INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Coevolutionary Game-Theoretic
Multi-Agent Systems: the
Application to Mapping and
Scheduling Problems

Franciszek Seredynski*

TR-96-045
October 1996

Abstract

Multi-agent systems based on iterated, noncooperative N-person games with lim-
ited interaction are considered. Each player in the game has a payoff function and a
set of actions. While each player acts to maximise his payoff, we are interested in the
global behavior of the team of players, measured by the average payoff received by
the team. To evolve a global behavior in the system, we propose two coevolutionary
schemes with evaluation only local fitness functions. The first scheme we call loosely
coupled genetic algorithms, and the second one loosely coupled classifier systems. We
present simulation results which indicate that the global behavior in both systems
evolves, and is achieved only by a local cooperation between players acting without
global information about the system. The models of coevolutionary multi-agent sys-
tems are applied to develop parallel and distributed algorithms of dynamic mapping
and scheduling tasks in parallel computers.

*Institute of Computer Science, Polish Academy of Sciences, Ordona 21, 01-237 Warsaw, Poland, email:
sered@ipipan.waw.pl

1 Introduction

One of the widely accepted assumptions concerning the general model of real life systems in
business, politics, engineering or the military is considering them as a collection of individ-
uals acting selfishly and interacting to fulfil their own goals. The immediate consequence
of this assumption is conflict between individuals and the need for some cooperation to
resolve the conflict. For this reason, game theory (Ordeshook 1986, Wang & Parlar 1989)
modelling conflict and cooperation has been widely accepted as a useful tool to study the
behavior of complex systems.

A game-theoretic model which has received much attention of late is the prisoner’s
dilemma (Rapoport 1966, Axelrod 1987, Lomborg 1992, Fogel 1993). This two-player, non
cooperative game has been explored to yield insight into the conditions of cooperating and
defecting between players. Fvolutionary computation methods using genetic algorithms
(Axelrod 1987) or finite state machines (Fogel 1991) have been successfully used to discover
TIT FOR TAT strategy or better strategies of behavior. One of the distinctive features of
the prisoner’s dilemma is a focus on a player’s individual goal. Cooperation in this model
is desired and observed, but it is not the ultimate aim of a player.

In the area of Distributed Artificial Intelligence (DAI), game-theoretic models are also
the subject of current research (Genesereth at al. 1988, Levy & Rosenschein 1992, Lomborg
1992). Agents of a multi-agent system in such models are considered as players working
towards their own selfish goals and taking part in an N-person game. In many DAI ap-
plications, (e.g. in engineering) a global behavior of the multi-agent system is expected,
rather than simply a fulfilment of players’ individual goals. Competing players should act
in such systems as a decision group choosing their actions to realise a global goal. One of
the problems which must be addressed here is the problem of incorporating the global goals
of the multi-agent system into the local interests of all agents. The obvious conflict between
individual and global goals is not solved, according to our knowledge, on the grounds of
game theory literature concerning social, political or economic phenomena. Such conflict
has a deep substantiation in the psychological nature of human beings as well as society. It
also acts to limit applications of game-theoretic models in engineering. Those models are
replaced consciously due to the aforementioned difficulties by either other formal bases e.g.
the social choice theory (Wong 1993), or some new mechanisms e.g. coordinated balancing
(Kuwabara & Ishida 1992) are developed.

The paper is application-driven. We are interested in models of N-person games and
their potential application in selected problems in the area of parallel and distributed com-
puting (Fox at al. 1988). Mapping (Fox & Furmanski 1988, Moon & Sklansky 1990) or
scheduling (Blazewicz at al. 1994, El-Rewini at al. 1994) parallel programs and commu-
nication in massively parallel and distributed computers are one of the central questions
to be solved to efficiently use their computational power. One of the possible solutions of
e.g. the mapping problem is a coordinated migration of program modules in a parallel and
distributed system (Seredynski 1994a). A collection of program modules can be considered
as some society whose members-players coordinate in some distributed manner directions
of their migration to minimise some global performance criterion.

The paper is organized as follows. The following section presents the model of noncoop-
erative N-person games with limited interaction. We discuss the model from the position of

the collective behavior (Tsetlin 1973, Varshavsky 1972, Barto & Anandan 1985) of players
taking part in a game, and the conditions of local cooperation between players, providing a
maximal payoff for the team of players in a static game. In Section 3, we propose two par-
allel and distributed genetic algorithm-based schemes to implement the model of dynamic
N-person games. These are loosely coupled genetic algorithms and loosely coupled classifier
systems. Section 4 presents an application of developed multi-agent models to problems of
dynamic mapping and scheduling tasks in parallel computers. The last section contains our
conclusions.

2 N-Person Games with Limited Interaction

2.1 Prisoner’s Dilemma Background

The typical two person prisoner’s dilemma is described by a matrix shown in Table 1

(Axelrod 1987, Fogel 1993).

Table 1: The payoff function used in the prisoner’s dilemma

player B
C D
player A © M =3, =3 72=10, 713=15
player A
D |73=5 72=0 Ja=1,714=1

It is assumed that each player has two alternative actions: C - cooperate, and D - defect.
The game is conducted as a sequence of trials. During each trial, both players must choose
independently one of their actions. After each trial, the players receive a payoff whose value
is defined by one of four situations: (C,C) - player A and player B cooperate and both
receive the payoff y1 = 3; (D,D) - both players defect and receive the payoff v4 = 1; (C,D)
- player A cooperates while player B defects and the players obtain respectively the payoff
72 = 0 and 73 = 5; (D,C) - player A defects and player B cooperates, and they obtain
respectively the payoff y3 = 5 and v, = 0. The values of the payoff defining the game are
the subject of some constrains (Rapopport 1966, Fogel 1993).

In our model of N-person games described below we use the basic notation from the
prisoner’s dilemma and the basic structure of the payoff function. However, our approach
to study the game differs from the prisoner’s dilemma in stressing the necessity to realize
the global goal of the system.

2.2 Homogeneous Games with Limited Interaction

We consider a finite game represented by a set N of N players, N = {0,1,...,N — 1};
set Sp of actions for each player £ € N; and a payoff function wug(sk,sk1, Sk2s-- -, Skn,)
which depends only on the actions of a limited number of players: on its own action sg
and the actions of its ny neighbors in the game. Such a model, termed a game with

U, (Ske 1Sk S

et S A
D
v :
O‘\‘O‘/r . (// \Q
a3 b) ©)

Figure 1: Interaction graph of a game on a) a ring, b) a cube, ¢) a torus 3x3

limited interaction, had been primarily considered from positions of learning automata
games (Tsetlin 1973, Varshavsky 1972, Seredynski 1990).

The game with limited interaction can be represented by an oriented graph G =< V, F >
called an interaction graph. V is the set of nodes corresponding to the set of players while
set F represents the pattern of interaction between players: arcs incoming to the k-th node
define players whose actions influence the payoff of player k, and arcs outgoing from the
k-th node define players whose payoff depends on actions of player k.

In the paper we consider a class of games with limited interaction characterized by a
regular interaction graph (ny = r, where r is the degree of the interaction graph) and called
homogeneous games. In such games, the payoff function is the same for all players. Figure
1 shows the interaction graphs of three homogeneous games.

The simplest homogeneous game with limited interaction is a game on a ring (IFigure 1a).
For the game on a ring, which will be the subject of our study in the paper, we can simplify
notation of the payoff function to read:

uk(5k75k17 Sk2y e e ey Sknk) = uk(skelv Sk 8k€91)7 (1)

where © and @ denotes subtraction and addition modulo N. The payoff function of
any player in the game on the ring depends on his actions and on the actions of his two
neighbors £ © 1 and k£ @& 1. Assuming that the set 5} of actions for each player is limited
to the set {D,C}, the payoff function has 8 entries and Table 2 shows a payoff function u}
used in our study.

It is assumed that each player acts in the game independently and selects his action to
maximise his payoff. If players play the game defined by the payoff function u} and player
k and his neighbors £ & 1 and k& 1 all select action D in a trial, his payoff will be defined
by a sequence of actions (D,D,D) and is equal to 10 (entry 0 of Table 2). If player & selects
action C while both his neighbors select action D, player k& will receive the payoff equal to
0 (entry 2 of Table 2). The remaining entries of Table 2 are self-explaining.

The most widely used solution concept for noncooperative games is a Nash equilibrium
point (Nash 1950, Wang & Parlar 1989). A Nash point is an N-tuple of actions, one for
each player, such that anyone who deviates from it unilaterally cannot possibly improve his

Table 2: Payoff function of a game on a ring
| [sker sk sker || ub(seets sk sean) |
10
0
0
0
0
50
0
30

oNoNoNeolvAvwAwRw)
aaboaagouo
abagagoauo

~1 O O = W N~ O

expected payoff. If s; denotes an action of the k-th player, then a Nash equilibrium point
is an N-tuple (s7,s3,...,5%,...,sy) such that

k(87,85 ey Shy vy SN) = Uk(S], 85,y Sy v ey SN) (2)

for s, # sy and k =1,2,...,N. A Nash equilibrium point will define payoffs of all the
players in the game. However, we are not interested in the payoff of a given player, but
in some global measure of the payoff received by the team of players. This measure can
be e.g. the average payoff @(s) received by the team as a result of their combined actions’

s =(81,82,...,5N), i.e.

N
u(s) = (Z Uk(S)) /N, (3)
k=1

and it will be our global criterion to evaluate the behavior of the players in the game.
The question which arises immediately concerns the value of the function (3) in a Nash
point. Unfortunately, this value can be very low.

Analysing all possible actions’ combinations in the game and evaluating their prices, i.e.
a value u(s), we can find actions’ combinations characterized by a maximal price and we
can call them maximal price points. Maximal price points are actions’ combinations which
maximise the global criterion (3), but they can be reached by players only if they are Nash
points. A maximal price point usually is not a Nash point and the question which must be
solved is how to convert a maximal price point (points) into a Nash point (points).

2.3 Exchange processes in games

It is useful from the point of view of a decentralisation of behavior of players in games with
limited interactions to introduce a notion of an exchange process (Varshavsky at al. 1977)

The exchange process in a game is a procedure of redistribution of payoffs between
players according to the following rules:

a) the exchange process is given by an oriented graph;

b) for each k-th vertex of the graph, py + 1 is the number of arcs going out of it and
gr + 1 is the number of arcs incoming to it;

Wi (S o2 Sko1'Sk S@ 1K@ 2)
() urs /O\
k

S éj@ o\ o)
5

Q\O /o

a) b)

O

Figure 2: Game on a ring: a) graph of a conjugate exchange process, b) interaction graph
of the game transformed by the conjugate exchange process

¢) ug is the payoff of player k£ (who corresponds to the k-th vertex of the graph) in some
actions’ combination of the game;

d) each player sends on each outgoing arc a part of his payoff equal to ux/(pr + 1);

e) each player receives on an incoming arc from each player [a part of his payoff equal

tou/(pr+1).

Players taking part in a game with an exchange process share their payoffs. The exchange
process results in a transformation of a payoff function of a game into a new payoff.

A conjugate exchange process in a game with limited interaction is an exchange process
whose graph coincides with the interaction graph of the game. The conjugate exchange
process in the homogeneous game with limited interaction corresponds to the organization
of local coalitions with neighbors in the game. It should be noticed that each player in the
game takes part simultaneously in ny = r coalitions, where r is the degree of the interaction
graph. Figure 2a shows the graph of a conjugate exchange process for a game on a ring
from Figure 1la.

The following theorem is the result of introducing the notion of the conjugate exchange
process:

Theorem 1 Introducing a conjugate exchange process into a homogeneous game with lim-
ited interaction transforms a mazximal price point into a Nash point.

It means that an organization of players’ coalitions only with the nearest neighbors in
the game ensures the achievement by the players’ team of the maximal payoff existing in
the game.

For the game on a ring from Figure la, the conjugated exchange process transforms the
payoff uy of the player k£ into a new payoff wy, in the following way:

up — wi = (Ups1 + uk + ure1)/3. (4)

It also results in the transformation of the interaction graph of the game as shown in Figure
2b.

Using the idea of an exchange process introducing sharing payoffs in a game, we will
consider the following schemes of a game:

e no cooperation

e local cooperation-sharing a payoff received by a player k£ with his neighbors in a game,
i.e. his payoff is transformed as:

EIEnk ug

max;eN 7k + 17

Uy — Wi = (5)
where u; is a payoff of a neighbor [of a player k, ny is the number of neighbors of the
player £, and max;cy nr denotes a maximal number of neighbors in a game

o global cooperation-sharing a payoff received by a player k by all players participating
in a game, i.e. his payoff u is transformed into a new payoff wy in the following way:

up — wi = u(8). (6)

3 Coevolutionary Systems

Attempting to apply genetic algorithms (GA) methodology to iterated games with limited
interaction we face two difficulties: (a) how to create a GA model of a player who acts
concurrently to maximise his payoff, and at the same time (b) how in a dynamic process
of the game to search for a solution of the game according to the global criterion (3), i.e.
to search for a maximal price point. If we base ourselves on the positions of traditional
GAs, we should emphasize the second issue, but in this case we lose the concurrent nature
of the game. If we emphasize the concurrent behavior of players, it seems that sequential
GAs (Holland 1975, Goldberg 1989) as well as parallel and distributed GAs (Pettey at al
1987, Manderick & Spiessens 1989, Muhlenbein at al 1991, Dorigo & Maniezzo 1993) of
both island and diffusion models are not suitable for our purpose. The common feature of
all aforementioned models of GAs is the evaluation of the global fitness of an individual,
despite his belonging to a global population or subpopulation. For this reason, we call
this class of GAs tightly coupled GAs. For our purpose, we need an evolutionary system
with coevolving subpopulations representing behavior of players, evaluating only their local
fitness functions and, at the same time, we expect from such a model a global behavior, in
the sense of searching for a global optimum. The need of an extension of the traditional
GAs into the direction of coevolutionary systems has been lately recognized. While a
cooperative coevolutionary approach to function optimization has been proposed (Potter &
De Yong 1994), loosely coupled GAs (LCGAs) have been proposed (Seredynski 1994b) to
support the above described game-theoretic model of computation, suitable for distributed
decision-making.

the population the population the population
of actions of of actions of of actions of
player player player

population of the game solutions

Figure 3: Loosely coupled GA-based system

3.1 Loosely Coupled GA-based Systems

The idea of LCGAs implementing the game on a ring from Figure la is shown in Figure 3.

The algorithm of the LCGAs can be specified in the following way:

#1: for each player create an initial population of his actions

#2: play

create randomly for each player an initial population of size n of player actions
taking values from the set S} (see, Section 2.2) of his actions; Figure 3 shows the
initial subpopulations of the size n = 4 of actions for players k5 1, k and £ § 1
respectively; the value of n defines a game horison for a player; actions predefined
in a subpopulation of a given player will be used in subsequent n games (see,
Figure 4)

a single game

in a discrete moment of time each player selects randomly one action from the set
of actions predefined in his subpopulation and not used until now, and presents
it to his neighbours in the game; shadowed actions in Figure 3 show possible
situation after the first game: players kS 1, k and £ 1 have selected respectively
actions D, D and C; the chain of selected actions can be interpreted as a possible
solution of the game.

calculate the output of the game: each player evaluates his local payoff uj in the
game; if the payoff function in the game is e.g. the function u} from Table 2 then
player k obtains for action D (Figure 3, shadowed box) the payoff u; 1 (D, D, C) =
0 (u}“l: read, the entry 1 of the payoff function u})

&

k

)

e
1D

7

E_

num_of_gemes

i

Figure 4: Evolving a subpopulation £ in LCGAs from Fig. 3

e if the game with the conjugate exchange process is played, each player informs
his neighbours in the game about his current payoff, and calculates his modified
payoff wy.

#3: repeat step #2 until n games are played

#4: using GA operators create for each player a new population of his actions (see, Fig-
ure 4)

o after playing n games each player knows the value of his payoff received for a
given action from his population (see, Figure 3); chains of actions present actually
found solutions of the game

e the values of the payoff are considered as values of a local fitness function defined
during a given generation (initially, gen 0) of GA; standard GAs operators of
selection (S), crossover (C) (this operator is not used here because of binary
values of actions) and mutation (M) are applied locally to subpopulations of
actions; these actions will be used by players in games played in the next game
horizon

#5: return to step #2 until the termination condition is satisfied

e if a given population evolved during [+ 1 generations then the number of played
games num_of_games can be defined as num_of_games = n (I 4 1).

Below we study the behavior of players in the game implemented with LCGAs. We
study it by observation of the global criterion (3) and we will particularly be interested in
the following situations:

e there exists a maximal price point in the game, which is not a Nash point

e taking into account the above condition, but with players creating local coalitions
defined by the conjugate exchange process

Let us first analyse payoff functions u} from Table 2 for the game on the ring (Fig-
ure 1a). The game with the payoff function u, has the maximal price point s,, =
(c,c,c,c,C,C,C,C). Each player taking part in the game defined by the vector of actions

Smp Obtains a payoff equal to uij(C,C,C) = 30. The average payoff U, received by the
team of players achieves the maximal value equal to 30. However, the actions’ combina-
tion s,,, is not a Nash point because it is reasonable for each player to change his action
C — D and obtain a higher payoff equal to uiﬁ(C, D, C) = 50. The game has several Nash
points. For one of them, Nash point sy = (D,D,D,D,D,D,D,D) the inequality (2) is
strong for all values of k. One can see that there is no reason for any player to change his
action D — C and obtain instead of the payoff uip(D, D,D) = 10, a lower payoff equal to
u}“Q(D, C,D) = 0. We can therefore expect that in such a game players will not achieve
the maximal price point but will rather play this Nash game.

Below we present the results of experiments with the game on the ring with the num-
ber of players N = 16. In such a game, the number of possible game solutions (actions’
combinations) is equal to 2'®. We will use the payoff functions u}. Increasing the number
of players in the game will not result substantially in changing the main points of our dis-
cussion concerning Nash points and maximal price points. In all experiments, which were
conducted on a Sun 10 computer, we observed the game during 250 generations.

Figures 5 and 6 show the average payoff

I+41 n N-1

U(s)= (- > ur(s))/(n*(I+1)*N) (7)

i=1j=1 k=0

of a player, obtained in the game. Each point of the curves represents the mean of 30 runs
of the game.

7 I
0 5 10 15 20
mutation probability (in promiles)
a)
12 | | | | | |
ring16/ul /no coalition Pm =0
Pm = 2 |
Pm = 4 -
Pm = 8 —
Pm = 16 — |

7 | | | | | | | | |

2 4 6 8 10 12 14 16 18 20

population size of player’s actions

b)

Figure 5: The average payoff received by the team of players during 250 generations as a
function of (a) mutation probability, (b) a size of a population of actions of a player.

10

Figure 5 presents the results of an experimental study of the game with the payoff func-
tion u}, without a local cooperation defined by the conjugated exchange process. Figure 5a
shows the average payoff received by the team of players during 250 generations as a func-
tion of a mutation probability. This curve as well as the following curves represent the
mean of 30 runs of the game. One can see that for the observed range [0,0.02] of mutation
probabilities, the average payoff received by the team of players depends little on p,, under
constant n, but it depends on the size n of a population of player actions. As shown in
Figure 5b, with increasing n, the average payoff received by the team in the game becomes
closer to the value 10 defined by the Nash point, and is far from the value defined by a
maximal price point.

Results of an experimental study of the game with the payoff function u}, and coop-
eration according to the conjugated exchange process are shown in Figure 6. One can see
that similarly as in the previous experiment, the average payoff received by the team of
players depends little on p,, (Figure 6a) under a constant n. It depends largely on n, as
demonstrated in Figure 6b. The qualitative change of the players’ behavior in the game
with the conjugated exchange process is of note, if compared with their behavior in the
same game without the conjugated exchange process.

The players discover and play the maximal price point when n is large enough. They
now show the ability of the global behavior which is realized is in a fully distributed manner,
without any knowledge about either the global optimization criterion or a number of players
participating in the game.

3.2 Loosely Coupled Classifier Systems

In this section we study the behavior of a game-theoretic multi-agent system from Section
2 when each agent is a genetics-based machine learning system called a classifier system
(Goldberg 1989).

Classifier systems constitute the most popular approach to genetics-based machine learn-
ing. Recently, they have been succesfully applied (Matwin at al. 1991, Dorigo & Schnepf
1993) to solve some real-life problems. A general framework for studying the behavior of
a game-theoretic multi-agent system when each agent-player is a classifier system has been
proposed (Seredynski at al. 1995) recently. A learning classifier system (CS) maintains a
population of decision rules, called classifiers, evaluated by using them to generate actions
and observing received rewards defined by a payoff function, and modified by periodically
applying GAs.

A classifier ¢ is a condition-action pair

¢ =< condition >:< action >,

with the interpretation of the following decision rule: if a current observed state matches
the condition, then execute the action. The action part of a classifier is an element of the
set 5% of actions a player k£ in a game with limited interaction. The conditional part of a
classifier of CS representing a player k£ contains his action and actions of his neighbours in
the game, and additionally a don’t-care symbol #.

A real-valued strength of a classifier is estimated in terms of rewards obtained according
to a payoff function of a player k, using by the player the given classifier to generate an

11

0 5 10 15 20

mutation probability (in promiles)

a)

30 I I P
Pm =10
P = ?L .
25 Pm = T~
? Pm = 8 —
P = 16 —
U(s) 20 i
15 - .
ring16/u'/coalition
10 S ! ! ! ! ! !
0 2 4 6 8 10 12 14 16
population size of player’s actions
b)

Figure 6: The average payoff received by the team of players during 250 generations as a
function of (a) mutation probability, (b) a size of a population of actions of a player.

12

action. Action selection is implemented by a competition mechanism, where the winner is
a classifier with the highest strength.

To modify classifier strengths the simplified credit assignment algorithm (Goldberg 1989)
was used. The algorithm consists in subtracting a tax of the winnining classifier from its
strength, and then dividing equally the reward received after executing an action, among
all classifiers matching the observed state.

To create new classifiers a standard GA is applied, with three basic genetic operators:
selection, crossover and mutation. Crossover is applied only to the conditional parts of clas-
sifiers. Mutation consists in altering with a small probability randomly selected condition
elements or actions. GA is invoked periodically and each time it replaces some classifiers
with new ones.

We will study below iterated games of CSs. An iterated game consists of a number
T of single games s(t) = (so(t), s1(t), ..., sny—1(t)) played in subsequent moments of time
t =0,1,....,7 — 1, with a value T unknown for players. In a single game played at the
moment ¢ each player autonomously selects an action to match an observed state z(¢) of
a game environment. Observed by a player k state z1(t) of the environment is formed by
his and his neighbors’ actions played in a previous moment of time. Rewards defined by a
payoff function are transfered to players directly or after their redistribution, if an exchange
process is used.

A number of experiments with use of CSs as players in the iterated game on a ring
has been conducted. A detailed discussion of CSs and GAs setting parameters used in
experiments can be found in (Seredynski at al. 1995). Figure 7 shows some results of
experiments with 8 players participating in an iterated game defined by a payoff function
from Table 2 and consisting of 10000 games. The figure shows the average payoff U,(s, At)
of players, received during each At = 50 games, i.e.

entier(t/At)+At—1

Ti(s, At) = 3 a(s,t) | J(AL), (8)

t'=entier(t/At)

in a game without cooperation (each player receives a payoff according to his payoff
function)(see, Figure 7a), in a game with a global cooperation (Figure 7b), and in a game
with a local cooperation (Figure 7c) respectively.

One can see that in the iterated game without a cooperation the multi-agent system
converges to a steady-state with a corresponding the average payoff of a team of players equal
to 10, defined by the Nash point. In the game with a global coperation a self-organization
process can be observed. The system converges to a steady-state corresponding to playing
the maximal price game, providing the maximum value of the average payoff received by
the players and equal to 30. In the game with a local cooperation a similar adaptive process
can be observed. Omne can see that in the system, which is fully distributed, a global
behavior evolves, and is achieved only by a local interaction between players acting without
a global knowledge about a game, i.e. about the number of players in a game and a global
optimization criterion.

13

10000

14 | | | |
13 K cbid=0.001 —
12
11
_ 10
(/Tt(S,At) 9
lifetax=0.01
8 bidtax=0.1
7L 8 players _
no cooperation
6 with GA .
5 ! ! ! ! ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
games
| | | | |
30 - (b) cbid=0.001 —
25
Uy(s, At
t(’) 20 L
lifetax=0.01
15 8 players bidtax=0.1 -
global cooperation
with GA
10 ! ! | ! ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
games

()

Ut(s, At) .

15 8 players bidtax=0.1 -
local cooperation
with GA

10 ! ! | ! ! ! ! !

lifetax=0.01

0 1000 2000 3000 4000 5000 6000

games

Figure 7: Games of classifier systems without cooperation (a), with a global cooperation

(b), and with a local cooperation (c)

14

7000 8000 9000

10000

4 Applications

Parallel and distributed computers built today consist of thousands of processors which
need to coordinate their work. It is hard to imagine a centralised control of such systems,
therefore the efficient distributed algorithms for such a control are needed. In this section
we consider two problems from the area of parallel and distributed processing, namely
the mapping and scheduling problems. These problems have the key influence on the
performance of parallel and distributed systems. They both are known to be NP-complete
and searching for effective heuristics, for the problems is a subject of a current research
in the area. To solve the problems we propose to use the methodology of evolutionary
coevolving multi-agent systems.

4.1 Dynamic Mapping Problem

Current results concerning mapping communicating processes of a parallel program into
parallel architectures show that applying static mapping algorithms raises the efficiency
of using parallel computers, when characteristics of programs do not change during their
execution. However, if characteristics of the programs change in time, static policies can
not be efficiently applied. For this reason, a growing interest in developing algorithms and
environments enabling applying dynamic mapping policies can be observed.

We propose an approach to dynamic mapping based on a multi-agent interpretation of a
parallel program migrating in a parallel system environment to search an optimal allocation
of program modules in a topology of a parallel system. To find multi-agent system strategies
of migration in the system graph we use LCGAs presented in the previous section.

Models of parallel programs and parallel computers presented below are oriented on
MIMD machine environment and are formulated as follows. A parallel program is repre-
sented by a weighted undirected graph G\, =< V,,, £, > with a set V,, of N, nodes and a set
E, of edges. The nodes of the program graph represent processes and the edges represent a
fixed communication pattern between processes. Node weights by, characterize computation
costs of the processes and edge weights ap; characterize a communication cost between a
given pair of processes located in neighbouring system nodes. It is assumed that the weights
of the program graph represent time-averaged properties of the processes and the commu-
nications between them for the program processed in a given parallel computer. A parallel
computer is represented by an undirected graph G; =< Vi, Fs > called a system graph,
with a set V; representing nodes of the system and a set F; representing an interconnection
pattern of the system .

Let 8 be a mapping function from the vertex set of the program graph to the vertex set
of the system graph and O the set of all mapping functions, i.e. @ = {0 :V, — V,}. We
suppose that a local cost function C(k,#) is defined for kth program node mapped to the
system graph. This function is defined as follows (Seredynski 1994a):

C(k,8) = C1(k,0) + Cy(k, 0), (9)

where Cy(k,) is a cost of communications of the kth program node with its neighbour
program nodes, and Cy(k,#) is the computational load of a system node to which the kth

15

program node was mapped. Local communication and computational cost functions are
defined as follows:

Ci(k,0) = 0.5§:ak1 x din (0(K), (1)), (10)
=1

and

Cy(k,8) = ibn (11)

where rj is the number of neighbour program nodes of the kth node; d,,;,(0(k),8(1)) is
a minimal number of hops between system nodes (k) and 6(/) where are located neighbour
program nodes k and [respectively, and n; is a number of program nodes (not including a
program node k) located in the system node (k).

The problem of static mapping can be formulated now as the problem of seeking a
mapping function § € O that minimises the total cost function C'(f) defined as a sum of
the local cost functions (9), i.e.

min(C(0) = > C(k,9)). (12)

beo kEV,

The dynamic mapping formulation of the problem can now be easily obtained due to
locally defined cost functions and a multi-agent interpretation of the mapping problem.

We assume that a collection of agents is assigned to nodes of the program graph in a
such way that one agent is assigned to one program node. Each agent has some number
of actions which influence a local cost function of a program node attached to the agent.
If nodes of the program graph together with agents attached to them are placed in some
way, e.g. randomly into the system graph, the agents’ actions can be interpreted in terms
of possible moves of the agents in the system graph.

The dynamic mapping algorithm can be specified in the following way:

e agents assigned to the processes and located in some system nodes are considered as
players taking part in a game with limited interaction; each agent-player has r 4+ 1
actions interpreted as follows: do not migrate or migrate to one of r nearest neighbour
system nodes, where r is the degree of the system graph. Taking an action by a player
corresponds to the player simulating the action, not a physical move

e cach player has a local cost function (9) describing the communications and compu-
tational costs; the function depends on the action of a given player and the actions a
limited number of neighbours (according to the program graph)

e the objective of each player is to minimise its local cost function; a player maintains a
local communication with neighbour players informing them about its current action

e behavior of the players in the game is observed through the global criterion (12) of
the mapping problem; the objective of the game is to find the optimal (in the sense of
the global criterion) directions of the migration of the program graph in the system
graph while each player can move at the distance of one hop only

16

Figure 8: Behavior of dynamically changing program represented by a sequence of three
program graphs respectively a), b) and c)

e after a predefined number of games a migration of the program nodes (together with
the agent-players) is performed; the game starts again.

The evolutionary coevolving multi-agent system with LCGAs implementation (see, Sec-
tion 3.1) was used to solve the dynamic mapping problem. In the experiment described
below it was supposed that a parallel program dynamically changed in time during its exe-
cution (see, Figure 8) and a target parallel machine was a torus 4 x 4 (similar to Figure 1c).
Figure 8 shows behavior of the parallel program represented by a sequence of three graphs
describing changing in time the communication pattern and a computation load of the pro-
gram. Figure 9 shows performance of the dynamic mapping algorithm implemented with
use of LCGAs. The program represented initially by a grid 4 x 4 from Figure 8a (with
parameters ay; = 10, by = 2) is randomly mapped into the target system, what results in
the initial physical allocation of the program with the cost C'(#) = 450 (see, Figure 9). It
is assumed that the execution of the program begins, but at the same time the distributed
dynamic mapping algorithm starts its work monitoring the system, and searching optimal
migration strategies for program modules. One can see, that during the first 50 genera-
tions of LCGAs, the system is able to find directions of program modules migration in a
fully distributed way, providing decrease in the the cost allocation. After 50 generations,
a physical migration of the program modules is performed, which results in a new, better
allocation, and the dynamic mapping algorithm continues to work. After three migrations
of the program graph a near optimal mapping is found.

It is assumed that after 130 generations the parallel program changes its communication
pattern of activity and computation load, which is modelled by a complete graph shown
in Figure 8b (only edges for a selected node are shown, parameters ag = 2, by = 10). It
is clear that the previously found allocation of the program is not optimal now, and the
value of the cost function C'(#) is now near to 800 (see, Figure 9). The distributed dynamic
mapping algorithm starts immediately to search for a new optimal allocation, without the
need of any central synchronization (which would be necessary in the case of tightly coupled
GAs).

After 260 generations the parallel program changes its communication activity again,
as modelled by the graph from Figure 8c (with parameters ay; = 2, by = 10). The behavior
of the distributed dynamic mapping algorithm is similar to that described above. The

17

grid44al-ringlécO-ringlé6al

800 s - p
Copt of prop(_»sed alloca_tlon ——

Copt of physicef allocation | —+—

700

'
) i

600

500

400

[14:3]

300

200

o LTINS N W

o 50 100 150 200 250 300 350

Generations

Figure 9: Performance of distributed dynamic mapping algorithm

algorithm is able to catch the changes of the program graph parameters without any central
synchronization and continues in a fully distributed way searching for an optimal mapping.

4.2 Scheduling Problem

To design a parallel and distributed scheduler we will interpret a parallel program repre-
sented by a precedence task graph as a multi-agent system with agents taking part in a
game with limited interaction. We assume that a collection of agents is assigned to tasks
of the program graph in a such way that one agent is assigned to one task.

The scheduling algorithm can be specified in the following way:

e agents assigned to tasks of a parallel program and located in system graph nodes are
considered as players taking part in a game with limited interaction
e the objective of each player is to minimise the response time 7).

e the objective of the iterated game is to find the optimal (in the sense of the global
criterion 7)) directions of the migration of the program graph in the system graph
while each player can move at the distance of one hop only

o after a predefined number of games a migration of the tasks is performed, which results

in a new better value of T,; the game starts again.

Each agent is a CS learning machine and it is responsible for local mapping decisions
concerning a given task. Each CS has a number of classifiers describing rules and corre-
sponding to them decisions which are used in a process of an iterated game.

18

Designing classifiers of CSs is the most responsible and difficult part of the proposed
approach to a scheduling problem. Classifiers will describe accepted attributes and basic
heuristics and will influence a performance of the proposed approach. As mentioned in
Section 3.2, each classifier has two parts: a conditional and action part. It is assumed that
a conditional part of a classifier will describe situations which can be recognized by an agent
Py located in some system node. Objects recognized by an agent are some specific tasks
of a program graph. Objects are considered as being ”close” to an agent, if a distance to
them in a system graph is less or equal then d hops; otherwise, they are considered as being
?far” from him.

Objects recognised by an agent are

e an immediate task predecessor which data arrives last

e immediate tasks predecessors and immediate tasks succesors with the highest process-
ing time

o tasks from the same level of the program graph as a task associated with a given agent

e not immediate tasks predecessors and succesors.

All these objects can be classified as being all ”far”, as some of them being ”close”
or all of them being ”close”. Some other attributes of a situation in a system graph can
be recognised, such as a delay of a given task to be processed on a processor or to a
communication channel, a total delay of tasks located in a given node to a processor and to
communication channels. These delays can be classified as ”accetable” or "not acceptable”
by a comparison with similar charactristics of respectively tasks located in the same system
node, or with a situation in neighboring system nodes.

An action part of a classifier will describe potential actions (moving on a distance of one
hop in the system graph) which can be taken by an agent in a given situation. The actual
list contains 16 actions, and below are given some them:

e stay in a processor where you are located (do not move)

e move to a randomly chosen neighboring processor

e move in the direction where is located your randomly chosen predecessor/succesor

e move in the directon where is located a predecessor with the highest processing time
e move in the direction where is located a predecessor which data arrives last
Conditional and action parts of a classifier contain, coded with use of binary substrings,

and - a don’t care symbol # (only conditional part) information concerning the condition
and the action, represented by the classifier. For example a classifier

<10 # 01 ## #F# >:< 0011 >

can be interpreted in the following way:

IF (an immediate task predecessor which data arrives last is "far”

AND immediate task predecessor with the highest processing time is ”close”

AND immediate task successor with the highest processing time is not important where

(# symbol)

19

AND some of tasks from the same level are ”close”
AND not immediate tasks predecessor are not important where
AND not immediate tasks successors are not important where)
THEN move in the direction where is located a predecessor with the highest processing
time.

An intial population of classifiers for each CS is randomly created. In the process of
a game the usefulness of classifiers is evaluated. New classifiers are generated with use of
GAs and they replace weak classifiers. As the result of the game, the global behavior of the
system is expected, resulting in a mapping program tasks to processors, corresponding to
optimal or suboptimal scheduling.

4.3 Implementation of a Simple Version of the Scheduler

A game theoretic- base scheduler presented in the previous section is a complex system,
therefore to evaluate a potential usefulness of the proposed aproach a simple version of the
system has been implemented and tested. In a given implementation of the algorithm each
agent is modelled by a CS-like system with the following properties:

e a set of actions is limited to the following four actions:
al: move to a randomly chosen processor
a2: move to a processor most frequently used by your immediate predecessor and
successors
a3 move to a processor least frequently used by your immediate predecessor and
successors
a4: move to a processor selected by one of your predecessors

e 3 classifier is limited to only an action part

e each CS-like system has a constant number of four classifiers, each of them corre-
sponding to one of actions

o cach classifier has the same initial value of a strength str¥ (i = 1,2,3,4;k = 1,2, ..., N,),
which is modified during a game

e a winning classifier is a one with the highest strength, i.e. a classifier ¢ with

max str’ (13)

k3

e a strength of a classifier selected to take action is increased in the case of a success,
i.e.
strf = strf 41, if 1w < 701 (14)

and decreased in the case of a failure, i.e.

strf = strf — 1, if Trew > o, (15)

where T2!% and T7°" are response times respectively, before an execution of an action,
and after an execution of the action.

20

Y a ra
F3
e
3
] L] e
[s 2 T
e
»
w 7 10
* 12 H11
13 - 12
13
11 | 14
13 | am 14 13
16 - 16
17
A7 - AS
19 | 22 20 |as
4 ao T
a1
a6 a2
aa az a a3
ar I as
23
2 »s
20 ok 14
a» 32 (a3
kg L a2
» a0
E-7% ax
<] 33X
k] I7
k4 -oa
33
26
I
40 x» 8
r
a0

ra ra r3 ra rs

Figure 10: Precedence task graph (left), and a schedule for the task graph (right).

A single game is conducted as a sequence of moves (actions) of agents, i.e. at a given
moment of time only one agent takes an action, and a single game is completed in N,
moments of time. A game consists of G single games g,i.e. g = 1,2,...,G. A game can be
played with two options: a player can withdraw its actions in the case of failure, or a player
can not do it.

A number of experiments with different precedence graphs has been conducted to test
the proposed approach to scheduling. Figure 10(left) an example of the precedence task
graph taken from (Schwehm & Walter 1994), with processing and communication times
equal to 4 and 1 respectively, and scheduled on a fully connected 5-processors system.
Some results of experiments with this precedence graph are described below.

Figure 11(a) shows a run of the scheduler when a withdrawal of actions by players
playing a game is not allowed. One can see that in such a game only a random search is
performed. Figure 11(b) shows a typical run of the scheduler when a withdrawal of actions
in a game is allowed. In such a game, after some number of single games, a solution is
found. Figure 10(right) shows the solution represented in a form of a Gantt chart showing
the allocation of each task on processors, and the times when a given task starts and finishes
his execution. The schedule has found, which defines the response time 7. = 40, is better
than that presented in (Schwehm & Walter 1994), whose response time was equal to 43.

Figure 11(c) gives some insight into a process of searching a solution during a game,
showing changing the average value str;(g) of each classifiers in a process of a game, i.e.

Np
stri(g) = (Z 5”‘5(9)) /Ny (16)
k=1

The figure shows that some order of importance of classifiers in a game is discovered
and maintained. While the game ranges the classifiers in the order of their decreasing

21

»

graph40 > 5 fully connected processors

100 T T
(a)
90

50 4 classifiers

action wlithdrawal not allowed ——

40 | |
0 20 40

game

60

80

graph40 > 5 fully connected processors

70 I |

100

(b)

65 action withdrawal allowed —*— _|

60

50

bbb

Rasaasaaa s AVIVITTTITTIVITIVIVIVITIOIN

40 4 classifiers

ddodbedodidbdboddibedodddidecdedididddobedid

35 ' '
0 20 40

game

60

80

graph40 > 5 fully connected processors

2000

100

1800

1600
tri(9) 1400

1200
4 classifiers

1000 action withdrawal allowed
| |

0 20 40

game

Figure 11: Game-based scheduler: action withdrawal not allowed (a), action withdrawal

allowed (b), strengths of actions (c)

22

Table 3: Response time for a different number of fully connected processors

ni||2 3456|789 10
T, || 80| 57 | 46 |40 | 36 | 33 | 31 | 29| 29

importance from a! to a3, a discovery of a solution is a result of a combined use of the
classifiers.

Described in this section game-based scheduler has been compared with a standard
genetic algorithms-based scheduler (Seredynski and Frejlak 1994). While both schedulers
found the same responce time for a given n-fully connected processor system (see, Table 2),
the time needed to find a solution by the game-based scheduler was expressed in seconds
(Pentium 133 computer), and for the GA-based scheduler it was expressed in minutes. To
find an optimal solution for e.g. 5-processors system the average time of 10 runs of each
scheduler was equal to 1.3 sec. and 1.2 min. respectively.

5 Conclusions

We have considered in the paper the model of noncooperative games with limited interac-
tion. We addressed the problem of a global behavior of the team of players, measured by
the value of the average payoff received by the team in the iterative game. We showed the
rules of a local interaction between players providing a global behavior of the system. To
implement a concurrent nature of players’ behavior we proposed two parallel and distributed
GA-based schemes with an evaluation of local fitness functions of players. Conducted ex-
periments have shown that the system is capable of evolving a global behavior, if rules of
local cooperation between players are preserved. Behavior of the system in its main points
is similar to that predicted by game theory with its concept of a Nash equilibrium point.

We have applied the developed evolutionary coevolving multi-agent system to solve
two problems from the area of parallel and distributed processing: the dynamic mapping
problem and scheduling problem. We believe that presented results give rise to think that
the developed model can serve as a useful metaphor for distributed decision-making and
distributed control in real life systems.

References

Axelrod R. (1987) The Evolution of Strategies in the Iterated Prisoners’ Dilemma. In: L. Davis (ed.):
Genetic Algorithms and Simulated Annealing. L.ondon: Pitman.

Barto A.G., Anandan P. (1985). IEEFE Trans. on Systems, Man and Cybernetics, vol. SMC-15, No 3,
May/June, 360-375

Blazewicz J., Ecker K. H., Schmidt G., Weglarz J. (1994) Scheduling in Computer and Manufacturing
Systems, Springer

Chlebus B. S., Diks K., Pelc A. (1994), Fast Gossiping with Short Unreliable Messages, Information
Processing Letters

Dorigo M., Maniezzo V. (1993) Parallel Genetic Algorithms: Introduction and Overview of Current Re-
search. J. Stender (ed.): Parallel Genetic Algorithms 10S Press

El-Rewini H., Lewis T. G., Ali H. H. (1994), Task Scheduling in Parallel and Distributed Systems, PTR
Prentice Hall

23

Fogel D.B. (1991). The Evolution of Intelligent Decision-Making in Gaming. Cybernetics and Systems, 22,
223-236.

Fogel D. B. (1993) Evolving Behaviors in the Iterated Prisoner’s Dilemma. Evolutionary Computation.
vol. 1. N 1.

Fox G. C., Furmansky W. (1988), Load Balancing Loosely Synchronous Problem with a Neural Network,
Proc. of 3rd Conf. on Hypercube Concurrent Computers and Application

Fox G.C., Johnson M., Lyzenga G., Salmon J. and Walker D. (1988). Solving Problems on Concurrent
Processors, Prentice Hall

Genesereth M. R., Ginsberg M.L., Rosenschein J. S. (1988) Cooperation without Communication. A.H.
Bond and Les Geser (eds.). Readings in Distributed Artificial Intelligence. Los Angeles

Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

Reading. MA
Holland J.H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan
Press

Kuwabara K., Ishida T. (1992) Symbiotic Approach to Distributed Resource Allocation: Toward Coordi-
nated Balancing. The 4-th European Worskhop on Modeling of Autonomous Agents in a Multi-Agent
Word. S. Martino el Cimino. Italy

Levy R., Rosenschein J. S. (1992) A Game Theoretic Approach to Distributed Artificial Intelligence and
the Pursuit Problem. E. Werner, Y. Demazeau (eds.): Decentralized A.I.-3. Elsevier

Lomborg B. (1992) Game Theory vs. Multiple Agents: the Iterated Prisoner’s Dilemma. The 4-th European
Workshop on Modeling of Autonomous Agents in a Multi-Agent Word (MAAMAW’92). S. Martino
el Cimino Italy

Manderick B., Spiessens P. (1989) Fine-Grained Parallel Genetic Algorithms. Proc. of the Third Int. Conf.
on Genetic Algorithms

Moon Y., Sklansky J. (1990). A Class of Mapping Algorithms for Hypercube Computers. The Fifth
Distributed Memory Computing Conference. Charleston. South Caroline. IEEE Computer Society
Press

Moore E.F. (1957). Gedanjen - Experiments on Sequential Machines: Automata Studies. Annals of
Mathematical Studies, 34, 129-153. Princeton, NJ: Princeton University Press

Muhlenbein H., Schomisch M., Born J. (1991) The Parallel Genetic Algorithms as Function Optimizer.
Proc. of the Fourth International Conference on Genetic Algorithms

Nash J. F. (1950) Equilibrium Points in n-Person Games. Proc. of the National Academy of Sciences USA
36, pp. 48-49

Ordeshook P. C. (1986) Game Theory and Political Theory: an Introduction: Cambridge University Press

Pettey C.B., Lutze M.R., Grefenstette J. I. (1987) A Parallel Genetic Algorithm. Proc. of the Second Int.
Conference on Genetic Algorithms

Plateau B., Trystam D. (1992), Optimal Total Exchange for 3-D Torus of Processors, Information Process-
ing Letters

Potter M.A., De Jong K.A. (1994) A Cooperative Coevolutionary Approach to Function Optimization,
Parallel Problem Solving from Nature — PPSN 111, Y. Davidor, H. -P. Schwefel and R. Manner (eds.),
LNCS 866, Springer

Rapoport A. (1966) Optimal Policies for the Prisoner’s Dilemma. Tech. Report N 50. The Psychometric
Laboratory: Univ. of North Carolina

Seredynski F.(1990) Homogeneous Networks of Learning Automata. Tech. Report N 684. Institute of
Computer Science PAS. Warsaw

Seredynski F. (1994a) Dynamic Mapping and Load Balancing with Parallel Genetic Algorithms. IEEFE
World Congress on Computational Intelligence. Orlando. Florida.

Seredynski F. (1994b) Loosely Coupled Distributed Genetic Algorithms, Parallel Problem Solving from
Nature — PPSN III, Y. Davidor, H. -P. Schwefel and R. Manner (eds.), LNCS 866, Springer

Seredynski F., Cichosz P. and Klebus G. P. (1995) Learning Classifier Systems in Multi-Agent Environ-
ments, First IEE/IEEE Int. Conf. on Genetic Algorithms in Engineering Systems: Innovations and
Applications (GALESIA), Shefield, UK

Schwehm M., Walter T. (1994) Mapping and Scheduling by Genetic Algorithms, CONPAR 94 - VAPPVI,
B. Buchberger and I. Volkert (eds.), LNCS 854, Springer

24

Tsetlin M. L. (1973) Automaton Theory and Modelling of Biological Systems. Academic Press. N.Y.

Varshavsky V. 1. (1972) Some Effects in the Collective Behaviour of Automata, Machine Intelligence 7.
Edinbourgh University Press

Varshavsky V. 1., Zabolotnyj A. M., Seredynski F. (1977) Homogeneous Games with a Conjugate Exchange
Process. Proc. of the Academy of Science USSR Techniczeskaja Kibernetika. N 6

Wang Q., Parlar M. (1989). Static Game Theory Models and Their Applications in Management Science,
FEuropean Journal of Operational Research 42. North-Holland. 1-21

Wong S.T.C. (1993). Preference-based Decision Making for Cooperative Knowledge-based Systems. ICOT
Technical Report: TR-0827

25

