INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

An Analysis of the Divergence of
Two Sather Dialects

David Stoutamire, Wolf Zimmermann, and Martin Trapp
TR-96-037

August 1996

Abstract

Sather is an object oriented language designed to be simple, efficient, safe, and non-
proprietary. It was originally envisioned as a “cleaned-up” version of Fiffel, addressing
perceived failures in simplicity and efficiency. The first public implementation (Sather
0) was first released to the public by ICSI in 1991. Shortly after, a compiler group at
the University of Karlsruhe created the first native code compiler.

A major effort then began to redesign the language to correct shortcomings in
Sather 0 and to make Sather suitable for general-purpose, large scale programming.
In part because each compiler group was building a compiler for a moving design
target, the two parallel efforts resulted in two dialects, Sather 1 and Sather K. This
report analyzes the essential causes of the differences, which result from differences
in each group’s goals.

1 Introduction

Sather is an object oriented language designed to be simple, efficient, safe, and non-
proprietary. Sather was originally developed at the International Computer Science In-
stitute (ICSI), a research institute affiliated with the computer science department of the
University of California at Berkeley. The Sather language gets its name from the Sather
Tower, the best-known landmark of the campus. The name ‘Sather’ is a pun - Sather was
originally envisioned as an efficient, cleaned-up alternative to the language Fiffel. However,
since its conception the two languages have evolved to be quite distinct.

Sather is still growing. The initial Sather compiler (for ‘Version 0’ of the language) was
written over the summer of 1990. ICSI first made a compiler publicly available in 1991.
Then, in spring 1992, the group under the direction of Gerhard Goos at the University of
Karlsruhe created the first native code compiler for Sather 0, additionally strengthening the
type system. This compiler was used in undergraduate programming courses.

After Sather 0, ICSI began a major effort to redesign the language to make Sather
suitable for general-purpose, large scale programming outside of the language community.
Sather 1 greatly expanded the language, introducing bound routines, iterator abstraction
[3], proper separation of typing and code inclusion, contravariant typing, strongly typed
parameterization [7], exceptions, stronger optional runtime checks and a new library design.
The first Sather 1 compiler was released by ICSI in 1994.

The Karlstuhe group also extended the language. Many of the Sather 1 changes were
adopted, but the resulting language was in some respects closer to Sather 0 and does not
coincide with Sather 1. The Karlsruhe dialect of Sather came to be called Sather K.

This report attempts to analyze the fundamental reasons for the differences between
Sather 1 and Sather K, and originated as a summary of talks between the two groups
trying to understand what would be necessary for the dialects to converge in the future. A
goal of this work is to make it easier to understand the individual motivations of the two
groups so that future discussions will not be bogged down arguing about symptoms when
there are fundamental causes that must first be resolved.

In general this report assumes familiarity with at least one of the dialects. It is not
intended as a porting guide, and deliberately ignores most minor issues such as syntax.
More information about the two languages is available at their web sites:

http://www.icsi.berkeley.edu/ sather
http://i44www.info.uni-karlsruhe.de/sather

In this report S7 and SK are used to denote the Sather 1.1 language design and the
Sather-K design. 52 is used to refer to a future convergence between S1 and SK. At some
places, recommendations for S2 appear, which represent the mutual best judgement of the
authors at the time of writing but should not be construed as necessarily representing the
views of either the S1 or SK group.

2 Main Goals

Although many of the goals of S1 and SK were the same (eg. to be as efficient as C as well
as cleaner and safer than Eiffel), each group had other goals not shared by both.

Some independent goals led to developments by one group that do not necessarily conflict
with language goals of the other group because there is no overlap (eg. S1’s support for
interoperability with other languages). This report does not attempt to cover such unilateral
developments, but is instead interested in the goals that precipitated conflicting language
designs.

Some unique goals of S1 were:

e Support for separate compilation and multiple developers.

Issue: Composability of code requires that it be possible to statically check classes
over all possible parameterizations.

Choice: This lead to S1 parameter type bounds and the restriction that overloading
may not occur between two unrelated abstract arguments (see section 6).

e Trivial porting to a wide range of platforms.

Issue: Sather should be available on all platforms. This includes embedded control,
the bulk of installed CPU use today. This can be achieved by a custom back end
for each platform, if the manpower is available.

Choice: Because ICSI has limited interest in developing compiler back-ends, S1 chose
to use C as a portable assembler. Compiling through C is slow. This intensified
the demand for separate compilation, and may have affected the choice for S1
arrays, see section 7 below.

e Extendability for threaded and distributed parallel programming.

Issue: What about parallel programming?

Choice: ICSI has been actively engaged in research on parallel and distributed pro-
gramming since the inception of Sather. ICSI’s vision of parallel programming is
multithreaded and allows explicit distribution. Multithreaded code imposes very
different constraints than data parallel code, which in turn reflects on decisions
about the semantics of serial code. (Eg. What are the semantics of a stream
shared by more than one thread?)

Some unique goals of SK were:
e Rapid compilation.

Issue: Karlsruhe has a substantial investment in compiler research, including quality
compiler generation tools. Development of SK naturally used these.

Choice: Because the resulting compiler is so much faster than compiling through C,
SK has not been concerned with separate compilation on the class level.

e Clear language design.

Issue: Among others, SK was envisioned as a language with which one would teach
students. One wants to be able to expose language constructs in a clean order,
without forward references in the language to concepts students are not prepared
for. The language is used in undergraduate as well as graduate courses. It is
used for teaching both imperative and object-oriented programming [2].

Choice: Some SK constructs differ from S1. For example, break! in S1 is break in SK,
which avoids explaining about iterator notation when loops are first introduced.
Similarly, in SK local variables must be declared at the beginning of the block
in which they appear.

e Programming in the large.

Some observations in constructing reliable libraries influenced SK. One goal
was to avoid errors (either compile-time or run-time) which point into li-
brary code. This led to the introduction of type bounds with structural
conformance. For the motivation of structural conformance, see section 6.

3 Determinism

Sometimes the textual or temporal ordering of language constructs is significant, eg. in the
evaluation of arguments or constant initializations with side effects. In general, ordering
presents problems because programs which depend on a particular ordering are usually
relying on some subtle property that would be better if it were explicit. S1 and SK agree
that programs which rely on ordering are often poorly designed, and writing such programs
should be prevented if possible. The best of all worlds would be to detect reliance on ordering
and make it a compile time error. Unfortunately, doing so does not appear tractable.

In general, the S1 approach has been to avoid harm from ambiguous orderings by defining
a canonical result. More generally, S1 is deterministic both within and between platforms,
with the exception of converting pointer values to integers for use in hash tables, and
code which exploits the number of bits in INT or CHAR. SK has chosen the traditional
approach which declares programs that depend on nondeterminism to be illegal. However,
nondeterministic semantics may offer more opportunities for code optimization.

There are a number of places where the handling of ordering creates a language differ-
ence:

o Observed side-effects in shared attribute initialization.

Issue: Both S1 and SK forbid cycles in initialization expressions but do not define a
strong order of evaluation. Hence the order of observable side-effects in initial-
ization expressions is not defined.

Choices: S1 restricts shared and const initialization by recursively defining constant
expressions, which forbid observable side-effects. This make the order of evalua-
tion irrelevant. SK does not forbid side-effects.

e Value of unassigned variables.

Issue: What should be done with unassigned variables, either local variables or at-
tributes of objects? Setting them to a canonical value allows code which im-
plicitly depends on this value, whereas not defining the value allows code which
may run on one compiler but break on another. General checking for use of
unassigned variables is presumed to be too expensive.

Choices: S1 defines all unassigned variables to have a default void value, which usu-
ally amounts to zero in the data type. This is desirable for pointer types for
garbage collection and is standard practice in many collected language imple-
mentations. SK defines void as a value that denotes the absence of an object,
which makes sense only for reference types. The SK compiler (pessimistically)
warns on uninitialized variables.

Observation for S2: Perhaps S2 should distinguish between sentinel values and
unassigned variables, since sentinal values (eg. NULL in C) can be algorith-
mically convenient.

Rules for resolving conflict during code inclusion.

Issue: What should be done with multiply defined class features? Multiply defined
features are either deliberate or a mistake. The former should be easy to express
while the latter should be a detectable error.

Choices: S1 distinguishes between features textually defined in a class and those in-
cluded from another class. Order of definition and inclusion is irrelevant; features
defined in a class always override those defined out of the class, and conflicts be-
tween features defined out of the class must be resolved explicitly at the point
of inclusion. In SK, textual order of definition is significant; later definitions
override earlier ones. SK made this choice because of its simplicity, and because
an order is required for SK aggregate expressions (see below and section 4).

Ordering of attributes.

Because class features are ordered, SK uses a textual order of object at-
tributes which is important to the definition of the SK aggregate expression.
The aggregate expression is motivated by SK’s treatment of encapsulation
(see section 4—there is no equivalent in S1.)

Evaluation of arguments.

Issue: How are routine arguments evaluated? How are out arguments assigned - what
happens when they are aliased? If an order of evaluation is defined, optimization
must operate under more constraints; if an order is not defined, programs may
break when switching compilers. The quantitative and qualitative aspects of
either choice are not well researched in the compiler literature nor even in the
compiler community.

Choices: S1 defines a canonical left-to-right order of evaluation of all arguments. SK
makes it implementation dependent. The motivation for this choice is the better

efficiency of the generated code. There is historical precedent for leaving the
order undefined.

Observation for S2: many of these ordering issues would be resolved by a way to
distinguish expressions with side effects from those with none.

o Restrictions on case.

Issue: What is permitted in the case statement? Some languages restrict the target
values to be constants which can be evaluated by the compiler (C switch), but
other have defined a sequential semantics (Lisp cond). Restricting it to constants
guarantees ordering can’t matter.

Choices: S1 defines the case statement as syntactic sugar for an if-then-elsif chain.
However, the compiler exploits sequences of constants whenever they occur. SK
requires the targets to be constants.

4 Encapsulation

There are two major differences of interpretation of encapsulation between SK and S1.

S1 interprets private per-class; that is, code may invoke a private method on another
object of the same class. SK interprets private per-object; it is not legal to dot into private
features. In SK, private features may only be accessed implicitly via self. In this sense, SK
has a stronger notion of privacy than S1.

S1 requires that the creation and initialization of an object execute code in the object’s
class, and that access to private attributes by code outside of the class be strictly impossible,
even by pickling - converting entire data structures to and from a common format such as
ascii files for persistence. In this sense, S1 has a stronger notion of privacy than SK.

The implications of these different interpretations are far-reaching:

e Creation of objects.

Issue: How are objects created?

Choices: In S1, an expression new may be used to create an object of the class in
which it appears, which may then have its attributes filled in. The standard S1
idiom is:

create(a, b : FOO) : SAME is

res = new;
res.attrl := a;
res.attr? := b;

return res
end;

Because such routines are so common, S1 provides syntactic sugar # for calling
create. This sugar also provides type inference. Because new is only effective

within the class, it isn’t usually possible to create uninitialized objects outside
of the class.

In the S1 idiom, the create routine creates a new object and then fills in the
attributes, but SK can’t do this if the attributes are private. Instead, in SK, #
creates a new object, where all attributes are initialized according to the initial-
ization expressions of their declarations or to the default values, if no explicite
initialization is given.

For convenience there are additional operators in SK. ## creates an object of
the same type as an argument. PFurthermore the aggregate expression allows
filling in of public attributes in the textual order they were defined in the class.
If class T has two attributes atir! and attr?2 defined in that order, #7{a,b}
creates an object of class T" where a is assigned to attr! and b is assigned to
attr2. Alternatively, this can be made explicit by #7T{attr1 := a, attr2 := b}.

e Copying objects.

Issue: How are objects copied?

Choices: In S1, there is no special language support for copying; it is done in the
same way as object creation. This prevents copying objects without the class
getting control, for example to assert unique object ids. In SK, a special prede-
fined method copy that makes a new object with the same attributes as self is
automatically generated by the compiler for every class. copy may be redefined
by the user.

Observation for S2: a compromise that would allow the per-object privacy of SK
with the simplicity and strong encapsulation of S1 would be to somehow distinguish special
methods such as create which would automatically have a new object as self.

5 Abstract classes

Much has been made of the difference between S1 and SK abstract/partial classes, but they
are very similar. The essential distinction is that in S1, $ is part of the name and in SK it
is an interface-extracting operator. To translate code written using one into the other:

1. To implement S1 abstract classes in SK, leave every method deferred.

2. To implement S1 partial classes in SK, leave every method deferred. SK is deferred
is equivalent to S1 stub. SK abstract classes may not be instantiated.

3. To implement SK abstract classes in S1, make an abstract class with the signatures
and another class with the code.

4. Where SK subtype of is used, in S1 use < $ as well as include.

5. Where S1 < is used, use in SK subtype of.

6 Compositionality

Both S1 and SK provide reference classes (ordinary, heap-allocated objects) as well as value
classes (usually kept in registers or on the stack because they are immune to aliasing.) In
SK each user-defined class must be either subtype of VALUE (indicated by the keyword
value) or subtype of REFERENCE (default). Because SK does not allow supertyping,
it isn’t possible to have user-defined supertypes of both VALUE and REFERENCE as is
possible in S1. Because S1 requires that an instance of a type parameter must be a subtype
of type parameter bounds, forbidding common supertypes of VALUE and REFERENCE
would require a different version of a class for reference typed parameters and value typed
parameters. In SK, the problem is solved by structural conformance, i.e. the instance of a
generic parameter must conform to its type bound, but need not to be a subtype. This is
why supertyping is not needed in SK.

Structural parameter bounds are further motivated by the following scenario. Users
should be able to use libraries by multiple independent developers without changing the
source of the libraries. Suppose a library L; contains a generic class A(T" < Y') and the class
defining type bound Y. Suppose further that library Ly contains class X which structurally
conforms to Y. Because of structural conformance in SK it is legal to instantiate 7" with X,
i.e. to write A(X). In S1 this is only legal if before either Y is declared as a supertype of
X or X is declared as a subtype of Y. Hence S1 requires changing i or Ly or introducing
additional code to allow the expression A(X).

In general, SK structural parameter bounds can be translated to S1 by introducing an
appropriate abstract class. SK parameter bounds allow the parameter to be structurally
conformant instead of requiring a subtype. This implies that in a class C{T < $A}, a T
can not be assigned to a $A4 because it might not be a subtype. S1 parameter bounds allow
code which is not legal in SK, and S1 classes parameterized this way would need special
handling to be expressed in SK. For example:

class FOO{T < $A} is
bar(arg : T): $A is return arg end
end

has no simple translation in SK. In SK all requirements on generic parameters are
derived from the class body and checked upon instantiation of the generic parameter.

One motivation of structural parameter bounds was to make it possible to use libraries
written by multiple independent developers. For the same reason, S1 prohibits some forms
of overloading which SK allows. S1 forbids overloading between two abstract types with no
subtype relation between them, while SK allows it. For example:

Developer L writes: Developer Lo writes:

foo(arg : $A) class C < $A,$Bis...
foo(arg : $B)

This code is illegal in S1 unless $A subtypes from $B or vice versa.
There are times it is convenient to have such an overloading when $4 and $B are not
anticipated to have a common subtype. Note that $4 and $B are not defined in either L or

Lo, but in some other library on which both L; and Ly depend. In this example, L1 and L9
cannot be compiled together, although each compiles independently. When allowing such
overloading, there is the implicit constraint that no class may be created which subtypes
from $A and $B at once. Neither S1 nor SK can express this constraint, but S1 chooses
to disallow it; L1 and L2 cannot be composed unless the type system guarantees that
any subtypes can be disambiguated with a most specific type. SK allows such overloading
in class declarations, as long as overloading resolution is unique for the program being
compiled.

7 Arrays

There are two essential differences between S1 and SK arrays. The functionality can be
seen to be the same, although the way some uses are expressed can be seen to be quite
different; for example, SK builds in higher-dimensioned arrays, while S1 constructs them as
ordinary library classes.

1. S1 only allows a single contiguous primitive array portion, obtained by including
AREF (or AVAL). Higher dimensional arrays and objects with multiple conceptual
array portions are then constructed as library classes.

Instead of including a distinguished class, SK uses inline array attributes. That is,
attributes of array type can be contiguous with the other fields of an object, while
51 requires an indirection to a separately allocated array object if there is more than
one. (S1 chose this approach because S1 immutable arrays have constant size. This
constraint was inherited from C’s equivalent restriction on structs.)

2. In SK, there are static value arrays ROW[], dynamic value arrays ARR][], and flexible
reference arrays ARRAY]]. Static value arrays ROW]] allow only one dimension.
In the case of ARR[] and ARRAY|, the dimension is part of the type. Inside the
square brackets the sizes of the single dimensions are given. These are required in
type constructors, elsewhere they can be given as '*’. For the type, only ROW]]
distinguishes the value of those constants. E.g. ROW[3] and ROW [4] are different
types, while ARR[3] and ARR[4] are equal types.

8 Iterators/Streams

Where S1 has iterators, SK has streams. In both languages these can be bound like routines
and are then called iterator closures or bound streams respectively. Besides direct stream
calls SK has stream objects, too. The former behaves like S1 iterators. The latter allowes
stream state to be handled like any other value in the language. F.g. the termination status
may be checked, stream state can be passed to other methods or can be resumed in a later
loop or outside of loops.

9 Handling of built-in methods

In S1, there are no predefined methods in every class. In SK, there are a variety. In general,
the S1 policy was to place suspicious methods in the SYS class so they would be easily
noticed (as in Oberon).

Built-in Methods:

o string: In SK, the predefined string dumps all fields of the object, including private
attributes. However, it may be redefined. In S1, str must be defined by the class as
an ordinary routine; a debugger or reflective methods in SY.S must be used for getting
at private attributes. In SK string is often used for debugging.

o is_equal: In SK, the predefined is_equal computes object equality for reference types
and recursively for all attributes for value types. However, it may be redefined. = is
sugar for is_equal. In S1, SYS :: ob_eq does exactly the same thing, and containers
that distinguish between object and value equality do so by typecasing on $IS_FEQ.
In S1, = is sugar for is_eq.

o type: In SK, the predefined type returns a type, which may be converted to a string
by application of string. In S1, this is accomplished with SYS :: type and SYS ::
str_for _type.

e copy: In SK, all reference objects support a built-in copy, discussed above. It is
possible to redefine copy.

This list is not exhaustive.

Observation for S2: both languages manage to accomplish the same things in slightly
different ways, with the exception of converting pointers to hashable integers (important
for performance).

10 Miscellaneous

There are many language differences that do not appear to fit in one of the above catagories,
and are listed here for future discussion. These differences may be ascribed to poor com-
munication, different timings of the language design, or other goals not mentioned here.

e Value (S1.1: immutable) semantic types cannot be aliased in either S1 or SK. S1
prevents this by (conceptually) forcing a copy on modify, while SK allows modification
in place but copies on assignment (like C structs).

e 51 disallows implicit disposal of return values. SK allows it.
e SK has implicitly defined res while S1 does not.

e SK allows implicit coercion (for example, between ints and floats). S1 does not.
Implicit coercion is dangerous because precision can be silently dropped.

Recommendation for S2: allow implicit coercion only where precision may not be
lost, or disallow it.

SK defines many kinds of syntactic sugar for ascii characters that S1 doesn’t try to
use. Some are not compatible with S1 sugar, such as S1’s negate.

In SK, most errors turn into catchable exceptions. In S1, most aren’t. The question
is what acceptable semantics are for production code, where events that could raise
exceptions that would be caught are deliberately not checked because the user wants
maximal efficiency.

51 disallows multiple types in when clauses of typecase statements to avoid textual
ambiguity when there are iterators. SK allows multiple types.

SK has dynamic constants, which are variables that may only be assigned at declara-
tion. S1 has no equivalent feature. The S1 const is a shared const in SK. Similarly,
SK calls const what S1 calls once.

The base library classes are very different. In SK there are SHORT _INT and LONG_INT
classes, Inf and NaN are keywords, instead of FSTR there is STRING, SK has a
TEXT class, I/O is handled differently, and there are many other changes.

The S1 and SK exception mechanisms are very similar, except that in SK, the raised
type must subtype from FXCEPTION.

Recommendation for S2: we should consider making raised types part of signatures
as is done in Modula 3.

51 uses a different syntax for closure and closure types than SK’s bound routine and
bound types.

References

[1] G. Goos, Sather-K, The Language, TR-95-8, University of Karlsruhe, Falkulty of Infor-

[2]
[3]

matics, 1995.
G. Goos, Vorlesungen iber Informatik Il, Springer Verlag, 1996.

S. Murer, S. Omohundro, D. Stoutamire, C. Szyperski, “Iteration abstraction in Sather”,
Transactions on Programming Languages and Systems, Vol. 18, No. 1, p. 1-15, 1996.

S. Omohundro, The Sather Language, International Computer Science Institute, 1991.

S. Omohundro and C. Lim, The Sather Language and Libraries, TR-92-017, Interna-
tional Computer Science Institute, 1992.

D. Stoutamire and 5. Omohundro, The Sather 1.1 Specification, TR-96-012, Interna-
tional Computer Science Institute, 1995.

C. Szyperski, S. Omohundro, S. Murer. “Engineering a programming language: The
type and class system of Sather”, In Jurg Gutknecht, ed., Programming Languages and
System Architectures, p. 208-227. Springer Verlag, Lecture Notes in Computer Science
782, 1993.

10

