 1 <7 < k such that

Yoo A7) < (1K) P Aale, 7). (v)

c€EB; c€EB



Apply now the inductive hypothesis for: r — 1, U’ = UW-DE" ’ L Vo= W ik , and
for the set of configurations A" := B\ B;. Note that for A’ and the input U'W*k v/ the as-
sumption () is fulfilled. Hence, by the hypothesis there exists integer i,_q such that for Z,_; :=

U/ Wir-1=1W Wk " *~ir—177 it holds that

ch Aroile, Zr—a] > 7r (1—=1/k)"" ch Ar-ile, 7], (vi)

c€B\B; c€B\B;

where # = |(r — 1)/2] because B\ B; does not contain probabilistic states. Define i, :=
(i—1)-k"~%2 +4,_1. Obviously for this value i,, words Z,_; and Z, are equal.
Now putting all of this together we conclude

chuAr[c,Zr] = Zch~ e, 7] Ar_1le, 7] by def. of A
cEA c€EAc'EB
2 Z ch 'R[Q CI, Zr] './47«_1[6/, Zr]
c'€B\B; cEA
> Z ch~ e, 7] - Ar_1le, 7] by Lemma 3(b)
¢'€B\B; c€EA
= Z P - Aroald, 7] by def. of p/
c'€ B\B;
> =1k Y pcAald, 2] by (i)
c'€ B\B;
> =1k pl A, 2) by (v)
c'eB

= ~77 _1 —1/k)"~ 12]% by (iv)

cEA

what proves the fact for the first case. Consider now the symmetric case, i.e. that A does not have
probabilistic states. Then for any ¢ € A, define the configuration Max(c) such that Max(c) can be
reached from ¢ in one nondeterministic round and additionally for this configuration the probability
A,_1[Max(ec), Z] > A,_1[c/, Z] for any ¢’ which is reachable from ¢ in one nondeterministic round.

By the definition of A we have that A,[c, Z] = A,_1[Max(c), Z]. Let

B := {Max(c): c€ A},

and let us define for any ¢/ € B the real pl,, := Z pe - According to the definition of Max(c)
cEA s.t.
Max(c)=¢'
we have
Z pe - Arle, Z E pe-Arale, 2] (vii)
cEA ceB

Partition the set B into subsets By, Bi, ..., By in the same way as previously. Let 7, with 1 <i <k,
be an integer such that

ch Ar_1le, 7] < ( 1/](:ch Ar_1le, 7] . (viii)

c€EB; c€EB

Then by the inductive hypothesis for r — 1, U’ := UWUE=DF 72y .— k™™ =ik"™" "and for the
set of configurations A’ := B\ B;, the inequality vi holds for # = [(r — 1)/2] because B\ B; does



not contain nondeterministic states. Define i, := (i — 1)k"~% 4 i,. Now putting the inequalities
together we obtain

> peAle, 2] > S e Alde, 2]

ceA c€A s.t.
Max(c)¢B;
by def. of p’ and
> Z Pl A1 [, 2] by Lemma 3(a)
c'€B\B;

> A=Yk S Pl Aald,Z) by (vi)

c'€ B\B;
> =1y Al 2) by (viii)

c'eB

= L=1/ky "> " pe - Arle, 7] by (vii)

c€EA

what proves the lemma. a

Now we are ready to prove Theorem 3(1). Let us assume that M is a STM accepting PATTERN;x—1
in k > 2 rounds and in sublogarithmic space S. Since W e PATTERNx-1, hence M has to
accept W & with probability greater or equal to 3/4, which means that Ag[ Wkt W] >3/4.
From the Key Lemma we conclude, however, that there exists integer i, with 1 < i < ]ck 1, such
that

A WITTWWH T =i ] > 4 W (1 17k 34 > 47 TR 378 > 174,

since y~1*/?1 tends to 1. But string Wi—TWW* ™ =@ does not belong to PATTERN;x-1 — a contra-
diction.
3.2 Proof of Theorem 3(2)

Let W and W be the words as defined in the previous subsection. Let Z and Ziibe the strings W and
W, resp., where the # symbols are removed, e.g. let Z := wy*xws*.. *w, and Z = Wi*xWy*. .. *xW,.

Lemma 5 Let r(n) be an integer function, with r(n) € O(log n/llog n). Then for any sufficiently
large integer n there exists integer 1, with 1 < i < n, such that

Ar(n)[ Zi_lZZ”_ifu ] > ')/_rr(”)/ﬂ e 1 Ar(n)[ Znﬁ) ] )

Theorem 3(2) follows now straightforward from the above lemma.

4 Space Efficient Algorithm for PATTERN Languages

In this section we show for any integer £ > 1 and for arbitrary small ¢ > 0, a llog-space-bounded
STM M that recognizes PATTERN; with error probability e. M works in 2k rounds starting in
nondeterministic mode and in time bounded by a polynomial.

The machine M performs the following algorithm: Check deterministically at the beginning
whether the input is of the form Wi #Wa# .. #Wi#u#BIN(29), for some words Wy, ..., Wy, u €
{0,1,*}*, with |u| = d. Reject and stop if this condition does not hold. Otherwise let i := 1 and go
to step 1 below.

1. Nondeterministically guess a substring w; of the length d in W;.



2. Randomly choose a prime ¢; with 2 < ¢; < d? and then compute r; := n,, mod g;, where n,,
denotes an integer with the binary representation w;.

3. Reject and stop if r; # n, mod ¢;; otherwise if i = k accept and stop else increase ¢ by 1 and
go to step 1.

If for any 7, with 1 <17 < k, the strings w; and u are equal then of course n,, = n, mod ¢; for any
value ¢; and machine M accepts correctly in step 3. If w; # u for some i, with 1 < ¢ < k, than
it could happen that n,, = n, mod ¢; and M reaches in step 3 the accepting state that is wrong.
This event happens, however, with probability that tends to 0. Indeed. Since |n,, — ny| < 24 hence
Ny, — Ny has at most d different prime divisors. On the other hand, M chooses from about d?/21nd
different primes at the beginning of step 2. So the probability that a wrong value ¢; is chosen is at
most (2Ind)/d.
Obviously, M uses O(llog) space and works in 2k rounds.

5 Conclusions and Open Problems

In this paper separations were obtained for sublogarithmic A My Space complexity classes. An inter-
esting open problem is if our separations can be refined. Is it true that

AMy Space(S) C AMy41Space(S) ,

for any integer k& and sublogarithmic S7

How looks the hierarchy for at least logarithmic space bounds? Using a simple simulation of
space-bounded NTMs by one-sided-error probabilistic TMs (see e.g. [Gil77] or the survey paper
[Ma95]) one can easily show that AMsSpace(log) = AM;Space(log), that means the AMs-class
is quite weak in case of space bounds — contrary to time bounded classes. Is it also true that the
class AM>Space(SUBLOG ) is equal to AM;Space(SUBLOG ) ?

What is the situation for space bounds S smaller than llog 7 The most interesting case seems to be
space bounds restricted to constant functions. Tt is well known that M A; Space(CON') coincides with
the class of regular languages. This result, however, does not extend to the class AM; Space(CON).
Freivalds has shown the surprising result [Fr81] that

COUNT := {1701™ : n =m},

can be accepted by a probabilistic TM in constant space with an arbitrarily small constant for
the error probability. Is there a language that separates AM;Space(CON') from AMj,Space(CON)
classes, for some k > 1?7 Dwork and Stockmeyer ([DwSt92]) showed that CENTER does not belong to
AM; Space(CON') and that there exists a constant space interactive proof system for this language.
Can their protocol be improved to make only constant number of rounds?
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