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Abstract
We describe a very simple and efficient new algorithm for the approximation of
complex numbers by algebraic integers in Z[¢?*™/8] whose coeffcients with respect to
the usual basis are bounded in absolute value by a given integer M. Its main idea
is the use of a novel signature technique. An important application is the reduction
of dynamic range requirements for residue number system implementations of the
discrete Fourier transform. The algorithm uses at most 10log(M) arithmetic steps
and 2.4log(M) additional memroy. It yields approximations within a distance of
at most 3.42/M. Several examples are included which show that the algorithm is
very fast in practice. For instance, 50000 complex approximations take less than 0.7

seconds on a SPARC-5.
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1 Introduction

In a pioneering paper Cozzens and Finkelstein [1] suggest to use cyclotomic integers in the
ring Z[(] := {ao +ai(+...+ a2n—1_1C2n_1_1 ‘ o; € Z}, ¢ = e2™i/?" to approximate the
input as well as program constants for residue number system processing of functions such
as the Discrete Fourier Transform. The reason why this strategy is superior to conventional
scaling is that Z[(] is dense in C for n > 3. Hence for all z € C and all ¢ > 0 there is an
approximation a € Z[(] of z, such that |a — z| < e.

The question arises how to approximate a complex number by an element of Z[(]. We
will discuss this problem in detail for the case ( = €2™/8. To respect dynamic range
requirements, the algorithm has to have an additional input M € N and should output
approximations in the set Z[(]as which is defined as the set of linear combinations of powers
of ( with integer coefficients bounded in absolute value by M.

In [1] Cozzens and Finkelstein present an algorithm whose basic ingredient is exhaustive
search, and hence, is impractical for larger values of M.

Games [2, 3] develops a greedy algorithm, a rough sketch of which is as follows: in a
first step a small element ¢ of Z[(]ar is found. Then the algorithm starts at the origin
and successively improves the approximation by adding an appropriate element of the form
(‘e without violating the bound on the coefficients. He shows that an extension of this

algorithm achieves an approximation error < |¢|/1/2 — v/2. Finally he gives an explicit
algorithm, based on continued fractions, to find the shortest vector. The final result is
an algorithm with worst case approximation error of O(1/M). As the algorithm needs to
compute the absolute values of (‘¢ at each step, and to compare it with the number to be
approximated, it may not be suitable for real time applications.

Marcellin and Fischer [4] suggest the use of tables of size O(M) to reduce the amount of
computations needed in the above algorithm. However, this might be impractical for large
M as well.

We present a very simple algorithm bases on a signature technique to solve the ap-
proximation problem. For appropriate choices of M the algorithm approximates a complex
number in the unit circle with an error of less than 3.42/M , needs at most 10 log( ) arith-
metic operations, and uses a table of size 2.4log(M ). For arbitrary M the bound on the
approximation error has to be multiplied by an additional factor of 1 4+ v/2. Due to its
simple structure, our algorithm is also suitable for real time computations.

The new and simple idea of the algorithm is explained in the following. In a first
step we reduce the complex approximation problem to the approximation problem of real
numbers in the interval [0,1] by elements of Z[v2]as which is the set of all ag + a;v/2
such that |ag|, |a1| < M. This is done by separately approximating the real and imaginary
part. This only gives an additional factor of two in the bound on the coefficients of the
final approximation. The transition to real approximations allows the use of a signature
technique: if @ = ag + a1v/2 € Z[v2]ar is a number in the interval [0,1], then ag and
ay have opposite signs. Assume that a has signature (—,+), i.e., ap < 0 and aq > 0
then a 4+ b € Z[V2]y for any b € Z[v2]y with signature (4+,—). Hence, if e, and &,
are small positive elements of opposite signature, then we can approximate any given real
number in [0, 1] by starting with 0 and adding to the current approximation one of the ¢;
according to their signature. There is a tradeoff between the approximation error obtained



and the running time of this algorithm. To remedy the situation we compute for a sequence
P < Py <. < Py < M decreasing elements ¢, € Z[ﬂ]pk such that two consecutive ones
have opposite signature, and use these elements to obtain aproximations in Z[\/ﬁ]pk. This
amounts in the storage of £ elements. We will apply Games’ idea [2] to use convergents of
the continued fractione expansion of v/2 to construct the elements ej.

Well-known facts about continued fractions are reviewed in the next section. We describe
and analyze the algorithm in detail in Section 3. Results of our implementation are given
in the final section.

2 Preliminaries

2.1 Reduction to the real case

We first show how to reduce the approximation problem to the real case. Let Z[v2]s :=
{ao + &1\/5 | g, 01 € Z, |(’10|7 |&1| S ﬂf}

Lemma 1. Let z € C, and a := ag + a1V?2 € Z[\/ﬁ]M/Q, b= fBo+ V2 € Z[ﬁ]M/Q be
such that |a—Re(z)| < 6 and |b—Tm(z2)| < & . Then a+ib € Z[e*™/%]yr is an approzimation
of w with error < /26.

ProOOF. Let ¢ = ¢?™/®, Then a 4 ib = ag + (a1 + B1)C + BoC® + (B1 — a1)C>. Note that
laq|, |B1] < M /2. Therefore, the coefficients of a + ib are bounded by M. The bound for
the error follows easily. O

2.2 Convergents

Let (P,) and (@) be sequences of integers defined by

Ph=1,P=1,Vn>2 P,=P,_1+2Q,1, (1)
Q():Oa lela Vn>2 Qn:Qn—l‘l'Pn—Z-

The quotients Py /Q1, P2/Q3, ... are called the convergents of the continued fraction expan-
sion of v/2. The following (well-known) results will be useful in analyzing our approximation
algorithm.
Lemma 2. The following assertions hold for k > 1:

(a) (=1+V2)* = (-1)"(P: - QrV2).

(b) 1/(3Qx) < [Pk — Q3] < 1/(2Q).

() Q= ((1+VDF = (1= v2)) /(2v3), Pk = ((1+ VD + (1= V2)) /2.

(d) (1+V2)F/3<Qr <(1+V2)F!, P <(1+V2)F.



Precomputation: e, ..., e, where e; = (=1 + \/5)Z
Input: w € [0,1].
Output: a € Z[V2|m, 0 < w—a < ep_;.
a:=0
for k=1to ¢ do
while a = o + 01v/2 < w do
if (—l)kao >0thena:=a-+er_1
else a :=a + ¢

Figure 1: Approximation By Signatures (ABS) for M = P,

Proor. (a) This is obvious from the recursion formulas. (b) The right hand inequality is
well known, see [5]. For the left hand inequality observe first that (—1—+/2)¥ = (=1)¥( P +
Qrv?2). Hence, by (a) we get P2 — 2Q2 = (—1)*. The assumption |P, — QxV?2| < 322_k
would yield the contradiction

1 = |P}-2Q} = |Py — QuV2||Pr + Q1 V2|

1 1 22 1
< @Qk<2ﬂ+3Qk)< 3 +9Qk<1

for n > 2. For n = 1 the assertion can be verified directly.

(c)+(d) The formulas for @ and Py follow from (1). The inequalities can be easily derived
from these formulas. O

3 The Algorithm

For k> 1let e = (—1+v2)* = (= 1)¥( Py — QxVv/2). We will use this sequence of numbers
to improve our current approximation at each step. The following lemma is the basis of our
approximation algorithm.

Lemma 3. Letk > 1, M > Py, a = ag + a1v/2 € Z[\V2]p N [0,1], and &; := (-1 + /2)*.
If (=1)*ag > 0, then a4 ep_1 € Z[V2]n, and if (=1)*ag < 0, then a + e € Z[V2]ur.

Proor.  Since a € [0,1], apg < 0 is equivalent to ay > 0. Suppose that (—1)ka0 > 0.
Then ag(—1)""1P,_; < 0, which shows that |ag + (=1)*"'Py_1| < max{|agl|, Pr_1} < M.
Similarly, |a; — (—1)k_1Qk_1| < M. The case (—1)ka0 < 0 is handled analogously. O

The algorithm Approzimation By Signature ABS is given as pseudocode in Figure 1 and
works as follows: starting with ¢ = 0 we run through all £ between 1 and £ and improve
our approximation by adding to @ the number ¢ or €;_1 depending on the sign of the
first coefficient of a¢. As we are adding up positive numbers, the algorithm will eventually
terminate.

Theorem 4. Algorithm ABS computes a with 0 < w —a < (1 + ﬂ)/Pg in at most 3¢
iterations.



PrOOF. Let M := P;. Lemma 3 assures that a € Z[v2]y. The approximation error at
step k can be upper bounded by ¢;_; which is less than (14 +/2)/ P by Lemma 2(d).

Let us study how many times the inner loop is performed at step £ > 1. First, notice
that for each & the algorithm produces an approximation aj € Z[\/i]pk of w. Furthermore,
ap = ap_1 + egep + €161 for some nonnegative integers eg and e;. The number of times
the inner loop is performed at step & is then eg 4+ €. Since w —ap_1 < er_9 and w—ay > 0,
we obtain eg(—1 + \/5)2 + e (14 \/5) < 1. This gives e; < 2, eg < 2, and rules out the
case eg = 1 = 2. Hence, eg + €1 < 3.

At step 1 the loop is performed at most w/ey < 3 times. This implies the assertion. O

For M = P, the error bound given in algorithm ABS can be improved to (1++/2)/(2M)
if we don’t require that the approximation be less than w. Using Lemma 1 this yields an
error of 2(14++/2)/(v/2M) < 3.42/M for the approximation of complex numbers. If M is an
arbitrary integer, we have to multiply all these bounds by an additional factor of (1 + +/2).

We can also analyze the number of arithmetic operations of our algorithm: since it
uses 4 operations in each run of the inner loop (two for the addition of the elements, one
for the computation of the value as explained in the next section, and one for computing
the distance to w), we obtain the upper bound of 12log,, 7(M) < 10log(M) given in the
introduction.

4 Implementation Results and Conclusions

In this section, we will report on our implementations of the algorithm ABS. We designed a
data type for the elements of Z[+/2] consisting of two integer coefficients and a value (IEEE
64-bit double format) corresponding to the value of the integer as a real number. This
reduced computing the value of an approximation to floating point addition.

Table 1 summarizes the result of computations on random numbers. The first column
corresponds to M, the second contains the theoretical upper bound on the number of
iterations as given in Theorem 4, and the third column gives the maximum number of
iterations encountered for 1000 runs on random numbers in [0, 1]. The fourth column shows
the upper bound on the worst case error which is equal to 3(1 4 v/2)?/(2M), and finally,
the last column shows the maximum error encountered during the approximation of the
random numbers.

In Table 2 we have given our approximations of a primitive 1024-th root of unity. Use
of scaling can reduce the error even further: the idea is to approximate complex numbers
by elements from Z[ezm/S]M/L for some large number L. Using this technique, we get, e.g.,
the approximation

1 ' ' |
m(8120 — 2856627”/8 _ 40806471'2/8 + 86266671'2/8)

with an error less than 1077.

Our algorithm runs very fast in practice. For instance, 100000 approximations of random
numbers in the interval [0, 1] took 0.7 seconds on a SPARC-5. Due to its simple form, it is
well suited for real time applications when combined with scaling methods.



Table 1: Number of iterations and observed error for ABS

M comp.  max. comp. error max. error
3 3 3 0.4142135624 0.3565025624
7 6 6 0.1715728753 0.1209078753
17 9 9 0.0710678119 0.0217268119
41 12 11 0.0294372515 0.0103675030
99 15 13 0.0121933088 0.0060718692
239 18 15 0.0050506339 0.0047838281
577 21 17 0.0020920411 0.0005971942
1393 24 20 0.0008665518 0.0008221857
3363 27 23 0.0003589375 0.0003230196
8119 30 27 0.0001486768 0.0001285928
19601 33 29 0.0000615839 0.0000583643
47321 36 35 0.0000255089 0.0000174464
114243 39 18 0.0000105661 0.0000103679
275807 42 26 0.0000043766 0.0000042783
665857 45 23 0.0000018129 0.0000016323
1607521 48 32 0.0000007509 0.0000007482
3880899 51 34 0.0000003110 0.0000002396
9369319 54 28 0.0000001288 0.0000001040
22619537 57 33 0.0000000534 0.0000000540
54608393 60 43 0.0000000221 0.0000000190
131836323 63 43 0.0000000092 0.0000000130
Table 2: Approximation of e2mi/1024
M coefficients error
3 ] ] ] ] 1.0000000000000
7 2 -1 ] 1 0.4142401836883
17 -2 2 ] -2 0.1716637449664
41 8 -5 ] 5 0.0713134465244
99 -16 12 ] -12 0.0300515043906
239 42 -29 ] 29 0.0136333100745
577 -98 239 -239 99 0.0064553678835
1393 240 -239 99 99 0.0023400844427
3363 -576 1323 -1294 507 0.0011163208005
8119 1394 -1463 676 507 0.0004043586918
19601 -3362 5263 -4080 507 0.0001301259489
47321 8120 -2856 -4080 8626 0.0000435838918
114243 -19600 16745 -4080 -10975 0.0000107648845
275807 94643 -144819 110163 -10975 0.0000046713682
665857 -181164 245231 -165644 -10975 0.0000023025240
1607521 -181164 -225601 500213 -481807 0.0000015774491
3880899 -181164 440256 -441451 184050 0.0000006593521
9369319 2092214 -3911475 3439448 -952639 0.0000003123136
22619537 -7277105 6594533 -2048972 -3696849 0.0000001248819
54608393 -7277105 -2774786 11201246 -13066168 0.0000000485207
131836323 -7277105 19844751 -20787610 9553369 0.0000000113069
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