MMM: A WWW-Based Method Management
System for Using Software Modules Remotely*

Oliver Giinther! Rudolf Miller! Peter Schmidtf Hemant Bhargava?
Ramayya Krishnan®

Abstract
The World Wide Web has been highly successful as a tool for the distributed publishing

and sharing of online documents among large dispersed groups. This raises the question
whether the distributed authoring and execution of sofiware modules can be supported in a
similar manner. We study this problem by first developing the requirements of a group of
developers and users of statistical software at a German national research laboratory. We
then propose an information system design that meets these requirements and report on
MMM, a prototype implementation.

1 Introduction

The World Wide Web (WWW) [BCL*94], a distributed hypermedia information system on the
Internet, demonstrates successfully how current technology can support the sharing of informa-
tion among large dispersed groups. It not only brought millions of new users to the Internet, but
also made it easy and desirable to publish online documents for dissemination to this worldwide
audience. This success of the Web, combined with the fact that it is mostly limited to the
dissemination of static information, raises the question whether the distributed authoring and
execution of computational software modules can be supported in a similar manner. This paper
studies this problem

e by examining the requirements of a group of researchers who need to collaborate in the
implementation and use of software modules and packages for statistical data analysis at
the German National Research Center on the Quantification and Simulation of Economic
Processes (SFB 373),

*This research has been supported by the Deutsche Forschungsgemeinschaft, SFB 373.

Mnstitut fir Wirtschaftsinformatik, Humboldt-Universitit zu Berlin, Spandauer Str. 1, 10178 Berlin, Germany,
{guenther ,rmueller,pschmidt}@wiwi.hu-berlin.de

{Naval Postgraduate School, Monterey, CA 93943, USA, bhargava@cs .nps.navy.mil

$The Heinz School of Public Policy and Management, Carnegie Mellon University, Pittsburgh, PA 15215, USA,
rk2x@cmu.edu

2 COLLABORATIVE STATISTICAL COMPUTING 2

e by proposing an information system design to meet these requirements, and

e by describing the implementation of a prototype.

The resulting system, called MMM (Method ManageMent system), is a collection of mid-
dleware services [Ber96] that facilitate WWW-based interaction between software users and
developers. While statistical computing has been our main application focus so far, the ba-
sic technologies presented in this paper apply to the distributed authoring and utilization of
software modules in general.

The rest of the paper is organized as follows. In Section 2, we present a typical scenario of
interaction with statistical methods at the center. We use this scenario to motivate the require-
ments for a distributed information system that supports collaboration and resource sharing
in similar environments. In Sections 3 and 4, respectively, we describe the design and realiza-
tion of MMM. This includes a brief overview of the Ypsilon software development environment
[MM94], which we based our implementation on. Section 5 surveys some related work and gives
an outlook on future research.

2 Collaborative Statistical Computing

2.1 Background

The German National Research Center SI'B 373 conducts research on the development, adaption,
and application of statistical methods for empirical economics. Its members are mathematicians,
statisticians, econometricians, economists, and computer scientists. One of the major objectives
of the center is to promote interdisciplinary projects.

Collaboration in this setting entails both publishing one’s own statistical methods (i.e., making
them available to other team members), and using methods developed by other teams. A key
objective of these statistical methods is data analysis: Given a set of observations, how to find
an appropriate statistical model (e.g., a linear autoregressive process), and to fit it to the given
data set. Interaction with such methods is typically performed in a three-step loop: (i) choose
a model, (i) estimate the model parameters, and (iii) visualize results. Statistical methods are
implemented using either specialized scientific computing software, such as Gauss, Mathematica,
Matlab, SAS, S_Plus, and SPSS, or software developed in-house at the center, such as XploRe
[HKT95]. In reflection of the corresponding programming paradigm, the software modules are
often referred to as scripts.

While each of these statistical software packages supports the kind of data analysis described
above, the heterogeneity in data formats, scripting languages, etc. presents a major challenge
whenever models implemented in different systems have to be used in combination. This is a
serious problem in a collaborative environment where different “traditions” of doing scientific
computing need not only to coezist but to cooperate.

2 COLLABORATIVE STATISTICAL COMPUTING 3

link=Install["sqlmath"]

sybaseconnect ["MMM","Password","SYBASE","stockxc"]
ts=Transpose[List[First[Transpose[sybaseSQL["select ret_cap, year, month
from ret_cap_month where company = "Deutsche Bank AG"

and year >= 1974 and year <= 1991 order by year, month"]]]11]
sybasedisconnect[]

Figure 1: A Mathematica script that encapsulates a query to a relational database system

2.2 A Case Study

The objective of the following short case study is to motivate the specific requirements for a
system that supports the distributed publishing and execution of statistical methods. The case
study is based on three scripts written by three different teams in the center. The scripts have
been implemented using three different software packages: Mathematica, Matlab, and XploRe.
They had to be tied together to perform the following complex task:

1. Given a relational database that contains monthly return on capital for major German com-
panies, find the monthly return on capital of Deutsche Bank AG between 1974 and 1991.
For security reasons there is no direct access to the database, but there is a Mathematica-
SQL connection that allows the embedded execution of certain types of queries (Iig. 1).

2. Compute the time series of estimated residuals of the time series of the Deutsche Bank
returns. This estimation uses the Matlab implementation of a function that estimates
a feed-forward neural network using Levenberg-Marquardt Approximation [LT96]. Fig.2
lists parts of the Matlab script.

3. Based on the result of the last computation, perform an analysis of the conditional second
moments using GARCH models [Bol86]. An XploRe macro is available to perform this
computation (Fig.3).

What kind of computing infrastructure does all this require? On the one hand, the three
software modules shown in Fig.1-3 have to be executable on some set of networked computers.
Before execution, all functions referenced directly or indirectly need to be made available, and
variables may have to be initialized. The Mathematica script in Fig. 1, for example, requires
access to the function sybaseconnect. Before the Matlab script in Fig.2 can be executed,
the variable xraw has to be initialized with an appropriate time series. The Matlab script
generates several outputs, including err_o, which contains the estimated residuals after calling
the Levenberg-Marquardt approximation. Only this variable is used as input to the XploRe
script. Identifying such variables that are used to link scripts is important since their values
need to be stored before the generating script terminates. Data format conversions may also be
required. The result of the SQL query (Fig. 1), for example, is a Mathematica vector (variable
ts), which has to be converted into a format that is readable by Matlab. If the machines running,

2 COLLABORATIVE STATISTICAL COMPUTING 4

% parameters used for Levenberg-Marquardt Approximation

min_grad = 0.00001;
min_grad = 0.00001;
mu = 0.01;
mu_inc = 10;
mu_dec =0.1;
xraw = log(xraw);

[Ztrain,wnnew_o,epochsmin_o,wncvnew_o,n_par_o,sc_o,aic_o,hq_o,Atrain_o,
errdat_o,Acv_o, errcvdat_o,W1_0,b1_0,W2_0,b2_O,Wi1_1,b1_1,W2_1,b2_1,W1_2,
b1_2,W2_2,b2_2,W1_3,b1_3,W2_3,b2_3,W1_4,b1_4,W2_4,b2_4,W1_5,b1_5,W2_5,b2_5]
= nnselc(lags,xraw,Slmax,trans,disp_freq,max_epoch,epochsec,sin_epoch,
err_goal,lr,initcmax,Ztrain,min_grad,mu,mu_inc,mu_dec) ;

err_o = [errdat_o’ errcvdat_o’]’; % estimated residuals for total data set

Figure 2: This Matlab routine initializes several parameters and calls the function nnselc, which
implements a Levenberg-Marquardt approximation.

say, Mathematica and Matlab do not share a common file system, the data has to be moved
across the network (e.g. by using FTP).

2.3 Requirements

Two trivial solutions come to mind in order to overcome the heterogeneity problems discussed
above. First, authors could make their modules available in multiple formats and on multiple
machines. Second, users could translate the required programs themselves such that they can be
executed in their local hardware and software environments. Both alternatives are cumbersome
and time-consuming. All this effort could be avoided if there were a system in which researchers
can publish software modules in their original form (i.e, the one in which they had implemented
them for their own purposes), and users can ezecute them as if they were operating on a personal
desktop environment. This vision led to the design of the MMM system based on the following
set of requirements.

Execution services: For each statistical computing package there should be at least one exe-
cution service available that makes the specifics of interacting with other packages trans-
parent. For example, the different ways of executing a module within a package (such as
writing a batch job, or entering a command in a line-oriented command interface) have to
be hidden. Independently of the package specifics, the interface of the execution service
should support the three basic operations: specify input, start execution, and access out-
put. Each execution service should be accessible by the members of the working group and

2 COLLABORATIVE STATISTICAL COMPUTING 5

; This function estimates the function of conditional second
; moments of a univariate time-series, using GARCH models.
; The output is a matrix d

r=r’

n = rows(r)

t = 1957.5 + (0:n-1)/12
n = rows(r)

library("mmmlib")

d = archest (r, 1, 1)

xt = var(r)|d[2,1]*r[1:n-2]"2

st = genar (xt, d[#(1,3),1], n-1)

Figure 3: This XploRe macro implements a GARCH model by calling XploRe standard func-
tions.

by authorized outside users. Execution services have to be extensible, such that authors
can make available libraries with modules, which can then be used in other modules by
other authors.

Interface definition: Modules that are to be executable by such execution services need inter-
faces that specify which input variables have to be provided, how they should be invoked,
and which results are available when execution is complete. The system needs to support
authors such that this information can be provided in a user-friendly manner. Generally
speaking, it is crucial for the success of such an approach that new software modules can
be checked into the system with reasonable effort. This presents a major challenge, since
statistical methods are typically authored in declarative, interpreted languages rather than
imperative, object-oriented languages (such as C++), which would greatly facilitate the
required interface definition.

Interoperability: As demonstrated in the case study, this is where users lose most of their time.
Assistance is particularly desirable for (i) data transfer and format conversion between all
statistical software systems involved, (ii) system-specific combination of data and methods,
and (iii) invocation and execution control across the network.

State maintenance: In most research environments, statistical analysis is exploratory, involv-
ing multiple passes on the methods and parameters. In an interoperable setting, a user
has to keep track of inputs to methods and intermediate results. Assistance needs to
be provided in the form of state maintenance services, which store inputs and results of
intermediate computations during a session.

Scripting: Assuming that the infrastructure is set up in a way that a single user has access
to a variety of distributed resources, this user may want to automate the execution of a

3 THE INFORMATION SYSTEM DESIGN 6

User Agent

Broker
Messages

Database Method Base Module Execution Data Trandlation
Services Services Services Services

Figure 4: User Agent, Broker and Services

computational plan by combining all the steps (e.g., the three operations in the case study)
into a single executable script (which could then be published in turn).

Internet/ WWW: WWW-based interfaces reach a wide range of potential users on multiple
hardware and software platforms. This kind of cross-platform support is needed in a center
like the SF'B where platforms and operating systems proliferate. Interfaces for authoring
and using methods therefore need to be based on Web technology.

Possible additions to this list of requirements include a meta-information system that supports
users in the selection and usage of appropriate methods, or visualization and interactive graphics
tools for remote services. These features are subject to future work; they will not be discussed
further in this article.

3 The Information System Design

Based on the requirements specified above, this section presents the design of an information
system to support collaborative statistical computing. Section 3.1 describes the principal sys-
tem components, and Section 3.2 discusses the extent to which our approach meets the stated
requirements.

3.1 Principal Components

Our design is based on agents that are responsible for different types of services. Users of
statistical modules communicate with the system via a user agent. This agent connects them to
a brokerage agent or broker, which mediates transactions between several types of service agents
and the user (Fig.4). We first describe the functionality of a variety of service agents, then the
user agent, and finally the role of the broker.

3 THE INFORMATION SYSTEM DESIGN 7

[®][E] Netescape: W3-MMM Gateway Meseag

Location: Ihttp: ffrmm. wiwi.hu-berlin.de/egi-bin/call port.sh m
SetMatrix & 1
mmmMatrix
Field Value
Type MATLAE =
2.1 4,5; 4
4.5 5.6;
0.3 5.4;
—1.444 0.6;
19.0 2.2;
4.5 -20.5]
Value
] 1
Submit| Reset
Subur| Reser] .
Ll T =110

Figure 5: An HTML form to edit a matrix with the MMM user agent. The select button specifies
the language. The matrix is in Matlab format, a language-specific ASCII representation.

3.1.1 Database Services

The analysis of data sets is fundamental to statistical computing. At this point, real-valued
vectors and matrices are the most common data types by far. Alphanumeric data (e.g. for
representing names or dates of observations) as well as complex types (such as records) are only
gradually becoming more popular [SKKH96]. Data sets are usually represented and exchanged
as formatted ASCII strings. Formatting details, such as separators or use of parentheses, vary

between systems.

Database services maintain data sets for the users of the system. The interface of a database
service provides operations to create, update, access, and delete a data set. A database service
treats a data set as a black box. It would, for example, not provide any operations to manipulate
parts of a matrix; such tasks have to be performed by execution services using suitable modules.
There are also no operations that are specific to the data representation format. If format
conversions are necessary, they are delegated to special data translation services (see Section
3.1.2). Notwithstanding this black box concept, data providers can enhance a data set by
selected meta-information (such as the chosen format, see Fig.5).

Database services are also able to integrate data sets from other sources. This includes
simple remote access via standard protocols, such as F'TP and HTTP, but also the direct SQL-
based access to external relational databases, possibly followed by some format translation.
Alternatively, data integration could be performed using an execution service, as illustrated by
the first module in the case study.

3 THE INFORMATION SYSTEM DESIGN 8

3.1.2 Data Translation Services

Data translation services perform the required conversions between different data formats. Typ-
ical formats include relational representations produced by the database services or package-
specific “statistical” formats. Conversion has to be supported between all formats required by
the module execution services of the system (see Section 3.1.4). The interface of a data trans-
lation service is straightforward: A request sends a data set in some format together with the
specification of a target format and obtains the converted data as a result.

3.1.3 Method Base Services

In analogy to the treatment of data sets by database services, method base services treat modules
as black boxes. Inside those boxes are ASCII strings that represent the implementation of some
method. A method base service supports similar operations as a database service: It provides
an interface to add, delete and change a module, and it provides an interface for an execution
service to access a module.

As with data sets, one can also store some meta-information with each module instance
(Fig. 6). The language the module is written in is an obvious example, but other items may
also be essential. One may, for example, want to provide meta-information about which other
modules have to be installed at the execution service prior to execution. Moreover, in order to
execute a module, one has to move it to an execution service and combine it with data from a
database service. The results of the computation have to be returned to the database service
after execution has completed. Both operations require meta-information about the input and
output behavior of a module. An analysis of several packages showed that a list of names of
input and output variables, a so-called signature, is usually sufficient.

3.1.4 Module Execution Services

Module execution services encapsulate the execution of statistical methods by implementing
connections to selected execution services. This is done in three phases: First, the service
accesses a module from a method base service and data from a database service. It concatenates
data and module in a way specific to the package. Second, it instructs the execution server to
execute the module. Third, when execution is complete, it obtains the output data from the
execution server. This last step may require the addition of package-specific commands to the
module in the first phase. Finally, outputs are forwarded to the database service.

The details of implementing the three phases vary considerably from package to package. In
Mathematica, for example, a library can be used to create a stateful link to a Mathematica
engine using a C program. With XploRe, on the other hand, no such support exists, and the
implementation uses a stateless connection to an XploRe server listening to a telnet port on a
UNIX machine. In the first case, variables can be initialized in a stepwise manner by appropriate
function calls. In the second case, the XploRe module has to be combined with the data by
string concatenation.

3 THE INFORMATION SYSTEM DESIGN 9

[®][@] Netrcape: W3

SetFwnction neural

Field Value
—

lmmnNameTlll

Index Valie
[Add Raw

“No Ves

| ———

nmnnNameTbl

Add/Delete/Edit |

< Delete 4 Edit

ParameterNames

Add/Delete/Edit |

 Delets ¥ Edir

J

=
Add Row
v

Figure 6: An HTML form to publish a module at a method base service. The top part specifies
some meta-information (language and signature), the bottom part contains the script.

3 THE INFORMATION SYSTEM DESIGN 10

As mentioned above, the three phases have to be supported by meta-information that is pro-
vided by the author when submitting a module to the method base service. Names of input and
output variables have to be listed. Moreover, the module implementation must not contain any
initializations of input variables, nor instructions that store results in files. Corresponding com-
mands are generated by the execution service and depend on the way the package is connected
with the service.

3.1.5 User Agent

Our design assumes an interaction mode that is based on the exchange of documents, such as
an HTML form (Fig.5). Document content, such as HTML form variables, is translated into
messages. If one uses a Web browser and HTML forms, form submission results in the invocation
of a CGI application that communicates with the broker using a system-specific protocol. In this
case, the user agent simply consists of the Web browser and the CGI application. Alternatively,
the user agent could consist of a series of downloadable Java applets or ActiveX applications.

3.1.6 Broker

Services cooperate with each other in order to allow providers to publish modules and data sets
and to allow consumers to use them. The corresponding requests are formulated by the user
agent. The broker mediates between the user agent and the other services. On request from a
user, the broker gathers information about the operations that could currently be performed by
the different services. It compiles this information into a document which is sent to the user
agent. Based on this information, the user then selects the next operation, and so on (Iig. 7).
Under certain conditions, the broker could be a Java applet running inside the Web browser of
the user, thus combining the user agent and the broker in one application.

3.2 Analysis

To what extent does the design specified above fullfil the requirements of Section 2.37 In this
section, we will analyze this question using examples from the case study.

Execution Services: In principle, our proposed execution services can properly execute the
modules from the case study. Care has to be taken, however, that the execution services
have access to all required submodules. All three scripts in the case study call library
functions that were made available by some statistical computing package. In the Matlab
example, these functions even contained the core functionality of the module. The Matlab
execution service therefore has to be given access to the function (e.g. by storing the
executable in a directory that is accessible by the service).

Interface definition: This problem is addressed by the meta-information facility that allows
authors to describe software modules submitted to the method base service. We argued

3 THE INFORMATION SYSTEM DESIGN

You may order fill out forms for the following commands

1d| Service [Object | Method | Get Form
0 | Data Server |A Gethlatx Mo o
1_ CreateFigure | Mo
2_ A LoadOh Mo o
3_ Sethdatrix Mo |
4_ DeleteOhy Mo
5_ Createhdatmx | Mo
6_ Matlab_Server FdatlabInit Mo
Submit| Reset|

Figure 7: An HTML form to order the appropriate form for the next operation.

4 THE IMPLEMENTATION OF MMM 12

above that a signature is usually sufficient, provided the participating data sets are syn-
tactically and semantically correct. Because data sets are usually entered or computed
using some standard statistical package, syntactic correctness often reduces to correctness
of dimensions. Semantic correctness is a more complex issue, especially because interac-
tions with a module are often only feasible in a specific order. While not yet supported by
our execution services, parameterized transaction models would allow such more complex
interface definitions [BKM95b]. At this point, however, checking in a new software module
is still a complex process that requires a certain familiarity with the system.

Interoperability: This requirement is met by the data translation services and by the fact
that we require each module to have a functional interface.

State maintenance: The database and method base services are stateful services that meet
the essential requirements on state maintenance. The connection to the execution engines
in the execution services is currently stateless - at least, state is not transparent to users
and other services.

Scripting: This is not yet covered by our system design. However, as we will see in Section 4,
service calls can be integrated into C++-callable libraries, which can be invoked in turn
from a Mathematica or Matlab module. Hence, at least some of the packages and their
execution services may be used to provide scripting.

Internet/ WWW: This last requirement is covered by the WWW-based user interface.

4 The Implementation of MMM

This section describes MMM, a method management system that implements the design pre-
sented above by combining Web technology with distributed object technology. Web technology
is used to implement user agents and to integrate resources like data repositories and compu-
tational services on telnet ports. Distributed object technology is used to realize agents that
provide services for authoring and executing statistical methods, and for the maintenance and
format conversion of data sets.

For the implementation of MMM we used Ypsilon, a C++4 environment for model-based
software development. After giving a short overview of Ypsilon, we illustrate how we used
this tool to implement a generic client/server topology for the exchange of formatted messages
over TCP/IP. Finally, we describe the implementation of the agents and their communication
protocol. For a more detailed description of Ypsilon we refer the reader to [MM94].

4.1 The Software Development Environment: Ypsilon

Ypsilon was developed as a toolbox for model-based software development and rapid prototyping.
It provides an infrastructure to encapsulate services into objects implemented in C++4. The
original focus of Ypsilon was the implementation of algorithm libraries for project scheduling

4 THE IMPLEMENTATION OF MMM 13

[MS95]. Tts design was influenced by the ASCEND modeling language [Pie89, KMP93] and by
the adaptive method base shell AMBAS [HS92]. Ypsilon consists of

1. a generator that produces C4++ class implementations from models (vice versa, each Yp-
silon class corresponds to a model);

2. compiled C++ and X11/Motif libraries that provide Ypsilon objects with a rich set of func-
tionalities, including graphical user interfaces, ASCII string representations, and memory

handling.

3. a generic runtime environment to instantiate and process Ypsilon objects.

The following sections highlight several features of Ypsilon that are of particular relevance for
the MMM implementation.

4.1.1 Type Information at Runtime

Using member functions, Ypsilon objects provide runtime access to their own class information.
These member functions report, for example, whether a class implements a record or a table
pattern and, in the latter case, the index type of the table. MMM uses this kind of meta-
information access to implement generic services. Generic services are best explained using an
example: a (generic) user agent that generates HIML form representations of Ypsilon objects.
The meta-information about the class declaration is used to format the HT ML form, and current
object values are used to set default variables. When a user submits the completed form via a
Web browser, the user agent receives the content of the form variables via a CGI application.
Based on the form content it then updates the object content. Fig.5 and Fig.6 show examples
of such forms generated by the user agent.

Why is type information at runtime a helpful feature? We believe that this approach can
decentralize generally applicable services. It permits a slim implementation of Ypsilon core li-
braries, while new functionalities, which would usually be implemented as additional member
functions of base classes, can be realized as remote services. For example, one could indepen-
dently develop a new user agent that generates Java applets instead of HTML forms.

4.1.2 Serialization of Ypsilon Instances as Character Strings

Each Ypsilon instance has a representation as a formatted ASCII character string that contains
the complete type information. Together with the instance value, this information can be used to
define the protocols between MMM services. Messages are modeled as Ypsilon classes; sending
a message translates to sending an instance of an Ypsilon class. If the same channel is used to
send messages of different types, i.e., instances of different Ypsilon classes, the type information
defines the type of the message. This enables the implementation of generic communication
services. Jeusfeld and Bui [JB95] have proposed a similar type of data representation as a basis
for interoperable decision support system components on the Internet.

4 THE IMPLEMENTATION OF MMM 14

4.1.3 Standardized Encapsulation of Services

A function model is a special kind of Ypsilon model that encapsulates an (external) function as
a C++ class. Each function model has fields input and output. The typical usage of a function
model in a C4++ program is illustrated below, where F is a C++ class implementing a function
model:

F £f;

f.input() = a;
f.evaluate();

b = f.output();

The implementation of the member function evaluate encapsulates not only the call to
the external function, but also format conversions from and to the external function’s data
structures. Moreover, function models implement a standardized interface for function calls
that can be used in a simple manner by other applications.

Function models can also encapsulate stateful services. As such, they are modeled with addi-
tonal data fields maintaining the state of the service. The content of input is then interpreted
as a request to the service, evaluate processes this request, and output contains the results
of evaluation. We will see examples for this usage of function models when we describe MMM
services in Section 4.3.

4.1.4 Wrapper Classes for Data and Functions

GCData is a wrapper class whose objects can be initialized dynamically with any other Ypsilon
model. In combination with the typed ASCII representation, this allows a generic handling of
Ypsilon model instances. As an example, suppose that a file somefile contains an instance of
the class SomeTable. Then the lines

GCData d;
d.read("somefile");

change the virtual type of d to SomeTable and initialize it with the instance from the file.
Although we cannot use any member functions of the class SomeTable, we may assign d to the
input () field of a function model and then evaluate this function:

SomeFunction f;
f.input() <<= d;
f.evaluate();

The class GCFunction implements a similar wrapper for Ypsilon function models. We could
thus replace the previous three lines of code by

4 THE IMPLEMENTATION OF MMM 15

GCFunction g;
g.initialize("SomeFunction");
g.input() <<= d;
g.evaluate();

The second line initializes the generic function object g with the class SomeFunction.

4.2 The Communication: MMM Client and Server Models

While Ypsilon function models generally encapsulate services, the two Ypsilon models MmmFClient
and MmmFServer encapsulate the communication of services. They implement the protocol layer
of MMM by using functionalities of the ACE library [Sch94], which contains C4+4 wrapper
classes for interprocess communication. The ACE library runs on a broad variety of operating
systems.

MmmFClient is a function model that encapsulates the communication with servers via Internet
stream sockets. As a function model, it contains the fields input and output, both of type
GCData. Additionally it has a field server, a record that is initialized with a DNS name (or an
IP address) and a port number. The member function evaluate of MmmFClient opens a stream
socket connection to the address specified in the server field, takes the GCData object from the
input field, and sends it to this address. The reply received is assigned to the field output,
followed by closing the connection to the remote address. Since input is of type GCData, objects
of type MmmFClient are usable to send any Ypsilon object via the Internet: one just has to
assign the object to input and call evaluate.

The model MmmFServer contains a field port and a field service. Its task is to receive
messages from MmmFClient objects, process the message with the field service, and send a reply
back to the client. Therefore the field service is of type GCFunction: It can be initialized by
any Ypsilon function model (see Section 4.1.4). The member function evaluate of MmmFServer
listens to the port specified by the field port. When it receives an Ypsilon model instance
from a client, it assigns this instance to the input field of service. Then the member function
evaluate of service is started and the result, contained in the output field of service, is sent
back to the client.

To summarize, setting up a MMM service requires the implementation of an Ypsilon function
model and a program that initializes the service component of an MmmFServer object with an
object of the function model. Calling such a service from a C++ program requires initializing
an MmmFClient object, initializing its input with the request, and retrieving the reply from
output.

4.3 Agents and Messages: MMM Service Models

The last section showed how services are embedded in the server model MmmFServer, which
implements their communication. A service thus waits for an instance of a specific message

5 DISCUSSION 16

model, processes the request encoded in that instance, and generates as result an instance of a
reply model. MMM services implement all types of services discussed in Section 3.

Each service accepts a set of message models, where different messages initiate different op-
erations at the service. These operations may change the state of the service, which defines
in turn which messages are acceptable next [BKM95b]. For example, at the beginning of each
interaction with a service, an authentication operation has to be performed. Only after valid
authentication, other messages become acceptable, such as a request for meta-information, or
an execution request to the method base.

MMM employs the concept of acceptable messages at two different levels. First, it is used at
the level of general operations that a service can perform. General operations are those which
are not specific to a software module provided by an author. For those operations, the function
that relates state to acceptable messages is hard-coded in the implementation of the service.
Second, there are rules for acceptable messages that are specific for software modules authored
by system users. For example, it is specific to each Matlab script which data sets have to be
initialized before the script can be executed. The function that relates state to messages that
start the execution of a module is therefore not hard-coded but parameterized by the signature
of the function. This is a simple example for parameterized transaction models for agents in
electronic markets [BKM95b].

In summary, our services implement the concept of acceptable messages in the sense that a
service has explicit knowledge about which messages it may accept next. Services thus have
a local, dynamic repository of their interface. In the case of services for executing software
modules, the rules for updating this repository are mostly provided by the software authors.

The MMM broker can be considered as a middleware between user agent and services [Ber96].
Like an object request broker (ORB), it provides transparent access to a distributed system of
services. It maintains a dynamic collection of interfaces to these services, consisting of the set
of acceptable messages for each service. The connection between Web browser and broker is
established by the user agent as described in Section 4.1.1. Whenver the user submits a request,
the broker consults one or several services by sending some (acceptable) message to each service
concerned. The service’s reply message is sent back to the user agent, together with an update
of the set of acceptable messages for that service. Based on that new set of messages, the broker
generates an HTML form for the user to choose the next operation (Fig. 7). Note that the
broker is a stateful service itself; its state is essentially defined by the set of acceptable messages
for each connected service.

5 Discussion

In this paper we described the design and implementation of MMM, a method management
system to support collaborative statistical computing. The key features of MMM are:

e It implements stateful services, motivated by the exploratory nature of statistical data
analysis.

5 DISCUSSION 17

e By using middleware services, it enables interoperability between proprietary statistical
computing packages.

e [t provides publishing support by helping authors with their interface definition.

These features of MMM are not only relevant for collaborative statistical computing. They
concern the question of distributed management of software modules in general. A brief com-
parison with related approaches confirms that MMM offers some functionalities that are not
available elsewhere.

The first milestone towards enabling access to computational services on the Web was the
Common Gateway Interface (CGI) [McC94]. CGI defines a standard of passing data from a
Web browser to an application program. While thousands of CGI applications are now available
on the Web (including many with scientific software), each of them represents a singular solution.
There is no support to connect several such services into a pipeline, as is required, for example,
in the case study presented above.

Java applets [SUN95] also lack comfortable support for this kind of interoperability. Due to
security considerations, browsers prevent Java applets that were downloaded from some site A
to download other applets from some other site B. While this constraint may disappear in time,
as the related security problems are solved in a more sophisticated manner, Java has another
major disadvantage: It requires the reimplementation of software already available. Switching
to an object-oriented, imperative programming language like Java, however, is simply not an
option for our typical user, who makes considerable use of the expressiveness and richness of
mathematical libraries in scripting languages like Mathematica or Matlab.

As discussed above, there is considerable overlap between the MMM concepts and middleware
architectures, in particular object request brokers [Ber96]. While these technologies tend to be
strong in providing reliable services in distributed computing (e.g., by enforcing transaction
management), they do not emphasize support for publishing as much as MMM does. Interface
definition languages support only imperative, object-oriented languages (e.g. C ++). So it
may be a while before the intergalactic object bus [OHE96] will stop at our type of statistical
computing services. However, we expect that parts of the MMM functionality that are currently
implemented in Ypsilon can soon be replaced by ORB implementations following standards like

CORBA or COM/OLE.

Another enhanced system for Internet access to software modules has recently been presented
by Becker [Bec96]. Other than MMM, however, the system follows a functional design. Values
are filtered through stateless services that encapsulate solvers for combinatorial optimization
algorithms. The system lets a user state computational plans in the system’s own scripting
language.

From the electronic commerce point of view, Bhargava et al. have surveyed emerging elec-
tronic markets for accessing software modules [BKM96a] and investigated business transactions
[BKM96b]. We believe that the results of the MMM project could guide the creation of a new
generation of electronic markets for scientific software, as they are currently investigated for
decision support technologies [BKM95a, BKCt96]. Rather than buying expensive licenses for

REFERENCES 18

comprehensive software environments, consumers will be able to use software modules installed
on some other computer in the Internet, paying just a relatively small usage fee.

We also believe that technologies like MMM will have a major impact on the verification and
benchmarking of software, both in practice and in research. At this point, only a small percentage
of all experiments published in the computer science literature are ever verified [TLPH95]. Once
every published paper includes a URL (Uniform Resource Locator), i.e., an Internet address
that points to an implementation, other people will be able to test the experimental results with
their own data via the Web. This would substantially increase transparency and credibility of
our discipline as a whole.

Acknowledgments

Thanks to Peter Becker (University of Tiibingen), Wolfgang Hérdle, Christian Haffner, René
Hoppe, Sigbert Klinke, Ralf Koerstein, Thomas Kétter, Helmut Liitkepohl, Richard Stehle, Rolf
Tschernig (all of Humboldt University, Berlin), and Andreas Weigend (New York University)
for many interesting discussions and for their contributions to the design and implementation

of MMM.

References

[BCL194] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The World-
Wide Web. Communications of the ACM, 37(8):76-82, 1994.

[Bec96] P. Becker. An embeddable and extendable language for large-scale programming on the
Internet. In Proceedings of the 16th International Conference on Distributed Computing

Systems (ICDCS’96), 1996.

[Ber96] P. Bernstein. Middleware: A model for distributed system services. Communications

of the ACM, 39(2):86-98, 1996.

[BKC*96] H.K. Bhargava, R. Krishnan, M. Casey, D. Kaplan, S. Roehrig, and R. Miiller.
Model management in electronic markets for decision technologies: A software agent
approach. SFB Discussion Paper, Sonderforschungsbereich 373, Humboldt-Universitat
zu Berlin, 1996.

[BKM95a] H.K. Bhargava, A.S. King, and D.S. McQuay. DecisionNet: An architecture for mod-
eling and decision support over the World Wide Web. In T. X. Bui, editor, Proceedings
of the Third International Society for Decision Support Systems Conference, Vol. I,
pages 541-550, Hong Kong, 1995. International Society for DSS.

[BKMO95b] H.K. Bhargava, R. Krishnan, and R. Miiller. On parameterized transaction models
for agents in electronic markets for decision technologies. In S. Ram and M. Jarke,

editors, Proceedings of the Fifth Workshop on Information Technologies and Systems,
Amsterdam, Holland, December 1995, 1995.

REFERENCES 19

[BKM96a] H.K. Bhargava, R. Krishnan, and R. Miiller. Decision support on demand: Emerging
electronic markets for decision technologies. Decision Support Systems, 1996. to appear.

[BKM96b] H.K. Bhargava, R. Krishnan, and R. Miiller. Electronic commerce in decision tech-
nologies: A business cycle analysis. SFB Discussion Paper, Sonderforschungsbereich
373, Humboldt-Universitat zu Berlin, 1996.

[Bol86] T. P. Bollerslev. Generalized autoregressive conditional heteroscedasticity. Journal of
FEconometrics, 31:307-327, 1986.

[HKT95] W. Hardle, S. Klinke, and B. A. Turlach, editors. XploRe: An interactive statistical
computing environment. Springer-Verlag, Berlin, 1995.

[HS92] M. Holocher and D. Solte. AMBAS - an adaptive method base shell. In J. C. Petrie
Jr., editor, Enterprise Integration Modeling, Proc. MIT Press, 1992.

[JB95] M. Jeusfeld and T. X. Bui. Interoperable decision support system components on
the Internet. In S. Ram and M. Jarke, editors, Proceedings of the Fifth Workshop on
Information Technologies and Systems, Amsterdam, Holland, December 1995, pages
56-67. RWTH Aachen, Fachgruppe Informatik, 1995.

[KMP93] R. Krishnan, R. Miiller, and P. Piela. Modeling project scheduling models in AS-
CEND. Working paper, Carnegie Mellon University, 1993.

[LT96] H. Liitkepohl and R. Tschernig. Nichtparametrische Verfahren zur Analyse und Prog-
nose von Finanzmarktdaten. In G. Bol, G. Nakhaeizadeh, and K.-H. Vollmer, editors,
Finanzmarktanalyse und -prognose mit innovativen quantitativen Verfahren. Physica-
Verlag, Heidelberg, 1996.

[McC94] Rob McCool. The Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/over-
view.html, 1994.

[MMO94] D. Méller and R. Miiller. A concept for the representation of data and algorithms. In
N. Dean and G. Shannon, editors, Computational Support for Discrete Mathematics,

DIMACS Workshop March 12-14, 1992. AMS, 1994.

[MS95] R. Miiller and D. Solte. How to make OR results available: a proposal for project
scheduling. In W. Gaul, F. J. Radermacher, and D. Solte, editors, Data, Fzpert Knowl-
edge and Decisions, volume 55 of Annals of Operations Research, pages 439 — 452. J.C.
Baltzer Science Publishers, 1995.

[OHE96] R. Orfali, D. Harkey, and J. Edwards. The FEssential Distributed Objects Survival
Guide. John Wiley & Sons, Inc., New York, 1996.

[Pie89] P. Piela. ASCEND, An Object Oriented Computer Environment for Modeling and
Analysis. PhD thesis, Department of Chemical Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, 1989.

REFERENCES 20

[Sch94] D. C. Schmidt. The ADAPTIVE Communication Environment: Object-Oriented Net-
work Programming Components for Developing Client/Server Applications. In Pro-
ceedings of the 12" Annual Sun Users Group Conference, pages 214-225, San Fran-
cisco, CA, June 1994. SUG.

[SKKH96] S. Schmelzer, T. Koétter, S. Klinke, and W. Hardle. A new generation of a statistical
computing environment on the net. In A. Prat, editor, Proceedings in Computational
Statistics: 12th COMPSTAT Symposium held in Barcelona, Spain, 1996, pages 135—
148. Physica-Verlag, 1996.

[SUN95] SUN Microsystems Inc. JAVA Home Page. http://java.sun.com, 1995.

[TLPH95] W. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz. Experimental evaluation in

computer science: A quantitative study. Journal of Systems and Software, 28(1):9-18,
1995.

