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Abstract

We present a new method of approximating complex numbers by cyclotomic integers
in Z[e?™/?"] whose coefficients with respect to the basis given by powers of €2™/?" are
bounded in absolute value by a given integer M. It has been suggested by Cozzens
and Finkelstein [5] that such approximations reduce the dynamic range requirements
of the discrete Fourier transform. For fixed n our algorithm gives approximations with
an error of O(1/M?" =), This proves a heuristic formula of Cozzens and Finkel-
stein. We will also prove a matching lower bound for the worst case error of any
approximation algorithm and hence show that our algorithm is essentially optimal.
Further, we derive a slightly different and more efficient algorithm for approximation
by 16th roots of unity. The basic ingredients of our algorithm are the explicit Ga-
lois theory of cyclotomic fields as well as cyclotomic units. We use a deep number
theoretic property of these units related to the class number of the field. Various
examples and running times for this case and that of approximation by 32nd roots of
unity are included. Finally, we derive the algebraic and analytic foundations for the
generalization of our results to arbitrary algebraic number fields.
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1 Introduction

Numerical computations are vulnerable to basically two different types of errors: quantiza-
tion errors which are caused, e.g., by inaccurate input, and roundoff errors, which falsify
results of arithmetic operations. While quantization errors are inherent to computations
run on inaccurate data, roundoff errors can be avoided if the input and all program con-
stants are approximated by elements of an algebraic structure in which exact arithmetic
is possible. If the approximation errors are not too large, this procedure yields outputs of
guaranteed good precision.

An important class of computations for which this approach has been developed in detail
is the fast Fourier transform [4], FIF'T for short. The basic idea is as follows (see [5, 6, 7]
and the references therein): the input vector as well as the roots of unity involved are ap-
proximated by Gaussian integers, i.e., elements of the ring Z[:]. This step is accomplished
by scaling the complex numbers by a large number, and then rounding to the nearest Gaus-
sian integer. Since the coefficients arising in the course of the computation may be large,
arithmetic in Z[i] is performed using Chinese Remaindering Techniques modulo appropriate
primes. Fixing the primes leads to working with elements of Z[i] with bounded coefficients.
To obtain reasonable approximations of the input data however, one needs to work with
large scaling factors. Hence, there is a fundamental tradeoff between the so-called dynamic
range requirements, and the precision of the quantization. For example, approximation
by Gaussian integers up to an error of 1/n would require integer coefficients in the range
[—n/V?2,...,n/V?2], see [8].

In a pioneering paper Cozzens and Finkelstein [5] suggested to replace the fourth root
of unity 7 by a 27th root ( = €*™/2". While Z[i] forms a discrete lattice in C, the ring

Z[(] = {ao +oC+ ...+ a2n_1_162n_1_1 ‘ o; € Z} is dense in C for n > 3. Hence for all
z € C and all € > 0 there is an approximation a € Z[(] of z, such that |a — z| < €. Since
the set

Z[(lar = {ao +a1(+...+ a2n—1_1C2n_1_1 ‘ a; €7, oyl < ﬂf}

is finite, we will still be confronted with the tradeoff problem between the dynamic range
requirements and the precision. However, we might hope for better approximations within
the same range. Since any complex number can be represented by the sum of a Gaussian
integer and a complex number of absolute value < 1, we focus in the following Approzimation
Problem on complex numbers inside the unit circle:

Design an algorithm that approximates a given complex number of absolute value
< 1 by an element of the set Z[(]ar, where ( = e2™/?",

The main result of this paper is a general solution to the above problem by exhibiting a
meta-algorithm that produces an approximation algorithm on input M and n. Usually,
we will consider n as being fixed and study algorithms solving the above Approximation
Problem with respect to the following questions: (1) What is a worst case bound on the error
of the approximation in terms of M7 (2) What is the running time of the approximation
algorithm in terms of M?

Only partial answers have been given to these questions in previous work. Cozzens and
Finkelstein give in [5] a heuristic argument which suggests obtaining an approximation error



of order O(l/zV[Qn_Q_l) for fixed n might be possible. Furthermore they describe a simple
algorithm which, for fixed n, needs an O(M log(M)) bound on the coefficients to achieve
a precision of O(1/] [2n_2_1). As this algorithm has a precomputation phase whose basic
ingredient is exhaustive search, it is impractical for larger values of M and n.

Games [6, 7] develops a greedy algorithm for the special case of the 8th roots of unity.
A rough sketch of the algorithm is as follows: in a first step a small element ¢ of Z[(]as is
found. Now the algorithm starts at the origin and successively improves the approximation
by adding an appropriate element of the form (’e without violating the bound on the
coefficients. He shows that an extension of this algorithm achieves an approximation error

< |le|/y/2 = v/2. Finally he gives an explicit algorithm, based on continued fractions, to find
a ¢ of smallest absolute value. The final result is an algorithm with worst case approximation
error of O(1/M), which compares favorably with the heuristic formula in [5]. However, no
attempt has been made to justify the algorithm for the case of sixteenth roots. FFurthermore,
due to the large amount of computations involved, this algorithm is not well suited for real
time applications.

In this paper we give a complete answer to the above questions by presenting a general
method to solve the Approximation Problem. For fixed n the algorithm approximates a com-
plex number in the unit circle with an approximation error of O(1/] IZn_2_1). This proves
the heuristic formula by Cozzens and Finkelstein. The algorithm runs in time O(log(M))
and uses O(log(M)) additional memory. We prove a matching lower bound on the approxi-
mation error thereby showing the optimality of our algorithm. Due to its simple structure,
it is also suitable for real time computations.

In a first step we reduce the complex approximation problem to the approximation
problem of real numbers in the interval [0, 1]. This is done by separately approximating the
real and imaginary part. This only gives an additional factor of two in the bound on the
coefficients, and a factor of v/2 on the absolute error of the final approximation.

The main part of our meta-algorithm is the construction of a set £ of small positive
real elements of Z[(]ps. E has the property that for all real @ € Z[(]as there exists an ¢ € F
such that a + ¢ is still in Z[(]as, i.e., the sum does not violate the bound on the coefficients.

Games’ algorithm [7] for finding the elements of smallest absolute value in the set
Z[e*™/%]5r shows that these always have absolute norm +1 or +2. Recall that the ab-
solute norm of an algebraic number is the product of its Galois-conjugates. Inspired by this
result we construct the elements of £ as power products of certain units in the cyclotomic
field Q((), the so-called cyclotomic units. The main property of this set of units is that
their so-called regulator is nonzero. This means that the matrix whose (i, j)-entry is the
logarithm of the absolute value of the ¢th conjugate of the jth unit is nonsingular. This is a
deep property which follows from the nonvanishing of the Dirichlet L-series at s = 1. The
interested reader is referred to [10, Chapter 8].

To construct the sets /2 we start in Section 2 with establishing a fundamental relationship
between the size of the coefficients of an algebraic integer and the size of its conjugates. After
recalling some basic results about cyclotomic fields in Section 3, we proceed in Section 4
with lower bounds for the Approximation Problem. We prove that the approximation error
of any algorithm solving this problem is Q(l/ﬁ\IZn_2_1) by showing that there exists a point
z such that for all @ € Z[(] |z —a| = Q(l/z\lgn_Z)_l). Further, we also show that the smallest
element of Z[(]as has order Q(1/M2"~*=1). This result, though interesting in its own, will



be used to prove that our approximation algorithm runs in time O(log(M)).

Matching upper bounds are proved in Section 5 by constructing the set £. We derive
certain conditions on the conjugates of units in £ which guarantee for any a € Z[(]as the
existence of ¢ € F such that a 4+ ¢ € Z[(]ps. We then reduce the problem of finding power
products of cyclotomic units which satisfy these conditions to an integer linear programming
problem, and show how to find (asymptotically optimal) solutions by solving a system of
linear equations.

Section 6 deals with a modification of the general algorithm for the case of 16th roots of
unity. This modified algorithm uses a signature technique. It is asymptotically comparable
to the general method, but is much more efficient in practice. The algorithm is inspired by
a simple approximation algorithm in Z[¢*"*/®] found by the authors [9].

In Section 7 we report on the implementation of our algorithms, on their running times,
and on strategies to enhance their performance. Finally, Section 8 prepares the ground
for a far reaching generalization of the results of this paper. We have included a theorem
obtained by Clausen and Shokrollahi [3] on the characterization of complex numbers w
such that Z[w] is dense in C. If w is an algebraic integer of degree > 2, we can design a
meta-algorithm for approximation in Z[w] along the same lines as in this paper, provided
we know a set of units in the algebraic number field Q(w) with nonvanishing regulator.

We would like to thank Michael Clausen for communicating the problem to us and for
his permission to include Theorem 30.

2 Galois Extensions

Let L O K be a Galois extension of fields with group G' := Gal(L/K) = {ro,...,Ta-1}.
Further, let 8, ...,05_1 be a K-basis of L, and a := Ef:_& a;8; € L with a; € K. We wish to
derive a relationship between the sets {ag, ..., a4-1},{00,...,04-1},and {7o,...,7q_1}. We
start by noting that for any nonzero a € L* there exists an invertible matrix R, € GL(d, K),
such that
a - 00 00
: =R, | : |- (1)
a-85_1 041

The map a — R, is an injective homomorphism of I into GL(d, k) (regular representation).
Since the entries of R, belong to K, they are invariant under . Hence, taking the G-
conjugates of (1) yields

T -Dy=R, T (2)

where

7'0(90) 7'1(90) tee Td—l(eo)

T0(91) T1(91) Td—1(91)

T:= . . . . )
To(od—l) T1(9d—1) tee Td—1(9d—1)

and D, := diag(mo(a),...,7qa—1(a)) is the diagonal matrix with diagonal entries
to(a), ..., Ta—1(a). The following result is well-known.



Lemma 1. T is invertible.

Proor. Since L is a separable extension of K, there exists an irreducible separable
polynomial f € K[X], such that L = K(a) for some root a of f. Let S be the matrix
(tj(a'))o<i,j<a and let C' be the transition matrix from the K-basis (o, ...,0:_1) to the
K-basis (1,a,...,a% 1) of L. § is van der Monde, hence det(S) # 0 as {ro(a), ..., 74_1(a)}
are different roots of f. Furthermore, as S = C - T, det(T) # 0 O

In the following we will assume that 8y = 1 and 7p is the identity map. The definition of
R, implies that (1,0,...,0)-R, = (ag, ..., ag—1) (multiply both sides of (1) with (1,0,...,0)
from the left). Hence (1,0,...,0)-TD, 77! = (ag,...,a4-1). Noting that the first row of
T is the all one vector, we obtain:

(ag,..ya4-1) = (a,mi(a),...,7a—1(a)) - T7M (3)

3 Cyclotomic Fields

In this section we review some basic and well-known facts about cyclotomic fields. We will
later use the results stated here to derive our approximation algorithms in Sections 5 and 6.
Proofs of the classic results not explicitly proved here can be found in, e.g., Washington’s

book [10].

3.1 Explicit Galois Theory

2me

Let {, := €27, and K,, := Q((,) be the cyclotomic field generated over Q by (,,. K, has a Q-
basis (1, (p, - - .,Cﬁn_l_l) and its ring of integers is Z[(,] := {Zigl_l ;¢ | Vit a; € Z).
Recall that for a positive integer M we denote by Z[(,]ar the subset {Z?:Sl_l a;Cho |
Vi: o € Z,|oy| < M} of Z[(,).

K, is a Galois extension of Q with Galois group isomorphic to (Z/2"Z)* under the
canonical isomorphism:

(Z)2"Z)% 3 ¢ v (0,1 Cu — (°) € Gal(K,/Q).

It is well known that (Z/2"Z)* = (5 mod 2") x (—1 mod 2"), so Gal(K,,/Q) = (o5) X (0_1).
Note that o_1 is the complex conjugation. Hence its fixed field, denoted by K, is a subfield
of R and has index 2 in K.

Let g := 1 and for ¢ > 1 let 6, := ;L + C;i. The elements 6y, . ..,0;.—2_; of KT form
an integral basis of K7 /Q, i.e., they are a Q-basis of K7 and Z6g + ...+ Zbyn—2_, is the
ring of integers Z[(,]* of K. For a positive integer M we define

2n—2_1

Z[C) i, ::{ Z a;b;

=0

Yi: «; € Z, |OéZ| < IV[} C Z[Cn]M

By Galois theory we have Gal( K7 /Q) ~ (Z/2"Z)* /{—1 mod 2") ~ (5 mod 2"). An explicit
isomorphism is as follows: Let 7 € Gal(K;/Q) be defined by 7(¢} + (%) := ' + .
Then Gal(KF/Q) = (r) ~ (5 mod 27).



Example 2. Let n =4 and ( := (,. The images of the 0; under T are given by:

0o N 0o

0 —— CHCP=(34 C_(S_S) = —03
02 N ClO + C—lO _ CS+2 + C_(8+2) _ _02
05 —— (PP =M+ =06

For a € K} we set al) := 7%(a). In accordance with Section 2 we define T =
(0,5]))097]-071_2. T is invertible by Lemma 1 and we can explicitly determine 7~! in this
case.

Lemma 3. With T as above we have T—! = 25—_1(§§i))05i7j<2n_2 where 0; = ¢ + (7.

PrOOF. For i £ 0 the (4, j)-entry of TT~! equals:

1SS g O T 55 | ~—5livg 5l A—5lj
s 2 00 = o 2 (GGG + )
1 n—2_1 5l('+') 5l('_') 5l('_') _51('_1_.)
- gn—1 E(CnZJ—I_CnZ]—I_Cn]Z—}—Cn Z])
=0
1 o .
o= ( > o<c:;f>+o<c;+f>)
c€Gal(Kn/Q)
= ¢

¥R
where ¢ is the Kronecker-function. (Note that if ¢! #1, then the sum of the conjugates of

¢! under Gal(K,,/Q) is zero.) Analogously one proves that the (0, j)-entry of TT~! equals
(507]‘. O

Example 4. For n = 4 we have

1 1 1 1 2 6 0, 65
T 6, —6; —6; 05 7 -1 _ 112 —03 -6, 6
b, —0y 0, —0, 81 2 -6, 6 —03
s 6, —0; —6; 2 03 -6, -6,

For a := 222282—1 ab; € K let Loo(a) := max{|ai| i=0,...,2""7 — 1}. Stated in
terms of this function, our problem is to approximate a given real number in [0, 1] by an
element a € Z[(,]* with Lo (a) < M. L. (a) is related to the different conjugates of @ in
the following way.

Lemma 5. For a € K;I we have




Proor. By (3) we know that
(a®), .. .,a(Qn_Z)_l)) T = (g, agna_q).
Since |0~§Z)| < 2 for all ,7, the absolute values of the entries of 77! are < 1/2772 by

Lemma 3. O

We will use this lemma in the following form.

Corollary 6. If a € Z[(,]* is such that 2?282_1 la)| < 272 M for some positive integer
M, then a € Z[(A)3;-

For a € K we define
maxconj(a) := { A= n2_
jla) :== max<|a'’| | 1 =0,...,2 1.
Lemma 5 explains the significance of this quantity: we always have L (a) < maxconj(a).

Proposition 7. Let 0 < i < 2°72 and A\, v be such that i = 2\ and \ odd. Then 0&22_,,_3 =
—maxconj(fyn—v—3) = —Ogn—v—3 < —1.

Proor.  Let us first prove that fyn—v—s > 1: note that 6, < 6; for 7 > 5 > 0. Hence,
02n—v—3 > 02n—3 - C,?) ‘I‘ C?)_l - \/5 > 1
Next we show for all n > 3 and all odd A

0§2n_3A) = —f; = —maxconj(6;).
Notice that |0§l)| < |61 for all I. Hence, we need to prove the left equality. Observe that
527" = 1 mod 2" since (Z/2""'Z)* = (5) x (=1). Thus, 5*""° = 2"~' + 1 mod 2", and
for odd A\ we have 52" 7° = (2”_1 + 1)'\ =14 2""! mod 2. Hence,
n— n—3 n—3
052 3,\)2622 A_I_Cn_52 A:—(Cn+f7:1):—91
2n—v—3

Now note that Oyn—v—3 = ( +¢, =C(y+3+ Cy__ﬂg By the above we have 6
—Byn-v—s = maxconj(fyn—v—3) (replace n by v + 3). O

gn—v=3 (272)
n

gn—v—3 =

3.2 Cyclotomic Units

The norm of an element u € Z[(,]* is defined as

n—2_1
N(u) := H ul),
=0
As u is an algebraic integer, N(u) € Z. u is called a unit if N(u) € {£1}. A set {uy,...,u}
of units is called independent if |]_[,ZL»:1 u;'| = 1, z; € Z, implies 1 = --- = 2; = 0. For
general number fields, it can be quite hard to find a maximal set of independent units. For
cyclotomic fields and their maximal real subfields, however, the situation is quite different:
the cyclotomic units form a maximal set of independent units. They are defined as follows:
for j=1,...,2"72 — 1 we set n; := (}(1 — (,)/(1 — ¢¥*1) ([10, Chapter 8]). The following

important fact holds for the matrix = := (log |77§Z 1<i,j<an—1-



Theorem 8. The matriz = is invertible.

A proof of this classic result can be found in [10, Chap. 8.1]. The nonvanishing of the
determinant of this matrix comes from the nonvanishing of the Dirichlet L-series L(s, x) at
s=1.

4 Lower Bounds

In this section we will prove by using a volume argument that any algorithm solving the
Approximation Problem will have a worst case approximation error of Q(l/iw2"_2_1) for
fixed n, see Theorem 11. A matching upper bound will be derived in the next section.
Furthermore, we will show that the order of the smallest absolute value of an element in
Z[Calar is also Q(1/M2"7°=1) for fixed n. This result which is of independent interest will
be applied in the next section to analyze the running time of our approximation algorithm.

Proposition 9. Let n > 3, M € N, and r := (2M + 1)_(271_2_1). Then there exists
z € Z[Culm, 2| < 1, such that for all w € Z[(n)am \ {2z} we have |w — z| > r.

For the proof of this proposition we need the following result.
Lemma 10. There are at most (2M + 1)2"7 =2 elements of Z[(u]ar inside the unit circle.

ProoF. Let aj € {-M,...,M},j# 0,5 #2"2, be given. Then there exists exactly one
pair (ag, agn—2) € Z? such that

on—1_1

> a6 e {z | max([Re(2)], |Im(2)]) < 1}.

=0
Hence, there is at most one pair (ag,ayn—2) with |agl|,|agn—2] < M, such that
|Z?Z)1_1 ;¢ < 1. Thus the assertion follows.

Proor orF ProPoOSITION 9. Let

)

M= max min |z
{2€Z[¢]mll2|<1} {2 €Z[Cnlnr||2'<1,2" #2}

_ ’l.
It suffices to prove that r < ép7. The circles of radius 657 around the elements of {2 €

Z[Cnlmr ‘ |z| < 1} cover the unit circle. Hence by Lemma 10:

@M +1)"7 2 6 > 6y > (2M+ 1)) = g

Theorem 11. Let n > 3. There exists a constant ¢, depending on n and for any M > 0
there exists zpr € C, |zpr| < 1, such that
c

min |z — z2y| > ———.
2€Z[Cnlmr M?2 -1



Proor.  Let r and z be as in Lemma 10 and let zps be such that |zas — z| = r and
lzm| < 1. O

The next theorem gives a lower bound on the size of the elements of Z[(,]|as.

Theorem 12. For fizred n > 3 there exists a constant v, depending on n, such that

> _In__
- Ml

mi

n |z
2€Z (¢ \{0}

Proor. We will only prove this statement for the elements of Z[Cn]]‘\z The corresponding
assertion for Z[(,]ar can be proved exactly in the same way. During this proof we set
m:=2""2 Lete€ Z[Cn]]TJ be the smallest element of this set. Multiplying both sides of
equation (3) with 7" we obtain

(5(0)7 .. -75(m_1)) = (607 R em_l)T’

where ¢ = Y. €,0;,. Let the Li-norm L,(v) of a real valued vector » be the sum of the
absolute values of its entries. Note that if A is a square matrix, then L1(vA) < L1(A)L1(v),
where L1(A) is the maximum of the L;-norms of the columns of A. Hence, taking I;-norms
of the above equation we obtain

mij 16| < mLoo(e)L1(T).

1=0

Let £ := H?;Bl ¢ be the the norm of e. We get

|£| m-l () -1 -1 m m—1 A/[m—l
— = |5 ! | < Loo e)y” Ll m < 5
] g (€) (T) — o
—m+1
where v,, 1= (le(T)/(m — 1)) is a constant depending on n. Since { is a nonzero

integer, we have |£| > 1, which implies the assertion. O

5 The General Approximation Algorithm

In this section we describe a general procedure to approximate complex numbers by elements
of Z[(,]. We adopt the notation of the previous sections. In addition, we set m := 2772,

5.1 Reduction to the Real Case

We start by reducing the problem to that of the approximation of real numbers.

Proposition 13. Let z € C have real part zg and imaginary part z;. Suppose that ag, aq €
Z[(a)3; are approzimations of zg and zy, respectively, and that |z; —a;| < § for some § > 0.
Then ag + iay € Z[(ulanr is an approzimation of z with error at most 5v2.



Proor.  The bound on the error being obvious we focus on proving that ag + ta; has
coefficients bounded by 2M. But this is clear once noting that if a; = >, a;.8,, then

on— 2_ 2 n—2_ -2,
ap+1ia; = ag o-l-z l(Oéo,j-l-OéLgn—fz )C] +aq 0C2n +22 1(041,j—040,2ﬂ—2—j)c7%n +a.
O

Given w € [0,1] and some M € N, our aim is to find « = 3_; a;6; € Z[(,]T such that
Loo(a) < M and |w — a| < gpm=r for some constant ¢ (possibly depending on n). In view of
Corollary 6 it suffices to find a such that 375" [al)| < mM.

5.2 The Algorithm

The basic precomputation step is to find a subset £ = {e1,...,e9,_2} of Z[(,]T consisting
of positive elements with the following properties:

(%)

(a) V1 < k < m: maxconj(ex) = ggck) and maxconj(extm—1) = —€p 15

(b) Ve € E: Y75 D] < 2maxconj(e),
(c) max;”~? maxconj(e;) < M,

We first show that if F/ has the above properties, then for an arbitrary element a in Z[Cn]]‘\zﬂ
[0,1] there always exists ¢ € F such that a + ¢ € Z[(,]};. Roughly speaking, one has to
choose from F an element ¢ that has its maximum conjugate at the same position as a, but
with a different sign. Recall that the sign of a nonzero real number a, denoted by sign(a)
is +1 if « is positive, —1 if it is negative.

Lemma 14. Let a € Z[(,)T N (0,1), 75! la®)] < mM, maxconj(a) =: la®)|, and e :=
sign(a(l)). Further letb:=a+¢; ife= -1, and b:= a + €j4;n_1 if € = 1, where the ey are
defined as above. Then S5 b < mM.

PrROOF. Let ¢ := b — a. Suppose first that |a()] > [e()]. Then Y75 60| < Z;H(|a(i)| +
le®]) 4+ |aW)] = |e0)] < YAl la®] + || < mM, since by Condltlon (b) on FE we have
eD] > ¥, 1)

Suppose now that |a| < [e)]. Then 75 6] = JHa® 0] < E¢l|a
@]+ ~]al)] < Z¢¢z(|a(l)|+|5(i)|)+|5(l)|—|a | < (m—2)|a N+2e@] < mleW)] < mM,
where the last inequality follows from Condition (c¢) on E. O

The idea of the approximation algorithm is now fairly simple. We compute sets FE;, for
different £ < M and starting from 0 we improve our approximation by adding elements
from the sets Fy until no further improvement is possible. Using Lemma 14 we know that
we can always find such elements without violating the bound on the size of the coefficients.
If £ < M, we increase the value of k£ and start all over again.

Suppose that we have found sets Eyr = {e1k,...,€2m—2r} for 0 < k < [logM],
such that Conditions (a)-(c) are satisfied. Let max(FE,:) := max>" "% ¢, ; and min(Fy) :=
min?""?¢; x. The General Approximation Algorithm (GAA) is given in pseudocode in
Figure 1.



Precomputation: Sets E,x for 0 < k < |log(L)] as described above.
Input: we[0,1], M <L, M e N.
Output: a € Z[(,]}, such that 0 < w — a < max(E, o)) )-
a:=10
for k =0 to |log M| do
while ¢« —w < 0 do

Compute maxconj(a) =: |alV|
e := sign(a))

€1k if e=-1
ek 1=

El+m—1,k lf e=1

a:=a-+ ek

Figure 1: General Approximation Algorithm (GAA)

Theorem 15. Algorithm GAA computes an element a € Z[(,])" such that |a — w| <
max(FEy g m) ) and uses no more than

[log M|

max( Fyr-1)

min(£4) * min(Fyr)

k=1

iterations.

Proor. At step k£ > 1 the difference between the a’s obtained from two successive runs of
the inner loop is at least min( Fyx) and the inner loop terminates iff w —a < e, < max(Fyr).
Hence, the inner loop is performed at most max(Fyx-1)/ min(Fyx) times. For £ = 0 the
inner loop is performed at most w/ min(#;) < 1/ min(£;) times. O

The remaining (and more difficult) problem is the design of the sets F,x. We will study
the more general problem of constructing Fjs for arbitrary M. In a first step we show how
to construct Ej from a set Ej, with only half as many elements. The elements of Ej};
have their conjugates at different positions. The idea is to construct from an element in
Ej; another element having its maximal conjugate at the same position but with a different
sign, by multiplying this element with an appropriate 6;.

Lemma 16. Let ¢ € Z[(,)7, ¢ := max|e(|, and suppose that 3 |e)| < 2|eW|. Let
A, v €N, A odd, be such that | = 2"\ and let let x := €Oyn—v—s. Then

(a) max x| = [xO], xV - el <0
(b) 27" Ix] < 20X
(©) O] < 21e0)

Proor. Let 0 := 0yn—0—s.

(a) By Proposition 7 we have #() = —maxconj(6), hence (a) follows.

(b) We have
m—1 ) m—1 ) ) m—1 )
SO = 30 990 < 03 [0 < 2109 = 21310
=0 =0 =0
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(¢) By Proposition 7 we know that |§] > |#(*)] for all 7. Hence we get |x(V)] = 8] < 2]e()].
O

Using the above lemma we only need to construct a set F}, described below, which only
has half as many elements as the set £3;. The construction is summarized as follows.

Remark 17. Let F}; :={e1,...,em-1} C Z[(,]T N Ry be a subset such that
m_l - .
S e <2l < m
=0

for alli. For each k let ty := Oyn—oway(i)—a, where ordy(k) := max{( | 2* divides k}. Then
by Lemma 16 the set Epr :={e1,...,6m-1,t161,. .., tm—_1Em—1} satisfies Conditions (a)-(c)
stated at the beginning of this section.

Note that max(Ex) < 2max(FEj;) and min(Ep) > min(FE};) since 1 < ¢ < 2 by Proposi-
tion 7.

5.3 Design of Fj,

To construct the sets I}, we will use power products of the cyclotomic units introduced in
Section 3.2. Recall that for £ = 1,...,m — 1 we defined 7, := ¢*(1 — ¢)/(1 — ¢***1).

For given 7 € {1,...,m — 1} we want to find kq,...,k,_1 € Z such that ¢; := T[], 775"
satisfies the inequalities given in Remark 17. (To keep the notation simple, we suppress
the dependency of the k; on i.) In fact, we will find kq,...,k,_1 satisfying the stronger
conditions ) u

(®) (®)
—_2|6» |, and |e;”’| < >

Vi#i 69 < Z

Taking logarithms this gives

m—1

Vi#i 3 k(log|nf| —lognf’|) < —log(m - 2),
/=1

m—1 .
S kelog )| < log(M/2).
/=1

Recall the matrix = = (log |77J(-Z)|)1Si7j<2n_1 defined in Section 3.2. Let =; be the matrix
obtained from = by subtracting the ith row from the jth for j # 7, and leaving the i¢th row
unchanged. Obviously, =; is invertible by Theorem 8. In terms of this matrix the above
inequalities can be summarized as

k1
km—l

where L; is the vector having entry log(M/2) at position 7 and entry — log(m — 2) at po-
sitions j # 4, and the inequalites are to hold component-wise. Qur aim is to find a small
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¢; satisfying these inequalities. This gives us the following Integer Linear Programming
problem:

ILP1: Minimize 377" kylog || subject to (4).

While Branch and Bound methods easily yield optimal solutions of the above problem
for small values of m (e.g., m = 3 or m = 7), the Integer Linear Programming approach
is not feasible for larger m. Below we will give another approach to find (asymptotically
optimal) solutions of ILP1, which will also prove the following.

Theorem 18. The Integer Linear Programming problem ILP1 is solvable and for fized m,
the optimal value of its objective function is O(M—(m—l)).

Let Z; = (z4,;), and for each £ = 1,...,m — 1 let y, := ijj@ zg;. Let Y be the vector
having entry — log(m — 2) 4 y, at position £ # i, and entry log(M/2)+ y; at position ¢. The
following proposition shows that ILP1 is always solvable.

Proposition 19. Let & := (Ki,...,kpm_1)' = E;lY, and k¢ = |ke]. Then kv,... kn_1
satisfy the inequalities (4).

Proor. Let é;:= ks—ks € [0,1). The jth entry of Z;x gives the equation > z;o(ki+60) =
A; + y;, where A; is the jth entry of L;. Hence,
S wjike =Nty — Y wiebe <A
J4 l

by the definition of y;. O

The next proposition shows that the optimal value of the objective function of ILP1 is
0(M—<m—1)) for fixed m, and hence completes the proof of Theorem 18.

Proposition 20. With the notation of the previous lemma let ¢; := Hg:ll 775". Then for
fized m we have e; = O(M~U"=1)).

Proor. With the notation of the proof of the previous proposition we have for j # ¢

log |€£])| — log |€Z(Z)| = Z:C]‘J{k‘g = — log(m — 2) +y; — Z$]7f6f'
£ £

Hence, there exists a nonnegative d; depending on m but not on M such that log |5£j)| -
log|££2)| < —log(m — 2) — d;. Analogously, there is a nonnegative d; depending on m
and not on M such that log |5£Z)| < log(M/2) — d;. Since ¢; is a unit, we have log|e;| =

— 7 log |5y)|. Summing up, we obtain

m—1

log |e;] = —(m — 1)log(M/2) + (m — 1)log(m — 2) + (m — 2)d; + E dy.
=1

Hence, for fixed m we get the assertion. O

The last two propositions form the proof of one of the main theorems of this paper.
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Theorem 21. Let n be an integer, m = 2"~2. For any M € N one can construct in
time O(m3log(M)) an approzimation algorithm with the following properties: for fived
m it computes in time O(log(M)) on input w € [0,1] an element a € Z[(,|} such that

Loo(a) < M and |w — a| = O(M~("=1).

Proor.  We first compute the sets EJ, for k = 0,..., [log(M)]|. Using the previous
propositions we see that each of these sets can be constructed in time O(m?®) (solving
linear equations). The computation of all the E,x takes O(m?log(M)) time. From E),
we construct Fyr using Remark 17. This takes O(mlog(M)) time. We then incorporate
these sets into Algorithm GAA given in Figure 1. Since the maximal and the minimal
elements of the sets Fyr are of order @(2_(m_1)k) for fixed m by the previous proposition
and Theorem 12, Theorem 15 implies that Algorithm GAA computes a with L. (a) < M
and |w — a| = O(M~"=1) in time O(log(M)). O

Theorem 11 in Section 4 shows that the approximation error given in Theorem 21 is essen-
tially optimal.

It should be noted that restriction to w € [0,1] is not essential. Actually, for any
w € [0, M/2] we can compute an approximation a € Z[Cn]]t[ in the following way. We first
approximate ¢ — |a] with an element of Z[Cn]]TJ/Q, and then add |a] to this approximation

to obtain an element in Z[Cn]]‘\z Furthermore, combining the approximation algorithm with

scaling techniques, we can obtain approximations of order 0(1/11/12"_2) by elements of the
set Z[Ca)3;/(M/2), see Section 7.

6 Sixteenth Roots of Unity

In this section we describe in detail the approximation of real numbers in the interval (0,1)
by elements from Z[62”/16]]T4. In this special case we use a slightly different algorithm based
on the signature of an element. It is inspired by the approximation algorithm in Z[e%i/ 8]
found by the authors in [9]. Since we will not deal with the conjugates of the elements
explicitly, this algorithm runs faster in practice than the general one. We adopt the notation
of the previous sections. In addition, throughout this section we set { := (4 = e2mi/16,

6.1 Signature

Roughly speaking the signature of an element of Z[(]* is the vector of signs of its coefficients.
Unfortunately the sign of zero is not uniquely determined, so we have to use a more technical
definition. For o € Z let

{+}, if a>0
sgn(a) == ¢ {-}, if a<0 ,
{+,-}, if a=0

For a = Y9 o a;0; € Z[(]* let sgn(a) := sgn(ag) X - -+ X sgn(az), and, —sgn(a) := sgn(—a).
Examples are sgn(1 — 65) = {(+,+,+,—),(+,+,—, =), (+,—,+,—),(+,—,—, —)} and
sgn(1+ 61 — 02 +63) = {(+,+, -, +)}-
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For o = (09, ...,03) € {+,—}* let wt(o) := |{i | 0; = +}| and define wt(a) := {wt(c) |
o € sgn(a)}. Hence wt(1 —63) = {3,2,1}. The following properties of the sgn-function can
be easily verified.

Remark 22. Let a = Y7 o a0; € Z[(]TN[0,1]. Then

(a) |sgn(a)] =16 @ a =0« 4 € wt(a),
(b) |sgn(a)| =8 a=1,

c) a {0,1} & [sgn(a)| € {1,2,4}.

)

)
(c)
(d) Ifk € wt(a) then [{i| o; > 0} > k and [{i | a; <0} > 4 — k.
An important relationship between the wt-function and the bound on the coefficients is
given in the next lemma.

Lemma 23. Let M >4 and a = 30 o a;6; € Z[(]5; N (0,1).

(a) If 3 € wt(a) then there exists i such that 0 < o; < M.

2
3

(b) If1 € wt(a) then there exists i such that 0 > a; > —£M.

2
3
Proor.  (a) There are three a; > 0 by Remark 22(d). Suppose that all of them are
>2M/3. Then a > M(2(1+ 6, +65)/3 —6,) > 1 for M > 4, a contradiction.

(b) There are three a; < 0 by Remark 22 (d). Suppose that all of them are < —2M/3.
Then a < M(—2(1+4 63+ 63)+ 6;)/3 < 0 for all M, a contradiction. O

6.2 The Main Idea

The main idea of the approximation algorithm is to start with zero and then to increase the
value of the current approximation step by step by adding a small algebraic integer with
inverse signature. This ensures that the coefficients of the sum are still bounded in absolute
value by M. This idea is captured in the following result.

Lemma 24. Suppose that a,b € Z[(]1; and sgn(a) N (—sgn(b)) # 0. Then a + b € Z[(]1,.

Proor. Let a= E?:o a;8; and b = E?:o 03;0;. The assumption implies that «a;8; < 0 for
all  =0,...,3. Since |a;|, |8:] < M, we obtain |a; + 8| < M for all 1 =0,...,3. O

We have thus to construct a set of small elements of Z[(]3; having all possible signa-
tures. The following lemma shows that it is enough to construct a set with six appropriate
signatures, if we make a small sacrifice on the bound M. This new set is going to play the
role of the set Fp; from Section 5.

Let o9 := (+,—,—,+), 02 == (+,+,—,—), 03 := (+,—,+,—), and for M € N let
En = {e1,...,e6} C Z[C]F; be such that o; € sgn(e;) and —o; € sgn(e;43),1=1,2,3.

Lemma 25. Leta = Y0, a;6; € Z[C]3; N (0,1). Then there exists ¢ € E\ar/3) such that
a+ e € Z[ClL,
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Proor. If sgn(a) N {£oy, toy,+o3} # @ then apply Lemma 24.

Suppose sgn(a) N {£oy, toz, +o3} = 0. Then either 1 € wt(a) or 3 € wt(a). Suppose
that 3 € wt(a), and let a; := min{e;|a; > 0}. Since 2 € wt(a—a;0;), there exists ¢ € F|p7/3)
such that sgn(a — «;0;) N (—sgn(e)) # 0. Let b:= 37 ( 8:0; := a — a;0; + . Then for i # j
we have |3;| < M and for i = j we have |3;| < M/3. Hence b+ a;0; = a + ¢ € Z[(]3;, since
a; <2/3M by Lemma 23. The case 1 € wt(a) is handled analogously. O

As in Section 5 we construct Eps from a smaller set £}, having only three elements with
disjoint signatures. The missing signatures can be obtained by multiplying with appropriate
elements of Z[(]T.

Lemma 26. Suppose that E); = {e1,e2,e3} is such that sgn(e;) N {o;,—0;} # 0, and
g, € Z[C]JD/S N (O, 1/2) fOT 1= 1, 2, 3. Let EM = {51,52,53,51(02 — 1),5203,5301}. Then

(a) Ex C Z[C]3;N(0,1).

(b) Exr={e1,...,c6} with o; € sgn(e;) N (—sgn(e;+3)), 1 = 1,2,3.

(c) max(Ey) < 2max(E};), min(Ey) = 6 min(E};).
Proor. Part (c)is obvious, so we concentrate on the first two parts. Let ¢; = E?:o a;8; €
Z[C]TM/SJ be such that o1 € sgn(eq). We prove that (6, —1)e; € Z[(]3; and sgn((fz —1)e1)U
sgn(ey) 2 {01, —0o1}. Note first that we have

(62— 1)er =: [o+ P16 + 8202 + P33
= (203 — ag) + bhaz + b2(ag — az) + O3(a1 — 2a3) € Z[CE,
as a; < M/3. Furthermore, a direct calculation shows that sgn(f;) = —sgn(a;) for all <.
The other cases dealing with multiplication with #3 and #; are handled analogously. O

The algorithm Approzimation By Signatures (ABS) is given in Figure 2 and will be
analyzed later in this section. The basic precomputation step of this algorithm is the
construction of sets Eyr := {e14,...,€64}, 0 < k < |log M |, satisfying o; € sgn(e; ) and
—o; € sgn(eipsr), i =1,2,3.

6.3 Construction of Fj; and Analysis of ABS

It remains to construct £j,;. Once again, £}, will consist of cyclotomic units.
By (3) we know that for a = 327 a;6; € Z[¢]* N (0, 1) the equation

(ao,a17042,043) = (a’a(1)7a(2)’a(3)) 77!
holds. Using Lemma 3 and Example 4, we get the following explicit form:

2 01 02 03
112 -6 -6, 6
8l 2 -6, 6, -6,

2 03 —02 —01

(a07 aq, 02, a3) = (a7 (1(1)7 0(2)7 a(B)) .

From this equation we can derive a relationship between the position of the maximal con-
jugate of an element and its signature.
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Precomputation: Sets E,x for 0 < k < |log(L)] as described above.
Input: we[0,1], M <L, M e N.
Output: a € Z[(]F,, N (0,1), |a — w| < max(E,pogany )/ M
a:=0
for I =0 to |log(M)]| do
while E?:o aif; <w do
if there exists e € Ey such that sgn(e) N (—sgn(a)) # @ then
a:=a-+e
else
if 3 € wt(a) then
a; = min{a; | a; > 0}
Find e € E,; such that sgn(e) N (—sgn(a — a;8;)) # 0
a:=a-+¢
else
a; = min{a; | a; <0}
Find € € F;i such that sgn(e) N (—sgn(a + «;8;)) # 0

a:=a-+te

Figure 2: Approximation By Signatures (ABS) in Z[e?mi/16]+

Proposition 27. Suppose that || > 6, (Z#LO |a(j)|)/03 for some i € {1,2,3}. Then we

have
o1 if i=1 a® >0
—oy if i=1 oM <0
. o (3)
SLOER BN A
o3 if i=2 a® >0
—o5 if i=2 a® <0

ProOF. Suppose that i = 1, ¢ > 0. Then

13 1 a
- - (k) > Z¢g(M) —1aD 1By > 2 >
CY,O 4kZ::0a —4(a —I_a |a | |a |)— 4—07
1 (1) @) (3)) 010
o] = §(01a—03a —601a"” + B3a ) < ? <1,
0 f
a; < §2(Q+ 1| +1a®)| - a(l)) < %a <1,
Oza
as 2 =20,

The remaining cases can be proved analogously. O

The next theorem gives sufficient conditions for elements ¢ to belong to the set Ef,.

Theorem 28. Suppose that a € Z[(]t N (0,1) is such that || > 6, (E#OJ |a(j)|)/03 for
some i € {1,2,3}, and Y7_, || < 4M — 1. Then a € Z[(]3; and sgn(a) N {0y, —a;} # 0.
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Proor. The assertion on sgn(a) has been proved in the previous proposition. The other
claim is obtained using Lemma 5:

T
Leo(a) < ZZ|a<>|§

1=0

(AM-141)=M. DO

Bl

As in the general case in Section 5, we choose the elements of £, as power products of
= Cl(l - Q)/(1- CQH_I)v 1=1,2,3.

Suppose that ¢ = H?:l 77;] and that 7 is such that |¢®)] > 22—;|5(j)| for 7 # 4,0, and
(1+ Z—i’)|5(i)| < 4M — 1. Then ¢ satisfies the assumptions of the above theorem. Taking
logarithms we obtain;

3

S k(log [n] = log 7)) < — log(2) — log(61) + log(8s)
=1

and

3 .
S ki(log ] < log(4M — 1) + log(61) — log(6: + 6).
=1

Minimizing 37, k;log || subject to the above inequalities gives an Integer Linear Pro-
gramming problem in three variables kq, ko, k3. Exactly in the same way as in Section 5 one
can prove that the optimal value of the objective function of this ILP is O(M =3).

Now we can analyze Algorithm ABS along the same lines as Algorithm GAA.

Theorem 29. Algorithm ABS computes the desired output in less than clog( M) iterations,
where ¢ is an absolute constant.

Proor. (Sketch) Let k := |log(M)|. In the same way as we did in Theorem 15 we prove
that ABS computes the desired output in no more than

U%\JJ max(Fqr-1)

min(Fy) + min(Fyr)

k=1

iterations. Hence, it suffices to show that max(F,) and min(Fy) are ©(M~2). But this
follows from the above discussion and Theorem 12. O

7 Implementations

In this section, we report on our implementations of the algorithms GAA (for n = 5) and
ABS. We start with the approximation algorithm using 32nd roots of unity.
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Table 1: Number of iterations of GAA forn =5

M | est. worst case | impl. M | est. worst case | impl.
45 723 26 355 2665 135
58 1157 37 452 2695 117
70 1302 39 509 2817 126
80 1356 43 638 2955 131
103 1405 48 653 3165 142
118 1579 57 827 3324 156
143 1866 91 1092 7504 185
182 2333 103 1196 7815 174
213 2392 110 1481 7899 166
238 2453 103 1938 8145 158
274 2511 104 2187 8211 204

7.1 32nd roots of unity

In a preprocessing phase we computed sets F, for a special sequence of £’s described below.
The resulting ILP’s were solved by the Integer Linear Programming Package 1p_solve [2].
All the computations in the field Q(e?>™/32) including those of the units were done with
the package PARI [1]. For each element found in this way, we also computed and stored all
the conjugates. This data is used by the approximation algorithm to reduce computing the
conjugates of the approximations to table-lookups and additions/subtractions.

To avoid a large number of iterations, we had to design the sets Fy in such a way as to
minimize the sum given in Theorem 15. Deviation from the sequence £ = 2¥ to £ = | 1.2
resulted in a good tradeoff between the number of iterations and the amount of memory
used to store all the F,. The theoretical upper bounds for the worst case running time
(obtained via Theorem 15) for different M are compared in Table 1 with the maximum
number of iterations performed for 1000 random numbers in the interval [0, 1].

7.2 16th roots of unity

The units giving rise to the sets Fyr were computed by solving the Integer Linear Pro-
gramming problems of Section 6. Using these units we have computed upper bounds for
theoretical worst case running times (in terms of the number of iterations) of the approxi-
mation algorithm as given in Theorems 15 and 29. The results are summarized in Table 2.
The entry in the third column in that table gives the maximum number of iterations per-
formed for 1000 random numbers in the interval [0,1]. For the implementation of ABS
we deviated a little from the algorithm given in Section 6 by replacing the single addition
steps by multisteps obtained from multiplying the current unit by an appropriate multiple.

This resulted in considerable savings of the running time, as is seen in the last column of
Table 2.

7.3 Approximation of roots of unity
We used our algorithm to approximate e2mi/1024 v elements of Z[eQm/lG]M and
Z[eQ’”/ 32y for various M. Roots of unity of order a power of two are particularly im-
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Table 2: Number of iterations of ABS

M | est. worst case | impl. | enhanced

48 23 9 8

96 134 17 11
192 221 23 16
384 332 42 31
768 406 37 26
1536 445 53 30
3072 484 52 24
6144 514 64 29
12288 645 74 33
24576 656 71 22
49152 697 86 43
98304 736 100 33
196608 767 111 33

Table 3: Approximation of e27/1024 by elements of Z[e2™/32]y;.

M Coefficients Absolute error
45 0 3 -1 2 -3 1 2 -4 3 -2 0 1 -1 4 -5 3 | 0.0064690975925
58 4 2 0 1 -3 -1 2 -4 3 -2 0 3 -1 5 -6 4 | 0.0055076967698
70 -4 3 -1 1 -3 2 3 4 -2 -2 -3 -2 3 -3 3 -1 [ 0.0002526805055
80 -4 3 -1 1 -3 2 3 4 -2 -2 -3 -2 3 -3 3 -1 [ 0.0002526805055
103 5 -1 0 -2 2 -2 3 2 35 -4 -9 2 0 6 -6 7 | 0.0000826104368
118 2 T -6 2 -4 2 -2 1 35 -3 -4 -2 6 2 0 -1 [ 0.0000591644332
143 2 T -2 1 -10 6 -3 8 -7 4 -5 2 0 1 4 -1 | 0.0000363813739
182 3 -4 -1 4 -3 8 -4 8 -16 24 -26 18 -21 16 -11 10 [ 0.0000050421465
213 -4 4 0 0o -13 0 6 7 1 3 -12 -2 T 6 -6 -6 | 0.0000009374573
238 14 -2 -12 3 3 3 -8 -4 1 14 2 -5 -9 3 6 0 | 0.0000002046956
274 14 -2 -12 3 3 3 -8 -4 1 14 2 -5 -9 3 6 0 | 0.0000002046956
355 | -34 -14 -1 18 15 -6 6 18 1 -8 -12 4 -21  -12 -5 12 [ 0.0000000335135
452 -2 21 10 13 -6 -43 -39 -1 1 11 33 41 0 -7 -16 -23 | 0.0000000275519
509 -2 29 14 16 -7 -38 -35 -6 -13 6 37 46 -1 -4 -12 -15| 0.0000000020860
638 -2 29 14 16 -7 -38 -35 -6 -13 6 37 46 -1 -4 -12 -15| 0.0000000020860
653 3 5 14 -21 54 -44 21 -60 40 -32 51 -14 -2 -5 4 9 | 0.0000000005213
827 3 5 14 -21 54 -44 21 -60 40 -32 51 -14 -2 -5 4 9 | 0.0000000005213
1092 | -36 14 -62 -6 131 -46 -118 -58 159 36 -22 -26 59 -54 -86 24 | 0.0000000000594
1196 23 -65 56 -92 45 -151 33 -37 144 7 29 -51 69 46 -156 -41 [ 0.0000000000152
1481 23 -19 -7 29 -68 9 -150 127 -50 171 -154 109 -44 167 -219 5 | 0.0000000000071
1938 54 8 19 -189 173 -27 75 -119 56  -17 -1 87 -61 -9 -135 168 | 0.0000000000004
2187 [ 205 -115 119 -324 269 -89 159 -122 56 -14 -85 149 -157 126 -235 291 | 0.0000000000003
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Table 4: Approximation of €27/1024 by clements of Z[e*™/19],

M Coeflicients Absolute error
96 0 -1 -6 5 1 1 0 -510.0164480060092
192 16 14 20 -12 -21 -6 4 4010.0032793605419
384 30 22 -51 -5 -24 69 -3 -1410.0001455843210
768 -49 98 33 -84 37 -108 119 -1210.0000134058600
1536 | -109 -80 -226 132 182 32 -40 -300(0.0000021850237
3072 -13 -14 =22 -123 216 -85 50 -100 [ 0.0000000836765
6144 | -279 817 354 -244  -867 -174 968 1510.0000000236388
12288 -19 1287 -1446 1001 -971 83 708 -310.0000000013689
24576 | 2102 -3775 3899 -4872 4598 -2134 1035 -443 (0.0000000003403
49152 | 3033 -2525 -16 465 -2921 5445 -2552 635 (0.0000000000214
98304 | -2606 2062 -2620 6018 -6008 8756 -12278 5498 [0.0000000000062
196608 | -1020 -10992 -9535 14226 9254 -12248 7467 -14144{0.0000000000013
393216 | 14984 -52173 2855 -2070 26775 24690 -30325 -21645|0.0000000000001

portant as they are used in radix 2 FFT-algorithms. Our approximation results are sum-
marized in Tables 3 and 4. These tables clearly show the impressive change in dynamic
range requirements when we switch from Z[e?™/16] to Z[e?m/32].

7.4 Scaling

We can approximate complex numbers in the unit circle by elements of Z[(]as/(M/4) rather
than by those of Z[(]as. This technique, called scaling is as follows: suppose that w is a
complex number inside the unit circle, and let wy; and wy be its real and imaginary part

respectively. Let 7; := w;M /4. We first approximate 7; — |7;] by a number in Z[C]]‘&M.
Adding [7;] to this number gives an approximation a; of w;M/4 in Z[C]]TJ/Q, and o =
ay + tagy gives an approximation of wM /4 in Z[(]as. Hence, a/(M/4) is an approximation
of win Z[(]a/(M/4), which is usually much better than a corresponding approximation in
Z[(]p- For instance, using this scaling technique we obtain an approximation of 2mi/1024

as

1
98301 4(—194357 + 2840¢° — 6374¢° + 5136¢* + 362¢° + 386¢* — 1347¢ + 96999)

with an absolute error of less than 1.3 x 10715,

7.5 Running times and Further Remarks

Compilation of Table 1 took 17 seconds on an ULTRASPARC-1. Note that it consists of
22000 approximations of real numbers in [0, 1]. Table 2 which accounts for 13000 approx-
imations took 0.7 seconds on the same machine. Table 3 used 0.04 seconds, and Table 4
used under 0.01 seconds of CPU time on the same machine.

The tables also show that the bounds we have obtained on the range of the approxima-
tion is quite pessimistic. This experience is supported by a great many examples that we
computed with our program.
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8 Extension to other Fields

In this section we prepare the ground for a far reaching generalization of the main results
of this paper. We will start with the characterization of those complex numbers w such
that Z[w] is dense in C, see Theorem 30. This theorem has been taken from Clausen and
Shokrollahi [3]. It turns out that the necessary conditions for this to hold are also sufficient:
if w is neither real nor an algebraic integer of degree 2 (in which case Z[w] is a lattice), then
Z[w] is dense.

Theorem 30. For a complex number w the following statements are equivalent.
(a) Z[w] is dense in C.
(b) w ¢ R and w* ¢ Z + Zw.

Proor. It is obvious that (a) implies (b), hence we focus on the converse. The proof
proceeds in several steps.
Cram 1: if t € C\ R and |{| < 1 then Z[t] is dense in C.

To prove this note that, according to our assumptions, all U,, := Zt™ + Zt™*! are 2-
dimensional lattices in C. Hence, for every z € C there exist uniquely determined u,v € Z
such that

z — (ut™ +vt™ ) € Py o= {at™ + " | 0< @, B < 1},

Since the diameter of P, is smaller than [¢|™ and lim,,_«, [t|™ = 0, our first claim follows.
Cramm 2: If w € C\ R and Z[w] contains a non-zero ¢ with |¢| < 1 then Z[w] is dense in C.
This is obvious by Claim 1, since Z[t"w] C Z[w] for all n.
Now let w € C\R and w? ¢ Z + Zw. If Z[w] contains a non-zero ¢ with [t| < 1 then (a)
follows by Claim 2. So we are left with the case

zwln{zeC | s <1} = {o}. (5)

We are going to show that this case is impossible. To begin with, we note that Z[w] is
discrete, since by (5) the difference of any two different elements in Z[w] has absolute value
> 1. Hence there exists ¢ € Z[w]\ R satisfying

1) = min{|2| | = € Z[w]\R}.
Cram 3: Zw|=Z + Zt.
To see this, let z € Z[w]. Since t is not real there exist a,b € Z and o, € R with

|al, || < 1/2 such that z = (a + bt) + (a + St). Since ¢,z € Z[w] we have a + ft € Z]w].
But then, using ¢ ¢ R and [t| > 1 (see (5)), we get

1 1
ot 5] < 5 max((1+ 4], 11— t]) < (14 [4]) < .
If a4+ 3t ¢ R we get a + t = 0 by minimality of t. If a + gt € R then § = 0; hence

a € Z[w]. Combining this with |a| < 1/2 we get @ = 0, by (5). In both cases z € Z + Zt
and our claim follows.
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To finish the proof we derive the contradiction w? € Z + Zw. By Claim 3 we already
know that w = a + bt and t? = ¢ + dt for suitable a,b,c,d € Z. Hence

w? = (a+bt)w = aw+ b(at + bt*) = aw + b(at + b(c + dt))
= aw+ (a+ bd)bt + b = aw + (a+bd)(w—a)+ bleecZ 4+ Zw.

This completes the proof of the Theorem. O

In the same way as above we can also show that for real « the set Z[a] is dense in R if
and only if a is not an integer.

This result suggests the following generalization of the general approximation algorithm
GAA: suppose that Q(w) is a CM-field [10, pp. 38], i.e., Q(w) = Q(a)(7), where a is
a totally real element. Suppose further that we already know a set of units of the ring
Z[w' + @' | i > 0] with nonvanishing regulator, where bar means complex conjugation.
Then in exactly the same way as in Section 5 we can construct an approximation algorithm
in Z[w] whose worst case approximation error is O(1/M") if the absolute values of the
coefficients are bounded by M, where n is the maximal number of independent units of the
ring. By Dirichlet’s Unit Theorem [10] the number n equals [Q(w): Q]/2.

Abelian number fields satisfy the above assumptions. Hence, our algorithm is readily
extendable to all these fields.
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