Reasoning about Sets via Atomic
Decomposition

Hans Jurgen Ohlbach! Jana Koehler?
TR-96-031

August 1996

Abstract

We introduce a new technique that translates cardinality information about finite
sets into simple arithmetic terms and thereby enables a system to reason about such
set cardinalities by solving arithmetic equation problems.

The atomic decomposition technique separates a collection of sets into mutually
disjoint smallest components (“atoms”) such that the cardinality of the sets are just
the sum of the cardinalities of their atoms.

With this idea it is possible to have languages combining arithmetic formula with
set terms, and to translate the formula of this combined logic into pure arithmetical
formulee.

As a particular application we show how this technique yields new inference pro-
cedures for concept languages with so called number restriction operators.

IImperial College, Department of Computing, London SW7 2BZ, email: h.ohlbach@doc.ic.ac.uk.
20n leave from DFKI, Stuhlsatzenhausweg 3, 66123 Saarbriicken, e-mail: koehler@dfki.uni-sb.de.

Contents

1 Introduction
2 Atomic Decomposition of Sets
2.1 Set Hierarchies
3 Arithmetic Reasoning with Decomposed Set Terms
4 Concept Languages
4.1 The PCM-Example
4.2 The Language TFYT . .
4.3 Optimized Decomposition of Role Hierarchies
4.4 Reasoning with Concept Terms L
4.4.1 A Normal Form and the Consistency Check
4.4.2 The Subsumption Test
5 Summary and Outlook
6 Appendix: The PCM Example
Index

15

17
19
20
23
25
27
31

33

34

37

1 Introduction

If Henry has two sons and three daughters, everybody knows immediately that he has five children.
In any of the known general symbolic knowledge representation languages, predicate logic, concept
logics etc. it is sometimes difficult to represent this information, let alone to make this simple
derivation. In predicate logic it is not even a valid inference without further information. One must
tell the system that sons and daughters are in fact children, that the sets are disjoint, i.e. there are no
hermaphrodites, and that besides sons and daughters there are no other types of children. In most
of the concept languages this information cannot even be expressed. In fact, simple arithmetical
reasoning about cardinality of sets still seems to be a big problem in logic contexts.

In this paper we present a technique for turning cardinality information into arithmetical terms
which can be handled by arithmetical equation solvers. The basic i1dea i1s very simple and can be
explained with the example above. In this example we want to show

|sons| = 2 A |[daughters| = 3 = |children| =5 (1)

where |...| denotes the set cardinality function. Without further information, sons, daughters and
children can be arbitrary sets having arbitrary overlaps with each other. Therefore Implication (1)
is not valid in general.

sons daughters

children

Figure 1: A general set structure

Figure 1 shows the most general way, three different sets can overlap with each other. As one can
see, the three sets can be built up from seven mutually disjoint and unseparated areas. We gave
these areas names with the following meaning;:

¢ = children, not sons, not daughters.
s = sons, not children, not daughters.
d = daughters, not children, not sons.
¢s = children, which are sons, not daughters.
c¢d = children, which are daughters, not sons.
sd = sons, which are daughters, not children.
csd = children, which are both sons and daughters.

The original sets can now be obtained from their “atomic” components:

children = cUcsUcedU csd
sons = sUcsUsdUcesd
daughters = dUcdUsdUcsd

Moreover, since this decomposition is mutually disjoint and exhaustive, the cardinalities of the sets
just add up:

|children| = |e| + |cs| + |ed| + |esd|
|sons| = |s|+ |es| + |sd| + |esd]
|daughters| = |d|+ |ed|+ |sd| + |esd|

Formula (1) can now be rewritten into

[s| + |es| + |sd| + |esd| = 2 A|d| + |ed| + |sd| + |esd] = 3 2)
= |e| + |es| + |ed| + |esd| = 5

or by dropping the cardinality function
s+es+sd+esd=2ANd+ed+sd+cesd=3 = c+es+ed+esd=5 (3)

In (3) we interpret the symbols ¢, s, ... directly as the numbers denoting the cardinality of the
corresponding sets. This makes sense because the sets are finite and mutually disjoint. This way,
Problem (1) has been transformed into a pure non-negative linear Diophantine equation problem.

Diophantine equations are equations with integer valued variables. They are called “linear” if no
products of different variables occur and “non-negative” if variables are constrained to non-negative
integers. Formula (3) of course, is still not valid. Further information is necessary.

sons daughters
AONNX XXX /3
L N
ASSX| esd 77N
W

A ATAvATA'4 2
So e
€5 | c
{ > 7
s <77
X 7
(c)
___J
children

Figure 2: The correct subset relationships.

First of all we add the subset information. Both sons and daughters are children. That means the
first picture was a bit too general. We are in a more specific situation which is depicted in Figure 2.
Here all sets not containing ¢ are empty reflecting the subset information. That means s = 0, d = 0,
sd = 0 holds and we can simplify Problem (3) to

cs+cesd=2ANcd+esd=3 = c4+csd+ced+esd=5 4)

which is still not valid. The next piece of information we need 1s that there are no hermaphrodites.
That means the intersection of sons and daughters is empty: c¢sd = 0. We get

ecs=2ANed=3 = c+es+ed=5

Finally, we exploit the fact that there are no other types of children besides sons and daughters, i.e.
¢ = 0 and we end up with

cs=2ANcd=3 = ecs+ed=5 (5)

and this is in fact valid.

Let us recall the steps we performed. We started with the most general decomposition of the
three sets into their atomic components. This allowed us to turn cardinality terms like |sons| into
arithmetic terms and we got a pure linear Diophantine equation problem. Then we exploited the

subset, disjoininess, and exhaustiveness relations between the different sets. Each such relation made
some of the atoms empty and simplified the problem. This phenomena is in sharp contrast to most
other encodings in logical systems where additional information rather complicates matters than
simplifies it. Finally we ended up with the simple Formula (5) we could submit to an arithmetic
equation solver.

The paper is organized as follows: In Section 2, we formalize the atomic decomposition idea
and present optimized methods for reducing the exponential number of atoms. Section 3 embeds
the transformation into a general arithmetic language with a suitable calculus for reasoning with
arithmetic constraints. In Section 4, we apply the mechanism to the concept language 7F+* and
show how the consistency and subsumption problems over concept terms can be reduced to solvability
tests for systems of equations. The language 7F 1 is an extension of the language 7F [Neb90]
which adds more complex role hierarchies and a more expressive arithmetic constraint part to the
original core language. We conclude with some final remarks on equational problem solvers and an
outlook on current work in Section 5.

2 Atomic Decomposition of Sets

The introductory example in Figure 1 illustrated the semantic side of the decomposition idea. A set
of sets 1s decomposed into basic non-overlapping components. In this section, we develop a syntac-
tic representation of the decompositions and introduce inference systems working on the syntactic
representation.

The basis for the syntactic representation is a finite set S = {s1,...,s,} of terms in some term
language coming from some application. Each s; is supposed to denote a subset of some global
set D. The internal structure of the terms s; is irrelevant for the purpose of the decomposition,
therefore we can treat them as constant symbols. In the introductory ‘children’ example, we had
S = {sons,daughters, children}. In addition to the symbols in & we have the fixed symbols T
denoting the whole domain D and L denoting the empty set.

At first glance, the atoms in an atomic decomposition of some sets seem to be some kind of
intersection. We could for example take subsets {s;,...,s;} C S as a representation of an atom.
The subsets containing two and more elements might be interpreted as intersections s;N...Ns;. But
this 1s only half of the story. The actual atom is only that part of the intersection which does not
belong to any other intersection. For example in Figure 1, the set denoted by “sd”' does not mean
the intersection sonsNdaughters, but (sonsNdaughters)\ (sonsNdaughtersnchildren). This way
we also get an interpretation for the one-element subsets of §. The set {s;} denotes that part of
(the interpretation of) s; which does not belong to any other intersection. Even the empty subset
¢ has a meaning. It denotes the complement of the union of all elements of S. In our example, @
denotes all the non—children in the given domain.

This way, we get 2" atoms for &, which can be represented by the subsets of §. To distinguish
the atoms from the elements in &, and to simplify notation we usually write them as strings. For
example, if 8§ = {p,c, m} then the decomposition as(T) is {0, p,c, m, pc,pm, cm, pcm}. That meas
the whole domain D is separated into 23 subsets denoted by these 8 strings. The string pc stands
for the set {p,c}. As a further notational convention a string wp where w is an atom and p a single
term stands for w U {p}.

The atomic decomposition ag(s) of a single element s € § now consists of those atoms in ag(T)
which have a s—component. For the above example we get as(p) = {p, pc, pm, pcm}.

1Take “sd” as an abbreviation for {sons, daughters}.

Definition 2.1 (Atomic Decomposition) Let S = {s1,...,s,} be a finite set of terms of some

term language which we also denote with S (for the purpose of this paper there is no difference). S
together with {T, L} are the basic set terms.
i) We define the atomic decomposition ags(T) as the set of subsets of S. The elements of the
decomposition are called the atoms.
it) For a given s € 8 let as(s) E{w € as(T) | s € w} be the S—decomposition (or atomic
decomposition or just simply decomposition) of s. Notice that this definition automatically
guarantees as(L) = 0.

The elements of S will be called basic set terms. a

For the purpose of atomic decompositions, the internal structure of the terms s € § is irrelevant.
We only need to know that they denote sets. In technical terms this means that we can take any
interpretation £ for &, which may come from some application, and which maps the elements of &
to some sets, and extend it to an interpretation & = as(€) which gives the intended meaning to
the atoms in as(T).2

The atoms s; . ..s; denote those parts of the intersection £(s;) N...NE(s;) which do not belong
to any other intersection, or, which i1s the same, those parts of the intersection which are not part
of some sp & {s;,...,s;}. This is made precise in the next definition.

Definition 2.2 (Interpretation of Atomic Decompositions) For a set S of terms and its de-
composition as(T) we extend the definition of as to interpretations:
i) Let & be an interpretation function which assigns some set E(s) C D of objects in some domain
D to each member of s € S. £(T) =D and E(L) = 0 is required. We define the extended
interpretation function ags(€) to be a new function which is like £, but which assigns sets to
the atoms as well: For w € ag(T)
as(E)(w) = (VMmN |J &)
rew SES s¢w
Notice that the intersection over an empty indexr set is the whole domain D. Therefore
as(E)(0) =D\ U,cs E(5) is defined as well.
ii) For a set {wy,...,wy} of atoms we define

as(E){wr, ..., wip}) Eas(E)wr)U. .. Uas(E)(wy).

As an example, consider the set S = {r, s} with as(T)={0,r,s,rs}.
Suppose D ={1,2,3,4,5,6,7,8,9,10}, £(r) = {1,2,3,4,5} and £(s) = {4,5,6,7}. Then we get

as(€)(0) D\ (E(r)U&(s)) {8,9,10}
as(E)(r) = &(r)\&(s) = {1,2,3}
as(E)(s) E(s)\&(r) 16,7}
as(&)(rs) = E(r)né&(s) = {4,5},

and this is a partitioning of D. With some quite simple arguments we can confirm that the definition
of as(€) gives the intended meaning to the atoms. We have to check that each set is decomposed
into an exhaustive and mutually disjoint set of atoms.

?In the concept language example in Section 4, the elements of S will be so called role names. They are interpreted
as binary relations.

Lemma 2.3 (Adequacy of as(€)) For a set S of terms and extended interpretation function
&' Yag(€) (Definition 2.2):

i) E'(u)N&'(v) =0 for each u# v € as(T). (disjointness)

ii) For each r € S: E(r) = UwEas(r) E'(w). (ezhaustiveness)
Proof:

i) Let wu = ry...7; and v = s1...s.. Since u # v there is w.l.o.g some r; € u but r; ¢ v.

If for some a we have a € &'(u) = [E(r1) N ... N E(rp)] \ Usg, €(s) then a € E(r;) and
ag&(w)=[EB)N...NEGsH]\ [E(rj)U ..]. Thus, E'(u)NE'(v) =0.

i) “C”: Let a € £(r). Let w ™= {s1,...,s1} be such that a € £(s;), 1 < j <l and a & &(s) for
s w, s €8. In particular, »r € w. Now a € £'(w) and therefore a € Uweag(r) E'(w). Thus,
g('r) - Uweag(r) gl(w)

“D”: Let a € E(w), w € ag(r), i.e. w=7s1...5;5. Thena € [E(r)NE(s1)N...NE(sK)]\ -
which means a € £(r). Thus, £(r) D Uweag(r) E(w).

)

Based on the symbols in § we can now define sei—terms constructed with the usual boolean set con-
nectives N, U and \. It turns out that the decomposition of set terms composed with set connectives
can be done by performing the corresponding operation on the decomposition of the arguments.
To illustrate this, we use again the example from Section 1. In Figure 1 we can directly see that
for example
as(sons Ndaughters) = {sd, csd}
= {s,cs,sd,esd} N{d,cd, sd, csd}
as(sons) N ag(daughters)
as(sons Udaughters) = {s,cs,d, cd, sd, csd}
= {s,cs,sd,esd} U {d, cd, sd, csd}
= as(sons) U ag(daughters)

ag(sons \ daughters) = {s,es}
{s,¢s,sd,csd} \ {d, cd, sd, csd}
= ags(sons) \ as(daughters).

Definition 2.4 (Set—Terms and their Decomposition) Let S again be a finite set of terms, the
basic set terms.

i) We define the set Ss of (composed) set—terms based on S as the least set of terms such that

S C Ss and if ¢ and v are sei-terms in Ss then o U, o N and ¢ \ ¢ are set—lerms in Sg.

it) The atomic decomposition as(p) of a set-term ¢ is defined in the obvious way:
If ¢ € S then as(y) is as in Definition 2.1,ii).

as(pUy) = as(p) Uas(y)
as(pne) = as(p)Nas(y)
asle\¥) = ase)\as(y).

iti) The interpretation of sei-terms is done by taking the standard definition of the set connectives
(N = intersection, U = union, \ = set difference). d

Notice that we used the same symbols N, U and \ both at the language level and at the meta
level. This is justified because, as the next lemma confirms, they have exactly the same meaning.

Lemma 2.5 For a finite set S of terms, a corresponding extended interpretation function £ and
two set-terms ¢ and :
(as(¥))

) E(as(pUy)) = E(as(yp)) ¥)
i) E(as(pNi)) = E(as(p)) NE(as(¥))
i) E(as(p\¥)) = E(as(e) \ E(as(¥)).

Proof: We verify only the second statement. The others are analogous.

ué 5(
né 5(

Elas(pny)) = Elas(e)Nas(y)) (Definition 2.4, i)
= UwEQS(w)nas(w) E(w) (Definition 2.2,i7)

Uweas(w) g(w) N UwEOés(d)) “"(w)
= E(as(p)) N&(as(y)) (Definition 2.2,i7)

In the second but last step we made use of the disjointness of the decomposition, c¢f. Lemma 2.3,7).
The “C” inclusion is trivial. For the “D” direction, suppose a is a member of the lower set. There
must be some w € as(p) U as(y) with a € E(w). If w is not in the intersection as(p) N as(y), it
is either in ag(p) or in as(¢), but not in both. But since the atoms are interpreted as mutually
disjoint sets, @ cannot be in £(w) for this w. Thus, w must be in the intersection, and therefore a
is a member of the upper set as well. u

As a consequence of this lemma, it is now easy to verify that not only for the terms in §, but for
all set—terms built on &, one can compute the cardinality of the set associated to the set-term by
adding up the cardinalities of the atoms in its decomposition.

Corollary 2.6 For a finite set S of terms, an interpretation function £ and a set—term ¢ with
decomposition as(p) = {wy, ..., wp}:

1) E(p) = as(€)(as(p)) = as(E(wi)) U ... Uas(E(wy))-

ii) |E(p)] = las(E)(w)| + ...+ |as(E)(w)| where |...| denoles the cardinality of a set and + is
the addition of cardinal numbers. a

The proof of i) is by induction on the structure of ¢ using the same arguments as in Lemma 2.5.
Statement #7) is a consequence of i) and the disjointness of the decomposition, cf. Lemma 2.3,7).

Recall the different notions of interpretations we have introduced. We started with an interpre-
tation function & for the terms &, and we assumed this was given to us by somebody. £ was then
extended to ag(€) by adding suitable interpretations for the atoms, and finally we integrated the
standard set operations N, U and \. From now on an interpretation for the sel—terms always means
an extended interpretation of this kind.

2.1 Set Hierarchies

The decomposition of a set & with n elements yields 2", i.e. ezponentially many atoms. Even for
small numbers n, this can become unmanageably large. Therefore every possible way to reduce the
number of atoms needs to be exploited. The 2" atoms describe the most general way n sets can be
related to each other. Special relationships between the n sets; in particular subset and disjointness,
however, puts us into a more special situation where some of the atoms denote empty sets. The
best way to exploit this information is by eliminating these empty atoms from the decomposition
itself. That means, if for example as(r) = {w1,...,w,} and, by some extra condition we know that
say, w1 denotes an empty set, we do not store w; = @, but we change the definition of as such that

as(r) = {ws, ..., wn}.

This way a does not only depend on &, but in addition on extra information about the relation-

ships between sets. In order to formalize this, we introduce hierarchy specifications, and we present

two different ways for generating an optimal decomposition function from a hierarchy specification.?

Definition 2.7 (Hierarchy Specification) A hierarchy specification H over a set S is a list of
hierarchy declarations of the following kind:

i) a basic sel term v € S is a hierarchy declaration (non-emptiness).
it) If ¢, v are set terms in Ss then ¢ C 1) is a hierarchy declaration (subset).
iti) If ¢ and ¢ are set terms in Sg then ¢ 1 is a hierarchy declaration (disjoininess).

i) If ¢1,...,¢n, ¢ are set terms in Sg then
@1y on <@ is a hierarchy declaration (partitioning).

O
An example for a hierarchy specification is
H = {children,
daughters, sons < children, (6)

favorite-children C children}

The first declaration, children, just introduces the constant children. In principle this would not
be necessary, but we shall use the non-emptiness declaration for guiding the optimal computation of
a decomposition function. The second declaration daughters, sons <1 children declares that the set
children is partitioned into daughters and sons. Finally, the third declaration favorite-children
C children introduces favorite-children as a subset of children. Notice that all the terms in
hierarchy declarations may be arbitrary set terms. For example

favorite-children C children N blondes

which specifies favorite-children as a subset of the intersection of children and blondes is a valid
declaration. Another example is

sons N blondes, daughters N blondes <1 blonde-children
which declares that the blonde children consist of blonde sons and blonde daughters.
Definition 2.8 (Semantics of Hierarchy Specifications) A model £ satisfies a hierarchy spec-
ification H, written £ = H, iff
i) E(p) # 0 for each non-emptiness declaration ¢ € H,
ii) E(p) C E(t) for each subsel declaration ¢ C v in H,
i) E(p)NE(WY) =0 for each disjoininess declaration ¢ 1 in H,

iv) for each partitioning declaration o1, ..., ¢n, <l in H we have
1. E(pi)NE(pj) =0 foralli,j=1,...n withi # j, and
2. E(p1)U...UE(en) = E(p).

The first algorithm for generating a decomposition function for a hierarchy specification works
by first generating all atoms and then successively eliminating unnecessary atoms.

3Note that the function is not meant to be an optimal function in the sense of memory or runtime requirements,
but in the sense that it computes an optimal decomposition containing only the non-empty atoms.

Definition 2.9 (Decrementing Algorithm) Given a hierarchy specification H over a set S of
terms, we define a decomposition function ozg inductively:
i) amD L.

D det D] ‘
ii) Onufr} — OH for a non-emptiness declaration r.

iii) a%u{wcw}(s) Labl(s)\ [adl(¢) \ af)(¥)] for a subset declaration ¢ C .
iv) aZU{wTw}(S) Lal(s)\ ad(sNeNy) for a disjointness declaration ¢ 1 .

v) a%u{kpl,...,(pnqu}(S) défa%(s) \ [Ui;tj 0‘2(%’ Ng;) U
[afi(p1U...Ugn) \ af(¢)] U [af(e) \ afi(p1 U ... Ugn)]]

for a partitioning declaration @1, ..., o, < .
O
For the following example hierarchy specification
‘H = {daughters,sons < children, (7)

favorite-children C children}
the decrementing algorithm works as follows: Since § consists of the four terms
{children, sons,daughters, favorite-children}
we start with the full decomposition:
aé)(—l—) = {0,¢,s,d, f,cs,cd,cf,sd,sf,df,csd, csf, cdf, sdf, csdf }

The string ¢ abbreviates {children} and similar abbreviations were chosen for the other atoms.
First, we process the partitioning declaration daughters, sons < children.

According to Definition 2.9, v), the following atoms are to be eliminated in order to obtain
D det D

ay = a{daughters,sons<]children}:
a) aé)(sans Ndaughters) = {sd, esd, sdf, csdf }
b) a@D(sons U daughters) \ osz (children)

{s,d,cs,ed,sd,sf df csd,csf, cdf, sdf,esdf } \ {c,cs,cd, cf,esd,esf,cdf, sdf, esdf }
{s.d,sf, df}.
¢) ag(children) \ o (sons U daughters)
={e,es,cd,cf, csd,esf,cdf, esdf} \ {s,d,cs,cd, sd,sf,df, csd,esf, cdf, sdf, csdf }
= {c,cf}.
What remains is: o?(T) = {0, f, es, cd, csf, cdf}.
Now we process the subset declaration favorite-children C children. According to Definition 2.9, iii),

the following atoms are to be eliminated in order to obtain
D def D .
ay = a{daughters,sons<]children,fa'uorite—childrengchildren} :

aP (favorite-children) \ o (children) = {f, esf,cdf} \ {cs,cd, esf, cdf} = {f}.
We end up with

aD(T) = {0,cs,cd, esf, cdf}
oD (children) = {es,cd,esf, cdf}
oD (sons) = {es,esf}

oD (daughters) = {cd, cdf}

oD (favorite-children) = {esf,cdf}

This 1s what is to be expected, but the way it is obtained is not satisfactory because we still start
with an exponential number of atoms. A better algorithm would not generate the superfluous atoms

at all. Nevertheless the algorithm is sound and complete, 1.e. we have not removed too many atoms,
and all atoms which must denote empty sets if the hierarchy specification is to be respected, have
actually been removed.

Proposition 2.10 (Soundness of the Decrementing Algorithm)
For a given hierarchy specification H over a set S of terms and for every model & = 'H and every
set term ¢ we have E(p) = E(al)(p)), i.e. not too many atoms have been eliminated.

Proof: It is sufficient to show the statement for the basic set terms s € §. The proposition then
follows by induction on the structure of set terms.

We perform an induction on the number of declarations in H. The case H = 0, where a%(—l—)
computes the full power-set, is actually the statement of Corollary 2.6, ¢). In the induction step, we
have to consider the two nontrivial cases where a subset declaration and a partitioning declaration
is processed. Both cases follow from the semantics of the declarations in Definition 2.8 and the
deletion rules.

Case 1: a subset declaration ¢ C ¢ is processed. Let ak)(s) = {wi,...,wz}. By the induction
hypothesis we have £(s) = £(wq)U...UE(wy). Suppose for some w; € {w, ..., wi}, w; & a%u{wgw}.
w; has been eliminated because w; € af) () and w; ¢ af) (). Since £ = (¢ C ¥), i.e. E(p) C EW)
holds, it must be £(w;) = 0. Thus, E(w1)U. . .UE(w) = E(w1)U. . .UE(w;—1)UE(wi1)U. . . UE(wy).
This is true for all eliminated.a.tonlls. Therefor.e 5(5) = S(Ozgu{epgw}(s)).

The second case where a partitioning declaration is processed, 1s analogous. u

Proposition 2.11 (Completeness of the Decrementing Algorithm)

For a given hierarchy specification H over a set S of terms let W = as(T)\ af)(T) be the set of
deleted atoms. Fvery extended model £ for S with E(W) = 0 satisfies H, i.e. enough atoms have
been deleted.

Proof: We prove the statement again by induction on the number of declarations in H. For the
base case, H = @), nothing needs to be proved.

For the induction step, let € be the subset declaration or the partitioning declaration to be processed.
Let Wy Zas(T)\ o) (T) and Wiugey Eas(T)\ a%u{g} (T). Wrugey 2 Wy because more atoms
are deleted when processing . Suppose &(Wyuge) = 0. This means, E(Wx) = 0 as well, and by
the induction hypothesis, £ = H. It remains to be shown that £ | €.

Case 1: ¢ is a subset declaration ¢ C 9. Wyyye} contains all the removed atoms in a%(gp) which
are not in 012(1/}). These are mapped to the empty set by £. As a consequence of Corollary 2.6 we
can therefore conclude E(¢) C E(v).

The case where ¢ is a partitioning declaration is analogous. u

Instead of starting with the full decomposition of a set &, and then deleting superfluous atoms,
as the a% algorithm does, one can try to build up the decomposition incrementally, adding only
those atoms which are necessary. For general hierarchy specifications as defined in Definition 2.7, we
did not succeed in developing such an algorithm. But for a restricted class of incremental hierarchy
specifications, this is possible.

Definition 2.12 (Incremental Hierarchy Specifications) An incremental hierarchy specifica-
tion s a hierarchy specification where
i) each non-emptiness declaration is ¢ new basic set term, i.e. it has not occurred in previous
declarations (recall that hierarchy specifications are ordered sets),
ii) for each subset declaration ¢ C ¥:
a) ¢ is a new basic set term and
b) all basic set terms occurring in v have been iniroduced before,

iti) for each partitioning declaration @1, ..., ¢n < @:
a) ¢1,...,¢n are new basic set terms and
b) all basic set terms occurring in ¢ have been introduced before, and
iv) there is no disjointness declaration in H. a

The example hierarchy specification (6) we had before is in fact incremental. Tt meets all the
requirements. The second version (7) is not incremental, because in the partitioning declaration,
children is new, which violates condition éii).

The incrementing decomposition algorithm we are going to define now has rules for each type of
declaration. The way these rules work are best illustrated with some pictures. The first rule computes
from a given decomposition a new one for a single non-emptiness declaration r. To illustrate this,
suppose the given decomposition decomposes a set s into three parts sy, ss, and s3, cf. Figure 3.
The new set r just splits these three parts into a non—r—part and a part intersecting with r. Thus,
we keep s1, s, and s3 as the non—r—parts and add s;7, ssr and s3r as the intersecting parts.

s s
S3

S3
— 527"
r

Figure 3: Incrementing algorithm for a non-emptiness declaration r.

A subset declaration r C ¢ is processed by splitting the overlapping parts of a decomposition for
a term s with the decomposition of ¢ again into a non—r—part and into an r—part, cf. Figure 4.

—
s S5 53 0 s
S1
54 Sy —

Figure 4: Incrementing algorithm for a subset declaration r C .

Finally for a partitioning declaration r1,...,r, < ¢, the overlapping part of some s with ¢ is
split into the n components rq, ..., r,, cf. Figure 5.

Definition 2.13 (Incrementing Algorithm) We define an algorithm which computes a decom-
position function a{_t and the set of basic set terms Sy from an incremental hierarchy specification
H. The definition is again recursive on the length of H.

i) al(T)= {0}, Sy = 0.

i) ol (5):{ ol (s)U{wr |weal(s)} fors#r
HU{r} {wr |w e of,(Sx)} fors=r

Snuiry = Sw U {r} for a non-emptiness declaration r.

10

iii) of (5) :{ afy(s) U {wr | w € of(s) Nafy(p)} fors#r
Huircel {wr | w e ofy ()} fors=r

Snuirce} = Sn U {r} for a subset declaration r C ¢.

I I
U I y ooy Whp i
iv) ag'tu{n,...,rnq‘p}(é’) _ { [z (s) \ a3 (¥)] UwEaH(mw){wrl wry,}t fors#r

{wri | w € ody(p)} for s =r;
SHULry,. e} = SuUA{r1, ..., mn} for a partitioning declaration r1,...,r, < . a
— —
s s
S3 S3
S§9 4 52 ¥
S1 S1 S4T1 S5T1

Sa Sy — (S4’P2 55719)

Kﬁ/

Figure 5: Incrementing algorithm for a partitioning declaration r1, 7y, 73 < .

As an example consider again hierarchy specification (6):

H = {children,
daughters, sons < children,
favorite-children C children}

We abbreviate children with ¢ and do the same with the other terms. The algorithm performs the
following steps:

Start:
S =S = 0
a(T) Eay(T) = {0}
Processing of the non-emptiness declaration children:
81 = Sichitareny = {children}
{c}
oi(T) = {0,c}

a{(children) et aich“drm} (children)

Processing of the partitioning declaration daughters, sons < children:

Sy = {children, sons, daughters}
ol (children) %' af(children)\ of(children) U U {ws, wd}
wEQ{(childrenﬂchildren)
= {es,cd}
al(sons) = {cs}
ol (daughters) = {cd}
ad(Ty = {0,cs,cd}

11

Processing of favorite-children C children:

Ss = {children, sons, daughters, favorite-children}
ol (children) ¥ al(children) U {wf | w € al(children)}
= des,cd,esf, cdf}
al(sons) = al(sons)U{wf | w € al(sons)}
= des,esf}
ol (daughters) % ol (daughters) U {wf | w € al(daughters)}
= {ed,cdf)
ol(TY = {0,cs,cd, csf, cdf}

Proposition 2.14 (Equivalence of the Algorithms) For every incremental hierarchy specifica-
tion 'H and for § = Sy we have a% = a%‘

Proof: The decrementing algorithm not only depends on the hierarchy specification H, but also on
the set S of basic set terms. For the incrementing algorithm we did not consider a fixed S but took
Sy from H itself. In order to compare both algorithms, we therefore need to make the dependence
of § explicit for the decrementing algorithm. To this end we write a%,s instead of just a%. It is
casy to prove by induction* on the number of declarations in H, that for a basic set term r not
occurring in ‘H and for s not containing r:

0% sury (5) = af s(s) U {wr | w € o 5(s)} (8)
and more general®, for basic set terms R = {ry,...,r,} not occurring in ‘H and for s not containing
terms in R:

H =oqs(s)U{wUu] H c{ 1 9

oy sur(8) = ag s(s)U{wUu|w € oy s(s),u C{ry,...,mn 9)

By induction on the number of declarations in H we prove a%)SH (s) = ak,(s) for all basic set terms
s € Sy . The proposition then follows by induction on the structure of set terms.
The base case, H = 0, is trivial because Sy = @) and therefore oszSm (T) = {0} = ay(T). For the

induction step we consider the different types ¢ of declarations. In the sequel let H' E'H U {¢}.
Case ¢ = r is a non-emptiness declaration.

Subcase s # r:

O‘%/,sw (s)

= a%,sw (s) (Definition 2.9,i7)
= 0l o (5)Ufur | w € ol () (et ()
= a{_t(s) Ufwr |we 0451(5)} (induction hypothesis)
= aju(s). (Definition 2.13, i)

Subcase s =r:

O‘%f,sﬁ, ()

4The main argument is that the initial decomposition of a set & essentially yields the power-set of S. We therefore
have asy{r(SU{r}) = 25U{rt = 25 U {wr |w C 8} =25 U {wr | w € ag(T)}. If r does not occur in a hierarchy
specification then for each atom w deleted by the decrementing algorithm, the corresponding element wr is deleted
as well. Conversely for each atom w without r there is still a corresponding element wr in a,ﬂu{r}(s).

5The proof is a generalization of the proof for (8).

12

= a%sw(r)
={wr|we€aj g (T)}
{wr |w € ajy(T)}

= a{_t,(r).

Case & =r C ¢ is a subset declaration.
Subcase s #r:
O‘%f,sﬁ, (s)
= as,, () \od s, (N \ g s, ()]
= [042,571(5) U{wr |w e 0‘%,5”(5)}]
\ [{wr|w € afy s, (T)}
\ [07 s, (9) U{wr | w € afy s, (#)}]]

= [ofys,, () U{wr [w € afy 5, (5)}]

\ [{wr|w € ag s, (T \{wr |weaj s, (9)}]
= a%,sﬁ (s)U[{wr [we 0‘%,5”(5)} N{wr|we O‘%,SH(SD)}]
a%,sﬁ (s)Ul{wr |we a%,su(s) n 0‘2,5%(80)}]
al (s)U{wr | we ak(s)Nak,(p)}
= ok, (s).

Subcase s =r:

O‘%/,SH, (r)

= a%,sw (r)\ [Ofg,sw (r)\ a%,sw (¢)]
= a%,sw (r)n O‘%,SH, (¥)

= {wr|we o, (T)}

N [af s, (9) U{wr |w € afy 5, (9)}]
= {wr |we a5, (9)}
= {wr | w € af(p)}

= aju (7).

Case E=7r1,...,m <. Let RE{r,... r,}.
Subcase s#r;,t=1,...,n.

ag',sﬁ,(s)

= a%,sw (s)\ [Ui;ﬁj a%,sw (ri) N a%,sw (r5)

U [CY%SH, (R)\ 0‘2,5”, (@)U [CY%SH, () \ ag,sﬁ, (R)]]

= [aZySH(S) U{wUu|we CM%)SH(S),U C R}]
\ [Ui;éj{w | {7“2', rj} Cw,we a%,sH/(T)}
U[{wUu|we a%ysw(—l—),u C R}
\ [R5, (P) U{wUu|we af 5, (¢),u C R}

def

(Definition 2.9,i7)
(like (8), using r & S)
(induction hypothesis)
(Definition 2.13,)

(Definition 2.9,ii7)

(cf. (8))
(like (8), using r & S)

(cf. (3))

(see footnote6)

(see footnote7)

(induction hypothesis)
(Definition 2.13, i)

(Definition 2.9,ii7)

(set theory: a\ (a\b) =anb)

(like (8), using r & S)
(cf. (8))
(see footnotes)

(induction hypothesis)
(Definition 2.13,4iz)

(Definition 2.9,v)
(cf. (9))

(like (9), using ri,r; € Sn)
(like (9), using ri,r; & Sn)

(cf. (9))

81f we name a dIEf{wT |weal o (T b=l o (@) and cdﬁf{wr |w e ag Si (¢)} then we have anb = § and

H, S H, S
¢ C a. Therefore by elementary set theory: a \ (bUc) =a\ c.

TTf we name o = {wr | w € of o (5)}, = {wr |w € ozft Sa (T)} and — {wr |w € ozft Si, (¢)} then we have

H,Sn

a C b and ¢ C b and therefore by elementary set theory: a \ (b\c) =anec.

8because {wr |w € of, o (T)}Nal o (¢)=0and {wr | w € aft,SH (M} D {wr |weal o ()}

H, Sy H, Sy

13

H, Sy

U [[a%ySH(go) Uf{wUu|we a%ySH(go),u C R}]
\{wUu|we a%ySH(T),u C R}]

= [ofy 5, (s) U{wr |w € afy 5, (s), 7 € R}] (exploiting disjointness of r;,7;)
\ HwUu|we a%ySH (M,w¢ O‘%,SH (¢),u C R} U a%,su (¢)] (see footnote®)

= [0 5, () \ 0B 5, (#)] (disjointness of a4} g, (s) with the sets involving R)
U[{wr|we a%ySH (s),re R}n{wr|we O‘%,SH (¢),r € R}] (set theory)

= 08 5, \ 0B (PN UUucats gy wrr, - ema]

= [ad,(s) \ ok, (¢)] U Uwea%(m‘p){wrl, cowrp} (induction hypothesis)

=al,(s). (Definition 2.13,iv)

Subcase s=r €{ry,...,r,}

ag',sﬁ, (r)

= a%,sw (r)\ [[Ui;&j O‘%,SH,(W) n a%,SH/ (i)]
Ulag s, (R)\afy s, ,(@)ag s, (5)\ (U lag s, () \af s, , (R)]] (Definition 2.9,v)

= {wr|we€al T like (8) using r € Sy
H Sy) using
\ [a%sw (R)\ QQ,SH, (¢)] (the rest is disjoint)
={wr|we s, (T}

\ {wr|we O‘%,SH (T)} (the rest is also disjoint)
\{wUu|we a%)SH (¢),u C R}] ((9) and disjointness of 0'/72,5'”/ (R))
={wr|we a%,su (Min{wUu|we O‘?Q,SH (¢),u C R} (set theory)
={wr|we 0‘2,5” (¥)} (af1s,,(¢) C oty s, (T))
={wr|we a{_t(go)} (induction hypothesis)
= a{_t,(s). (Definition 2.13,iv)
[

Since both algorithms yield the same result for incremental hierarchy specifications, one can use
the most appropriate given a particular . Moreover, one can first use the incremental algorithm
for the incrementing part of a hierarchy specification and then delete the superfluous atoms corre-
sponding to the rest of the specification with the decrementing algorithm. In the sequel we shall
only write ay without assuming a particular algorithm.

9Tf we name a dIef{u) Uu|w € a%,SH/ (T),u C R}, bd:EfO‘?Z,SH (¢) and ch&f{uJ Uu|w € OZ?l?t,SH/(kp)’u C R}, then
=b.

we have a Nb = 0 and ¢ C a. Therefore by elementary set theory: a\ (bUc) =a\cand (bUc)\a

14

3 Arithmetic Reasoning with Decomposed Set Terms

The atomic decomposition of a set of sets yields an exhaustive and disjoint partitioning such that the
cardinalities of the atoms just add up to the cardinality of the decomposed set, cf. Corollary 2.6,ii).
In this section, we exploit this nice property for embedding cardinality terms |p| where ¢ is a set
term and |p| denotes its cardinality, into a general logic £ with some built-in arithmetic. The
integration is quite independent of the particular structure of the logic, which leaves much room for
experimenting with different systems. However, with a particular logic in mind, this section and
much of the following is easier to understand. Therefore we recommend to think of £ as a system
of non-negative linear Diophantine equations and inequations. Typical such equations are!®
2a+3b=5

3c—5Hb<6

In the case of non-negative Diophantine equations, the variables denote non-negative integers,
and this is just what we need for dealing with cardinalities of finite sets. A solution of a set
of Diophantine equations maps the variables to non—negative integers. If we generalize from this
particular system, we can use the usual logical notions: a set of equations corresponds to a formula,
a solution of the set of equations corresponds to an interpretation (mapping of symbols to domain
elements), a set without solution corresponds to an inconsistent formula, and a set where all natural
numbers are solutions corresponds to a tautology.

On the syntactic level, the cardinality terms are integrated into £ by allowing them to occur
at the usual term positions in L—formulae. For example 2la N b| + 3|c\ d| — 5e = 1 could be a
well-formed Ls—formula. But we must be careful. It is not allowed to mix the symbols of the two
different languages. For example 2|a| 4+ 3@ = 5 makes no sense because the a is interpreted once as
set and once as number. Therefore we require that the signatures of both languages are disjoint.
This requirement makes the definition of a combined semantics of both languages very easy. Two
interpretations, one of each language, can just be put together, with the cardinality function as a
bridge between them.

Remark: In the rest of this section we shall assume that all sets under consideration are finite.
In this case, cardinal numbers behave just like ordinary natural numbers. If arbitrary sets were
allowed, then for example the equation |s| + 1 = |s| would have a model, namely s being an infinite
set. In this case, cardinal number arithmetic is needed, which we want to avoid. In the sequel, let
S be a given finite set of basic set terms and let H be a given hierarchy specification over S.

Definition 3.1 (Constraint Language) Let L be any logic with equality and negation and with
a distinguished sort N (for natural numbers) and a distinguished function symbol + (for addition)
with the obvious fized semantics for these symbols. Let S be a finite set of terms which are disjoint
to the terms in L.

We extend L to Ls by allowing cardinalily terms || over set—terms Ss to be well formed terms
as well.

The semantics of L 1s extended in a straighiforward way to a semantics of Ls: If E 1s an
wnterpretation for L and &€ 1s an interpretation for the set terms which maps them to finite sets and
which in addition maps | ...| to the cardinality function, then s =& U E is an interpretation for
Ls. O

For the logic £ we assume that the usual logical notions apply, i.e. we can speak of unsatisfiable
and satisfiable formulee, tautologies, a satisfiability relation £ = ¢ between interpretations and
formulee, and an entailment relation ¢ |= ¢ with the usual meaning. In the case of Diophantine

10Tnequations can always be eliminated by introducing so called slack-variables: s < n becomes s+ =mn, s > n
becomes s — z = n. Therefore the inequations are not really needed.

15

equations, £ |= ¢ means, £ is a solution for ¢, and ¢ |= 1) means, all solutions for ¢ are also solutions
for .

The language Ls is the language for formulating problems involving reasoning about cardinalities
of sets. The actual process of inference however, must take place in £. Therefore we replace the
cardinality terms by the atomic decompositions (cf. (1) — (2) in the ’children’ example in Section
1), and further by the arithmetic terms denoting the sum of their cardinalities (cf. (2) — (3) in the
same example). We could have used new symbols for denoting the cardinalities of the atoms, but
since atoms and their cardinalities never get mixed up, we use the same notation for both.

Definition 3.2 (From Set Cardinalities to Arithmetic Formulza)

i) For a set—term ¢ with decomposition ax(p) = {w1, ..., wg} we define Sy (o) Ewr +... .+ wy.

ii) Yy{wy, ..., wr} denotes wy + ...+ wy.
iti) For a Ls—formula ¢ and a decomposition ay of set terms let ax () be the result of replacing
all cardinality terms || occurring in ¢ with Ty (p). |

The translation of an £Ls—formula ¢ into ax(¢) involves a small technical problem. For example,
if we translate ¢ &' |r N s| = 2 with, say, ax(r Ns) = {u,v,w} into u + v + w = 2, then the atoms
u,v, w have changed their meaning. Interpretation a (&) interprets them as sets, whereas in the
equation we want them to denote numbers. We could repair this by writing |u|+ |v|+ |w| = 2, which
is properly interpreted by a(€). But, first, this is too clumsy, and second, this is not a syntactically
correct L—formula. Therefore we drop the cardinality function and adapt ax (&) to deal with these
arithmetic formulee properly. ax(&) gets an arithmetic mode of interpretation: a4 (&) is such that
o (E)(w) & lan(E)(w)| for all atoms w. If for example ax(£)(w) = {a,b,c} then af (&) (w) = 3.
In general it is clear from the context whether we are dealing with an arithmetic formula where
aﬁ (€) has to be used, or not. Therefore it is not necessary to distinguish these two interpretations
explicitly. Notice that this is justified because for finite sets, cardinal and ordinal numbers behave
in the same way.

Theorem 3.3 (Almost an Equivalence Transformation) For any Ls—formula ¢ and Ls-
interpretation £: If £ = ¢ then a4 (€) E anlp).!!

Proof: By Corollary (2.6,i) we find for each cardinality term |9 in ¢ with decomposition ay(¥) =
{wy,...,wi}: E(Y]) = |E@)] = ag(E)wr) + ...+ aZ(E)(wr) = aZ(E)(an (). Therefore, the
interpretation of cardinality terms does not change. By induction on the structure of terms in ¢,
using cardinality terms as base case, one shows that the interpretation of terms does not change. A
further induction on the sub-formule in ¢ confirms the theorem. u

This theorem gives us at least a soundness result. If the original formula is satisfiable then
the decomposed formula is satisfiable as well. The other direction is not yet clear. In fact, the
decomposition is not really an equivalence transformation because in the decomposed formulae all
the information about the sets themselves is lost. Therefore one model for a decomposed formula,
where only the cardinalities of the sets are fixed, may correspond to many different models of the
original formula. They are only constrained by the cardinalities of the sets, not by the choice of
their elements. But we can show that from an interpretation (solution) for the decomposed formula
which assigns numbers to the atoms, sets with suitable cardinalities can be constructed such that
the original formula is satisfiable.

11 Just to illustrate this statement, suppose ¢ is |rNs| = 4 and for the the decompositionlet oy (rNs) = {w1, w2, w3 }.
Then as(¢) is w1 + w2 + w3 = 4. Suppose further there is a model £ which maps r N s to the set {a,b,c,d}. &
obviously satisfies |r N s| = 4 because |[{a,b,c,d}| = 4.

a4(€) is defined in such that it inteprets the atoms {w1,w2,ws} in a way to form a partitioning of {a,b,c,d}.
For example it may be ax(E)(w1) = 0, an(E)(w2) = {a}, an(E)(ws) = {b,c,d}. From this we get aﬁ(é‘)(u}l) =0,

ozét(é')(ua) =1 and aﬁ(é‘)(u}g) = 3. Thus ozét(é') satisfies w1 + wo + w3 = 4.

16

Theorem 3.4 (Completeness) For any Ls—formula ¢: If ax(p) is satisfiable then ¢ is satisfi-
able.

Proof: Let £ = an(yp). £ assigns natural numbers to the atoms in ax(T). We define &’ like £, but
instead of natural numbers, it assigns mutually disjoint subsets of the integers to the atoms such
that if £(w) = n then |&'(w)| = n. The interpretation of the terms in § is now determined: For each
s € 8 if ay(s) = {wy,...,wp} we get £'(s) = E(wr) U ... UE(wg). By induction on the structure
of set—terms one shows: |£'(¢)| = £(axn(¥)). Thus, the £-value of all translated cardinality terms
in ay(p) is again identical to the £—value of the corresponding original terms in ¢. Since again
nothing else has changed, & |= . u

With the same construction as in Theorem 3.4 we can show that not only satisfiability, but also
falsifiability is preserved.

Corollary 3.5 For any Ls—formula ¢: If ay(yp) is falsified by some model then there is a model
falsifying ¢ as well.

In the sequel we omit the A-indicator in a2. It is always clear from the context, how to interpret
atoms.

So far we have a language for talking about cardinalities of sets, and by means of atomic decom-
positions, we can translate the set cardinality terms into ordinary sum terms. Any inference system
which can deal with addition and with non-negative integer variables can now be used to reason
about these sets. In the next section we show how this idea can be put to work. As an example for an
application we investigate in detail one particular knowledge representation language. The general
method, however, is not restricted to this language. Therefore this section has also a paradigmatic
character.

4 Concept Languages

Concept languages are late descendants of Minski’s frames [Min90] and Brachman’s KI-ONE [BS85].
They come in a variety of different versions, e.g. ALC [SSS91], CLASSIC [BPS94], KRIS [BH91],
LOOM [Mac94], but common to most of them is the separation of a concept language database into
a so called T-Boz (terminological box) and a so called A-Boz (assertional box). The T-Box contains
specifications of so-called concept terms and role terms. For example a T-Box formula

parent = person A atleast 1 has-child (10)

specifies the concept parent as the set of all persons who have at least one child. The role term
has-child denotes a binary relation. In the concept language jargon these relations are usually
called roles, and we shall in general use the technical term ‘roles’ unless we want to emphasize that
it is a binary relation by speaking of ‘relations’.

The A-Box on the other hand contains information about instances of the T-Box concepts. For
example, from the A-Box entries Henry: person, and Henry: has-child M ary one can conclude that
Henry is an instance of the concept parent.

On the T-Box level there are two major reasoning problems. First of all, one wants to know
whether a newly introduced concept definition is consistent. For example, if the T-Box contains the
two definitions

male = person A atleast 1 has-y-chromosome (11)

female = person A atmost 0 has-y-chromosome (12)

and we add the new definition

hermaphrodite = male A female

17

there is no non-empty extension of hermaphrodite, which usually indicates errors or misconceptions
in the axiomatization of a given domain.
The second inference problem is subsumption. If we have (10) in our database and we add

grandparent = person A atleast 1 has-child.parent (13)

(grandparents are persons who have at least one child who is a parent) then we can of course conclude
that all grandparents are in particular parents as well, i.e. grandparent C parent. Subsumption
relations are usually very useful for structuring a knowledge base. Finding out all subsumption
relations between all concepts is called classification, and this is the basic operation of all T-Boxes.

The standard semantics of concept languages allows one to translate all T-Box and A-Box infor-
mation into first—order predicate logic (FOL). Therefore concept languages are essentially fragments
of FOL, and since most of them are decidable, they represent proper fragments that are more expres-
sive than propositional logic. Much effort has been invested in recent years to explore the borderline
between propositional logic and FOL by investigating various versions of concept languages, see
[DLNNO95] for a good summary of recent results.

In this paper, we want to emphasize the treatment of set cardinalities. Therefore we consider a
relatively weak concept language which has no negation, no disjunction, and no existential quantifi-
cation, just conjunction, universal quantification and, in the basic version, number restrictions of the
kind atleast n r and atmost n r, and as abbreviation, exactly n r, see [Neb90]. In addition, there
can be so called role hierarchies. For example, has-son C has-child expresses that the has-son—
relation is a sub-relation of the has-child-relation. Typical T-Box declarations of this language are
(11, 12). The concept term (13) is not a valid declaration because we do not yet consider qualified
number restrictions of the kind atleast n r.c.

In spite of the restricted expressivity of the language (though subsumption is co-NP-hard [Neb90]
and satisfiability is PSPACE-complete [DLNN95]), one can formalize a number of interesting features.
For example, the concept terms (11) and (12) together state that male and female are disjoint
concepts. There are no hermaphrodites. A concept term V has-child.(male A female) would enforce
that the has-child-relation is empty, which makes this term equivalent to atmost 0 has-child.

More interesting things can be expressed with role hierarchies. If we specify both has-son
and has-daughter as sub-roles of has-child then atleast 2 has-son A atleast 3 has-daughter A
Y has-son.male A Y has-daughter. female together with (11) and (12) implies atleast 5 has-child.
This example shows that addition of numbers i1s implicitly encoded in the concept terms. Sub-
traction may occur as well: atmost 5 has-child A atleast 2 has-son A Y has-son.male A
Y has-daughter. female together with (11) and (12) implies atmost 3 has-daughier.

None of the known inference procedures for these kind of languages does the inferences by eval-
uating arithmetical terms. The standard tableaux approach generates sets of witnessing constants,
counts the length of lists, and makes a lot of case distinctions, see [OSH95, HNSS90]. For example, if
it hits the number restriction in city = place Aatleast 1000000 has-inhabitant it would generate one
million constants, one for each inhabitant. Translating such a term into predicate logic is even worse.
The FOL version of atleast n ris 3x1 ... 2, &1 # aAx1 # 23N . A&p_1 £ 2o Ar(a, z1)A. . Ar(a, z,)
(where a is the current focus variable).

The atomic decomposition approach, on the other hand, solves this problem in the most adequate
way by reasoning with the numbers directly. The sets we are going to decompose are not the
concepts themselves, but the so called role fillers or role successors. Consider the definition of
parent in concept term (10). Tt specifies that each parent must have at least one child. Given a
parent, say Jack, then there is at least one object in the has-child-relation, which is Jack’s role
filler for the has-child-relation. The set of the has-child—role fillers has in this case cardinality > 1,
i.e. |has-child| > 1 is an inequation, which we can extract from (10) and which is subject to the
decomposition method.

In the following, let us demonstrate the idea with a more complicated example.

18

4.1 The PCM—-Example

First of all we introduce three concept names P (physicists), C' (chemists), and M (mathematicians).
We do not say much about them, but we want to make sure that nobody can be a physicist, a chemist,
and a mathematician at the same time. Two qualifications, however, are allowed. That means P, C|
and M are axiomatized in such a way that P AC' A M is inconsistent. See the appendix (Section 6)
for details of the axiomatization.

We introduce four roles es (employs scientist), ep (employs physicist), ec (employs chemist), and
em (employs mathematician). The role hierarchy is such that ep, ec, and em are all sub-roles of es,
ie. H = {es,ep Ces,ec Ces,em C es} (cf. Definition 2.7). Now we axiomatize an institute I as

I % exactly 3 ep Aexactly 2 em Aatmost 4 es A Vep.P AVec.C AVem.M (14)

)

Figure 6: The decomposition of es, ep, em, ec.

Taking the role hierarchy into account we find the following decomposition of the roles {es, ep, ec, em}:
(see Figure 6)

ay(es) = {s,p,e,m,pc,pm,cm, pem}
arp(ep) = {p,pc,pm,pem}
ay(ec) = {e, pe,em, pem}

ay(em) = {m,pm,cm,pem}

Similar to our previous name convention, s denotes the set of all scientists who are neither physicists,
chemists, nor mathematicians. With pm we denote the set of physicists who are mathematicians,
but not chemists, in pem are scientists who have all three of the known professions, etc.

The first thing to check is whether any of the intersections of the roles is empty. To this end
we have to examine all subsets of the universal quantifications and recursively test whether the
conjunction of their arguments is inconsistent. And in fact, in this case we assumed that the
conjunction PAC'AM is inconsistent. Therefore the intersection of the corresponding roles epNecNes
is empty. The decomposition of this set-term is just pem and thus we can set pem = 0. The
translation of the number restrictions in Definition (14) yields the following inequations:

pt+pm+pc = 3
m+pm+em = 2 (15)
s+p+ec+m+pct+pm+em < 4

These three equations have the following solutions:

19

s|p|m/|c|pm|pc|cm|ep|em|ec|es
0(2(110] 1 00 3 2 (0|4
0(210])0]| 1 0 1 3 2 114
0O(1y0]0| 2 00 3 21013
011110 1 1 0 3 2 114
0O(1ry0jo0| 1 1 1 3 2 (2|4
0(0]0]0| 2 1 0 3 2 113
0O(1ry0jo0| 1 210 3 2 2|4
0(0j0]0]| 1 2 1 3 2 (3|4
1100 (0| 2 1 0 3 2 114
1{1(01]0]| 2 00 3 2 114

The right columns on the right list the number of employed physicists (ep), mathematicians
(em), chemists (ec), and scientists at all (es). These numbers are computed according to the above
decomposition. From these solutions, we can read off for example that atmost 3 ec must be true,
i.e. there are at most three employed chemists and ¢ + pe + pem < 3 is therefore a consequence
of (15). The formal proof can be found in the appendix, Section 6.

4.2 The Language 7F*+

The concept language we have been investigating for this paper is the T-Box language 7 F+*, which
is an extension of the language 7 F [Neb90]. 7 F itself has only conjunction, the universal quantifier,
the number restrictions atleast and atmost, but allows for a tree-like role hierarchy.

In TF*T we can allow for arbitrary role hierarchy specifications in the sense of Definition 2.7.
Moreover, we can allow for roles denoted by set-terms according to Definition 2.4 built with N, U,
and \, which yields the first “t” in 7F*T+.

As a second generalization yielding the second “*” in TF**t we have replaced the number
restrictions atleast and atmost by general arithmetic constraints expressed in the language Lr
(Definition 3.1) where R is the set of role names. Since the role names are to be decomposed in our
setting, R plays the role of & from the previous section. The language Lr for expressing arithmetic
constraints is actually a parameter to our system. One can make it as strong as the arithmetic solver
of the system can handle.

Simple concepts, which can be expressed in 7F*T | but not in 7F are

male-dominant-parent = parent A |has-son| > |has-daughter|

denoting the set of all parents who have more sons than daughters, |has-son| > |has-daughter]| is
an expression of the language Lx.
As a further extension we include so called functional roles with number values. Again an example:

500er & car A cubic-capacity = 500 - |has-cylinder| (16)
denotes the set of all cars who have 500 cm?® per cylinder. The term has-cylinder is an ordinary role,
i.e. a relation between cars and cylinders, which denotes the number of cylinders in the arithmetic
context. cubic-capacity on the other hand is a function from cars to numbers. Number valued
functional roles can only occur in the arithmetic context. For the arithmetic solver it is just another
variable. Each solution of a constraint gives some value to these functional roles which is consistent
with the constraints, therefore their treatment comes for free.

Definition 4.1 (7 F*" Concept Terms) Let R be a set of symbols (role names) and C another
set of symbols (concept names), disjoint to R. Let Lr be a suitable arithmetic language according
to Definition 3.1. The set of concept terms over R and C is the smallest set such that

20

i) a concept name is a concept term,
ii) if ¢ and) are concept terms then ‘@ A’ is a concept term,
i) if r € SR U(T,L) is a set-term (from now on called role term), ¢ is a concept term, then
‘Yr.p "is a concept term, and
iv) all formule of Lr (Definition 3.1) are concept terms. a

A T-Box is usually defined as a set of terminological axioms of the kind ¢ = ¢ or ¢ C . If
these definitions are cycle—free, 1.e. a definition ¢ = ¢ of a new concept ¢ does not refer directly or
indirectly to itself, one can always expand the definitions. An individual consistency or subsumption
test needs therefore not to deal with terminological axioms, but just with concept terms. Since this
is possible for 7 F*T as well, we do not introduce terminological axioms on a formal level.

Notation: For two concept terms ¢ and 1, ¢ € ¢ means 1 contains ¢ as a top level conjunct, i.e.
Yv=...ApA...

The semantics for our language 7F 1T is basically the usual semantics for concept languages
which interprets concept terms as subsets of some domain.

Definition 4.2 (Interpretation of Concept Terms) An interpretation £ = (D,) for concept
terms and a given hierarchy specification H over some set R of role names consists of a set D and
an L—interpretation . S consists of two parts, S which interprets the pure L—symbols (except the
functional roles), and Sc which interprets the main T F tparts. In particular, Sc assigns

i) a subset of the domain D to each concept name in C,

it) disjoint binary relations on D to each atom in ay(T) together with the corresponding binary
relations for the role names themselves and for the role terms,

iti) a function from domain elements to numbers for each number valued functional role, and

iv) the usual interpretation to N, U, \ and |...|.

If for some a € D we define S, to be like S, but for role names r € R and atoms a € ax(T)
we require Sq(r) E{b | (a,b) € Sc(r)} and for number valued functional roles f we require I.(f) =
Sc(f)(a) then Sy is turned inductively into an Lr interpretation for interpreting Lr formule in
the sense of Definition 3.1. Let £, = (D, 3,).

An interpretation is turned into an interpretation for concept terms in the usual way:

g(c) = S(c) if ¢ 1s a concept name
Ephy) = E(p)NEW)
ENVry) = {aeD|forallb: (a,b) € 3(r) impliesb € E(p)}
E(p) = {a €D ||[Su(r)| is finite for all v occurring in ¢ and S, |= ¢}
ifp € Lr
For two concept terms ¢ and ¢ we define:
e EY iff E(p) CEW) for all interpretations £. O

We call an interpretation £ a model for a concept term ¢ if () # 0. In this case ¢ is called
consistent or satisfiable. If £(p) = B for all interpretations £ then ¢ is inconsistent or unsatisfiable.

It is important to understand the definition of &,;. For a role name r, & maps r to a binary
relation, i.e. §(r) € D x D. For a domain element a € D, $4(r) is the set of r-successors of a (in
the KL-ONE jargon also called the role fillers of a for 7). Similarly for a functional role f, S4(f) is
just the value of f on a.

So we dealt with the basic parts of the Lr—formulee. However, we use &, also for interpreting
complex arithmetic formula. To this end, we assume S, to be accompanied with an interpretation
for Lr—formulee in the sense of Definition 3.1. For example if ¢ ¥'|r| + |s| = 3 and I, maps r to
the set {a} and s to the set {b, ¢} then Sy(|r]) = 1 and S4(]s|) = 2. Assuming that F, understands
the + sign properly, we find S,(|r| + |s|]) = 3, and thus S, = |7| + |s| = 3.

21

To make the semantics clearer, let us consider a more complicated example (the role age is func-
tional):

R = {has-child, has-daughter, has-son},
H = {has-daughter, has-son < has-child},
¢ = person Aage > 30 A |has-child| > 2 - |has-daughter| + 1 A

YV has-daughter.teacher
We abbreviate ay(T) with {d, s} (d for {has-child, has-daughter} and s for {has-child, has-son}

reflecting the semantics of a partioning declaration).

We construct an interpretation for ¢. First of all, we have to choose a domain D. Say, D &
{Jack,George, Henry, Paul, Mary, BMW520}. The interpretation S interprets the arithmetic
parts in the standard way:

Se(1) = natural number 1 etc.,
Se(+) = addition function,
Se(-) = multiplication function,
Se(>) = greater or equal predicate,
Se(]...]) = cardinality function.

We have two concept names, person and teacher. Let us choose

Sc(person) = {Jack,George, Henry, Paul, Mary}
Sc(teacher) = {Mary}

The two atoms s and d of the decomposition of the roles are interpreted as follows:

Sc(s) = {(Jack,George),(Jack, Henry), (George, Paul)}
Sc(d) = {(Jack, Mary)}

From this we obtain
Sc(has-child) = {(Jack,George), (Jack, Henry), (George, Paul), (Jack, Mary)}

and the interpretations of has-son and has-daughter are like s and d. Moreover we get as role fillers

Ssack(s) = {George, Henry}

SJack(d) = {M&Ty}
%George(s) = {PCIUZ}
3George(d) = 0

and the role fillers for all other individuals are empty as well. For the functional role age we choose

Scl(age) = {(Jack,70),(George,45),(Henry, 50),
(Paul, 20), (Mary,50),(BMW520,1)}

Now we can evaluate £(¢p)

= &E(person) N&(age > 30) N E(|has-child| > 2 - |has-daughter| + 1) N
E(V has-daughter.teacher)

= {Jack,George, Henry, Paul, Mary} N{a € D | Sc(age)(a) > 30} N
{a € D | S, [(Jhas-child| > 2 - |has-daughter| + 1)} N
{a € D| for all b: (a,b) € S(has-daughter) implies b € E(teacher)}

= {Jack,George, Henry, Paul, Mary} N {Jack, George, Henry, Mary} N

{aeD[Sa = (s[+1]d =2]d|+ 1)} N

22

{Jack,George, Henry, Paul, M ary, BMW520}12
= {Jack, George}
This is because Syqcer(ls|) = 2, Syeer(|d]) = 1 and therefore 2+ 1 > 2 -1+ 1 is true. Also
Sgeorge(|s]) =1, Sgeorge(|d]) = 0, and therefore 1+ 0 > 0+ 1 is true as well.

4.3 Optimized Decomposition of Role Hierarchies

The decomposition of role hierarchies is only feasible if the number of atoms can be kept reasonably
small, which so far is not the case for realistic T-Boxes with hundreds or thousands of roles. Even
our incremental decomposition algorithm would generate far too many atoms except for trivial
cases, cf. Definition 2.13. A significant reduction of the number of atoms could be achieved if
enough information about disjointness of roles would be available. For example, in every reasonable
axiomatization two roles like has-child and has-car will be disjoint, which makes all intersecting
atoms empty. In fact, most pairs of roles which have no common sub- or super-role in a role hierarchy
are usually disjoint. We could require the user of such a system to specify all disjointness relations
for roles and use this information to compute an optimized decomposition.

But it turns out that there is a more elegant way. We can show that whenever there is a model at
all for a concept term, then there is also a model where the roles, which are not in the same connected
component of a role hierarchy graph'3, are disjoint. Therefore the connected components of a role
hierarchy can be decomposed separately and no overlapping atoms are generated. In the extreme
case, where the role hierarchy is flat, this optimized decomposition yields just one single atom per
role. The number of atoms now depends primarily on the structure of the connected components in
a role hierarchy, the narrower the better, and only linearly on the number of connected components.

In order to prove this statement, we must first prove the finite model property for 7F T+, The
finite model property states that, whenever there 1s a model at all for a concept term, there is one
with a finite domain. Since 7F*t* is very similar to standard modal logics, for which the finite
model property holds, it is quite likely that this property holds for 7F** as well. But due to
the arithmetic part in 7F 1T, things are slightly more tricky than in modal logics. For example,
if we would allow arbitrary sets as role fillers, then a concept term like |s| + 1 = |s| would only
be satisfiable in an infinite model. But we have excluded this case in the semantics of arithmetic
formulee by requiring that the role fillers be finite sets.

Theorem 4.3 (Finite Model Property) Given a role hierarchy H over a set of role names R,
each satisfiable TFT T concept term ¢ has a model with finite domain.

Proof:

Since ¢ is satisfiable, there is a model £ = (D,) with zq € £(p) for some zg € D. From & we
construct a finite model using selective filtration [Gab70, Gab72], a variant of Lemmon and Scott’s
filtration [LS66, Che80]. Let ® be the set of all concept-subterms!'? in . Since ¢ is finite, @ is finite
as well. Now we define an equivalence relation over D

Ve,yeD: z=yifandonlyif Vyp € ®: 2 € E(¢) & y € E(¥).

Thus, two elements of the original domain belong to the same equivalence class if and only if they
satisfy exactly the same subformule of ¢. Since there are at most 27 subsets in @ if ¢ has n concept
subterms, we obtain finitely many equivalence classes. One can take either the set of equivalence
classes as the domain of the finite model (filtration), or choose one or more representatives of each

12 has-daughter.teacher holds trivially for those who do not have daughters at all.

13 The sub-role relation in a role hierarchy specification, given by the explicit subset declaration and the partitioning
declaration can be interpreted as the (undirected) edges in a graph with role names as vertices. The connected
components of this graph are meant.

141f for example ¢ is |has-daughter| > |has-son|, then has-daughter is a subterm, but it is not a concept subterm.
The formula |has-daughter| > |has-son| itself is the only concept subterm.

23

equivalence class (selective filtration). In our case we have to satisfy the numeric constraints about
the number of r—successors for each role. Therefore it is necessary to choose some representatives
of each equivalence class. Given an equivalence class X, let AR(X) denote the set of arithmetic
terms ¢; € ® which are satisfied by £ for some (and thus by all) z € X. If AR(X) is not empty,
then the number of w-role fillers for z € X is finite for all atomic roles w occurring in AR(X),
according to the ‘¢ € L’ case in Definition 4.2. Therefore we can choose from each equivalence
class a minimum and finite number of representatives such that the restriction of the roles to the
new submodel satisfies the arithmetic constraints in AR(X)!5. One of the elements to be chosen is
zg. Overall we get a finite submodel &’ of &£.

By induction on the structure of the formulee in ® we can easily verify that for each element in the
submodel exactly the same formulae of ® hold in the submodel as in the original model. For the
concept names and the universal quantifier it is trivial, and for the arithmetic formulae it holds by
construction. Since &£’ is a proper submodel of £, it is also guaranteed that £ satisfies the hierarchy
specification H. Thus, zq € £'(y). L]

Theorem 4.4 (Disjointness Theorem) Let H be a role hierarchy specification for some roles R
and ¢ be a satisfiable concept term. If for two role names r and s, there is neither a common sub-role
nor a common super-role in the role hierarchy, and neither rUs nor r N's occur in ¢ explicitly or
implicitly, then there is always a model where r and s are disjoint relations.

Proof:

If ¢ is satisfiable, then there is a model £ = (D, <) with finite domain and z € £(y) for some z € D,
according to Theorem 4.3. First of all we need to make this model irreflexive by copying the reflexive
elements. That means if there is some (X, X) € £'(r), we copy X once together with all outgoing
edges. Schematically this might look as follows:

o0

[]

|

[] — 0

R S >
[] [] [] []

This operation does not change the number of role fillers. Therefore the irreflexive model still satisfies
. We can also assume that £ is generated by z.1°
For the main manipulation, an algorithm copy[G, e, v] is defined. Tt takes a graph G = (V, E') with
a set of edges E and a set of vertices V, an edge e = (z,v,r) € E (with z, v being the start and
end vertex of edge e, respectively and r being the atomic role the interpretation of which is €), and
a vertex v € V as input and constructs a graph G’ = (V', E’) by copying the vertex v with set of
in-going edges I, and set of outgoing edges O, in the following way:

copy[G, e, v] :
1. V! = VU{v} with v, being a copy of vertex v.
2. 0y, = {{ve,u,7)|(v,y,7) € Oy}, i.e. all outgoing edges of v are copied to v,.
3. L, = {{z,ve,r)}, i.e.e=(x,v,r)is copied as the only in-going edge of v,.
4. B = EULUO,.

We now construct a new model £ by separating the common r and s successors for each domain
element. Starting with we work through the graph layer by layer. (The layers are defined by the

15For example if there are two equivalence classes X; and X3 and AR(X1) = {|r| = 2} then we might need to
choose two elements in X3 to get enough r—successors for a representative in X7.

16Tn TF*t we have no operators moving backwards along the roles. Therefore for each model and each domain
element = one can eliminate all other domain elements which cannot be accessed from z by a finite number of transitions
along the role edges. This is the z—generated sub-model. The proof is essentially the same as for multi-modal logic

Km.

24

interpretations of the roles.) Each time we meet some domain element y which has common r— and
s—successors, we use the copy—operation to get a fresh copy of the common 7— and s—successors. The
interpretation of the role s is now changed such that the new copy is made s—successors, and the
original elements are no longer s—successors, but just r-successors'?. Since D is finite and the copy
operation introduces in layer m only finitely many new elements of an already existing layer m+1, it
eventually terminates. In the new model &' = (D', 3’) there are no common r— and s-successors. In
&' we define for concept names ¢; 2’ € $'(¢) iff z € F(¢) and z = 2’ or 2’ is a copy of z. Compared to
the original model &, in £ only the number of role successors for the union or intersection of r and
s has changed. But according to our assumption we do not have the syntactic means for referring
to this union and intersection. Therefore for all role terms occurring in H and ¢, the number of role

successors has not changed. By induction on the structure of ¢ one can now easily prove z € £'(y).
L]

This theorem allows us to treat roles which occur in different connected components of a role
hierarchy graph as disjoint roles, provided in the concept terms themselves there are no role terms
connecting them in some way, either directly or indirectly via the role hierarchy. Technically we
can exploit this result by decomposing connected components of the role hierarchy separately. This
way, the generation of exponentially many intersection atoms is avoided. But notice that when for
example r N's occurs in ¢ then the connected components of r and of s are no longer separated.
They must be decomposed together. But this should be a rare exception. Nothing reasonable can
for example be expressed with a role term like has-child N has-car.

4.4 Reasoning with Concept Terms

A concept term can be a tautology if it evaluates to the whole domain for all interpretations.
Tautologous concept terms are usually redundant. They indicate that there is something wrong
in the knowledge base. In the next theorem we show that a test for tautologies can be reduced
essentially to a test on the decomposed arithmetic part of the concept term.

Theorem 4.5 (Tautology) A concept formula ¢ ¥ C AN AU where C are the concept names, N
are the arithmetic formule and U are the universal quantifications, is a tautology (written |= ¢),
i.e. £(yp) is the whole domain for all interpretations &, iff
i) C is emptly and
it) ay(N) (Definition 3.2,iii)} is a tautology and
iti) for all ‘Yrap "€ U: 4 is a tautology.

Proof: If C' is not empty we can certainly find an interpretation where C' is a proper subset of
the domain. If ax(N) is not a tautology, there is a falsifying model for ay(N). By Corollary 3.5
there is a falsifying interpretation &’ for N as well. We now construct an interpretation £ = (D,)
for ¢ where D = {a} U {S'(w) | w € an(T)} for some arbitrary element a and for all atoms w:
F(w) = {(a,b) | b € &(w)}. That means the w-successors of a are just those elements assigned to
w by &£’. This way we get an interpretation for concept terms such that &, = £ and <, falsifies N.
Therefore a ¢ £(p) and ¢ is not a tautology.

17We again illustrate the copy operation with a small example.

Initial situation Copying the rs—successors

. . . .
PR Ser R

. o\1 .

\/ N

Notice that the incoming edge from the top left node is not copied.

25

If for some ‘ Vr.¢p > € U: 9 is not a tautology, there is an interpretation £ and some domain element
b & £(¢). In the same way as in the previous case we construct an interpretation £ with b as
r-successor of some new element a. Then 1t is not the case that for all r—successors of a, ¥ holds,
which means that ¢ is not a tautology. u

For both, the consistency check and the subsumption test, we need a certain normal form for
the concept terms. In this normal form the universal quantifications are decomposed into atomic
components as well. We can illustrate this with the PCM example from Section 4.1. There we
had the roles ep (employed physicist), ec (employed mathematician), and ec (employed chemist).
The decomposition was ax(ep) = {p,pe,pm,pem}, ax(ec) = {e,pe,em,pem}, and ay(em) =
{m,pm, em, pem}. In Definition (14) we had the quantifications Vep. PAV ec.C' AV em.M. Since the
decomposition splits the roles into mutually disjoint parts, we can split the quantifications as well
into separate parts. In our case we get

Vep.P becomes Vp.PAVpc.PAYpm.PAYpem.P
Vec.C' becomes Vec.CAVYpe.C AVemn.C AYpem.C
Vem.M becomes Vm.M AVpm.M AV em. M AY pem. M

Now we collect the quantifications over the same atomic component into one term. For example
Vpe.P and Vpe.C is pulled together into Vpe.(P A C). For the three quantifications ¢ = Vep.P A
Vec.C ANVem.M we obtain through this rearrangement: Vp.P AVe.C AVm.M AVpe.(P AC) A
Vpm.(PANM)AYem.(CAM)AVpem.(PACAM).

The advantage of this decomposition is that the atomic parts are now independent of each other.
One atomic component like ¥V pc.(P A C) has no implications to any other role successors. This
is not the case for the original terms. A quantification like Vep.P may well be relevant for some
employed chemist, who happens to be an employed physicist as well. The precise definition of the
decomposition is given below.

Definition 4.6 (Decomposition of Universal Quantifications)
If o = /\TGRVr.gor ts a universal concept term where R is a set of role terms we define

ax(@)® N\ Yu(N\ e
wEUTERaH(r) wean(r)

For an atom w let

AHw (30) = /\ Pr-

wEa(r)

In the PCM example above we would have for the atom pm: axpm(¢) = P A M.

The next theorem shows that the decomposition of quantifications i1s in fact an equivalence trans-
formation, given the proper interpretation of the atoms.

Lemma 4.7 (Soundness and Completeness for Definition 4.6) For all role terms r, univer-
sal concept terms p = N\, cp Vr.@, and interpretations £ = (D,):

E(p) = an(E)(an(p))

26

Proof: “C”: Let a € £(¢). Then a € £(Yr.p,) for all r € R.
Let (a,b) € ax(J)(w) for some w € ax(T).

= for all r € R with w € ay(r): (a,b) € 3(r)

- be&(er)

= b€ E(Awearr) #r)

=a € ay(E)(Vw. /\wEOzH(r) ©r)

= a € an(E)(an(p))-

“D”: Let a € an(&)(an(p)).

Let b € Sq(r) for some r € R.

= b € an(F)q(w) for exactly one w € ax(r)

= b € E(pr) since b € E(A\yeay(r) Pr)

=a€&Vre,)

- a€&(p) =

4.4.1 A Normal Form and the Consistency Check

The normal form for concept terms, we are going to define now, is not just a simple syntactic stan-
dardization. It makes implicit information explicit and it even makes the universal quantifications
redundant for the purpose of the consistency check. All explicit and implicit arithmetic information
is comprised in the constraint part, and the decomposed quantifications are collected in the quan-
tification part. The constraint part is turned into a proper L—formula by replacing the role terms r
with their decomposed arithmetic sums Xy (7).

The tricky part of the normal form generation algorithm is the collection of the implicit arithmetic
information. Here the system must figure out which of the role term’s atomic components are actually
empty. In the PCM example (Section 4.1) we had the situation that P A C'A M was inconsistent
and therefore the pem atom was empty. This is what has to be checked and made explicit by adding
pem = 0 to the constraint part.

In this phase of the normal-forming algorithm we must do already a consistency check, but only
for sub-formulae of smaller size. Therefore the definition of the normal form and the consistency
check are intertwined. As we shall see, one can extract enough implicit arithmetic information this
way such that it suffices to check the constraint part for consistency. The quantification part is no
longer necessary. (But it is still necessary for the subsumption test.)

Extracting the implicit information can be done in two ways. If the quantification part of the
concept term is ¢ = Vri.01 A... AV rr.op, Method 1 works as follows: we map through all subsets
{¢@i,...,p;} of the quantifications and check whether ¢; A...A; is consistent. If it is inconsistent,
all atoms of ax(r; N...N ;) are set to zero. Method 2 first decomposes the universal quantifiers
(Definition 4.6) and then tests for each atom w, whether as., () is inconsistent. In this case ‘w = 0’
is added to the constraint part. It is a matter of strategy whether to choose Method 1 or 2. In
Definition 4.8 we used Method 2. In an implementation, Method 1 might be more efficient. But
in both cases some bookkeeping is necessary to avoid redundant checks. If for example ¢1 A @3 is
inconsistent, then @1 A @2 A 3 must be inconsistent as well and therefore need not to be checked
again.

Definition 4.8 (Normal Form of Concept Terms) Leti ¢ = CAN AU be a concept term where
C s a conjunction of concept names, N 1s a conjunction of Lr—formule and U s a conjunction of
universal quantifications (all conjunctions may be empty).

The normal form n(p) of ¢ is

(o) d_ef{ CANAn(p) ANamg(U) if Ax(p) is consistent

- “4nconsistent’ otherwise

27

where
Ay (o) Ean(N) A /\ w=0

wean(T),An(anw(p)) 18 tnconsistent

and
alp (U) & A Y w.ap.
Vwy’ €an(U),An(p)Ew=0 and |
O

Az () in the normal form of n(y) is the arithmetic constraint part. Tt consists of the original
constraint part ax(N) where the cardinality terms have been replaced by the corresponding sum
terms (Definition 3.2,7ii), plus some equations w = 0. These equations come from quantifications
¥V w.1p where 1 is inconsistent, and therefore there cannot be any w—successors. a/y (U) is the decom-
posed and reduced quantification part where all quantifications over empty atomic role components
and all tautologies have been eliminated.

The normal form of concept term (14)

exactly 3 ep A exactly 2 em A atmost 4 es A VYep. P AVec.C AVem.M

in the PCM example is

p + pc+ pm+ pem
m—+pm—+cm+ pecm =
s+pt+c+m+pc+pm+cm+pem <
pem =

Vp.PAVc.CAVmMm.M AVpe(PANC)AYD

> > > >

3
2
4
0
m.(PAM)AVem.(CANM)AYpem.(PACAM)
We shall prove that a concept term ¢ 1s consistent if and only if the arithmetic constraint part

Az () has a solution. This allows us to use an arithmetic equation solver as the primary inference
engine for TF1T.

Theorem 4.9 (Almost an Equivalence Transformation) For any concept term ¢ and inter-
pretation £: E(@) = an(E)(n(yp)).

Proof: Let again ¢ = C AN AU and 5(¢) = C A Ax (@) A oz (U) as in Definition 4.8. We prove
E(p) Can(E)(n(e)) and E(¢) D an(€)(n(yp)) separately. Since nothing changes for concept names
C, there is nothing to prove for these cases.

Case ‘C’: From Theorem 3.3 we obtain £(N) = an(€)(ax(N)). For the arithmetic part of ¢
we therefore only need to show: If a € £(p) then a € an(E)(w = 0) where ‘ Vw.p * € an(U) is
inconsistent. Applying Lemma 4.7 we find that if ¢ is inconsistent, there cannot be a w—successor
of a. Therefore w = 0 must be true in ay(&).

For the quantification part U we also use Lemma 4.7: £(¢) = an(E)(an(p)). ak(p) differs from
ax(p) in that some tautologies get removed. Therefore the ‘C’—part of this proof is trivial.

Case ‘D’ The arithmetic part of the proof is a direct consequence of £(N) = an(E)(arn(N)).
For the quantification part we have to show that the removed tautologies hold in £(¢). Suppose
a € an(€)(n(p)), ie. in particular a € ay(E)(An(p)). For a removed quantification Vw.i for
which Ay (¢) E w = 0 holds, there cannot be a w—successor of a in ax(€). Therefore Vw.y holds.
A removed formula Vw.9 in which ¢ is a tautology holds anyway. Thus, ¢ € an(&)(aRk(U)) =
an(E)(an(U)) = E(U) according to Lemma 4.7. [

The theorem states in particular that whenever ¢ is satisfiable, then the arithmetic part of n(¢)
is satisfiable. This weaker statement is sufficient for the soundness of the consistency check.

28

The theorem above is quite useful, but not yet strong enough for a completeness proof of a
consistency check, which tests only the arithmetic parts in the normalized concept term. The
difficult part in the completeness proof is the construction of a model for ¢ from a solution for
Ax(p). We construct a tree model by working from the leaf nodes up to the root node. This
corresponds to induction on the structure of ¢ from the base case, the concept names, up to ¢ itself.

In this construction, it is necessary to join different subtrees under a new root node, and some-
times to copy a subtree several times and hanging the copies under a new root node. We define the
disjoint union of two interpretations as a generalization of an operation that puts two interpretations
together and a copy operation. Then we show that the disjoint union of two models is again a model.
This is in a sense the inverse of Segerberg’s ‘bulldozing theorem’ for modal logic, which says that
generated sub-models are models again [Seg71].

2 be two inter-

Definition 4.10 (Disjoint Union of Interpretations) Let & = (D;,S;), 1,
2), i.e. the L—part

1
pretations for our concept language such that 31 = (8¢, 1) and Io = (S, B¢,
15 tdentical.

We define the disjoint union & W & = (D1 W D2, 1 W Sa) where Dy W Dy is the usual disjoint
union of two sets, the common ¢ -part is unchanged and Sc 1 W S 2 s defined:
) (Sc1WSe2)(s) ESe1(s) W Sea(s) where s is any role or concept name.

i) Goa(nwSeano ={ Ser deeh

if [is a functional role name. a

Proposition 4.11 For every concept term ¢ and interpretations & and &;:

(&1 W &E)(p) = E1(p) W E(p).

Proof: For the proof below notice that for all ¢: &(¢) C D; and therefore for all ¢, 9: £1(p) N
E2(¢) = 0 because D1 NDy = 0.

The proof is by induction on the structure of . If ¢ is a concept name (base case) then (£1WE2) () =
S1(p) ¥ S2(p) = &) B ().
Case ¢ = @1 A pa:
(51 ¥ E2) (1 Agpa)
(&1 8 &) (1) N (618 E2)(p2)
= [&ilp1) WE(p1)] N[E(p2) ¥ Ea(p2)]
[E1(p1) N &1 (2)] U [E1(1) N Ea(p2)] U [Ea(p1) N E1(p2)] U [E2(01) N Ea(p2)]
[£1(p1) N E1(p)] U [Ea(pr) N E
= &Gl Apa) WE(p1 Aga).
Case ¢ =V ra:
(E1 W &) (Yr.ah)
= {a|forall b:a(S1 W32)(r)b implies b € (&1 W &) (¥)}
= {a|for all b:aS(r)b implies b € & ()} W
{a | for all b : aSa(r)b implies b € Ea(¥)}
Ex(Vra) W E(Vrap).
Case ¢ € Lr:
(&1 E)(p)
= {a€DLYUDy | (S1WUS2)e = ¢}
= {a€D[(S1¥USs)aFptU{a €Dy | (81 W
= {ae€Di|(S1)aFetU{aeD:|(S2)a = ¢}
= &lp)¥é(y)

WS2)a = e}

Now we prove that the consistency of the arithmetic constraint part of the normal form for
concept terms is sufficient to guarantee consistency of the original term.

Theorem 4.12 (Completeness of the Normal Form) If for a concept term @, Ax () is satis-
fiable then for all n > 0 there is a model £ = (D,) with |E(p)| = n.

Proof: By induction on the structure of .

Base Case: ¢ is a conjunction ¢ = ¢1 A ... A ¢p of concept names. We can choose D = S(¢;) =
{1,...,n} for 1 <i < k. All role names are interpreted as empty sets. |E(¢)| = n obviously holds.

Induction Step: Now let ¢ = C' A N AU as in Definition 4.8 contain some nested terms and let
SE be a model for Ay (p). g assigns non-negative integers to all w € a(R) and numbers to all
functional role names. We construct £ in a sequence of steps.

Step 1: For every atomic component w = ry...7p € a(R) we define a model &, = (Dy, Sy):
i) If apw(p) is empty then Dy, E{1,...,n}, and §,, maps role- and concept names to the empty
set

i) If Ax (anw(p)) is inconsistent then D, = 0.
iil) Tf Az (apw(¢)) is consistent we choose a model &, such that |Ey(anw(¢))| = Se(w), which
is possible according to the induction hypothesis.

Step 2: Now take & = (Dg, Jo) to be the disjoint union of all the &, defined in the previous step.

Step 3: Let & = (D1,S1) be such that Dy = Do U {a} where a is a fresh new root element, and <
is like &g but extends the interpretation of the role names r as follows:

If for some w € a(R) and b € &y (any (@) then (a,b) € (7). (17)
For functional roles f we require Sy, (f)(a) = Sg(a). (18)
Furthermore for concept names ¢ € ¢ we state 31(¢) = So(e) U {a}. (19)

Step 4: Now we choose as & among the domain elements of £ a smallest generated sub-model of &;

that satisfies . Let b be the root of £&. (b = a may well be possible.) Finally let £ be the disjoint
union of n copies of &;.

Using Proposition 4.11, the claim is proven by showing that £;(¢) = {b} where b is the new root
element introduced in Step 4. And for proving this, it is sufficient to prove a € £, (¢) where a is the
root element introduced in Step 3.

We must show a € E1(p;), 1 <i<k,if o =1 A A g
Case ¢; is a concept name: a € & (p;) because of (19).

Case ¢; =Vra: Let ¢ € S1(r)(a).
= ¢ € S1(w)(a) for some w € ax(r)

>c€D, and c € &, (1/)) (construction of & and &; in Steps 2 and 3)
=c € E(Y) (Proposition 4.11)
-a€ & (V 7”.1/)) (construction of 51)

Case ¢; € Lr: The models &, had been chosen in Step 1 such that |&y(any (¢))] = Se(w). In
Step 3, these sets were used as a—role successors for w. For a given role r, its role successors are then
the disjoint union of all the role successors for its atomic components. With the same arguments as
in the ‘if’ part of Theorem 3.4 it follows that a € & (y;) is satisfied. =

We can summarize the results in a corollary which gives us the basis for a consistency checker

for TFTt: compute Ay (¢) and submit it to an arithmetic equation solver. If the equation solver
finds a single solution, then ¢ is consistent, otherwise not.

30

Corollary 4.13 A concept term ¢ is consistent if and only if the arithmetic constraint part Ax(p)
in 1(yp) ts consistent.

4.4.2 The Subsumption Test

Testing Subsumption means figuring out whether ¢ |= 1 holds, or more precisely, whether £(¢) C
E(¢) holds for two concept terms ¢ and v and for all interpretations £. In our case we make use of
our normal form for concept terms where the arithmetic information is comprised in the arithmetic
constraint part and the quantifications are decomposed into their atomic components. The structure
of the normalized ¢ is ¢ = C, A N, AU, where C,, is just a conjunction of concept names, N, is
the constraint part and U, are the decomposed quantifications. The same for 1y = Cy A Ny A Uy.

In order to verify ¢ = ¢ we have to prove each conjunctive part in ¢ from ¢. The normal form
allows us to separate the problem. The Cy-part can only follow from the C,—part, which is a pure
propositional problem. The constraint part Ny, can only follow from the N,-part. This, we assume
can be solved by a corresponding arithmetic algorithm, for example by reducing it to the consistency
problem for ¢ A =% (the language £ usually has negation).

Finally, the atomic components ¥ w.c’ of ¢ can only follow from corresponding ¥V w.c components
of p,if ¢ = ¢’. Here the algorithm becomes recursive. There is, however, one other possibility where
Yw.c' is a consequence of ¢, namely if N, forces w = 0. Then there are no w—successors, and Vw.c'
is true.

Theorem 4.14 (Subsumption Test) Let ¢ = C, A N AU be a consistent concept term with
normal form n(¢) = Co, ANy, AU,. Let tp = Cy AN' AU’ be another concept term with normal form
() = Cy ANy AUy. Cy, and Cy are conjunctions of concept names, N and N’ are the arithmetic
constraint parts, and U and U’ are the universal quantifications.
We have ¢ |= 1 if and only if
Z) CLP g Cw;
ii) Ny, E Ny and
iii) for all ‘Vw.c € Uy:
a) No Ew=0 or
b) there is some ‘Vw.c "€ U, with c = c'.

Proof:

The ‘only-if’—part (soundness) is obvious. For the ‘if’—part (completeness) we show by induction
on the structure of ¢ that if one of i), i), or i} is violated, there is an interpretation &£ with
E(p) € £(). This means, if £(¢) C £(¢) for all interpretations &£, then ¢), @) and i) must be true,
and we can check subsumption by testing i), iz), and #ii).

In the base case of the induction, 3 consists only of concept names, which makes it a trivial propo-
sitional problem. Now let ¢ have some nested terms.

Case 7) is violated: This is again a propositional problem.

Case ii) is violated: Let S, be an interpretation satisfying N, , but falsifying Ny.
By Theorem 4.12, S, can be turned into a model £ = (D,) with £(¢) = {a} for a suitable a.

Suppose a € E(1). (Remember ¢y = Cy AN'AU')
- Sy ': N! (cf. Definition 4.2 for %a)
and by the construction of £: ,(w) = |Fq(w)| for all atoms w € (R)

= Sp(an(r)) = |S(r)| for all role-terms r (by structural induction)
- 90l an(V).

Ny consists of the conjunction of ax(N') and a conjunction of equations w = 0 according to

Definition 4.8 of the normal form 7.
Since Yy = an(N'), but S, = Ny, it must falsify one of these equations w = 0. That means S,
requires the existence of at least one w—successor of a. Now, the equation w = 0 was inserted into

31

Ny because Ay (1) is inconsistent for some Yw.y in Uy (Definition 4.8 of Ax(¢)). Thus, there
cannot be a w—successor, which contradicts the fact stated above that there is a w—successor of a.

Thus, a € £(3) was wrong and E(¢) € £(¢) must hold.

Case i) is violated: Suppose there is some ‘ Vw.c! * € Uy and N, £ w = 0, i.e. there is some
w—successor of a, and

a) there is no corresponding ‘ Vw.c > € U, or

b) there is some ‘Vw.c’ € U, and ¢ [£ ¢/,

Subcase a) Since ¢ is consistent, there is a model £ with a € £(y¢) for some a. If a ¢ E(Vw.c') we
are done. Suppose a € £(Yw.c'). Since in the normal form all ¢ Vwe' * with tautologous ¢’ have been
eliminated, we can assume there is some b with b ¢ £(¢’) (€ can be chosen appropriately). Now turn
& into & which is like £, but b is either a new w-successor of a (in case there were no ones before),
or b is exchanged with an existing w—successor (to keep the number of w—successors the same).
a € £'(p) because nothing is said about w—successors in ¢, but a & £'(y). Thus, £'(¢) € £'(¥).

Subcase b) By the induction hypothesis there is a model & with £'(¢) € £'(¢’). We can assume &’
is a generated sub-model with some b as root, i.e. £'(¢) = {b}, but b & £'(¢’). Since ¢ is satisfiable,
there is some tree model & for ¢ with £(¢) = {a} for some a (again a generated sub-model) whose
L—part agrees with £’. As in Subcase a, since N, = w = 0, we can either add b (together with the
whole tree £’) as a new w-successor, or exchange it with an existing w—successor, in both cases, this
is a disjoint union construction following Definition 4.10. The new interpretation £ still satisfies ¢

in a, but not ¢. Thus, £"(¢) € £" (). L]

Let us illustrate the subsumption checking procedure with an example taken from [Neb90], page 80.
The task is to show that a concept!®

D ¥ atleast 3 r
is subsumed by a concept

C ¥ VY(rnp)a AVY(rngq).not-a A atleast 2 (rNp) A atleast 2 (rNyq)

where a and not-a have been axiomatized such that their conjunction is inconsistent.®

To show that C' = D following Theorem 4.14 we need the normal forms n(C) and n(D), which
requires to begin with the decomposition of the role set S = {r,p, q} according to Definition 2.1.
We obtain

O[’H(T') = {r7 rp, T‘q,?"pq}
ax(p) = {p,rp,pq,rpq}
an(q) = {q,7q,pq,7pq}

Now we are able to decompose the universal quantifiers in C' following Definition 4.6 into
Vrp.a A Yrpq.(a A not-a) A Vrq.not-a

Since a A not-a is inconsistent we obtain
ar(Uc) = VrpaAVrq.not-a

and the first equation for Ax(C) with rpg = 0. Using this equation to simplify the normal form
rp+rpg > 2Arq+rpg > 2 of atleast 2 (r N p) A atleast 2 (r N q) we obtain the two inequations

An(C) = rp>2Arqg>2

18 The notation has been adapted to fit into our framework.
19Gee the appendix for an example of how such an axiomatization can be achieved.

32

Normalizing D leads to a single inequation
n(D) = An(D) = r+rp+rg+rpg >3

Since C¢ and Cp are empty there is nothing to show for concept names. Similarly for the universal
quantification part because a/y(Up) = 0. Thus it remains to prove that Ax(C) | A (D) by
showing that

rp>2Arq>2 =>r+rp+rq+rpg>3

is valid. This is so obvious that we do not even need to negate the consequence and test the resulting
equational system for unsatisfiability, since r > 0 and rpg > 0 must hold and the premise simplifies
to rp+rq > 4.

5 Summary and Outlook

We have presented a technique for reasoning about cardinalities of finite sets and, as an application
of this technique, we have shown how it can be turned into an inference procedure for a particular
concept language. The method exploits the fact that any finite collection of sets can be built up
from a finite set of mutually disjoint building blocks, the atoms of a finite Boolean algebra.

Based on a syntactic representation of the atoms, we have developed algorithms for computing
an optimal decomposition that take a syntactic representation of the sets and information about set
theoretic relations between them as input. The algorithms exploit subset relationships, information
about disjointness of sets, and information about partitioning of some sets into disjoint components.
This helps reducing the usually exponential number of atoms. As we could show for the language
TFtT further assumptions about disjointness of sets are possible in particular applications. This
reduces the number of atoms considerably.

We have embedded the set language into an arithmetic language, such that it becomes possible
to reason about cardinality of finite sets. The atomic decomposition is the means to replace the set
cardinality terms in the arithmetic formulae by simple sum terms. This way no extra mechanism is
necessary on the arithmetic side. The integration of the set terms into the arithmetic language has
been done in a generic way. It works for all arithmetic languages which have at least a notion of
non-negative integers and an addition function. A typical example of such a language is the language
of Diophantine equation systems. The problem of solving Diophantine equation systems has come
up in a number of other areas as well, such as unification of predicate logic terms with associative—
commutative function symbols [PS82], constraint handling in logic programming languages [Jou94],
integer programming [Sch86, Kov80], and network flow problems [Hu69]. A large variety of different
algorithms that solve Diophantine equation systems is presented in the literature. The first algo-
rithms [Hue78, For83] were limited to the case where a single equation has to be solved. More recent
approaches can directly handle systems of equations [GH85, CF89, CD94] or even general linear
constraints involving inequations [AC95, CD94] and disequations [DT95]. Therefore we did not go
into further details of the equation solving aspects.

In our first application, the concept language 7F 1, however, it turned out that all reasoning
problems can be reduced to consistency checks for equation systems and thus no explicit solution
need to be computed. This calls for optimized algorithms, which do not compute solutions, but only
check consistency. Some first techniques have been presented in [Dom91, BC96] and we are cur-
rently exploring ways to develop a consistency checking algorithm that suits exactly our application
purpose.

The atomic decomposition method is a new approach for developing inference systems for concept
languages. Traditional approaches, in particular tableaux methods, are focused on the logical parts
of these languages, and cannot deal very well with arithmetic information. In contrast to this, the
decomposition method focuses primarily on the arithmetic parts. The information represented by

33

the logical connectives has to be treated on a different level. In the case of TF1T it is implicitly
encoded in the normal form generation algorithm for concept terms. This makes the treatment of
the logical connectives more difficult, from a conceptual point of view, not for the actual inference
engine. Therefore so far we have only investigated conjunction and the universal quantifier. We have
a relatively clear picture of how the other connectives are to be treated, but the technical details are
beyond the scope of this paper. On the arithmetic part, however, the expressivity of 7F*T is only
limited by the power of the equation solver at hand. But already for very simple equation solvers,
TF** goes far beyond the traditional atleast and atmost number restrictions.

There are still many open problems if we want to use the decomposition method as primary
inference engine in concept logics. First of all the other logical connectives, existential quantifier,
disjunction and negation have to be investigated in this context. Fortunately, once negation is
available, the treatment of some of the more advanced constructs of concept logics comes for free.
For example, qualified number restrictions?® atmost nr.c can be translated into |r'| < n A Yr'.c A
Y (r\ r').me, where v’ is a new sub-role of r. On the other hand, for the qualified number restriction
atleast n r.c, the expressivity of 7F*t is already sufficient, because it can be translated into
|r'| > n AVr'.c with a new sub-role ' C r. More complicated, however, seems to be the treatment
of role constructors such as role composition, inverse roles, role value maps etc, as well as the
treatment of special properties of the roles, for example transitivity. These topics are subject to
further work.

In this paper we have considered only the T-Box part of 7F % and there only the consistency
and subsumption check. Our approach to classification and the whole area of A-Box reasoning
require presentation in another paper to allow for a detailed discussion.

Our approach opens a new field of research in the knowledge representation area, where the
emphasis is more on the data side. The goal is to close the gap between symbolic logic and real data
in relational databases.

6 Appendix: The PCM Example

For the PCM example introduced in Section 4 we demonstrate how role hierarchies and number

restrictions can be used to axiomatize that PAC A M are inconsistent, but the concepts are pairwise

consistent. The axiomatization is purely artificial. There is no intuitive meaning for the axioms.
First of all we need a small role hierarchy with roles {r,s,t}. It is depicted

to the right. Furthermore we need to require that s and ¢ are disjoint. The /r\
specification is H = {r,s C r,t C r,s {t}. The axioms are now: s t
P = atmost3 r (20)
C = atmost5 rAatleast 2 s (21)
M = atmost 5 s Aatleast 2 t A atmost 4 t (22)

. . . t ;‘ —

The little graph to the right shows the possible values, s and ¢ can 3 M
take, given that they are disjoint and constrained by r. Obviously the ‘
intersection of all three is empty, but pairwise it is not empty. 1D =

1

1

For the decomposition method it is quite easy to find out that
PAC AM is indeed inconsistent. The sets to be decomposed are {r, s,t}.
Exploiting the hierarchy for r, s and ¢, we find the following decompo-
sition

2 3 4558

ay(r) ={r,rs,rt}, ax(s)={rs}, an(t)={rt}.

20 An example for a qualified number restriction is atmost 2 has-child.teacher. It denotes the set of all objects
which have at most two children who are teachers.

34

The translation of (20, 21, 22) is now

(20): r4+rs+rt < 3
(21): r4+rs+rt < 5
rs > 2
(22): rs < b
rt > 2
rt < 4

The inequations rs > 2 and rt > 2 contradict r 4+ rs + rt < 3, therefore the
set of inequations does not have a solution.

A Bit of Equation Solving

The main part of the PCM example has a more interesting equation solving problem. The equa-
tions (15)

p+ pm+ pc 3
m+pm+cm = 2
s+p+ec+m+pct+pm+cem < 4
are supposed to imply that there are at most three chemists. That means ¢ 4+ pc 4+ em < 3 is

a theorem, given (15). Negating the theorem and introducing slack variables, we obtain the four
equations.

FEy p+pm+pc = 3
Ey m+pm+cm = 2
FEs: s+p+ec+m+pc+pm+cem+s, = 4
Fy c+pc+cem—sy = 4
Applying a Gaussian-like elimination procedure, we find:
FEs—Ey = FE5: s+p+e+pc+sy = 2
Fy— E5 = FEg: cm—s—p—S —Sg = 2
Ey—FEs=FE;: m+4+pm+s+p+sa+s1 = 0

Since all variables are non-negative, E7 has only the trivial solution: m =0, pm =0, s =0, p = 0,
s9 = 0, s; = 0. This simplifies F; to pc = 3 and Fs to em = 2, and this in turn simplifies £, to
¢ = —1, which is not possible. Thus, the equations are inconsistent. The theorem must be true.

35

References

[AC95]

[BCY6]

[BHY1]

[BPS94]

[BS85]

[CDY4]

[CF8Y]

[Che80]

[DLNN95]

[Dom91]

[DTY5]

[Ford3]
[Gab70]
[GabT72]

[GHS5]

[FINSS90]

F. Ajili and E. Contejean. Complete solving of linear diophantine equations and inequa-
tions without adding variables. In U. Montanari and F. Rossi, editors, Proceedings of
the 1st International Conference on Principles and Practice of Constraint Programming

(CP-95). Springer, 1995.

A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite
automata. In H. Kirchner, editor, Proceedings of the Colloguium on Trees in Algebra and
Programming (CAAP’96), Lecture Notes in Computer Science. Springer, 1996.

F. Baader and B. Hollunder. KRIS: Knowledge representation and inference system.

SIGART Bulletin, 2(2):8-15, 1991.

A. Borgida and P. Patel-Schneider. A semantics and complete algorithm for subsumption
in the CLASSIC description logic. Journal of Artificial Intelligence Research, 1:277-308,
1994.

R. Brachman and J. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171-216, 1985.

E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of
linear diophantine equations. Journal of Information and Computation, 113:143-172,

1994.

M. Clausen and A. Fortenbacher. Efficient solution of linear diophantine equations.
Journal of Symbolic Computation, 8:201-216, 1989.

B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge,
1980.

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages.
Research Report DFKI-RR-95-07, DFKI, 1995.

E. Domenjoud. Solving systems of linear diophantine equations: An algebraic approach.
In A. Tarlecki, editor, Mathematical Foundations of Computer Science 1991: Proc. of
the 16th International Symposium, volume 520 of Lecture Notes in Computer Science,
pages 141-150. Springer, 1991.

E. Domenjoud and A. Tomas. From Elliot-MacMahon to an algorithm for general linear
constriants on naturals. In Ugo Montanari and Francesca Rossi, editors, Proceedings of
the 1st International Conference on Principles and Practice of Constraint Programming

(CP-95). Springer, 1995.
A. Fortenbacher. Algebraische unifikation, 1983.
D. M. Gabbay. Selective filtration in modal logics. Theoria, 36:323-330, 1970.

D. M. Gabbay. A general filtration method for modal logics. Journal of Philosophical
Logzic, 10:135-146, 1972.

T. Guckenbiehl and A. Herold. Solving linear diophantine equations. Technical Report
SEKI-85-1V-KL, University of Kaiserslautern, 1985.

B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption algorithms for concept
description languages. In Proceedings of the 9th European Conference on Artificial Intel-
ligence (ECAI-90), Stockholm, Sweden,, 1990.

36

[Hu69]

[Hue78]

[Jou94]

[Kov80]

[LS66]
[Mac94]

[Min90]

[Neb90]

[OSH95)]

[PS82]

[Sch86]

[SegT1]

[SSS91]

T. C. Hu. Integer programming and network flows. Addison-Wesley, Reading, Mass.,
1969.

G. Huet. An algorithm to generate the basis of solutions to homogeneous linear diophan-
tine equations. Information Processing Letters, 7(3), 1978.

J.-P. Jouannaud, editor. First International Conference on Constraints in Computational
Logics, volume 845 of Lecture Notes in Computer Science. Springer, Berlin, New York,

1994.

L. B. Kovacs. Combinatorial methods of discrete programmang, volume 2 of Mathematical
methods of operations research. kademiai Kiado, Budapest, 1980.

E. Lemmon and D. Scott. Intentional Logics. Stanford, 1966.

R. MacGregor. A description classifier for the predicate calculus. In Proceedings AAAI-
94, pages 213-220. Morgan Kaufmann, San Francisco, 1994.

M. Minsky. A framework for representing knowledge. In R. J. Brachman and H. J.
Levesque, editors, Reprinted in Readings in Kwowledge Representation, pages 245-262.
Morgan Kaufmann, San Francisco, 1990.

B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture Notes in
Artificial Intelligence 422. Springer, 1990.

H. J. Ohlbach, R. Schmidt, and U. Hustadt. Translating graded modalities into predicate
logic. Research Report MPI-1-95-2-008, Max-Planck-Institute of Computer Science, 1995.
To appear in H. Wansing (ed), Proof Theory for Modal Logic, Oxford Univ. Press.

G. E. Peterson and M. E. Stickel. Complete sets of reductions using associative and/or
commutative unification. Technical Note 269, SRI, 1982.

A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics. Wiley, Chichester, New York, 1986.

K. Segerberg. An essay in classical modal logic (3 vols.). Filosofiska studier, nr. 13,
Uppsala Universitet, 1971.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48:1-26, 1991.

37

List of Symbols

Az (¢) normal form of constraints, 28
as(€) extended model, 4

ol decrementing algorithm, 8

ad, incrementing algorithm, 10

ax(N) eliminating cardinality terms, 16
ax () decomposition of quantifiers, 26
anw (@) quantifier arguments, 26

as(s), 4

Ozs(T), 4

copy, 24

\ set difference, 5
1 disjointness declaration, 7
D domain, 3, 4

&€ Model, 4, 21
&, role fillers, 21
E(L)=10,4
E(T)=D, 4

‘H hierarchy specification, 7

&y role fillers, 21

> meta implication, 27

© € 1 top level membership, 21
N intersection, 5

L arithmetic language, 15
L arithmetic language, 20
Ls arithmetic language with sets, 15

n(¢) normal form of concept terms, 27
< partitioning declaration, 7

R roles, 20

=

entailment between equations, 15
satisfies H, 7
satisfies concept term, 21
satisfies equation, 15
tautology, 25

S basic set terms, 3, 4

Sy basic set terms, 10

SR like SS, 21

Ss set terms, 5

C subset declaration, 7

38

TF concept language, 20

TFt* new concept language, 20
T the whole domain, 3

1 the empty set, 3

U union, 5
& disjoint union, 29

wp=wU {p}, 3

Index

A-Box, 17 PCM-example, 19
atomic decomposition, 4

decrementing algorithm, 8 role, 17

incrementing algorithm, 10 filler, 18

functional, 20
basic set terms, 4 hierarchy, 18
connected component, 23

cardinal numbers, 6, 15 successor, 18
cardinality terms, 15
children example, 1 satisfiable, 21
classification, 18, 34 semantics
concept languages, 17 arithmetic language, 15
concept term, 20 atomic decomposition, 4

normal form, 27 concept terms, 21
concepts, 17 hierarchy specification, 7
connected component, 23 set—terms, 5
consistency checker, 30 slack-variable, 15
consistent, 21 subsumption, 18

subsumption test, 31

decomposition

atomic, 4 T-Box, 17

of universal quantifiers, 26 tableaux, 18
Diophantine equation, 2, 15 tautology, 25

linear, 2, 15 terminological axioms, 21

non-negative, 2, 15
disjoint union, 29
domain, 4

example
children, 1
PCM, 19

finite model property, 23
functional role, 20

hierarchy
declaration, 7
roles, 18
specification, 7
specification, incremental, 9
hierarchy declaration
disjointness, 7
non-emptiness, 7
partitioning, 7
subset, 7

model, 21

number restriction, 18

qualified, 18, 34

39

