INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

On the Representative Power of
Commented Markov Models

Reinhard Blasig and Gerald Fahner
blasig/fahner@icsi.berkeley.edu

TR-96-034

August 1996

Abstract

A CMM (Commented Markov Model) is a learning algorithm to model and extrap-
olate discrete sequences. The learning involves the inferences of objects, variables
and classes, describing the sequences. In this paper, all sequences considered will be
character sequences. As pointed out in an earlier paper [2], the structures utilized by
CMM are powerful enough to represent and evaluate any primitive recursive function.
This paper will provide a formal proof of this claim. We will therefore concentrate
on the issues of representation and leave the issues of CMM induction aside.

i

1 Introduction

To establish the above mentioned proof, this paper will proceed in three steps. First,
the relevant concepts of CMM are presented (for a motivation and a more extended
introduction of these concepts see [2]). Then we review the definition of “primitive
recursive functions” (prfs) and show how these are represented by CMM character
strings. Finally, some theorems are proven, that establish the equivalence of CMM
extrapolating a string representation of a prfand of evaluating a prf.

2 CMM concepts

The input processed by CMM is a discrete sequence (s1, S2,...). Here we will consider
the case where the sequence consists of characters. To represent the input, CMM
generates a directed acyclic graph called sequence graph. Figure 1 shows an exemplary
graph created for the character string

(s1,89,...) = ‘digit(0);digit(1). (1)

2.1 Objects, Variables and Classes

The nodes in the graph are the sequence cells, each of which represents one of the
following items (explained along with the matching relation between sequence cells):

e an object, which can be either a primitive object (i.e. a single letter, digit or any
other character) or a composed object denoted by O;, which in turn represents
a sequence of shorter items. A main part of the learning capabilities of CMM
results from its ability to construct complex objects from a sequence of simpler
items. Two sequence cells representing the same object can be matched.

e a variable: Variables come in pairs (V},v;), where the V; marks the first position
of a reoccuring sequence and the v; mark the succeeding ones. This sequence
may consist of a single object, e.g. the character ‘i’ for the (V,vy)-pair in the
example graph. The matching relation for variables is defined so that a pair of

sequence cells representing a V; and a corresponding v; can be matched to two
sequence cells representing a V;/v;-pair.

e a class: Originally, classes just collect objects or object sequences, that can
be found in a similar context, but that cannot be matched themselves. For
example, the cells with the label C; make up a class, that consists of the to
elements ‘0’ and “1’, which have both been found in the context ‘digit(...)".
A sequence cell representing a class (' can be matched to any object known to
be a member of C},.

In this paper, we will not deal with the inference mechanisms used to create the
sequence graph, to infer objects, variables or classes. As far as classes are concerned,
we will simply consider them as set of objects, where the set can be described either
by enumerating the corresponding objects or by any other suitable way. Again, for
more details see [2].

2.2 Sequence Prediction with CMM

The fundamental operation of CMM is the search for matches of the current input
sequence with sequences already known to CMM. This involves two separate matching
tasks. First, the input will be matched with sequences corresponding to the objects
already known to CMM. These sequences are stored in a dictionary. Secondly, the
input sequence will be matched to itself in the search for reoccurring subsequences
in the input. This latter matching task is necessary to infer new objects, variables
and classes to model the input sequence. As we already pointed out, this paper will
disregard the issues of learning, so we will consider a CMM with only the matching
of the input sequence with the dictionary objects being operative.

In this setting, sequence prediction with CMM amounts to continuously searching for
the dictionary object, that matches the recent input sequence best. For an object to
match the input sequence the last characters of the input must be matched with the
beginning of the object. The more characters of the input sequence match, i.e. the
more characters of the input sequence are explained by the presence of the matching
object, the better the match is. The object providing the best match will then be
used to make a prediction about the coming input characters. The search for the best
match and thus the prediction is preformed after each new character being added to

the input sequence. The new character may be either provided by an external source
or by CMM’s prediction.

3 Primitive Recursive Functions

Primitive recursive functions are recursively defined according to the following five
points:

1. The number 0 is a prf.

2. If z is primitive recursive, then the successor s(z) of = is a prf. The successor
function can be used to represent any natural number: 1 = s(0), 2 = s(s(0)), .. .,

i = 5'(0).
3. If the expressions x1,...,x, are primitive recursive, then the projection func-
tion pl(z1,...,2,) = x; is a prf.

4. The composition Floa(z, o smn)y ooy gm(T, ooy 2y)) of prfs
g1(x1,),y g2, o y) i A prf

5. primitive recursion: For prfs g and h the following function f is also a prf:

— g(xlv"'axn—l) for z, =0
flze,. .. x,) = { h(x1, ... @n, f(21,. .. Tpo1, 2, — 1)) for z, # 0.

The following example definition of a function add(z1, x2) shows that the summation
of two natural numbers is primitive recursive:

1
_ pi(z1) for z, =0
add(zy, x2) = { s(p3(z1, x2,add(xy, 25 — 1))) for z,, # 0.

Since pi() and s(p3()) are both primitive recursive, so is add().

3.1 Evaluation of Primitive Recursive Functions

From the above definition it follows that any prfeither has the form s'(0) with > 0 or
it contains a subexpression e, which has either the form p?(z1,...,z,) (projection), or
fla(z, o oyxn)y ooy gm(®1, ..., 2,)) (composition), or f(x1,...,2,) with a primitive
recursive definition for f. In the case of a projection or primitive recursion, we say
that an evaluation step is performed if the subexpression — which has the form of the
lhs of (3) or (5) — is substituted by the rhs of (3) or (5), respectively. In the case of
function composition, the evaluation step either involves evaluating one of the g; (i.e.
the arguments of the composed function f) or by evaluating f itself'. This can be
done, since f must be defined in terms of the successor function, projection and/or
primitive recursion. Since prfs are total functions, the evaluation will terminate after
a finite number of steps and the result will be of the form s'(0).

The evaluation of a prfis performed as a sequence of evaluation steps. As an example
consider the evaluation of the expression add(s(s(s(0))),s(s(0))), with the function
add() as defined above:

add(s(s(s(0))), s(0))
s(p5(s(s(5(0))), s(0), add(s(s(s(0))),0)))

1'We say that function evaluation is strict, if f is evaluated only after the evaluation of its argu-
ments is completed, i.e. all arguments have the form s*(0).

s(p3(s(s(s(0))), 5(0), p1(s(s(s(0))))))
s(p3(s(s(s(0))), 5(0), s(s(s(0)))))
s(s(s(5(0))))

Note, that the evaluation sequence is not necessarily unique, even if we demand the
evaluation to be strict (as is the above example). However, the result is unique and
has the form s'(0), as already mentioned before.

3.2 String representations of prfs

Primitive recursive expressions can be perceived as having a tree structure. The
leaves of the tree are all labelled ‘0’, and the internal nodes represent functions,
with their descendents stating the function arguments. Of course, primitive recur-
sive expressions can also be represented as plain linear character sequences, e.g.
‘add(s(s(s(0))),s(0))’. In the following we will use the simpler representation
‘ss...s0" instead of ‘s(s(...s(0))...)’, so the string representation of the expression
add(s(s(s(0))),s(0)) would be ‘add(sss0,s0)’. Here is the definition of the string
representation of a primitive recursive expression F:

Definition: The string representation S(E) of a primitive recursive expression F is
recursively defined as follows:

o If ¥ =0, then S(F)="0".
o If ¥ =s(F), then S(F) ='sS(F)".

o If ¥ = f(F1,...,F,) and f is not the successor function s, then
S(E)="F(/H)(S(EL),... ,S(E.))".
F(f)is asequence of characters to represent the function name of f, e.g. F(add)
= ‘add’. A special case are the projection functions P!. For these we set F(P!)
= ‘PIII|NNN’, where I1] and NNN are sequences of digits, that represent ¢
and n, e.g. S(PY(...) =P4l12(...)".

The following restriction applies to the selection of function names: The set A
of all function names has to be suffix free, i.e. there must be no two functions

[# g with the string F(f) being a suffix of F(g).?

When CMM is to evaluate a primitive recursive expression, it is restricted to dealing
with this character string. Again, the evaluation process with consist of a number of
evaluation steps, generating a sequence of primitive recursive expressions. To separate
successive expressions, we enclose them by square brackets. So an expression to be
evaluated migth look like this:

‘[add(sss0, s0)] (2)

?Note, that we do not include the set s?, i > 0 of successor function representations in N

4

The evaluation sequence would then be:
‘[add(sss0,s0)][sP3|3(sss0,50,add(sss0,0))][sP3|3(sss0,s0,P1|1(sss0))]
[sP3]3(sss0,s50,sss80)] [ssss0]’

The important point is that CMM, given the string representation of a primitive
recursive expression as input, will extrapolate the corresponding input sequence by
generating new expressions and thus performing one evaluation step after the other.
Now it needs to be shown that CMM’s matching process together with the concepts
of objects, variables and classes i1s powerful enough to perform this extrapolation.

3.3 Function Evaluation as String Extrapolation

Let’s assume that CMM knows the following objects:

o [VLPITIINNN Uy s, Visthyo o s VL1 [vavpv,], where 111 and NNN are

used as in section (3.2).
o [VLF(WVi,.., V1,00V 1 [v,G(v1,...,0-1) 0]

o [V,F(Vi,..., V1,8V OV H(v1,. .o y00—1,80,,F(v1,...,0,) U]

In the following, these objects will be referred to as the dictionary objects. Again, we
do not consider the question, where they come from. We just assume that there has
been some (induction) algorithm that put them into CMM’s dictionary.

CMM matching restriction: the CMM matching algorithm has to be restricted
in that V, and V,, may match any character sequence that does not contain a ‘[’ or
a ‘1’. Additionally, all other variables (i.e. V, and the V;) and the placeholders ‘%’
may only be matched to strings of the form ‘s0” with ¢ > 0. These restrictions are
expressible within the CMM class concept, that can be used to describe the possible
values of variables and placeholders.

Before we start with the proof, we want to provide an intuition on how CMM actually
performs the evaluation. First of all it must be noted that the first of the above three
objects represents a whole object family. These objects are supposed to implement
all the projection functions p?(), n > 0 and 0 <7 < n, that are needed in the course
of the evaluation process. The second and third of the above objects will be used
to evaluate primitive recursion. Here the symbols ‘F’, ‘G’ and ‘H’ represent arbitrary
functions names.

Function composition is handled by the introduction of the variable pairs V, /v,
and V,,/v,. Let’s reconsider the above evaluation sequence for the string
‘[add(sss80,s0)]": Of course, CMM has to know how the function add () is defined.
According to the scheme presented above the definition is provided by the following
objects:

o O = [V,add(V4,0)V,] [Pl (v1)v,]

o 02 = [Vaadd(‘/l ’ S‘/Q) Vw] [”UaSP% (Ul s 8V2, add(vl ’ UQ)) Uw:l
Here, only two different projection functions are utilized, which can be readily

defined by
L] 03 = [Vapll(‘/p)vw:l [vavpvw]

® 04 = [VQPSB(%,%,‘/p)Vw] [Uozvpvw]

Now, when CMM is given the input sequence ‘[add(sss0,s0)]’, it tries to find a
match with the objects it already knows. Remember, that since we want to extrap-
olate the input string after the character ‘], we are only interested in matches that
include the final part of this string, i.e.

[add(sss0, s0)]

Also, an object will only be extrapolated by CMM, if this object has been matched
from its beginning. Since all the above defined objects start with the character ‘[’, the
match will necessarily start with a ‘[in the input sequence. In consequence, the ex-
trapolation will be based on a match of the whole input sequence ‘[add (sss0,s0)]’,
and the only way to match this to one of the above objects is by chosing O, instan-
tiating V,, and V,, with the empty string, V; with ‘sss0’ and V, with ‘0’. The input
sequence can now be extrapolated by appending the rest of Oy, which results in

‘[add(sss0, s0)][sP3|3(sss0, 50, add(sss0,0))]. (3)

The procedure of finding a match continues, as the extrapolation produces one char-
acter after the other. During this process Oy keeps the quality of being the best
match to the input sequence, until the end of O, is reached by producing the closing
square bracket. As before, the new best match has to start with an opening square
bracket in the input sequence. But as V, and V,, must not be instantiated with a
string containing a ‘[’ or a ‘]’, there is no way to match the extended input string to

one of the objects Oy,...,04.2

After producing the final ‘]’ the best match thus becomes the match of
‘[sP3(sss80,50,add(ss80,0))] with the first part ‘[V,add(V;,0)V,] of object Oy,
where V,, =‘sP3(sss0,s0,’, V,, represents the empty string and V; =‘sss0’. The
input string can now be extrapolated according to O, which yields:

‘[add(sss0, s0)][sP:(sss0, 50, add(sss0, 0))][sP;(sss0, s0, P| (ss50))] (4)

The two final steps of the calculation are performed by matching
‘[sP3(sss80,50,P{(s850))]1" with ‘[V,P!(V,)V,]" (the first portion of Oz pro-
ducing the sequence ‘[ng(sssO ,80,88s80)]’, which i1s in turn matched to
LVL P Chy %, VO V,1 of O4. The last created expression and the result is ‘ssss0’.

4 The Representative Power of CMM

The objective of this section is to prove that CMM has the representative power
of primitive recursive functions. We will do this by showing that prf evaluation is
equivalent to CMM string extrapolation, when applying the dictionary objects as
defined in section 3.3. To make this more concrete, we will show that iff £ is a
primitive recursive expression which can be valuated to? s¢(0) = s(s(...(0)...) with
¢ > 0, and iff S is the string expression representing F, then there is a CMM (given by
objects Oy, ...,0,) which will extrapolate S to produce the sequence ‘s'0’=*ss. ..s0’.
The proof will consist of two parts, represented by the following two theorems:
Theorem 1: Given a primitive recursive expression £ and objects as defined in
section (3.3). If there is a strict evaluation step evaluating F to E°, then there is
an object O; with its first part matching ‘[S(F)]’ and the second (and last) part
matching ‘[S(E°)] .

In other words, the object O; enables CMM to extrapolate ‘[S(F)]’ by producing
‘[S(E°)].

Theorem 2: If the first part of an object O; represents a match for ‘[S(£)]1’ with
the primitive recursive expression F, then the second part of O; matches ‘[S(£)]’,
where F° can be derived from £ by a strict evaluation step.

Corollary: Since the evaluation sequence of any primitive recursive expression is
finite, the two theorems imply that the character sequence produced by CMM will
also terminate.

Proof of theorem 1: The existence of a strict evaluation step turning K into E*°
implies that there is a subexpression E, = f(s/1(0),...,s*(0)) in E, that has been
transformed into the corresonding subexpression E¢ of E°. In the tree representation
of F. this evaluation step would be performed by substituting the subtree representing
Es with Ef yielding the tree representation of E°.

3Except of course matching the whole input to the whole object O5. This match is discarded,
because it does not provide an extrapolation for the input.
*Since primitive recursive functions are total, this value exists and is unique.

Let’s look at f more closely. The function f is a composition function, which — by the
definition of primitive recursive functions — must be defined as either the successor
function, a projection function or a primitive recursion. In this special case, f cannot
be the successor function, because in that case E, would have the form s7(0), which
cannot be further evaluated.

If fis a projection function, then E; = P!(s(0),...,s7(0)) and Ef = s%(0).
By the definition of string representations, the string S(£) has the substring
S(E,) = ‘PIIIINNN(s",....s") and S(E°) has the substring S(Ef) =‘s’’.
Since the evaluation step only changes the subexpressions of the correspond-
ing substrings, respectively, the sequence ‘[S(F)][S(FE°)]’ matches the descrip-
tion ‘[VLPITIINNN (hy...shsVosthyo o s) V1 [vav,v,1°, where there are ¢ — 1 %-
expressions before and n — ¢ %-expressions after the V,,. This corresponds exactly to
the first object definition in section (3.3).

In the case that f is defined as a primitive recursion, we have again F, =
f(s1(0),...,s"(0)). E°¢ now depends on the value of j,. If j, = 0, then ac-
cording to the definition of prfs, E¢ = g¢(s(0),...,s™71). For j, > 0, E¢ =
h(s(0),...,s™, f(s/1(0),...,s"1)). By the same argument as in the previous para-
graph, the difference between S(F) and S(E°) will only be the substitution of the
substring S(Fs) by S(Ef). The string ‘[S(#)] [S(£°)]1’ will therefore match

CVLFOV, . Vs, 00V [ogG (v, .. v_1) 0], if 5, =0, or
CVLEFOVL, . Vi, sV VoI [ogH oy, .o 01,80, ,F (o, .. 0,00 0,17, if 7, > 0.

These are dictionary objects as defined in section 3.3. O
Proof of theorem 2: The first parts of the dictionary objects all have the following
form:

‘[VuaFNAME (arg, . ..,arg,)V.], (5)

where FNAME € N is a string representing a function name and the arg; are strings
‘s'0” with 7 > 0. The latter is due to the matching restrictions mentioned in sec-
tion 3.3. Since N is suffix free, FNAME is uniquely determined by the match®. By
assumption, S(K£°) is the string representation of a valid primitive recursive expres-
sion K. So the substring ‘FNAME(argi,...,arg,) is the string representation of a
subexpression Fj.
The theorem now follows immediately from the fact that all dictionary objects are
constructed to have the form ‘[V,S(FE;)V,][vaS(ES)v,], where ES can be derived
from E by a strict evaluation step. FE? is the subexpression of the primitive re-
cursive expression F° with ‘[S(E®)]’ = ‘1 [w,S(ES)v,]1" (the second part of the ob-
ject) and thus the expression E° can be derived from F by a strict evaluation step.
O

5If N was not suffix free, e.g. there were the two function names ‘add’ and ‘dd’, a string like
‘[add(0,0)]’ could be matched with ‘[V,add(V;,0)V,]1’ as well as with ‘[V,dd(V;,0) V]’ .

References

[1] Aho, A.V.: Algorithms for Finding Patterns in Strings. Handbook of Theoretical

Computer Science, J. van Leeuwen, ed.. Elsevier Science Publishers B.V. (1990)

[2] Blasig, R.: Discrete Sequence Prediction with Commented Markov Models. To
appear: International Congress on Grammatical Inference, Montpellier, France,

1996.

[3] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass. (1979)

