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Abstract

We address the problem of sorting a large number N of keys on a MasPar MP-1
parallel SIMD machine of moderate size P where the processing elements (PEs) are
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faster on average than the up to the present fastest, sophisticated implementation of
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1 Introduction

The problem. Sorting is one of the most investigated problems in computer science. In
the area of parallel computing, sorting is also a classical topic. Its roots can be traced back
to the Fifties [Knu73, p.244]. Richards’ bibliography [Ric86] covers the extensive literature
until 1986. In many parallel algorithms, parallel sorting is one of the subroutines that
determine the overall performance. E.g., it is used in applications like the computation
of convex hulls, parallel data bases, and certain image-processing methods, to name a few.
Many parallel sorting circuits and other sorting methods on networks are described in
Leighton’s book [Lei92].

One type of parallel computer is the SIMD (Single Instruction, Multiple Data) machine,
in contrast to the MIMD (Multiple Instruction, Multiple Data) type of machines. In SIMD
machines, all processing elements (PEs) execute in one time step on their local data the
same operation that is sent to them by an external control unit or are idle. Typically,
SIMD machines have a large number of PEs, but the amount of local memory is modest.
The time to set up a communication between PEs is usually small compared to the set-up
times on MIMD machines. Well-known examples of SIMD machines are the MasPar MP-1
and the Thinking Machines CM-2. In this paper, we report on implementations of three
deterministic oblivious sorting algorithms on a small MasPar MP-1 with 2048 PEs each
with 16 KB memory.

Let N be the number of keys that have to be sorted, and let P be the number of PEs.
The method that, for N > P, usually leads to the fastest runtime on MIMD machines
is Samplesort (see next paragraph). However, it has per-processor storage requirements
that scale with the number of PEs. The requirement that the complete set of so-called
splitters be available at every PE can be problematic for parallel machines in which P
is large, but the amount of local memory is modest. In this case, there is a need for
efficient in-place sorting algorithms, i.e., algorithms that require additional storage per
PE of size O(1) only. Appropriate algorithms working reasonably well in this case are
those that are based on sorting circuits (comparator networks [Knu73]). Here, it is known
ahead of time and independent of the sequence of inputs which pairs of PEs perform a
conditional exchange during each time step. Such sorting algorithms are called oblivious .
Because every PE stores more than one key, the comparators can be replaced by split&merge
operations [Knu73, p. 241] (see Section 3). Note that we still call an algorithm oblivious
when it replaces the conditional exchanges with split&merge operations. The split&merge
operations are fixed, but their execution time may vary.

Previous work. Blelloch et al. [BLM%91] present a comparative study of a vari-
ety of implementations of parallel sorting algorithms on a Thinking Machines CM-2 con-
sisting of 65536 one-bit PEs. Comparative studies for MIMD machines can be found
in [DCSM96, DGL*94, WW96]. For N/P large, Samplesort [FM70] results in the fastest
implementations.

Prins [Pri90] has implemented Batcher’s Bitonic Sort [Bat68] on a MasPar MP-1. This
is the up to the present fastest known implementation of a deterministic oblivious sorting
algorithm on such a machine. The other famous sorting circuit due to Batcher, Odd-Even
Merge Sort [Bat68], has not been implemented so far. Hightower et al. [HPR92] have



introduced a randomized method they call B-Flashsort that is related to Samplesort. Here
it can happen that some PEs eventually hold more than N/P keys so that the restriction of
a small local memory leads to load-balancing phases during the sorting. In a recent paper,
Zheng et al. [ZCZ96] report on an implementation of an in-place sorting scheme dubbed
77-sort.

Riib proves [Riib95] for Odd-Even Merge Sort the phenomenon that, on average, noth-
ing has to be exchanged in most of the split&merge operations, which leads to guarded
split&merge operations.

An overview of parallel mesh-sorting algorithms is given by Chlebus and Kukawka [CK90].
Unfortunately, implementations of these algorithms on meshes are slower than adaptations
of Bitonic Sort.

Contribution of this paper. In this paper, we describe implementations of the deter-
ministic parallel sorting algorithms Bitonic Sort, Odd-Even Merge Sort, and a multidimen-
sional method called FastSort on a MasPar MP-1 of moderate size, i.e., consisting of 2048
PEs each with 16 KB local memory. The PEs are interconnected as a 32 X 64 torus. These
algorithms are oblivious. Note that they do not rely on the representation of the keys
(like, e.g., Radixsort). Guarded split&merge operations are used. Because Prins’ source
code is available, we can compare our implementations to the implementations done by
Prins [Pri90] on the same machine. It turns out that, for certain values of N/ P, Odd-Even
Merge Sort and FastSort become faster on average than Prins’ implementation of Bitonic
Sort. Qur implementation shows that Odd-Even Merge Sort with guarded split&merge
operations results in very good runtimes on a SIMD machine, as well as it was shown on a
MIMD machine [WW96]. Fastsort is an sorting algorithm for d-dimensional meshes. There
is a trade-off between the number of split&merge operations (depending on d) and the time
that is spent by routing keys. To our knowledge, FastSort is the first sorting algorithm
directly designed for meshes that can for large N/ P outperform adaptations of Bitonic Sort
on average when implemented.

Organization. In Section 2, we describe in short the MasPar MP-1 architecture, and we
give a simple analytical model. The necessary basic routines are introduced in Section 3.
We deal with Bitonic Sort, Odd-Even Merge Sort and FastSort in Section 4.

2 The MasPar MP-1

The architecture. All algorithms discussed in this paper have been implemented on
a massively parallel SIMD machine of the MasPar series MP-1, which consists of a front
end and a data parallel unit (DPU). E.g., see Fig. 1. The front end is a standard UNIX
workstation (DECstation 5000) and renders the user access to the DPU. The DPU is the
massively parallel subsystem of the MasPar and consists of two major parts: the processing
element (PE) array, performing the parallel calculations, and the array control unit (ACU),
which controls the PE array and provides a global memory which is shared by all PEs. The
ACU broadcasts the instructions and shared variables via the ACU-PE-Bus to the PEs and
also performs operations on the scalar data in the parallel program which is stored in the



global memory. In our configuration, the PE array has P = 2048 PEs, each having a local
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DPU
ACU Front End

Figure 1: Architecture of the MasPar MP-1.

memory with a capacity of 16 KB. The PEs are arranged as a 32 X 64 two-dimensional
torus, with each PE connected to its eight nearest neighbors (toroidal wrap). At any
given moment, communication using this interconnection network (called the X-Net) is
only possible in one of the eight given directions, where each PE may send data across the
link of the corresponding direction and receive data across the one opposite. In addition, the
distances between the communicating processors must all be equal; if it is greater than one,
the data is transferred in a store-and-forward fashion. Another communication mechanism
between the PEs is provided by the Global Router, a multistage crossbar network, which
allows the user to carry out arbitrary communication patterns. One has to note, however,
that the set-up time for Global Router communication is significantly greater than that
of the X-Net and that only one input and one output link exists for each non-overlapping
4 X 4 matrix or cluster of the PE array. Thus, communication operations are executed
sequentially whenever more than one incoming connection and one outgoing connection per
cluster is required.

A simple model. Since the MasPar is a SIMD machine with a global clock and syn-
chronous execution of each instruction, it seems to be appropriate to develop an exact,
but simple model for the purpose of runtime predictions. In the context of the oblivious
sorting algorithms discussed in this paper, one has to determine the execution times of
the fundamental operations which are comparisons, memory movements, and communica-
tion operations. For performance measurements and runtime predictions, we have chosen
32-bit integer keys without associated data records as input to the sorting algorithms (see
Section 3). Thus, comparisons and memory movements are done by register operations
and load/store instructions. Additionally, the algorithms make use of some instructions for
loop control and address calculations. FExecution times of all these instructions are given
in detail in the original MasPar documentation [Mas93b]. Thus, and for brevity’s sake,
we will restrict ourselves to giving only the equations for the communication times of our



implementations. These are for the X-Net (¢x) and the Router (fg), respectively:

tx(sfx,dist) = sfxy-(2.9-dist +5.4) [ps]
tR(SfR) = sfrp-13.843.0 [MS]

The arguments for these equations are as follows: sfx is the sequencing factor of X-Net
communication. Recall that at any moment X-Net communication is possible in one direc-
tion only. Thus, in general (but not always) this factor will be two, e.g., when PEs have
to exchange keys. If the distance between the communicating PEs (dist) is greater than
one, the keys are transferred in a store-and-forward fashion. Thus, communication time
becomes linear with this parameter. sfgr is the sequencing factor of Router communication,
which is the maximum number of sending (receiving) PEs per cluster. In the given context
of oblivious sorting algorithms, sfg < 16 for each communication.

3 Basic Operations

In this section, we describe some basic routines which are commonly used by our parallel
sorting algorithms. In the following, we assume that the number of keys exceeds the number
of processors, i.e., N > P, and that the keys are distributed evenly among all processors,
i.e., each processor holds n := N/P keys. For performance analysis and experiments, we
choose 32-bit integer keys with no associated data records. The keys are generated by a
pseudo random number generator, provided as part of the MasPar Programming Language
standard libraries. Prins also used this generator for testing his implementations.

Internal sorting: Odd-Even Merge Sort. Given the fact that each processor holds
more than just one key, we replace the compare/exchange operations of the parallel sorting
algorithms by split&merge operations (see below). For an efficient implementation of this
operation, it is required that the keys are stored locally as sorted sequences. We can
meet this requirement by initially sorting the locally stored keys with a fast sequential
algorithm. We choose a sequential implementation of the Odd-Even Merge Sorting network
for the solution of this task. The main advantage of this method is that it is an oblivious
algorithm, i. e., all local memory accesses of the PEs can be controlled by the ACU which is
significantly faster than performing the address calculations by the PEs locally. This is the
reason why Odd-Even Merge Sort is faster (for the considered number of keys) than other
methods which are theoretically optimal, e.g., heapsort or mergesort [Knu73]. Because we
have a SIMD machine, an implementation of quicksort is not reasonable, because all PEs
have to wait for completing the slowest recursive call before they can resume. The number
of comparators of Odd-Even Merge Sort is %nlog n(logn — 1)+ n — 1. One step consists
of loading two operands into registers, a comparison of these, and then storing them back
into the memory. Since the total time for these operations amounts to 26.3us, the time
consumption of the sequential implementation is:

tSeqsort(n) = (inlog n(logn — 1)+ n — 1) 26.3  [us]

Note that the local keys are sorted only once.



The split&merge operation. The parallel sorting algorithms discussed in this paper
may all be described as sorting circuits. Such a circuit consists of a set of wires, each
holding a single key, and a set of comparators, each connecting two wires and performing
a compare/exchange operation on the corresponding keys. In our environment, each PE
simulates a single wire, but as it holds more than just one key, we replaced the original
compare/exchange operation by a split&merge (S&M) operation. With this operation, the
PE that has to receive the minimum (Pasrn) gets the lower n keys, the other one (Parax)
gets the upper n keys. Our implementation of the S&M operation works as follows (the
description is given for PE Pyrrn; the S&M operation works analogously for PE Paax
starting with the uppermost keys): At first Pasrn fetches the lowermost key from Parax
and compares it with the lowermost one from its own current sequence. The minimum
is stored in the local resulting sequence. If the minimum comes from Pprax then Pyrrn
fetches the next key from Py;4x, otherwise the next local key is chosen for the following
comparison. After n steps, Parrv (Parax ) holds the n lower (upper) keys from Pasry and
Prrax.

Since our algorithms are oblivious, after a given number of S&M operations (depending
on the particular algorithm) the whole input sequence is sorted. However, it might be the
case that depending on the input keys, the execution of some S&M operations becomes
unnecessary, because the maximum key of Pysry is already smaller than the minimum key
of Pyrax. In such a case, the execution of the S&M operation can be avoided. We achieve
this by inserting an additional comparison after receiving the first key and applying a plural
if-statement [Mas93a] on the result of the comparison to determine whether the condition
mentioned is true or not. We say that the S&M operation is guarded .

If we disregard the communication operations for the moment (the time to communicate
a key may not be constant during the execution of an algorithm and varies from algorithm to
algorithm because of different communication patterns; therefore we shall discuss this point
later in connection with the sorting algorithms), one step of the S&M operation consists
of loading two operands into registers, comparing them, and storing one of them back into
the memory. Considering the overhead for address calculations, loop control, function call,
and the additional comparison, we get as time consumption of one S&M operation:

ts&M(n) = n-80.64+117.9 [,MS]

Note that the proposed implementation of the S&M operation may be replaced by
another one which makes the overall algorithm an in-place sorting routine with no additonal
copies of keys and which consists of three phases: a binary splitter search to determine which
keys to exchange, exchanging the keys and storing them in-place in reverse order (such that
the resulting sequences become bitonic), and finally using a sequential implementation of
the Bitonic Merging network [Bat68] to locally merge the bitonic sequences to sorted ones.
This would increase the time complexity of the sorting algorithms by a factor of logn but
also would be a useful modification if there was no more local memory available in addition
to the input sequences.

Routing. Besides the internal sorting and the S&M operation, some of the algorithms
consist of additional routing phases during which the contents of the whole torus is per-
muted in a particular manner. These routing phases are implemented by using the Global



Router and an appropriate library function (namely, ss_rsend) of the MasPar Programming
Language (MPL) [Mas93a, Mas93b]. The runtime of this function is on average:

tRouting(p) = (sfr-(p-1.64+11.4)4+22.1) [pus],

where p is the packet size in bytes and sfp the sequencing factor of Router communication.
In our environment, p = 4n, and for the sorting algorithms, we can assume sfp = 16. Thus,
the time consumption of a routing phase is:

4 Algorithms and Experimental Results

In this section, we describe the implementations, runtime predictions, and experimental
results of the parallel sorting algorithms. Note that we always use all PEs due to the torus
architecture that does not allow to use only a portion of the machine in a straight forward
fashion. Using a portion would result in using the Router instead of the X-Net.

Since all implementations are based on the same fundamental routines, a common for-
mula for runtime predictions can be given:

Tmethod(lvap) = tSeqSort

Omethod

N/P) +
P)-tsem(N/P) +
N, P)+

P) - tRouting(N/P)

(
(
Cmethod(
Tmethod(
One has to interpret the arguments of this formula as follows: At first, the input sequences
of the processors are sorted locally by applying the sequential sorting routine with time
consumption tgey50rt(N/P). The main work of the algorithms is done by the S&M opera-
tion with time consumption tsgas(N/P). How often this operation is executed, opethod( ),
depends on the specific algorithm and on the number of processors. Remember that the
communication which is necessary to execute the S&M operation has not been taken into
consideration yet. Therefore, ¢ethod( N, P) is the communication time of all S&M op-
erations. Obviously, this time depends on the algorithm and its specific communication
patterns, the number of keys, and on the number of processors. We will come back to
that point later in this section, when we describe the algorithms. Finally, the parallel al-
gorithm may include some routing phases, each requiring troyting(N/P) time. The number
of routing phases, Tethod( ), varies from one algorithm to the other and may depend on
the number of processors.

4.1 Bitonic Sort

Bitonic Sort (BS) is one of the most famous methods in the context of parallel sorting. The
algorithm was introduced as a sorting circuit by Batcher in 1968 [Bat68] (see Figure 2 (a)
for the circuit with P = 8). According to the depth of that circuit, we get opg(P) =
1 log P(log P + 1) as the number of S&M operations.
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Figure 2: (a) Batcher’s Bitonic Sort and (b) Odd-Even Merge Sort for input sequences of
length 8.

A direct application of Bitonic Sort to a processor network requires the hypercube
topology. Unfortunately, this is not the topology of the MasPar. Thus, we have to give
an embedding of the hypercube of dimension log P (Q1og p) into the two-dimensional mesh
of size 2157 X 21551, For that purpose, we choose the ascending balanced axes em-
bedding (see Figure 3) which maps hypercube edges of low dimension onto short paths in
the mesh. This is advantageous because low-dimensional edges are used more often than

1e1$g%ct]? 2okf_1 s’ path of length 2%

\

0 1 ‘1Q2k—17 ‘0Q2k’ (1Q2kj
(a) Q1 (b) Q2 (¢) Qart1

Figure 3: Ascending balanced axes embedding of the hypercube into the two-dimensional
mesh.

high-dimensional ones. E.g., the edges of dimension 1 are used log P times, whereas those
of dimension log P are only used once during the execution of the algorithm.

Now we are able to analyze the communication cost of Bitonic Sort. We are assuming
that each execution of the S&M loop includes a communication operation which is carried
out by using the X-Net. Furthermore, we are assuming that in general, communication takes
place in both possible directions. Thus, sfx = 2 in most cases. However, for communication
along the hypercube dimensions log P and log P — 1 we use the wrap-around edges of the
MasPar topology such that only one direction is used. Thus, in those cases sfx = 1.
Altogether, we get as communication cost of Bitonic Sort:

N log P—3 log P—1

cs(N, P) = 7 37 (log P —i)-tx(2,2872) + 37 (log P — i) - tx (1,212
1=0 i=log P—2



Finally, we make use of one routing phase at the end of the algorithm to rearrange the
contents of the mesh according to the row major indexing scheme of the PE array. Thus,
es(P) = 1.

Measured and predicted times of Bitonic Sort are shown in Figure 4. As we used the
original source code of Prins’ implementation, all times could be measured on the same
machine. The diagram shows the time that is spent by the algorithms per single key (time
per key per PE), a common way to describe the performace of parallel sorting algorithms.
For performance measurements, we made 1000 experiments with 2 keys per processor
(N/P), for each 1 < ¢ < 10. The corresponding curve represents the mean values of these
experiments. There are very small deviations between the two curves. So our model and the
worst case estimation of Bitonic Sort seem to be suitable for application to this algorithm.
However, Figure 4 also shows that our simple approach for adapting Bitonic Sort is not able
to outperform Prins’ implementation .

Tos(N, P) [ 535]

N/P
10 +
__ et
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Keys per processor (N/P), P = 2048

Figure 4: Predicted and measured times of Bitonic Sort. The dashed curve shows the times
of the sophisticated implementation of Bitonic Sort by Prins [Pri90].

4.2 0Odd-Even Merge Sort

0Odd-Even Merge Sort (OEMS) was introduced as a sorting circuit in the above-mentioned
paper by Batcher in 1968 [Bat68] (see Figure 2 (b) for the sorting circuit with P = 8). The
abstract algorithm for Odd-Even Merge Sort is as follows:
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Figure 5: Odd-Even Merge sort: (a) predicted and measured times; (b) number of S&M
operations executed. (The dashed line shows the times of Prins’ implementation of Bitonic

Sort.)

for all pid € {0,..., P — 1} do in parallel
0 := P;
for ¢t :=0 to log P do
6:=468/2;
if even(pid div 6) then S&M(pid, pid div §)
for i := 1 to log(P/é) do
if odd(pid div §) then S&M(pid, pid + P/2! — §)
od
od
od

Of course, the depth of the corresponding circuit is the same as that of Bitonic Sort.
Thus, oopms(P) = §log P(log P + 1) in the worst case. Nevertheless, this algorithm was
widely passed over in the context of parallel sorting on massively parallel processor networks
because its communication structure is not as regular as that of Bitonic Sort.

In [Riib95], Riib investigates the average behavior of Odd-Even Merge Sort for large
values of N/P. She proves the phenomenon that nothing happens during most of the S&M
operations, i. e., the state of the network remains unchanged. If there are keys that have to
be exchanged for any pair Pyrn, Pvax, we call the S&M operation active; otherwise it is
considered to be non-active. Riib proves that the average number of active S&M operations

Tactive( N, P) = log P <1.89 + [log (1 + \/1.08P2/N)-D .

In our implementation, execution of the non-active S&M operation is avoided automatically
(see Section 3). Thus, we can estimate the number of executed S&M operations with
Topms(N, P) := min(copms(P), Oactive(N, P)), i.e., the non-active S&M operations are

is at most



ignored for runtime prediction.

To analyze the communication cost of Odd-Even Merge Sort, we assume that each
execution of the S&M loop includes a communication operation. In our implementation,
we use both X-Net as well as Router communication for that purpose. The X-Net is used
when communicating processors lie on a horizontal or vertical line; otherwise the Router is
chosen. Thus, we can roughly estimate the cost of one communication instruction as the
mean value of txy with sfy = 2 and dist = 8, i.e., both possible directions of the X-Net
are used and the average distance between the communicating processors being eight, and
tr with sfp = 8, i.e., on average half of the PEs of all clusters synchronously send and/or
receive a key. Thus, we get as communication cost of Odd-Even Merge Sort:

N tx(2,8)+ tr(8
COEMS = U/OEMS(Nyp)‘f‘ x( )2 R(®)

Measured and predicted times of Odd-Even Merge Sort are shown in Figure 5 (a). The
measurements are made under the same conditions as in the case of Bitonic Sort. There are
significant deviations between the two curves which are due to the following facts: (1) Riibs
theoretical analysis is not sufficiently tight, i.e., the experiments suggest that the number of
executed S&M operations is less than stated above (see Figure 5 (b)). (2) The assumption
that each execution of the S&M loop includes a communication operation may be reasonable
for small values of N/ P, but it is too pessimistic when N/ P gets larger. In fact, we found out
that with large N/ P approximately only four out of five possible communication instructions
are executed. (3) The estimation of the communication parameters is inaccurate. Especially,
sfr may vary significantly with different values of N/P.

However, all that should not detract from the fact that Odd-Even Merge Sort, together
with the guarded version of split&merge, is a very efficient parallel sorting algorithm. In
the experiments, it is faster than our implementation of Bitonic Sort, when N/P is larger
than eight. It is even faster than the sophisticated implementation of Bitonic Sort by
Prins [Pri90], when N/P gets large enough (break-even point: N/P = 100).

4.3 FastSort

FastSort (F'S) is introduced in [Wan94]. It is a recursive algorithm which sorts meshes of
arbitrary dimension according to the snake-like indexing scheme. The algorithm is based on
Odd-Even Transposition Sort and makes use of some additional routing phases during which
the contents of the mesh is rearranged in a specific manner. The description of FastSort
is given for meshes of arbitrary dimension but with uniform size in each dimension which
is supposed to be a power of two (M(d,m), m = 2¥). It can easily be modified for our
purposes when we have meshes that do not have equal side lenghts. The abstract algorithm
is as follows:

10



procedure FastSort( d, m )
if m = 2 then
sort the hypercubes of dimension d by Bitonic Sort

else

sort all disjunct (§m >< - X $m)-meshes by
applying FastSort( d, L m )
for £ := d downto 1 do

{ the (m X +++X mX $m X -+ X £m)-meshes are already sorted }
d—k k
merge the pairs of (m X --- X m X m X - -+ X $m)-meshes which
d—k k
are neighboring in dimension k
od
fi
end

To sort the hypercubes of dimension d, we may apply Bitonic Sort which needs %d(d +1)
parallel steps. Now we show how two sorted sub-meshes can be merged.

A sequence (ag,...,a;_1) is called 2-ordered if a; < a;qq, for all 0 < i < k —2. It is
shown in [Wan94] that if a mesh is 2-ordered according to the snake-like indexing scheme,
it suffices to apply a descending run of Odd-Even Transposition Sort on the arrays in
all dimensions. Thus, routing the snakes of the two sub-meshes according to the shuffle
permutation establishes the desired state (see Figure 6). It is shown in [Wan94] that the

two sorted mesh is
submeshes  2-ordered

O—O0—O0—0—0—0—0—»0

e, O—>e

routing according to the shuffle permutation
Figure 6: Routing scheme of FastSort.

number of required S&M operations altogether is $md(3d + 1) — 3d(5d + 1).

To apply FastSort to meshes of dimension d > 2, an embedding of the d-dimensional
mesh into the 2-dimensional PE-array of the MasPar is required. For that purpose, we
choose the descending balanced axes embedding (see Figure 7). If, when embedding the
arrays of dimension 1, the size of the current dimension of the PE-array is too short, we
can ‘fold’ these arrays and use the wrap around edges of the X-Net to connect all nodes in
a uniform manner (see Figure 8).

We have applied FastSort to four meshes of different dimensions. All relevant parameters
are shown in Table 1. opg 4(P) is the exact number of S&M operations of our implemen-
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Figure 7: Recursion scheme of the descending balanced axes embedding of the (k + 1)-
dimensional mesh into the 2-dimensional one (k > 2).
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Figure 8: Special case of the descending balanced axes embedding for d = 1.

tation in the worst case. disty is the mean distance of the communicating processors when
executing the S&M operation. We estimate communication cost of FastSort by the worst
case and get:

N

crsi(N,P) = orsq(P)- 7

tx(Q dzstd)

The number of routing phases required, which is 7pgs 4(P) = log P — d 4 1, includes a final
routing phase to rearrange the contents of the mesh according to the row major indexing
scheme of the MasPar.

Measured and predicted times of FastSort with the given parameters are shown in Fig-
ure 9. The performance measurements are made under the same conditions as in the case of
Bitonic Sort and Odd-Even Merge Sort. There are significant deviations between predicted
and measured times which are due to the following facts: First, the experiments suggest
that the worst case estimation of o g 4(P) is too pessimistic (see Figure 10). This drawback

Table 1: The different parameters of FastSort.

‘ d ‘ geometry ‘ ors,d(P) ‘ dist, ‘ Trs,d(P) ‘
2 64 x 32 216 1 10
3 16 X 16 x 8 131 6 9
4 88X 8x8x4 108 4.5 8
6 |4x4x4x4x2 86 7 6
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predicted Trs(N,P) [%] measured

_ 30 —_
| R
10 —_ 10 —_
| L 0 | — T T T T T T T
20 92 o4 26 98 910 20 92 o4 96 98 910
(a) Keys per processor (N/P), P = 2048 (b)

Figure 9: Predicted and measured times of FastSort.

is particularly significant when the edge size of the mesh is large. Another inaccuracy is
the assumption that each execution of the S&M loop includes a communication operation,
especially when N/ P gets larger. In fact we found out that with large N/P approximately
only two out of three possible communication instructions are executed. That there is a
need for a strong average case analysis for this algorithm is demonstrated by the similarities
of Figure 9(b) and Figure 10.

ors,d(P)
200 T Tworstease °
150
100
50
0

20

Figure 10: Number of executed S&M operations of FastSort — worst case and experimental
results.

5 Conclusions

In this paper, we showed that, by using the guarded split&merge operation, from a certain
ratio N/ P upwards, Odd-Even Merge Sort and FastSort outperform a sophisticated imple-
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mentation of Bitonic Sort. See Figure 11 for a comparison of the measued runtimes of our
and Prins’ implementations. This leads to the recommendation to use Odd-Even Merge

(N, Py [55]

/
25 —=— FS(d=2)
—o— OEMS

207 —— BS
15 - - Prins’ BS
10 H

5 —

0 T | T | T | T | T |

20 22 24 26 28 210
Keys per processor (N/P), P = 2048

Figure 11: Measured runtimes of all algorithms.

Sort on small MP-1 systems whenever N/P > 100. Besides the need of more exact analyses
of the average case behavior of Odd-Even Merge Sort and FastSort, it might be interesting
to test our implementations on a MasPar MP-1 with more PEs and larger local memory,
and to compare them to implementations of the randomized algoithms Samplesort and, in
particular, B-Flashsort. Also it might be interesting to evaluate the performance of our
implementations on the MasPar MP-2.

In the first author’s Diplomarbeit [Bro95], implementations of further sorting circuits
are treated: Shortperiodic methods, Shearsort and a combination of the Bitonic Merging
network and Shearsort. This thesis as well as the source code of the algorithms can be
downloaded from the WWW page http://wwwhni.uni-paderborn.de/cim/mitarb/brockm/ .
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