INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Computability of String Functions
Over Algebraic Structures

(Preliminary Version)

Armin Hemmerling*
TR-96-028
August 1996

Abstract

We present a model of computation for string functions over single—sorted, total
algebraic structures and study some features of a general theory of computability
within this framework. Our concept generalizes the Blum—-Shub—Smale setting of
computability over the reals and other rings. By dealing with strings of arbitrary
length instead of tuples of fixed length, some suppositions of deeper results within
former approaches to generalized recursion theory become superfluous. Moreover,
this gives the basis for introducing computational complexity in a BSS-like manner.
Relationships both to classical computability and to Friedman’s concept of eds com-
putability are established. Two kinds of nondeterminism as well as several variants
of recognizability are investigated with respect to interdependencies on each other
and on properties of the underlying structures. For structures of finite signatures,
there are universal programs with the usual characteristics. In the general case (of
not necessarily finite signature), the existence of universal functions is equivalent to
the effective encodability of the structures, whereas the existence of m—complete sets
turns out to be independent on those properties.

*Ernst Moritz Arndt University Greifswald, Department of Mathematics and Computer Science
F.-L.-Jahn Str. 15a, D-17487 Greifswald, Germany; e-mail: hemmerli@rz.uni-greifswald.de
Parts of this work were done while the author was visiting the ICSI.

i

1 Introduction

In this paper, we present a handy model of computation over algebraic structures and
demonstrate its application by dealing with some features of a general recursion theory.
Our notion generalizes the concept of computability over the field of real numbers and
other rings, as it has been introduced and, in particular with respect to time complexity,
successfully applied by L. Blum, M. Shub and S. Smale (BSS) in their seminal paper [8].
For further presentations and surveys of BSS theory, see [5, 6, 44, 45, 7].

More precisely, we consider sequential computability of (partial) string functions and
recognizability of sets of strings over the universe of a given structure. The latter is also
allowed to be of infinite signature, but we restrict ourselves to single-sorted structures with
total base functions and relations. The model enables us to deal with two fundamental types
of nondeterminism. Moreover, it gives an appropriate basis for dealing with computational
complexity in a BSS-like setting. This, however, will not be a subject of the present paper;
for a previous information, the reader is referred to [30].

Since the thirties, when the basic concepts of standard theory of computation had been
developed and their fundamental importance had been stressed by Church’s Thesis, a lot of
work has been done in generalizing the classical approaches to non—classical object domains.
First attempts were based on enumerations and numberings of algebraic structures, we
refer to [55, 40, 38, 17]. Y. Moschovakis [51, 52] introduced notions of computability by
generalizing the principles of generating primitive-recursive and partial-recursive arithmetic
functions. E. Engeler [15] introduced a programming approach to algorithmic properties
of structures. Finally, H. Friedman [20, 61, 21] contributed a further, rather natural and
general framework by means of his generalized Turing algorithms and effective definitional
schemes. For a representative view to these endeavours up to the end of the sixties, we
refer to [23], in particular to the critical view by G. Kreisel [37]. J. Shepherdson’s papers
[60, 61, 62] follow the development up to the present.

Detailed presentations of axiomatic approaches were given in the monographs [18, 19].
We also refer to the theory of program schemes, cf. [32, 39, 24], where abstract programs
over classes of structures of related signatures are considered. Several relationships between
definability of functions by programs, algebraic properties of the underlying structures and
dynamic logic were pointed out, see [71, 34, 35]. Ideas of generalized computability were used
to develop a logical basis for dealing with geometrical constructions, [59]. Computational
geometry [54] is also based on generalized models of computation. Finally, the several
theories of effective analysis and type 2 computability should be mentioned in this context,
even if their paradigm of computation by approximation differs considerably from our point
of view. Related surveys and discussions can be found in [3, 72, 73, 36].

In some sense, our model is a modification of Friedman’s generalized Turing algorithms.
Moreover, for structures of finite signatures, it is equivalent to a uniform version of Fried-
man’s effective definitional schemes. In contrast to almost all former approaches however,
we explicitly consider (the computability of) string functions instead of functions of some
fixed arity over the given universe.

The treatment of string functions is necessary from practical demands in order to get a
uniform computation device, and it just gives the opportunity to define time complexity in
a BSS—like style. So, like Asser’s paper [1] did for classical recursion theory some decades

ago, the present paper tries to stress the importance and usefulness of string processing, now
for computability over general structures. We remember that classical complexity theory
(like theory of computability, too, as far as it is based on the model of Turing machine)
does not immediately deal with functions or decision problems over the natural numbers
or the integers. More precisely, it considers the digital encodings of those functions or
problems. This means, it deals with strings over finite alphabets which possibly represent
numbers. The “genuine” complexity of number problems (considered with respect to strings
of numbers) has been scarcely investigated so far, cf. [46, 29].

In order to deal explicitly with strings, the computation device has necessarily to be
equipped with facilities for string handling. It must be able to prolongate a current string
by a given element of the structure, or to delete elements of the current string. The ac-
ceptance of these demands leads to the advantage that some non-trivial suppositions of
recursion theoretic results and proof techniques in many of the former approaches, like w—
richness, existence of pairing functions or structurality, become superfluous under rather
weak assumptions within our framework. For example, natural numbers can be represented
by configurations of our programs, the pairing of strings is easily done, and the evaluation
of terms is straightforward.

We notice that crucial ideas of our model of computation with respect to structures of
finite signatures, in particular the treatment of P-NP questions, have already been outlined
and used by J. Goode [27] and B. Poizat [53]. This confirms the naturalness of the approach
we are going to present.

This paper is organized as follows. In Sections 2-4, our model of computation is in-
troduced, several examples are given, the basic types of programs are defined and their
relationships to classical notions as well as to the BSS setting are discussed. Moreover, the
restriction to so—called bipotent structures is justified. Section 5 establishs connections to
a modification of Friedman’s effective definitional schemes and characterizes nondetermin-
istic computations by means of projections of deterministic ones. Sections 6 and 7 deal
with variants of recognizability for sets of strings and with their interdependences on each
other and on properties of the underlying structures. Recognizability is also characterized
by means of suitable modifications of Friedman’s schemes. Section 8 presents basic results
on universal programs over structures of finite signatures, whereas Section 9 characterizes
the class of general structures over which universal programs with related properties exist.
In Section 10, we show the mutual independence of the existence of universal functions and
of m—complete sets, respectively, over a structure.

2 The Model of Computation
IN, denotes the set of all positive integers. By an algebraic structure, we mean a quadruple
S=(5;(Ci:iele); (Ri:i€lr); (Fi:ielr)),

where S is a nonempty set, called the universe of §; (C; : i € I¢) is the (possibly empty)
family of base constants, i.e. C; € S, for all i € I¢; the family (R; : i € Ir) gives the
base relations, thus, R; C S* with some arity k; € IN, , for all 7 € Ig; and, analogously,
F;: 8% — S are the (total) base functions, each with some arity I; € IV, .

The triple 0 = (Ic; (k;:1 € Ir); (I; 11 € Ir)) is called the signature of S. It is said
to be finite resp. countable if all the index sets, Io, Ir, IF , are finite resp. countable.

We specify some examples:

B=({0,1};0,1;=;+,—,-,/), the binary field;
N =(IN;0; =; succ) the Peano structure of natural numbers;
A=(IN;0,1;=5+4,-), the structure of elementary arithmetic;
Z=(Z;0,1;<;4,—,), the ordered ring of integers;
R=(R;0,1;<;4+4,—,-,/), the ordered field of reals;
C=(C;0,1;=;+,—,-,/), the field of complex numbers;
G=(G;e;=;-,71), an arbitrary group;
V=(V;0;=;(o,:7€R), +), a linear vector space (let o,(z) =1-2);
Rijpp=(IR;0,1; =; (ur:7 €IR), +), thereals as linear space (p,(z) = r-z);
lin,< = (IR;0,1; <;(ur:r€IR),+), theordered reals as linear space;
Rse=(IR;0,1;=;(u.:r€R)), the reals with scalar multiplication only.

The division is here always assumed to be a total operation: let s/0 = 0. The first seven
examples are structures of finite signatures, the remaining four have infinite signatures.

Fig. 1: l

S-machine <= (program)

l

o(s1,---,8,) (iff it exists)

Computability in S, that means of functions ¢ : ¥ ~—— § with some arity k, has been
considered by many authors, cf. [15, 31, 20, 61, 59, 34, 35, 21]. It also plays a fundamental
role in the theory of program schemes, see [39, 24, 71]. Figure 1 illustrates the underlying
basic idea of so—called finite algorithmic procedures. The input tuple is given to a “machine”
which works according to a certain program and yields a result equal to the value of the

function if and only if the function is defined on that input. Such a (deterministic) Program

is a sequence P = (By, By, ---, By) of instructions By which act on finitely many of the
variables (registers) zqg, 1, 2, --- . Usually, the instructions can be
assignments: z; := C; (i€ Io);
Zj ::E(:CJ'N"ijzi) (i € Ir);
branchings: if R;(zj, -,z) then goto Ay (i € IR);
stops: halt.

Even if the length of input strings is fixed, it can be useful to admit arbitrarily many
variables. Practical computation problems, however, very often deal with arbitrarily long
sequences of input and output elements. To give some examples, we refer to the solution
of systems of equations, say over the reals, to vector and matrix operations over fields,
to sorting problems, or to the many problems of computational geometry [54], like the
computation of the convex hull of a set of points and others. Thus, we have to consider the
computability over §, that means the computability of string functions ¢ : 5* =—— 5.
The basic idea shown in Figure 1 remains unchanged essentially, but input and output are
strings now. To enable the program to have access to arbitrarily many variables, some kind
of indirect addressing is needed. This can be implemented by means of special counting
variables, as it has been considered by Friedman and subsequently done by several authors
as well as in the BSS setting. One could alternatively allow operands of the form z,, and
treat the content of a variable z; as an address. Both of the variants are based on the
availability of natural numbers.

Our approach avoids such a direct reference to natural numbers. We use finitely many
pointers which act like the heads of a Turing machine on the current string of data. More-
over, the empty string is not admitted, since we want to avoid the use of a special blank
symbol which would have to be added to the elements of the structure. For an illustration
of data handling by our machine, see Figure 2.

Fig. 2:
& string of data: 51 [s2 | s3 e Sy e Sn
access by pointers: P3 Pk 21

The basic data structure of our S—machine is the set ST of all non—empty finite sequences
(strings) of elements from the universe S. Thus, S* = ST U {A}, with the empty siring
A which is not allowed to occur in the course of our computations. The concatenation
w-w or ww' of strings w = s185- s, and w' = sish---s, is defined as usual: w-w' =
S189 8,8, 85 -5, The length of a string gives the number of (occurrences of) elements
in it, length(w) = n.

An S-program will use finitely many pointer variables p; (1 < j < k) which point to
elements of the current string w, i.e. they have values from {1,2,---, length(w)}.

We have three types of atomic pointer expressions, namely

b; = py,
r—end(p;) ,
l-end(p;) (for 1<j,7'<k).

In some step, p; = p;s is true iff both pointer variables have the same current value, whereas
r—end(p;) resp. l-end(p;) are true iff p; points to the right resp. left end of the current
string.

Data variables are of the form ¢

“p;j1 7 Y for 1 < j < k; their current values are those
elements from S to which the p; point. Data terms are inductively defined to be either data
variables or constants C; (i € I¢), or to have the form Fi(ty,---,1;), with a base function
F;, 1 € Ir, and data terms ¢4, -,1%;,.
Atomic data expressions are either equations “ #; = t3 ” with data terms #; and t,, or
predicative expressions “ R;(t1,---,tx,) 7, with i € Ir and data terms t1,-- -, .
An S-program is a finite sequence

P =(Bo;B1;---;B1), €N,

of unconditional or conditional instructions By, 0 < A < [.
Unconditional instructions are of the following types, where 1 < j < k.

e assignments: “ p; [:=1 ", with a data term ¢ ;

“

e pointer moves: “ r-move(p;) ” or “ [~move(p;) " ;

[43 ” .

e append instructions: “ r-app(p;)” or “ l-app(p;) " ;

e delete instructions: “ del(p;) ” ;

e stop instructions: “ halt” ;

e jumps: “ goto(mg,---,m,) ", with n,mg,---,m, € IN ;
)

e guess instructions: “ guess(p;1) 7.

A conditional instruction has the form
“i4f Cond then Inst ”

with an unconditional instruction Inst and an atomic (pointer or data) expression Cond.
The meanings of assignments, pointer moves and stop instructions are nearly straight-
forward. Assume that a stop instruction is repeated ad infinitum. Moreover, a pointer move
is performed only if the pointer would not leave the current string by that move, otherwise
it doesn’t cause an action. If the pointer p; occupies the right resp. left end of the current
string, the append instruction causes an enlargement of the string (to the right resp. left)

“...7 for a better differentiation between constituents of

1We shall sometimes use the quotation marks
the object language and of the metalanguage, respectively. Remark that the desciptions of the first ones

may also contain metavariables.

by one place which has to be filled with the former rightmost resp. leftmost element, and
the pointer p; has to take this position in the following step. If the pointer doesn’t occupy
the corresponding end of the current string, the append instruction has no effect.

The delete instruction causes an action only if the current string has a length > 2 and
if the corresponding p; points to the right or left end of the string. Then this element has
to be removed, and all pointers placed there take the new end element as their positions in
the next step. A jump instruction causes a jump to one of the instructions whose indices
are given in the list of goal labels, (mg,---,m,). In all the other cases of instructions
(excepted the stops which call themselves), after having performed them, the program
control continues with the next instruction of the program. A guess instruction replaces
the value of the corresponding data variable by an arbitrary element of the universe 5.
Finally, the instruction Inst, within some conditional instruction as given above, has to be
performed iff the condition Cond holds with respect to the current values of the involved
pointer and data variables, otherwise the program goes to the next instruction.

More precisely, an operational semantics of S—programs P can be defined by means of
the notion of P—configuration.

A P-configuration is a (k 4+ 1)-tuple

H:(wv)‘vgh"'vgk)

withw € ST, A€ IN,1 < oy,--+, 01 < length(w). Tt gives the current string w, the content A
of the instruction counter, and the current values of the pointers, val.(p;) = o; (1 < j < k).
The values of data variables are val.(p; 1) = w[o;] (i.e. the o;-th element of the string w).
On this basis, the values of pointer expressions and of data terms and data expressions with
respect to k can straightforwardly be defined.

The change of configuration by the execution of one step of a program P is specified
according to the above sketched meanings of instructions. We assume that the last instruc-
tion By is just the only stop instruction and that all the goal labels (of jumps) occurring

in P belong to the set {0,---,[} (otherwise, the call to a non-existing instruction should
cause a stop). Thus, to every P—configuration x = (w, A, 01, -, 0%) obtained from some
initial configuration (wg,0,1,---,1) by finitely many steps of the program, an instruction

B) of the program is assigned, and « is a stop configuration of P iff A\ = 1.

We omit the formal definition of the relation Fp , where s Fp k' means that the con-
figuration ' is obtained from k by executing one step of program P. For example, a jump
“goto(mg, - -+, my)" causes n + 1 successors &’ of the current configuration k, whereas a

*
guess instruction causes card(S) successor configurations. Let Fp denote the reflexive and
transitive hull of the relation Fp, i.e.,

K lip k' iff there are an m € IN and P-configurations kg, k1, - -, Km
such that kK = kg, k' = K, and &; l—p Kit1, for 0 <4 < m.

Finite or infinite sequences (Ko, k1, kg, --) of configurations such that x; I—P Kit1 are
called P-computations.

Let ¢ be a string relation from S% into S*,i.e., o C STX ST, we write ¢ : ST >=—= S§+.
We shall say that the program P computes the relation ¢ iff

¢ = {(w,w’) : there is a stop configuration x' = (w',[,01, -+, 0%)
*

such that (w,0,1,---,1) Fp &' }.

For a set W C ST, we say that P recognizes W iff
W = {w : there is a finite P—computation which starts with (w,0,1,---,1)
and terminates with some stop configuration }.
In other words, the recognizable sets over § are the domains of computable relations or the
halting sets of S—programs.
A set W C ST is called decidable iff both W and S\ W are recognizable by S—programs.
An S-program is said to be deterministic (briefly: D-program) if it does not contain a
guess instruction and, moreover, all its jump instructions have just one goal label. Deter-
ministic programs compute only single-valued relations, i.e. (partial) functions. A program
is nondeterministic of the first kind or binarily nondeterministic (Ny—program) if it does not
contain a guess instruction. An arbitrary program is also said to be nondeterministic of the
second kind or totally nondeterministic (Ny—program). In the straightforward meaning, we
shall speak of deterministic computability, N;—computability (i = 1,2) and use the related
notations with respect to recognitions or decisions.

3 Examples, Quasiprograms, Church’s Thesis

In the sequel, programs and parts of programs will also simply be written as sequences of
instructions separated each from the other by semicolons. For a better understanding, we
sometimes include comments of the form “{--- -..}” in programs. Moreover, to facilitate
the design and to improve the readability of programs, one can use some almost self-
explanatory meta—notations for [parts of] programs. They always stand for [parts of] S—
programs in the strong sense of definition. So they play the role of macros well-known from
machine-oriented programming. Their use within recursion theory has been demonstrated

in [33, 63].
Sometimes it is convenient to allow the empty instruction “ 7. We shall use symbolic
labels Lo, Ly, Lo, --- instead of indices of instructions as goal labels within jumps. Of

course, the corresponding goal instructions must be marked by those labels in the meta—
notation. In contrast to our agreement that just the last instruction in S—programs is the
stop instruction, in meta—notations we allow the “halt” at arbitrary places. Also the use of
boolean combinations (generated by the functors “not”, “and” and “or”) of atomic pointer
or data expressions as conditions within conditional instructions is justified. Indeed, every
such meta—instruction can straightforwardly be transferred into a sequence of genuine S—
instructions with the intended meaning. Moreover, conditional instructions using pointer
expressions like “p;, < p;,”, “p;; < pj,”, “pjy = Pj, + 77 and also pointer assignments like
“pj, == Dpj, + 57 can easily be translated into genuine program parts.
Constructs like if-then—else can be used, too. For example,

if Cond then Instl else Inst2 endif
can equivalently be replaced by

if Cond then goto(L}) ;
Inst2 ; goto(L}) ;

L}: Instl ;

Ly

with new labels L}, L},. Here Inst1 and Inst2 could also be sequences of [meta—| instruc-
tions. Analogously, while—do or repeat-until constructs are admissible.

Thus, for writing programs, the facilities of a high—level language can be applied in the
form of meta—notations.

The instructions “l-app(p;)” can be avoided in computations of relations. Instead of
this, the current string could be prolongated to the right by one element, and then each
element of the former string (and all pointers except the j-th one) can be shifted by one place
to the right. Assignments like “p;, T := p;, 1”7 are used to copy elements from one place to
another in the current string. It is left to the reader to write a program part performing
this idea. Analogously, the application of the instructions “del(p;)” can be avoided always
if the j-th pointer occupies the left end of the current string. Instead of that instruction, the
elements of the string (and the other pointers) can be shifted to the left by one place. We
shall say that a program works with fized left end of the strings if it avoids both the kinds
of instructions, the latter for pointers on the left end of the current string only. Obviously,
this corresponds to Turing machines with one—sided infinite tapes. We have shown

Lemma 3.1 Fvery (D-, N1— or Ny—) computation of a relation or recognition or decision
of a set can be performed by a program working with fived left end of the strings. O

By definition, every deterministic program is also nondeterministic of the first or second
kind. Furthermore, any unconditional jump instruction

gOtO(L07) Ln)
with n > 1 can equivalently be replaced by a sequence of binary jumps:

goto(Lo, L) ;
Ly = goto(Ly, LY) ;

Ll _s:goto(L,—q,Ll,_5) ;
Lo goto(Ly—1,Ly) ;

where L},---, L _, are symbolic labels which don’t occur at other places of the (meta—
notation of the) program. Jumps in conditional instructions can analogously be replaced
by binary ones.

If the universe S contains only one element, the guess instructions doesn’t cause any
change of the current string or pointer positions. Thus, it acts deterministically and can
equivalently be omitted or replaced by the empty instruction.

If card(S) > 2, a binary jump ” goto(L1, Lz) ” can equivalently be replaced by a program
part of the form

or r—move(Pry1) ;
if not(r-end(pi+1)) then goto(L]) ;
r-app(pr+1) ; guess(pr1 1) ;
if p1T= pr+11 then goto(L7) else goto(L3) ;
Ly ¢ del(pgs1) 5 goto(Lq) ;
LY 2 del(pr41) ; goto(L) ;

where Ly, L}, L, are new labels which don’t occur somewhere else in the program, and pyy1
is a new pointer variable. So we have

Lemma 3.2 On structures with at least two elements, nondeterminism of the first kind can
be simulated by means of gquess instructions and deterministic instructions only. O

Over the structure A of natural numbers, the instruction ”guess(p; 1) ” can equivalently
be replaced by

pi1:=10;

Ly goto(L}, 14) ;

Ly pili=pi1 +1; goto(Lg) ;

Ly
Thus, No—programs over N are not more powerful than N;-programs. The analogue does
not hold, however, over the ordered field R of real numbers. Indeed, the function ¢ \/(w) =

abs(w[1]) is computed by the Ny—program

Lo: if not(r-end(pz)) then goto(Lg) ; {p2 to the right end}
r-app(pz) ;

guess(pa1);

ifpr 1< 0 then py [:= (1) xp1 T {p11:= abs(p: 1)}

Ly if pol #p21# p11 then goto(Ly); {infinite cycle}

Ly 2 del(p1) ; if p1 # p2 then goto(Lsz); {delete the input w}
halt .

Starting with a string consisting of rational numbers, any N;—program over R yields
strings of rational numbers only. Thus, the function ¢ /- cannot be computed by such a
program. Therefore, No—programs over R are strictly more powerful than Ni—programs,
with respect to the computation of functions. Using Tarski’s [70, 14] method of effective
quantifier elimination, one can show, however, that every set of strings over R, which is
recognizable by an Ny—program, can even be recognized by a deterministic program, cf.
Propositions 7.1 and 7.5 below.

Many authors, like Friedman, Kfoury and BSS, allow the use of arbitrary elements of
the universe as constants in their programs. This seems to be quite common with respect to
the RAM model over the integers. But in this case, any constant ¢ can be considered as an
abbreviation of the term “14---41” (i times 1) if ¢ > 0, and of a term “(—1)+---+(—1)"
if 7 < 0.

Following the differentiation made by Moschovakis [51, 52], in this paper we shall strictly
distinguish between §-programs, where only the base constants of the structure are allowed
to occur as direct operands, and the so—called §—quasiprograms which are analogously de-
fined but allowing arbitrary elements of the universe as direct operands. Those will be
denoted as quasiconstants in this context. The concepts of computability, recognizability
and decidability are straightforwardly applied to quasiprograms.

For example, over structures § with finite or countable signatures there are only count-
ably many S—programs. On the other hand, if the universe contains uncountably many
elements, we have uncountably many S—quasiprograms and even uncountably many decid-
able sets of strings. Indeed, any singleton {w}, w = s1---s, € S*, can be recognized by
the following S—quasiprogram.

if p1] # s1 or r—end(py) then goto(Lg);
r-move(p);

if p1] # s2 or r—end(py) then goto(Lg);
r-move(p);

if p1] # Sn—1 or r—end(py) then goto(Lg);

if p11 # s or not(r-end(py)) then goto(Lg);
halt ;

Lo: goto(Lg) { infinite cycle } .

By a slight modification, one obtains a quasiprogram recognizing the complement S\ {w}.
More amazing is the fact that every subset of IN is R—quasidecidable, since its char-
acteristic function with respect to IN can be encoded by (the binary representation of) a

10

real number. Thus, since the elementary theory of every structure of finite signature can
straightforwardly be encoded by a set of natural numbers, it is always R—quasidecidable.

The following lemma shows how the computability of relations by quasiprograms can
be characterized by the computability by means of programs.

For a relation ¢ : St >= ST and a (possibly empty) string wg € 5*, let the relation
©(wo) be defined by

Plugy = 1w, ')+ (wo - w,w') € ¢}

For a function ¢, we simply have @,y (w) = (wo - w) 2.
Lemma 3.3 A relation) : ST >=> S7 is computable by a (D~ , N1— or Ny) quasiprogram
over S iff there are a relation ¢ : ST >>= ST and a siring wg € S* such that ¢ = ©(wo)
and ¢ is computable by an S—program of the same type.

To prove the direction ”—", let P be an S—quasiprogram which computes ¢». Without
loss of generality, we suppose that P works with a fixed left end of the strings. Assume, it
uses the quasiconstants s1,---,$, € 5, n € IV, and the pointer variables py,- - -, pg.

Let wg = 31+ s,, and Pg be the following program.

r-move(py); -+ ; r-move(pi);
{n lines}
r-move(py); -+ ; r-move(pi);
r-move(pry2); -+ 3 T—move(Pryr) ; T—MOove(Phtnt1) ;

r-move(prys); - 3 T-move(Prynt1);

r-move(Pryn); T MOVE(Ditnt1);
- move(Dignr)

P

del(pr+1);

: {n lines}
del(pe+1) ;

where P is obtained from P by replacing the quasiterms ”s;” by the terms "pgy; 7”7, and by
replacing the pointer expressions ” [—end(p;)” by "p; = Prant1”-

In a preprocessing stage, program P transfers any starting configuration of the form
(wo-w,0,1,---,1) into a configuration (wg-w,0,n+1,---,n+1,1,2,---,n,n+41),and then
it holds (w,A\,o1,--,0%) Fp (W', N, 0y, 0p) iff
(wo-w,c+ X, o1,-+,08,1,---,n,n+ 1) Fp, (wo-w',e+ N,ol, -, 0,1, ,n,n+ 1), for

every w,w’ € S*, where ¢ = nk + % is the number of instructions of the preprocessing
part of Pg. Finally, after the simulation of program P has finished, in a postprocessing
stage, Po deletes the prefix wg of the current string.

Thus, we have ¥ = ¢, if ¢ and ¢ are the relations computed by P and Py, respectively.

If P is deterministic, N; and N,, respectively, then Py is of that type, too.

2«7 denotes the conditional equality, i.e., both sides are simutaneously either undefined or defined, and
in the latter case the equality holds.

11

To prove the other direction of Lemma 3, let wg = s;-+-5, € §* and ¢ : ST >= §*
be computed by some program Py. It is left to the reader to give a quasiprogram P which
uses the elements s1,---,s, as quasiconstants and works as follows. Starting with some
input string w € ST, P first generates the string wg - w, and then it simulates the program
Po on the w—part of the string. For the relation i computed by P, it holds ¥ = ©y,). O

The analogue of the lemma holds also for the recognition or decision of sets of strings.

Finally, one shows easily

Lemma 3.4 The classes of all D-, N1—, No—computable resp. quasicomputable string func-
tions are closed under composition. O

The explanations and examples given so far should enable the reader to understand
the informal descriptions of programs in the following sections. We close the section with
summarizing the relationships between our computation model and Turing’s resp. the BSS
machine model and proposing a generalization of Church’s thesis.

For a finite structure, all elements of which are base constants, & = (5;5;--+;--)
with card(S) € IN,, the notions of Ni— and Ny—computability coincide. Moreover, a
relation ¢ : ST >== ST is deterministically, N;— and Ny—computable, respectively, iff it
is deterministically resp. nondeterministically computable in the classical sense by some
Turing machine working over the alphabet S U {b}, where b ¢ S denotes the blank symbol.
In the deterministic case, this means that ¢ is a partial-recursive word function, cf. [1].
For further relationships to classical computability, see the next section.

Over the ordered field of reals, R, our notion of deterministic computability by quasipro-
grams coincides with the computability by a deterministic BSS machine. The concept of
nondeterminism used by BSS corresponds to our nondeterminism of the second kind. Bi-
nary nondeterminism over the reals (also called digital or weak nondeterminism) has been
considered in [12, 13, 27] in connection with polynomially bounded complexity classes.

Generalized Church’s Thesis: A string function ¢ : ST =—— ST is S—computable if
and only if it is intuitively computable over the structure §, i.e., computable by a human
being or a machine that

— works sequentially (performing serielly a sequence of elementary steps),

— uses a potentially infinite storage accessible by means of devices like pointers
(maybe the fingers of a human being) which are stepwise shiftable and connected
with read—write devices,

— and that can generate the base constants and perform the base functions and
base relations (inclusively identity “ = 7), for any given arguments from 5.

To formulate the analogue for quasicomputability, one has to suppose additionally the
ability of generating arbitrary elements of the universe.

We don’t want to discuss this thesis in detail. It should be justified by the whole of
this paper. For a detailed generalization of Gandi’s principles [22] to computability over
arbitrary structures, the reader is referred to [62]. We restrict ourselves to the following
two remarks.

By allowing term equations as atomic data expressions, i.e., as tests within conditional
instructions, we actually study the computability over the structure with identity. This

12

is justified by the majority of the examples we are thinking of. Moreover, it seems to be
appropriate as long as we also allow copy instructions like “p;, T := p;, |7 without any
scruple. Finally, instead to present the possibly boring maze of several cases and subcases
of computability, we prefer to follow first one main stream which includes the essential
examples of algebraic structures.

The stepwise shiftable pointers enable the programs to use always the structure N of
natural numbers in an encoded form. Indeed, a number n can be represented by a pointer
with the distance n from the left end of the current string, and the counter operations on
N correspond to the shifting of that pointer. By our opinion, the implicite availability of
the natural numbers is not a disadvantage of the model, but a cononical consequence of
using something like pointers on a linear, potentially infinite storage. Roughly speaking:
who cannot count, shouldn’t try to compute string functions.

13

4 Relationships to Classical Computability, Bipotency

An element s € 5 is said to be (S—)constructible if the total constant function ¢,, with
ps(w) = s, for all w € ST, is deterministically S—computable. If the structure contains at
least one base constant, this condition is equivalent to the existence of a ground term over
S with the value s. A string wg € ST is called constructible if it consists of constructible
elements only. One could equvalently require that the total constant function ¢, with the
value w is D—computable.

A structure § is called constructive if all elements of the universe are constructible.
This is the case iff the concept of (deterministic) S—computability coincides with that of
(deterministic) S—quasicomputability. Of course, this concept of constructibility is not
relevant, since trivial, with respect to quasicomputability.

Proposition 4.1 Let A be a finite set of S-constructible elements, where card(A) > 2.
Then every partial recursive function ¢ : AT —— AT is deterministically S—computable.

To sketch the basic ideas of the proof, let A = {aq,---,a,}, and, for 1 < p < m,let P,
be a deterministic program working with fixed left end of the strings and computing the
constant function ¢, "

One easily writes a D—program D which, for any input string w € S+, computes the
string aq -+ -a,, - w. It could work as follows. For g = m,m — 1,---,1, the given string
Qg1 " G - w is transferred into a4 -+ - @y, - w - 59, where sq is the first element of string
w. Then, by simulating P, on the input string so to the right of a,41 - --a,, - w, the string
Qpt1 " O - w - a, is computed. Finally, this is transferred into a,a,41 -+ - ay, - w.

Starting with the result a1 - - - a,, - w of Dy, let the D—program D4 enter an infinite cycle
ifwé¢ AT, If w € AT, Dy may compute the string aj - - - a,, - codeg(w), where the encoding
is defined by

.) — i1 i2 i
codes(a; a;y -+ - a;,) = a1as' ay araiay -+ aray'aq,

for n € IN, t o4y, --e,i, € {1,---,m}. Here and in the sequel, let s' denote the string
consisting of ¢ copies of the element s.

Since the word function ¢ is supposed to be partial recursive, there is a deterministic
(1-head) Turing machine which computes ¢ in the classical sense using some alphabet
B D AU {b}, where b is the blank symbol. Then one easily obtains a Turing machine M
with the alphabet {ay,as,b}, where b is the blank symbol, which computes the function

Peode, = { (codes(w), codes(w')) : (w,w') € o}

in such a way that it never shifts the left end of the current string, that the head never leaves
the nonempty part of the tape inscription by more than one place, and that a non—blank
letter on the tape can be replaced by the blank symbol only at the right end of the current
string.

Such a Turing machine can be simulated by a D-program D3 which, starting with
ay -y, - codex(w), computes some ay - - -y, - codeg(w') iff p(w) = w'.

Finally, we need a D—program D4 performing the postprocessing by which some ay - - - @, -
codeg(w') is transferred into the string w’. Now the composition of the programs Dy, Dy, D3,
D, yields a D—program D which computes the function ¢. O

14

We remark that the constructibility of the elements of A is essentially used in the proof,
since the programs Dj, D3, D, really need the prefix aq - - -a,, of the current strings.

Proposition 4.2 Let f: IN, >—— IN, be a partial recursive (arithmetic) function. Then
the function @5 : {s":s€ S, ne€ N, } > {s":s€ 8, ne€IN,}, defined by os(s")=
5 for s € S and n € IN, , is deterministically S—computable.

If s is a constructible element of the structure S and f : IN, =—— IN, is a partial recursive
(arithmetic) function, then the function ¥y : {s}t =—— {s} defined by ¢y (™) = sfn),

Jorn € IN_, is deterministically S—computable.

To prove the first part of the proposition, we remember Minsky’s [50] result that every
partial recursive arithmetic function f can be computed by a 3—counter machine M which,
starting with the counter contents (n,0,0) (i.e. the first counter contains n, the second
and third one are empty), finally halts iff f(n) is defined, and then its counter contents are
(f(n),0,0).

After testing if the input string belongs to {s" : s € 5, n € IN, } (and entering an
infinite cycle otherwise), such a 3-counter machine M can easily be simulated by a D-
program P, where the counter contents (n1,ng,n3) are represented by an P-configuration
(s™, A, n1,n9,n3), with n = maz(nq, ng, n3), and A is the index of an instruction correspond-
ing to the current state of the counter machine.

Now the second part of Proposition 4.2 follows, since, for a constructible element s, the
set {s}T can easily be recognized. O

The conversions of Propositions 4.1 and 4.2 don’t hold. Over countably infinite universes
like IN, already a unary base functions, (which is trivially computable) could be non-
recursive.

A structure § is said to be bipotent if it contains at least two constructible elements
ro,71. Examples of bipotent structures are the number domains as they have been specified
in Section 2.

Over bipotent structures, our type of program allows us to use tracks within the cur-
rent string w = s182---S,, for example by working with some @ = r; sy 75,82 -+ 7i, Sp
(11,72, -,i, € {0,1}) instead of w. Then on the track of even-numbered places the pro-
cessing of the current string can be performed, whereas the track of odd—numbered places
can be used for auxiliary computations (within the alphabet {rg,r1}) or to store auxiliary
marks for the main process. One easily writes a D—program performing the corresponding
preprocessing and postprocessing, i.e. computing the functions ¢pre and @pos, where

@pre(8132 et 'Sn) = ToS170S2 - ToSn »

@post(ﬁl 81 T4y S2 ° 0 T4, Sn) = 85182+ S8np .

We remark that a similar technique can always be applied if the input string contains or
only allows to compute two distinct elements r¢ and 7.
Bipotent structures also allow a rather simple pairing of strings. We define

!

; /! _ ! ! !
pazr(.sl---sn,sl---sn,) = T0S81TS2 * " ToSp T1 S170Sg TS, -

Obviously, the set {pair(wi,wy) : wy,wy € ST} is D-decidable. There are D-programs
which compute the components w resp. w’ of a given string pair(w,w’). Conversely, if the

15

strings w and w’ are available in the course of some computation, the string pair(w,w’) can
deterministically be put here.

Examples of non—bipotent structures are groups G or vector spaces V, cf. Section 2.
Here the neutral elements e resp. 0 are sterile. A vector space becomes bipotent if the
vectors of some basis are added as base constants.

An element s of a structure § is said to be S-sterile if p({s}*) C {s}T, for every S-
computable function ¢. In other words, if s is the only element of which the input consists,
no program is able to generate any other element.

One easily shows that, for § = (5,(C;: i € Ic),(R;:i € Ir),(F; : 1 € IF)), an element
s is S—sterile if and only if C; = s, for all i € I, and Fi(s,---,s) = s, for all i € If.

Proposition 4.2 holds also for sterile elements. Now we are going to sketch some further
details connected with sterility. They will give some justification of the later restriction to
bipotent structures.

The domain of sterility of an arbitrary structure S is defined by

Ster(S) = {s': i € IN, and sis S-sterile } .

Lemma 4.1 Let S be a structure of finite signature, or let S have at least one base constant.
Then Ster(S) is decidable. Moreover, there is a deterministically S—computable function
©aify such that, for every w € St \ Ster(S), there are elements 1,79 with r1 # ry and

Pdi w) =T1T2.

If the structure is of finite signature, the first assertion follows from the characterization
of sterility given above. For strings of the form w = s} s, w’ with i € N, ,s1 # s3, and some
possibly empty string w’, let gg(w) = s1s2. For w = s' with some non-sterile element
s, let @ g{(w) = ss', where s’ is the first element different from s in the concatenation of
the sequences (C; : i € I¢) and (Fi(s,---,s) : ¢ € Ir) with respect to some fixed linear
ordering in IcU Ip. For w € Ster(S), let ¢ g;{w) be undefined. One easily shows that ¢ g,
is deterministically S—computable.

If a structure (of infinite signature) has two different base constants, it is bipotent, and
the assertions hold obviously.

Now let all the base constants coincide with some C' € 5. We consider two cases. If
C is not S—sterile, we have Ster(S) = (§, and a function Pdiff is easily computed. If C is
S-sterile, then Ster($) = {C*: i € IN, }. This set is obviously decidable. For w ¢ Ster(S),
there is some first element s # C in w, and one can take ¢ gy {(w) = C -5. O

Sterile elements s; and s, are said to be equivalent if, for every base relation R; of S, it
holds

Ri(Sl,"',Sl) iff RZ'(SQ,"‘752).

Thus, equivalent sterile elements cannot be distinguished from each other by S—programs.
Let [s] denote the class of sterile elements which are equivalent to s. If S is of finite signature
or has a base constant, there are only finitely many equivalence classes. The following
proposition characterizes the deterministic S—computability on the domain of sterility.

Proposition 4.3 Let S be a structure of finite signature or with at least one base constant.
To every deterministically S—computable string function ¢, there is a system {fi5 : s is S—
sterile } of partial recursive arithmetic functions fi: IN, =—— IN,_ such that, for every

16

it holds

sterile element s and everyn € IN_ ,

o(s") sfar(n)

Conversely, if a function ¢ with dom(y) C Ster(S) is defined in that way, for some system
{fis) : s is S—sterile } of partial recursive functions, then ¢ is S—computable.

The first assertion holds generally, since the behaviour of deterministic S—programs on
strings of sterile elements can be simulated by deterministic Turing machines, and since
S—programs cannot distinguish between equivalent sterile elements.

To prove the second part of the proposition for a structure of finite signature, let a pro-
gram work as follows, on an input string s” € Ster(S). By successively testing all conditions
Ri(s,---,s),1 € IR, it finally reaches a branch which corresponds to the equivalence class
[s]. Then the string sf90) can be computed analogously to the proof of Proposition 4.2.

If a structure with some base constant C' is not bipotent, C' is the only sterile element,
and the assertion follows by Proposition 4.2. O

To characterize S—computability outside the domain of sterility, let S be obtained from
S by adjuncting two further constants. More precisely, if S = (9,(C; : i € I¢),(R; 11 €
IR),(F; : 1 € Ir)), where 0,1 ¢ I without loss of generality, then we consider a structure
S =(SU{Co,C1},(Ci: i€ IcU{0,1}),(R;: i€ IR),(F;: i€ Ir)), such that Cy,Cy € 5,
and R; and F; are restrictions of R; and F, respectively.

Obviously, S is always a bipotent structure. Outside Ster(S), S—computability can be
characterized by means of S—computability:

Proposition 4.4 Let dom(yp) C ST\ Ster(S), for a partial function ¢ on a structure S of
finite signature or with at least one base constant. Then ¢ is deterministically S —computable
off it is deterministically S —computable.

Given an S—program computing ¢, one obtains an S—program by adding a preprocessing
part which becomes cyclic if the input string contains the new constants Cg or Cf.

Conversely, let ¢ be S—computable by some program P. To compute ¢, an S-program
can work as follows. On inputs w € Ster(S), it enters an infinite cycle. Inputs w =
s1++-8, € ST\ Ster(S) are transformed into rorq - w, with two distinct elements rg, 71 of S.
This is possible by Lemma 4.1. Then, in the latter case, the program constructs the string
ToT1 ToS1T0S2 *** ToS, - Now, by means of the prefix rgr; and the track of odd—numbered
places, the working of the S—program P can be simulated in such a way that the elements
s of § are encoded by substrings rgs, whereas the new constants Cy and (7 are encoded
by rir¢ and rqyry, respectively. Here the first elements ro or ry belong to the track of
odd-numbered places. O

Proposition 4.5 Over a structure S of finite signature or with at least one base constant, a
partial function ¢ : ST =—— S¥ is deterministically S—computable iff it can be represented
in the form

¢ =p1Uwp,
where dom(p1) C Ster(S), dom(pz) C St\ Ster(S), and 1 and @3 have the properties
given in Propositions 4.3 and 4.4, respectively.

17

This follows from Lemma 4.1 and Propositions 4.3 and 4.4. O

Over many structures, the number of pointers used by programs can universally be
bounded. Let deg(S) denote the maximal arity of base functions or relations of structure §
if these arities are bounded, and deg(S) = w otherwise.

Proposition 4.6 If the structure S has no sterile element, then, to every deterministic
S—program P, there is a deterministic S—program P’ computing the same string function
and using at most max(deg(S),2) pointer variables.

On a structure § of finite signature or a structure with at least one base constant, every
deterministically computable function can be computed by a deterministic S —program using
at most mazx(deg(S),3) pointer variables.

Of course, this holds analogously for nondeterministic programs of both kinds.

On a bipotent structure or outside the domain of sterility of an arbitrary structure, every
computation of a program P; can be simulated by a program P using only max(deg(S),2)
pointers if it works as follows. It stores the current string w in a first track and uses
sufficiently further tracks to mark the current positions of the pointer variables of Py and
some auxiliary labels if needed during some step of simulation. This can be done by means
of two constructible elements rg, 71 or by means of the elements rq, ro from godlﬂ('w) = 779,
for the input string w, according to Lemma 4.1.

For example, to simulate an assignment p; T:= F;(p;,T,---,p;,.1), the current values of
the data variables p; 1,---,p;, 1 are copied into an auxiliary strirfg of length l;, say to the
right of the current string. Two pointer variables are suffucient to do this. Then the first [;
pointers of the simulating program Pa, q1, - - -, qi;, are placed on the elements of that string,
and the assignment ¢ 1:= Fi(q11,---,q,1), is performed. Finally, the result is copied from
the first position of the auxiliary string to the current position of p; within the simulated
Po—computation, and the auxiliery string is erased then.

More complicated assignments and other instructions of program P, can analogously
be simulated. Thus, the first assertion of the proposition has been proved.

In the second case, on the domain of sterility of a structure §, a program P; computes a
string function ¢ obtained from some system {f[,] : s is S—sterile} of partial recursive func-
tions f], according to Proposition 4.3. By the technique used in the proof of Proposition
4.2, one can show that every such function ¢ on Ster(S) can be computed by a 3-pointer
program P;. The decision of Ster(S) according to Lemma 4.1 can be performed by means
of two pointer variables. This completes the proof of the second part of Proposition 4.6. O

Agreement: In the remaining part of this paper, all structures § we are dealing with are
assumed to be bipotent. Let rg and r; always denote two fixed S—constructible elements.

This restriction is justified by Propositions 4.3 - 4.5 which analogously hold for nondeter-
ministic computations as well as for recognitions and decisions. The structures of infinite
signature we are preferably interested in satisfy the agreement, too.

18

5 Computation Paths, Umeds, Nondeterminism

To every deterministic S—program P = (Bg; By;---; B;), 1 € IN, the possible sequences
of indices of instructions performed during P-computations can be arranged in a binary
computation tree Top. This is a finite or infinite directed rooted tree whose vertices are
nonempty strings v € {0,1,---,{}t.

Without loss of generality, we suppose that every conditional instruction of P is a
conditional jump. Then 7p is inductively defined as follows.

The string vg = 0 is the root of 7 p.
A vertex vA, v € {0,1,---,1}*, A € {0,1,---,1} has no son iff By = “halt” ;
it has a son vA\ iff

— B, is an unconditional assignment, pointer move, append or delete
instruction, and M = A+ 1 ;

— B, is an unconditional jump “goto(m)”, and A = m ; or

— B, is a conditional jump “if Cond then goto(m)”, and X' = A+ 1 or
A =m.

By our general supposition that B; is the only stop instruction and all jumps have
destinations within the program, all leaves of 7p have the final letter [. A vertex vA has
two sons iff the instruction B) is a conditional jump with a jump destination m # A + 1.
The rooted paths of 7-p correspond to P—computations starting with initial configurations.
Every input string w € ST determines exactly one maximal rooted path in Tp. We call it
the computation path of w. It is finite iff w belongs to the halting set of program P.

On the other hand, to every vertex v = AgA1--+Ap of Tp (b € IV, Ao, A\x €
{0,1,---,1}), we can assign the set W, of all input strings whose P—computations start
with the instruction sequence B),,---, By,. If these sets W, are restricted to input strings
of some fixed length, we obtain sets which are representable by quantifier—free first—order
expressions.

Let " = {w € ST : length(w) = n}. A set W C S¥ is said to be booleanly first-order
representable (briefly: bfo-representable) if it can be written in the form

W= {s1-s,: SEH(s1,--+,8,) },

for some quantifier—free first-order expression H = H(zy,---,2,) over the (language of)
structure §. The latter means that the expression H contains at most the variables
x1,-+, %, and is a boolean combination of term equations and atomic relational expres-
sions over §. In particular, it has to be parameter—free. § = H(s1,---,s,) denotes the
validity of the expression H in the structure S if the variables x¢,---,z, are replaced by
the individuals s1,---,s, € 5.

We shall say that the expression H = H(x1,---,z,) represents the set W if the above
equation holds.

Lemma 5.1 Foreachn € IN, and each vertex v of T, the set W,NS™ is bfo-representable.
Moreover, if the structure S is of finite signature, there is an (in the classical sense) effective
procedure which, for any given pair (n,v), generates an expression representing W, N S™.

19

The basic idea of the proof is simple. Shepherdson [61] describes it as following the
action of P symbolically. If a vertex v\ has two sons, vAA| and vAX} in Tp, one of them
corresponds to the validity of the test condition of instruction B,, the other one to the
validity of its negation. If we have only data expressions as conditions within the program,
by following the rooted path to vertex v within the computation tree, the data variables
p; | in the terms or test conditions of the program can successively be replaced by terms
depending on individual variables zq,---,z, which represent the elements of the input
string. More precisely, these terms take the current values of the data variables whenever
the z1,---,z, are replaced by the corresponding elements of the input string w = sy - - - s,,.

The only problem is caused by the fact that we also admitted pointer expressions as test
conditions within the program P. If the length n of the input is fixed or only known, how-
ever, one can keep track the pointer moves in the course of P—computations corresponding
to some vertex vA. If the instruction By depends on a pointer condition now, exactly one
of the sons, say vAM|, corresponds to the validity of that condition. The other son, vAMN,,
corresponds to no computation. Thus, we have W,y N.S™ = W n S§7, and Wi Sm = (.
Hence the pointer condition of the instruction By can be omitted in describing Wi N ST,
and W,y N S™ can be represented by “~(zq1 = 1)”.

The stepwise construction described above can effectively be performed if we deal with
a structure of finite signature. In this case, we can assume that the index sets I, I, I are
subsets of IV, and the first-order expressions over § can canonically be encoded by strings
over a suitable finite alphabet. For infinite signatures, the above construction is effective,
too, if an encoding of the (finitely many) base constants, relations and functions involved
in the program is provided. Unfortunately, there is no canonical universal encoding in the
general case. O

As we have seen, at any step of a deterministic computation on an input word of length
n, all elements of the current string can be represented by S—terms in the variables z4,---, x,
which correspond to the input elements. Hence this presentation is also possible for the
elements of the output strings of the program. Moreover, the lengths of these strings and
the term representations of their elements are uniquely determined by the leaf of the compu-
tation tree which corresponds to the halting computation yielding that output. Combining
this observation with the representation of the sets W, N 5™ given obove, we obtain a char-
acterization of computable string functions by means of an adaptation of Friedman’s [20]
effective definitional schemes.

By a uniform modified effective definitional schema (briefly: umeds) over the structure
S, we understand an (in the classical sense) effectively computable total function

Y: IV

_ +
+ XIN, — AT,

where A is a suitable finite alphabet and every ¥(n, k) is a conditional expression of the
form

“Z.fH(xla"'yérn) then (tl(wh"'amn)a 7tm(mlv"'7$n))”

with some m € IV, , a bfo—expression H and terms #y,---,,, all depending on the indi-
vidual variables zq,-- -, z,.
We say that the umeds ¥ defines the relation oy : ST >== ST given by

20

o ={(s1---8,,58, -+,): n€IN,, thereis some k € IV, such that X(n, k) =
“if H(z1, -+, z,) then (t1(z1, -, 20), , tm(@1, -+, 20)) 7,
S= H(s1, -, 8,) and s, =1,(s1,-+,8,), for 1 <p<m }.

Theorem 5.1 Let S be a structure of finite signature. A string function ¢ : ST =——— St
s deterministically S —computable iff it can be defined by a umeds over S.

The direction “

—” holds by the introductory remarks, especially by the idea of fol-
lowing the program’s actions symbolically. To prove the opposite direction, let a umeds
3} be given. Since we consider bipotent structures, from Proposition 4.1 it follows that
the computation of ¥ can be simulated by a deterministic S—program. Indeed, the two
S—constructible elements rg and 71 can be used to encode the letters b; of an arbitrary
finite alphabet, for example by the strings ror; ‘rg. Hence parameter—free terms and bfo—
expressions can be encoded by strings from {rg,r;}* in such a way that their values, for
given elements to be assigned to the variables, are computable by an S—program.

To compute the function ¢ defined by Y., for some input string w = s1---s,, a deter-

ministic S—program computes the sequence X(n,1), ¥(n,2), --- up to obtaining a con-
ditional expression “if H(zy1,---,z,) then (t1(z1, -+, 2n), -+, tm(21, -+, 2,))", where
S = H(sy, -+,5,) ; then take ¢(w) = t1(s1,-++,5,) -+ tm(s1,- -+, 8y) (this is a string of
length m). If the sequence ¥(n,1), ¥(n,2),--- does not yield such a conditional expression,

¢(w) remains undefined. O

This theorem shows that, with respect to structures of finite signature, our notion of
computability of string functions is equivalent to a straigthforward adaptation of Fried-
man’s concept of eds computability for functions of fixed arity. Roughtly speaking, S—
computability means classical computability extended by the ability to evaluate terms and
boolean first-order expressions over §, for given elements from the universe. Since Fried-
man’s eds computability is widely acknowledged as an acceptable and most general concept
of computability in algebraic structures, the theorem gives a further justification of our
generalized Church’s thesis, cf. Section 3.

By a slight modification of the proof idea sketched above, we obtain a characterization
of Ny—computability.

Theorem 5.2 Let S be a structure of finite signature. A string relation o : ST >=> ST
is S—computable by an Ny—-program iff it can be defined by a umeds over S.

Let be given an Ni—program P over § wich computes some string relation p. We sup-
pose that all nondeterministic jumps are binary ones and that all conditional instructions
are deterministic. For a string a = r;, ---7;, € {rg,m1}%, let P, denote the determin-
istic S—program obtained from P by taking the my—branch of a nondeterministic jump
“goto(mg, mq)” if it is reached in a k’-th step of working, where £’ < k and i,y = 1, and
taking the mgo—branch otherwise (in particular if & > k).

If ¢, denotes the partial function computed by P,, we obviously have

o= U ¢

a€{ro,r1 }1

21

Given an input length n, for p = 1,2, 3, - - - and for all strings ¢ € {rg, r1}", one successively
generates and uses according to the proof of Theorem 5.1 the computation trees TPa up to
the depth g and puts out the conditional expressions corresponding to the leaves obtained
in this way. This procedure computes a umeds defining p.

For the opposite direction, let be given a umeds ¥ defining some string relation p. An
Ni—program P computing ¢ can work as follows, on an input string w = s1---s,.

For k=1,2,3,---, ¥(n,k) is computed. Assume it has the form

“if H(z1, -+, z,) then (ti(z1, -, 2n), - (@1, -, 2,))" IS |= H(s1,--,8,), the
program performs a nondeterministic binary choice whether it either stops with the output
string t1(s1,- -+, 8n) =+ (81, -+, Sy) or continues the computation (with k:=k+1). O

Corollary 5.1 Fvery Ni—computable function is D—-computable.

Over structures of finite signature, this follows immediately from Theorems 5.1 and 5.2.
In the general case, it is obtained by a successive simulation of all the initial segments of the
computation paths of an Ni—program by a deterministic one. This can be done analogously
to the first part of the previous proof. Instead of generating conditional expressions, only
the corresponding actions of the program have to be simulated. O

Theorem 5.2 and the corollary show that the Ny—computability of relations is a natural
concept closely related to classical computability. In contrast to this, nondeterminism of
the second kind can be much more powerful and seems intuitively to go beyond the scope
of natural effectiveness. In Section 3, we already demonstrated the Ny—computability of
the square root over R. A general trivial example is given by the maximal string relation
St x §*. It is always No—computable if the structure contains at least two elements. On
the other hand, for every Ni—computable relation g, the complete image of a string w € S+,
i.e., the set {w': (w,w') € p}, is always finite or countably infinite.

Another characterization of nondeterminism can be obtained by means of projections
of deterministic computations. This is widely used in the BSS framework. Here, the non-
determinism of the second kind looks more natural.

Theorem 5.3 A string relation p over a structure § is No—computable iff
there is a D-computable string function ¢ such that

o= {(w,w'): there is a string a € ST such that ¢(pair(w,a)) = w'} .

A string relation o over a structure § is Ny-computable iff
there is a D-computable string function ¢ such that

o= {(w,w): there is a string a € {ro,1}T such that ¢(pair(w,a)) = w'}.

To prove this, let P be an Ny—program computing a string relation p. By Lemma 3.2,
we suppose that P contains no nondeterministic jump. We consider a D—program Pg which
works as follows. First it checks whether the input is an encoding of a pair of strings. If
not, Pq enters a cycle of work, i.e., it yields no result. If yes, let the input have the form
pair(w,), with an ‘advise string’ @ = s} - --s/,. Now Py simulates the program P in such a
way that when P has to perform a guess instruction at the k-th time, Pg takes the element

22

sy, as the result of this guessing if & < n’. If £ > n in this situation, let Pg take s, as the
guess result. One easily sees that p is representable as given in the theorem, where ¢ is the
string function computed by Pg.

Conversely, if a D—computable function ¢ is given, let an Ny—program P’, starting on
some input string w, first guess a string ¢ and compute ¢(pair(w,a)) then. The relation o
computed by P’ satisfies the first equation in Theorem 5.3 again.

The proof of the second part of the theorem which concerns the Ni—computability is
analogous. O

By means of Lemma 3.3, all results of this section can immediately be transferred to
quasicomputability. For example, over structures of finite signatures, a string function is
D—quasicomputable resp. a string relation is Ni—quasicomputable iff they can be defined
by an quasi-umeds (defined like an umeds, but with finitely many elements of the structure
which may occur as quasiconstants).

23

6 Recognizability and Related Concepts

There are many notions of recognizable, semirecursive and recursively enumerable sets,
respectively, which all coincide with respect to classical computability. H. Friedman [20]
considered some of them as well as related properties of structures and computability. Now
we are going to deal with this complex of problems within our framework. In particular, it
will turn out in the next two sections that several of the related results by R. Saint John
[57, 58] for ordered subrings of the reals can be generalized to arbitrary structures.

Throughout this section, we only treat deterministic programs and computations. Re-
member also the agreement to consider bipotent structures & = (S;(C;: 71 € I¢);(Ri:1 €
IR); (F; 11 € Ir)) only, where two S—constructible elements rg, 7 are fixed.

As defined in Section 2, by recognizable sets of strings, W C ST, we understand the
domains of D-computable string functions ¢ : ST =—— ST, W = dom(p). Also the syn-
onymous denotation halting set is used. An output set W is a range of a D—computable
string function ¢, W = ran(p).

A set W C ST is said to be (§—)enumerable if it is empty or there are an S—constructible
string wo and a D-computable (partial) string function 7 such that

W = {¢'(wo): i € IN}.

Here, 7" denotes the i-th iteration of). This representation of W means that it can be
exhausted by an S—effective counting process starting with the constructible string wqg. 9
is also called a successor function enumerating W.

Lemma 6.1 Fvery halting set can be represented as the domain of a D—computable injec-
tive string function.

Fvery non-empty output set is the range of a D—computable total string function.

FPvery enumerable set with at least two elements can be represented in the form W =
{Wi(wg) : i € IN}, with a constructible string wo and a D-computable injection v such
that W = dom().

To prove the first assertion, we define
¢'(w) = pair(e(w),w), forallwe ST,

Then we have dom(¢') =dom(), ¢ is injective and D—computable if ¢ is.
Now let W = ran(y), for a string function ¢ computed by some D-program P, and
wg € W. We define a total function ¢ : St — ST by

o(w') if w = pair(w’,r§) for some w’' € ST, ke IV, ,
b(w) = and the P—computation on input w’ stops after < k steps,
wo otherwise (w isn’t a pair of the obove form,
or w has that form, but the P—computation is longer).

It holds ran(t) = ran(¢) = W, and ¢ is a D—computable total function.
To show the third assertion, let W = {¢*(wg) : i € IN}, W # {wg}. To compute
a function ¢’ with W = dom(¢') = {¢"(wo) : w € IN}, let a D—program P’, on some

24

input string w, successively perform the computation of W(wo), for+ =0,1,2,---, up to
reaching an i such that w = 1% (wg). Then let it put out the string 9'(w) = ¥+ (wq). If
w # ' (wy), for all i € IV, let ¢'(w) be undefined. For {wo} C W, ¢’ is an injection. O

The requirement that the counting function v in the representation W = {¢"(wq) : 7 €
IN'} of an enumerable set must be total, would lead to a properly restricted concept already
in classical computation theory (since there exist simple sets).

To give an example of a bipotent structure which owns an output set that is not a range
of a D—computable injection, consider

E=(IN;0,1;=; F),

where E is a unary function given by FE(0) = E(1) = E(2) =0, and E(k) = 2, for all
k€ IN\{0,1,2}. The set W = {2} C IN! is an output set, as one easily shows. Let ¢ be an
E—computable function with ran(¢) = {2}. If ¢(w) = 2, the input string w must contain an
element k£ > 3. Let k£ be the maximal element of w. Then the input string w’ obtained from
w by replacing k everywhere by the element k& + 1 yields the same result: ¢(w’) = 2. This
can be shown analyzing the possible premises of conditional expressions which can occur in
an umeds defining ¢; the details are left to the reader. Thus, ¢ is not injective.

Proposition 6.1 The classes of all recognizable sets, of all output sets and of all enumer-
able sets, respectively, are closed under pairwise union and intersection.

To deal with output sets first, let W; = ran(y;), for i = 1,2, where the functions ¢; are
computed by D—-programs P;. If we put

e1(wi) if w = pair(wy, ws)
P(w) = and ¢1(w1), p2(wy) are defined both and equal,
undefined otherwise,

then it follows ran(v) = Wy N W.

For
w1 if w = rg - pair(w', rf)
and Py stops on input w’ after < k steps with output wy,
P(w) = wa if w = ry - pair(w’, rf)

and P, stops on input w’ after < k steps with output wo,
undefined otherwise,

it holds ran(y) = Wy U Wa.

To compute a function @ with dom(v)) = dom(¢1)Ndom(p;), let a program first perform
the ¢;—computation, where the input string w has to be preserved. This can be done on
a special track as explained in Section 4, or simply on a special area separated from the
working space of the ¢1—program by an additional pointer. After that, if ¢q(w) exists, let
the program perform the @o—computation on the same input w.

Now let W; = dom(¢;), for i = 1,2, with functions ¢; computed by D-programs P;. To
compose a D-program computing a function ¢ with dom(y) = W1 UW5, we use a technique
of alternating stepwise simulation of both of the programs 1 and Ps.

25

To simplify the explanation, we assume that P; works with fixed left end of strings,
whereas Py works analogously with the fixed right—hand end of strings. The program P, in
the alternating simulation of the both, uses two disjoint sets of pointers, each corresponding
to the pointer set of Py and P9, respectively. Let the frontier between the both workspaces
of simulation be marked by a further pointer p*. Moreover, the contents of the program
counters of Py resp. Py (i.e., the indices of the instructions to be performed as the next
ones) should be encoded, say by the distances of two special pointers, p} and p3, from p*. To
this purpose, the current string has to be sufficiently enlarged, by using tracks or additional
pointers. The simulating program stops when one of the programs P; and Ps reaches a
stop configuration.

We hope the underlying idea has become clear by the rough description above. Let us
stress that the alternating simulation of two fixed programs does not yet require a kind of
a universal program (which does not necessarily exist for arbitrary structures of possibly
infinite signature, cf. Section 9).

Now let W; = {wé(w]) : 1 € IN}, for 5 = 1,2, with constructible strings wy, wy and
functions 1,19 computed by S—programs Py resp. Ps.

If W1 N Wy is finite, it is enumerable, since it is empty or consists of constructible
elements only. If the intersection is infinite, it can successively be generated by alternating
stepwise simulation of generating processes of Wy and W5 using computations of w; and
wy and the programs Py resp. Py. Herein, the simulating program has to keep track the
list of elements of both Wy and Wy which are generated so far. Obtaining a new element of
Wy resp. Wy, it has to be checked if this has already been generated as an element of the
other set. So we obtain a process of generating Wy N W, which can be used to compute a
first element and a successor function enumerating Wy N Ws.

It is easy to generate the union W7 U Wy if one of the sets W7 and W is finite. If both
the sets are infinite, there is a program which generates the union by alternating generation
of one further element of Wy and Ws, respectively, starting with w; and wy. By keeping
track the list of all elements generated so far, the program can be modified in such a way
that a repeated generation of elements (namely those from W; N W;) is avoided. O

Now we are going to deal with relationships between the classes of halting sets, output
sets and enumerable sets, respectively. For structures of finite signatures, a first attempt
has been done under the author’s guidance in [2].

Proposition 6.2 Fvery enumerable set is recognizable; every recognizable set is an output
set.

The first assertion holds trivially for the empty set and each singleton {wg} consisting of
a constructible element wq. For sets with at least two elements, it has already been noticed
in Lemma 6.1.

To prove the second assertion, let W = dom(y), for some D-computable function ¢.
Then the function % defined by

() = { w if ¢(w) is defined

undefined otherwise,

is D—computable too, and we have W = ran(y). O

26

The conversions don’t hold generally, as will be shown soon. In particular, the enumer-
ability is a rather special property. One easily sees

Lemma 6.2 An enumerable set is always finite or countably infinite, and it consists of
constructible elements only. O

If every output set or only every halting set is enumerable over some structure §, this
especially holds for the universe 5. Now we are going to show that, under the supposition
of finite signature, this property holds exactly for the constructive structures.

Proposition 6.3 The universe S of a structure is enumerable iff the set of all strings, ST,
is enumerable.

The direction “«—"

can easily be proved. If § is finite and contains only constructible
elements (since S* does), it is trivially enumerated. If S is infinite, it is enumerated by
using the enumeration process for St and skipping all strings of lengths > 1.

The direction “—” for finite universes S can be shown by some standard method from
classical computation theory. For example, if card(S) = m, perform a counting process for
the (bijective) m-adic number representation, where the digits correspond to the elements
of S (in the order given by the enumeration of 5).

If 5 is infinite, for £ = 0,1,2,--- , successively generate all strings of lengths < k£ which
at most contain the first £ elements of S, with respect to the ordering corresponding to the

enumeration. O
Corollary 6.1 If the universe S is enumerable, then the structure S is constructive.
This immediately follows from Lemma 6.2 and Proposition 6.3. O

Proposition 6.4 A structure of finite signature is constructive iff its universe is enumer-

able.

We show the nontrivial direction “—”. If the structure is constructive, every element

s of the universe can be obtained as s = ¢(rg), for some D-computable function ¢. By
Theorem 5.2 (or directly, having a look to our kind of computation), it follows that s can be
obtained as the value of some S—term after replacing all variables by rq. If the structure is of
finite signature, there is a standard encoding of S—terms, all these encodings can effectively
be generated and the values of the terms (for rg assigned to all occurring variables) can be
computed. On this basis, one obtains a D—computable successor function enumerating 5.
O

This proposition stresses that the concept of constructivity introduced in Section 4
descibes a natural and essential class of structures, at least for finite signatures.

The supposition of finite signature is essential for the equivalence of constructivity and
enumerability. Indeed, the structure R;,, defined in Section 2 is obviously constructive,
but its universe, IR, is uncountable, hence it is not enumerable.

Theorem 6.1 For an arbitrary structure S, the following conditions are equivalent:

(a) the universe of S is enumerable;

27

(b) every halting set over S is enumerable;

(c) every output set over S is enumerable.

By Proposition 6.2, we have (¢) — (b); (b) — (a) holds trivially.

To show (a) — (c), let ST = {¢'(wg) : i € IN}, cf. Proposition 6.3, and W = ran(e),
where ¢ is computed by some program P. We consider only the nontrivial case that W is
infinite.

There is a D—program P* which, for £ = 0,1,2, - - -, simulates always k steps of the
computation of P on the inputs wo, ¢(wg), - - -, »*(wg), in this succession. This generates
an effectively computable sequence consisting of all elements of W ordered by the time at
which they are generated as outputs of P, in the course of the simulating procedure P*.
By means of P*, one easily obtaines a D—computation of a function ¥ enumarating W, i.e.,
W = {¢*(ug) : i € IN}. In particular, ug is that string from W, which is first obtained by
program P*. O

Theorem 6.1 together with Proposition 6.4 gives a good characterization of the structures
on which enumerable sets and halting or output sets coincide. Now we are going to deal with
the relationships between halting sets and output sets which seem to be more complicated,
at least over non—enumerable structures. For example, it is known that over the ordered
field of real numbers, R, all output sets are halting sets [48, 11]. Over general structures,
this coincidence is equivalent to the closure property of the class of all halting sets under
projection.

For a set W C S, its projection (to the first component) is defined by

II(W) = {wy : thereis a wy € ST such that pair(wy,wy) € W }.

Proposition 6.5 The classes of all enumerable sets and of all output sets, respectively, are
closed under projection.

From a representation W = {¢*(wg) : i € IN}, with a constructible string wg and a
D-computable function 1, one obtains a representation (W) = {¢(@g) : i € IN}, for
(W) # §, by generating all first components of the strings ¢/*(wg) and avoiding repetitions
(cf. the proof of Proposition 6.1).

If W = ran(yp), for some D—computable function ¢, then it holds IL(W') = ran(? o ¢),
where

() = w1y if w = pair(wy, wy), for some wy,wy € ST,
undefined otherwise. O

Theorem 6.2 Over arbitrary structures, the following conditions are equivalent:

(a) the classes of all halting sets and of all output sets, respectively, coincide;
(b) the class of all halting sets is closed under projection;

(c) the class of all halting sets is closed under images of D-computable functions.

28

From Proposition 6.5, it follows that (@) implies (b).

To show the converse, let W =ran(y), for some D-computable function ¢. Then W =
H(W), for W = {pair(wy,wy) : p(wz) = wy1}. Obviously, W is a halting set. Thus, by
means of (b), W is a halting set, too.

The output sets are just the images of halting sets under D—computable functions.
Therefore, (a) is equivalent to (¢). O

One easily shows that the class of all output sets is always closed under images of
computable functions. Analogously, both the halting sets and the output sets are closed
under pre-images of computable functions.

For a simple example of a structure owning an output set that is not a halting set, let

M=(IN;0,1;=;"-),

where “-” denotes the multiplication.

0 and 1 are the only constructive elements of the universe of M. Hence IN is a halting
set which is not M—enumerable. The set of square numbers, {k? : k € IV}, is an output set
but not a halting set. Indeed, for inputs of length 1, w = z € IV, by the possible premises
of conditional expressions with the only variable z, the elements from IV \ {0, 1} cannot be
separated each from the other.

The halting sets seem to give the most natural basis for dealing with logical recognition
or decision problems. Thus, our notion of decidability of sets of strings is defined by means
of halting sets, cf. Section 2.

By Propositions 6.1 and 6.3, enumerable sets with enumerable complements can ex-
ist only over structures with enumerable universes. For these, the classes of enumerable,
halting, and output sets, respectively, coincide however, by Theorem 6.1.

To define decidability in such a way that both the set and its complement have to be
output sets, would yield a properly more general concept than our definition by means of
halting sets. Indeed, both the set {2} and its complement INT \ {2} are output sets over
the structure £ defined after the proof of Lemma 6.1. But they are not decidable in our
sense.

The following proposition stresses the naturalness of our notion of decidability. We
show that it coincides with the notion we would obtain by requiring that the characteristic
function of the set is D—computable. For W C ST, the characteristic function is defined by

7’0,7’1(,w) _ rp ifweW

Xw | o fwégW.

Proposition 6.6 A set of strings, W, is decidable iff its characteristic function, xy'"", is
D—computable.

If the characteristic function is computable, both W and St \ W can easily be repre-
sented as domains of computable functions. Conversely, given functions (1 and ¢y with the
domains W and St \ W, respectively, by alternating stepwise simulation like in the proof
of Proposition 6.1, one shows the D—computability of the characteristic function. O

Finally, we characterize the projections of decidable sets.

29

Proposition 6.7 QOuver an arbitrary structure, the projections of decidable sets of strings
are just the output sets.

Let W = ran(¢), for a string function ¢ computed by some D-program P. For the set
W = {pair(pair(r§,wy),wy) : P stops on input wy after < k steps with the output w,},
we have W = II(W), and W is decidable.

Conversely, if W = H(W), for some decidable set W, then W is also an output set and
W too, by Proposition 6.5. O

By Theorem 6.2 and Proposition 6.7, it seems to be justified to introduce a special
notation for structures whose output sets coincide with the halting sets.

A structure S is said to be normal if every output set over § is S—recognizable.

By Theorem 6.1, every structure with an enumerable universe is normal. The ordered
field of real numbers, R, represents an example of a normal non—-enumerable structure. By
Proposition 6.7 and Theorem 6.2, it holds

Corollary 6.2 A structure § is normal iff the S—recognizable sets are just the projections of

decidable sets or, equivalently, iff the class of all recognizable sets is closed under projections
resp. tmages of D—computable functions. O

30

7 D and N; versus Ny, Umeeds and Um|elers

By Corollary 5.1, every Ni—computable function is D—computable. One can straightfor-
wardly generalize the notions of recognizability considered in the previous section by al-
lowing N;—computable functions in the corresponding definitions instead of D—computable
only. Thus, we have N;-enumerable, N;-recognizable and N;-output sets (i = 1,2) now, and
the former concepts are also specified by the prefix “D-" if we want to stress the contrast
to their nondeterministic analogues.

Corollary 5.1 implies that Ni—enumerable sets are always D-enumerable, that Ni—
recognizability coincides with D-recognizability, and that every Nj—output set is a D-
output set.

For nondeterminism of the second kind, the situation changes. Of course, every No—
enumerable set is finite or countable infinite. Let us consider the computability over the
structure

N_=(IN;0,1;=;7),

where 7 denotes the unary predecessor function (say with 7(0) = 0). For every D-—
computable function ¢ : IN! =—— IN' (i.e. both the domain and the range consist of
strings of length 1 only), it holds ¢(n) < n, for all n € dom(p) \ {0}. Thus, every D-
enumerable set W C IN is finite. On the other hand, the successor function o(n) = n + 1
is Ny—computable over N'_. Therefore, IN is Ny—enumerable.

Comparing the notions of recognizability, we obtain a further characterization of normal
structures.

Proposition 7.1 A structure S is normal iff every No-recognizable set over & is D-
recognizable.

Let S be a normal structure. By Theorem 5.3, a set W C S* is Ny-recognizable iff it
is the projection of a D-recognizable set W. Since the class of (D—) recognizable sets is
closed under projection by Theorem 6.2, W = H(W) is D-recognizable, too.

For the converse, one easily shows that every (D-) output set is Ny-recognizable. Thus,
the structure is normal if the No—recognizable sets are D-recognizable. O

Notice that the field of real numbers is a normal structure (i.e. Ny-recognizability coin-
cides with D-recognizability) over which there are No—computable functions (like the square
root) which are not D—computable. Therefore, the coincidence of the recognizabilities does
not imply equality of the concepts of computability for string functions (by deterministic
and Ny—programs, respectively).

In the case of halting and output sets, one could also consider N;,—computable relations
instead of functions. By Theorem 5.3, the ranges of N;,—computable relations coincides with
the ranges of suitable D—computable functions. The following proposition characterizes the
relationships with respect to halting sets of relations.

Proposition 7.2 FEvery domain of an Ni—computable relation can be represented as the
domain of a D-computable function. Fvery domain of an No-computable relation is the
domain of a D—computable function iff the underlying structure is normal.

31

The first assertion follows from the presentation of Ni—computable relations according
to Theorem 5.3. Given such a presentation of a relation, a deterministic computation with
the same domain can be performed by successively trying all advices a € {rg,r1}T in their
lexicographic ordering and halting when ¢(pair(w,a)) is defined at the first time, for the
input w and some advice a.

The second assertion follows from Proposition 7.1 and the above remarks on output sets
and by the observation that the Ny—recognizable sets are just the Ny-output sets, also for
relations. O

In classical computation theory, a function is computable iff its graph is recognizable,
and the analog holds for relations with respect to nondeterministic programs. Over arbitrary
structures, this doesn’t remain generally valid.

For a string relation ¢ C ST x ST, its graph is defined to be the following set of strings,

graph(o) = {pair(w,w’) : (w,w’) € p}.

Lemma 7.1 Let X € {D, Ny, No}. If a string relation o is X —computable, then the set
graph(p) is X —recognizable.

Indeed, the set {pair(w,w’) : (w,w’) € ST} is (deterministically) decidable, and in
order to recognize if some string pair(w, w’) belongs to graph(p), an X—program can simply
perform the computation of ¢ on the input w and check if the output (if some is obtained)
equals w’. O

The converse does not hold for X € {D, N1}, not even on normal structures and for
functions. Indeed, the graph of the square toot, i.e. the set {pair(r®,r): r € R, > 0}
is (deterministically) decidable over R, but the function is not Ni—computable. For the
nondeterminism of the second kind, one easily shows

Lemma 7.2 A relation is No—computable iff its graph is No—recognizable. O

The validity of the graph property for relations and Ni—computability turns out to be
equivalent to the enumerability of the structure.

Proposition 7.3 The following conditions are equivalent:

(a) the universe of a structure S is enumerable;

(b) every relation with an (D- or N1-) recognizable graph is Ny-computable;

(c) for string relations, the No—computability coincides with the N1-computability;
(d) the relation St x St is Ny—computable.

If the universe is enumerable and the graph of a relation p is Ni-recognizable, the
relation can be Ni—computed by successively testing all strings if they are images of some
given input with respect to p. Hence we have (@) — (b); similar it follows (a) — (¢).

(b) — (d) and (¢) — (d) are obvious.

For (d) — (a), notice that the graph of the relation p = ST x ST is trivially recog-
nizable. If p is Ny—computable, then St can successively be generated by simulating all
paths of the computation of p for the input string w = rg. The deterministic simulation of

32

an Ni—program is done like sketched in the proof of Theorem 5.2. The obtained procedure
generating ST can straightforwardly be used to establish an enumeration of S*. O

Now we generalize the notion of umeds in order to characterize the Noy—computability of
relations over structures of finite signature. This is done by admitting a prefix of existential
quantifiers in the conditional expressions. We remark that similar concepts have been used
by I. Soskov and A. Soskova [64, 65, 69, 68], with respect to computability in enumerated
structures. Soskov [64, 66, 67] established close relationships between computability via
enumerations and the approaches by Friedman and Moschovakis, respectively. Connections
of the latter kind have already been announced 25 years ago by C. Gordon [28].

More precisely, by an umeeds (this abbreviates “uniform modified existentialized effective
definitional schema”) over a structure S, we understand an (in the classical sense) effectively

computable total function
Y¥: N, x N, — At,
where A is a suitable finite alphabet and every X(n,k) is an ezistentialized conditional
expression, i.e., it is of the form
¢ Elyl---EIyg(ifH(:cl,---,xn,yl,---,yg)
then (t1(w1,---7$n,y1,---,yz), cee tm(mly...7$my17...7yl)))”
with some l € IN, m € IV, a bfo—expression H and terms ¢, -,1,,, all depending on the
variables z1, -+, %,,¥y1, -,y only.

The meaning of an umeeds within our framework is rather straightforward. One has to
notice, however, that both the expression H and the terms ty,---,t,, belong to the scope
of the same quantification of the variables ¥, -,y within the existentialized conditional
expression.

Thus, we say that the umeeds ¥ defines the relation oy : ST >= ST given by
os ={(s1--+8n, 8, ---8,,) n€IN_, thereis some k € IV, such that ¥(n,k) =

“Jyp---3Fy (if H(z1, -+, @0, 91, -, Y1) then

VS

(t1($1,'",fﬁn,y17"',yz)7 ’tm(xl’...’$n’y1’...7yl)))”’
and there are elements s7,---,3; € § such that
SEH(s1, - 8n, 81, 8)

and s), = 1,(81,+*, 8n, $1,7 0+, 81), for 1 <p <m

Theorem 7.1 Let S be a structure of finite signature. A string relation o : ST >= ST
is Ny—computable iff it can be defined by a umeeds over §.

The proof is similar to that of Theorems 5.1 and 5.2. To compute the string relation
ox, an Ng—program P can act on the input string w = s1---s, as follows. It chooses
nondeterministically a number k£ and computes the existentialized conditional expression
Y(n, k). Assume it has the form given in the definition above. Then the program P guesses
elements $1,---,8 € S. If S = H(s1,-+,8n,51,-+,81), let P output the corresponding
string “ #1(s1,++, 8p, 81, +,81) ++ tm(S1, 7+, Sn, 81, -+, 81) 7; otherwise let it enter a cycle
of working.

The proof of the converse uses Theorem 5.3. Let be given an Ny—computable string
relation ¢ and a deterministic program P computing a string functions ¢ such that

0 ={(w,w’) : thereis a string « € ST with ¢(pair(w,a)) = v’ }.

33

Without loss of generality, suppose that P stops only after at least n steps, on input strings
of length n. (Otherwise, the program wouldn’t be able to visit all elements of the input by
its pointers before it stops.)

We describe the way of working of an effective procedure Pg successively generating all
pairs ((n,k), X(n,k)), for an umeeds ¥ such that p = px. Given a number n € IV, for
[=1,2,3,--- andalll € {1,2,---,1}, the procedure Pq follows symbolically, as described in
the proof of Theorem 5.1, the first [steps of the action of program P on inputs represented
by pair(zy -+ g1 -+ y1).

Whenever a terminating computation path of program P is obtained by the procedure
Po, it puts out the corresponding existentialized conditional expression

“Ayr--- Iy (if H(za, - Ty 915005 1)
then (t1($1,"',$n,y1,"',y1), ’tm(xl’...7xmy1’...7yl)))”
within some pair ((n, k), ¥(n, k)), for a suitable number k£ (depending on the history of Py
up to that moment). Here the expression H characterizes the related computation path of
program P, whereas the terms ¢y, - - -, t,, represent the values of the elements of the output
string corresponding to that path.

This generating procedure Py can easily be modified to a procedure computing the
umeeds Y. It is obvious that o = py. O

From Theorems 7.1 and 5.2 and Propositions 6.4 and 7.3, it follows immediately

Proposition 7.4 A structure S of finite signature is constructive iff, to every umeeds over
S, there is a umeds defining the same string relation. O

It turns out that the elimination of the existence quantifier in all umeeds over a structure
S is not related to quantifier elimination in the logical sense.

We say that a structure S admits effective quantifier elimination if there is an (in the
classical sense) effective procedure which, to every first—order expression H(z1,---,z,) over
S, yields a quantifier—free expression f[(ml, -+, x,) equivalent to H(zq1, -+, 2,).

The structure of elementary arithmetic, A, is constructive but does not admit effective
quantifier elimination, since its first—order theory is undecidable [26]. On the other hand,
the ordered field of real numbers, R, admits effective quantifier elimination [70, 14], but the
square root represents an No—computable function that is not Ni—computable.

If we restrict ourselves to recognizability of sets of strings, however, there is a connection
between quantifier elimination and the equivalence of both kinds of nondeterminism, as we
are going to show now.

In the following definitions, the brackets “[” and “]” are used as metasymbols to mark
optional phrases. To obtain both variants of the sentences, include resp. omit the contents
of these brackets everywhere in the corresponding context.

By a uniform modified [existentialized) effective recognitional schema (briefly: um[e]ers)
over a structure S of finite signature, we understand an (in the classical sense) effectively
computable total function

Y¥: N, x N, — At,

where A is a suitable finite alphabet, and every X(n, k) is an [existential | expression of the
form

“[Elyl"'Elyl]H($17'"7xn[7y17"'7yl])”7

34

where [l € IN,]m € IN

[7y17"'7yl] Olﬂy.
We say that the um[eleds ¥ defines the following set of strings over S.

Wg ={s1---sp:n€IN,_, s, -,5, €5 and there is some k € IN, such that
E(nvk): “[Elyl"'Elyl]H('rlv'"7‘rn[7y17"'7yl])”7
and [there are elements s1,---, 8 € S such that |

Sl: H(Sla"'asn[agla"'agl])}‘

+,and H is a bfo—expression depending on the variables zy,---, z,

Theorem 7.2 Qver a structure of finite signature, a set of strings is Ny—recognizable iff it
can be defined by a umers, and a set is No—recognizable iff it is definable by a umeers.

The N;-recognizable sets are the domains of N;,~computable functions (i = 1,2). From
Theorems 5.2 and 7.1 and the above definitions, it follows that such sets can be defined
by umers and umeers, respectively. Indeed, starting from a umleleds defining a function
¢, one obtains a umlelers defining the set dom(y) by erasing both the “if” and the whole
then—part of the [existentialized] conditional expressions.

Conversely, given a umlelers defining some set of strings, W, it can be modified to a
um[e]eds defining a string function with the domain W. To this purpose, one can always
take the term “zy” representing the first element of the input to define the values of the
function in the then—parts. O

By this theorem, Corollary 5.1 and Proposition 7.1, it follows

Corollary 7.1 A structure S of finite signature is normal iff to every umeers over § there
is a umers defining the same set of strings. O

Now let the underlying structure § admit effective quantifier elimination. Then, to every
umeers over S, there is effectively constructible a umers defining the same set of strings.
By this and Proposition 7.1, it follows

Proposition 7.5 Fvery structure of finite signature which admits effective quantifier elim-
ination is normal. O

As the example of elementary arithmetics shows, the normality of a structure is not
equivalent to admitting effective quantifier elimination. We will show, however, that nor-
mality is equivalent to a certain weak kind of effective elimination of prefixes of existential
quantifiers.

In the following, we use some standard encoding of the deterministic programs over the
monoid over a suitable alphabet (well-known from classical theory of computability). For
a first-order expression H = H(x1,---,z,) over some structure S, the satisfiability set of
H is defined to be the following set of strings,

Wi ={s1-s,: SEH(s1,"-,50)}

Obviously, the set defined by some um[e]ers equals the union of the satisfiability sets of the
expressions generated by that um[e]ers. Recall that an ezistential expression is a first—order
expression of the form

Elyl Elyl H($17"'7$?’L7y17"',yl)7

where H(z1,--+,%n, Y1, -+, y1) is a bfo—expression over the underlying structure.

35

Proposition 7.6 Let S be a structure of finite signature with at least one base constant.
Then S is normal iff there is an effective procedure which, for every existential expression
H, yields a (code of a) program (in the classical sense) that computes a umers defining the
satisfiability set of H.

The proof is based on Corollary 7.1.

Assume that there is given an effective procedure P yielding, to every existential ex-
pression H, a code of a program Pp that (in the classical sense) computes a umers Xp
defining the set Wi. Let ¥ be an arbitrary umeers over the structure §. By means of the
projections m; and 7 of Cantor’s pairing function for IV, , we define a umers X’ by

Y(n, k) = s (n,m (k) (0, m2(k)) , for n, k€ IV, .

The computability of ¥’ follows from classical recursion theory. X/ defines the same set of
strings as X, namely the set

U ng(mk) = U U sz(n,kl)(n7k2)'

n,lce!NJr n,k1 e]N+ k2eﬂV+

Thus, the structure § is shown to be normal.

Conversely, let the structure § be normal. Therefore, to every umeeds there is a umeds
defining the same set of strings. Since § is of finite signature, the existential expressions over
S can biuniquely and effectively in both directions be encoded by strings from {rg,r1}+.
For w € {ro, 71}, let H, denote the existential expression encoded by w.

We consider the following set of strings,

W= {pair(wy,wq) : wy = $1---3,, for some n € IV,
and H,, is an existential expression with n free variables,
say Hy, = Hyy(21,- -+, 2,), such that S |= Hyy(s1,--+,5,) }.
W is Ny-recognizable over §. Indeed,ﬂg some string pair(wy,wz) with wy = s;---s, and
Hy, = Hy(z1,--+,2,) = 3y ---JyHyy (21, &0, 91, -+, y1) s given, then the validity
of Hy,(81,"+,5,) can be recognized by guessing elements s,---,5 € 5 and proving that
S Hyy(s1, 85,8, 8).) N

Since § is normal, there is a umers ¥ defining the set W. Now let be given an existential
expression H*. One effectively obtains a string w* € {rg,r1}T such that H* = H,«. Say
w* =7 -7, with n* € IN, 4y, -+, i € {0, 1}.

Moreover, since § has a base constant and rg, 7y are constructible, there are ground
terms to and t; over §, with the values rq and rq, respectively.

Now we define the umeds ¥* by

Y*(n, k)= H(to,y1,t0, 5 tos Yns b1, iy s tos -+ -y oy bi i)
if S(2(n+n%), k)= H(zq, 29, -, Ty(ntn*))s fOT sOMe expression H.
(If necessary, recall the definition of the pairing function pair from Section 4; notice that
2(n 4 n*) = length(pair(sy -« 8p, 75 -7 4)).)

Obviously, a (code of a) program computing ¥* can effectively be obtained from H* by
a suitable modification of a (code of a) program which computes 3.

So it remains to show that X* defines Wg«. This holds, since s1---s, € Wy iff
S = H*(s1,--,8,) iff pair(sy---s,,w*) € W iff pair(sy -« sy, w”) € Wy , for
some k € IN, , iff 518, € Wxs(y), for some k€ IN, . O

(2(n+n*), k)

36

Using the effective procedure described in the second part of the proof, one can even
construct a procedure which, to every (code of a) program computing some umeers, yields
a (code of a) program computing a umers defining the same set of strings. Thus, we have
the following corollary, which also could directly be proved similar to the second part of the
preceding proof.

Corollary 7.2 A structure of finite signature with at least one base constant is normal iff
there is an effective procedure which, for every (code of a classical) program computing a
umeers, yields a (code of a classical) program that computes a umers defining the same set
of strings. O

Finally, we remark that also the results on um[e]eds and um[e]ers can straightforwardly
be transferred to quasicomputability resp. quasirecognizability by allowing that quasicon-
stants occur within the [existentialized] conditional expressions. This simply follows by
means of Lemma 3.3.

Analogously to the concept of normality, a structure can said to be quasinormal if every
range of a D—quasicomputable function is also a domain of such a function. Lemma 3.3
implies that every normal structure is quasinormal, too. The following example shows that
the converse does not hold.

Let M C IN be a non-enumerable set (in the classical sense); xas denotes its character-
istic function. We consider the structure

Noe=(INU{a};0;=;v,xXm),

where @ ¢ IN is a new element; v(n) = n+ 1, for n € IN, and v(a) = a; xm(a,n) =
xm(n), for n € IN, and Xar(z,y) = y if @ # a or y = a. The deterministically N ,—
recognizable subsets of IN (whose elements have to be considered as strings of length 1) are
just the classically enumerable sets of numbers. Indeed, starting with some input n € IV, a
deterministic A/,—program P cannot generate the element a@. Thus, there is a deterministic
N-program equivalent to P on such inputs.

On the other hand, there is an Ny—program which recognizes the set M over A,. Such
a program can first guess the element @ (which can be identified as the only element z
satisfying the property “v(z) = z”), then the characteristic function of M is available.
Similarly, M can also be represented as the output set of a deterministic A',—program.

With respect to quasicomputability over A/,, however, the (deterministic) halting sets
coincides with the output sets or the Ny—recognizable sets. This follows, since the universe,
IN U {a}, is enumerated by the function ¢ with

0 if w=a,
P(w)=< v(n) fw=nelN,
w if length(w) > 1,

and ¥ is quasicomputable by means of the quasiconstant a.

37

8 Universal Programs etc., over Finite Signatures

Throughout this section, we suppose that the considered structures § are of finite signature.

Using the two constructible elements o and r1, every S—quasiprogram P can be encoded
in a straightforward manner by a string denoted by code(P). To this purpose, let the finitely
many syntactical units of programs, i.e., the keywords of our programming language, the
technical symbols, base constants, base relations and base functions be encoded by strings
from {rg,r1}T, and indices of pointer variables and the goal labels be binarily encoded over
{ro,71}. The quasiconstants of quasiprograms are encoded by themselves.

Moreover, it is convenient to use only the track of even—numbered places in strings for
these encodings, whereas the odd—numbered places are filled by rg or r{, such that the
starting places of codes of the syntactic units can uniquely be identified. More precisely,
instead of the direct encoding “sysg---s,” of some syntactic unit u, we use the padded
string

code(u) = “ 11817983+ ToSp

Then, for a quasiprogram P = wuqug - - - Uy, ,, where the u; are the syntactic units (1 <7 < m),
let
code(P) = code(uy) - code(uy) - -+ - code(uy,) .

Now, the parts of code(P) which represent the codes of the syntactic units can be identified
by a determinstic S—program.
One straightforwardly shows

Lemma 8.1 The sets of all codes of D-, N1— and Ny—programs and of such quasiprograms,
respectively, are D—decidable over the structure S. O

In the following, by ¢©p and gop, we denote the string function and the string relation,
respectively, which is computed by the deterministic resp. nondeterministic program P.

Theorem 8.1 There is a D—program U such that, for all D-quasiprograms P and all
strings w € ST, it holds

ey pair(code(P),w)) = op(w).

For i = 1,2, there is an N;—program U; such that, for all N;—quasiprograms P , it holds
op = {(w,w') : (pair(code(P), w), w') € ou. -

This is proved by applying standard techniques of simulation and programming, as
they are well-known from classical computation theory based on the concept of Turing
machine. The details are omitted here. Notice that our concept of S—program corresponds
to the notion of multihead Turing machine. Thus, the simulated program P may use
arbitrarily many pointer variables, whereas the universal programs i and U, , respectively,
are equipped with some fixed number of pointers only. Thus, in each step of the simulation,
the positions of the P-pointers p; must be marked by the simulating program U[; by
means of encodings of p; at the corresponding places of the (encoding of the) current P-
configuration, cf. the proof of Proposition 4.6. To compute the values of base functions

38

or base relations, the universal programs can use (finally many) suitable subroutines. The
simulation of nondeterministic steps can analogously be performed by subroutines. O

In the remaining part of this section, we restrict ourselves to deterministic programs
and sketch how to obtain results analogous to some basic theorems of classical recursion
theory. Whereas the case of quasicomputability can rather straightforwardly be treated (cf.
also Section 9), in considering S—computability one has to be more careful. So here we deal
with the latter one.

The encoding of pairs of strings is used to define inductively the encoding of k—tuples
of strings, for k € INT. Let

tupley(w) = w, tuples(w,w') = pair(w,w'), and
tuplegy1(wo, w1, - - -, wi) = pair(wo, tuple, (w1, - - -, wy)), for k> 1.

We simply write [w1, - - -, wg] instead of tupleg(wy,---,wy), for k > 1.
A k-ary partial function ¢ : (ST)* =—— S7 is said to be (deterministically) computable
over § iff the unary string function ¢ is deterministically S—computable, where

o([wr, - wg]) = o(wy, -, wg), for wy, -+, wp € ST, and
@(w) is undefined, for w & {[wy, -, wg] : wy, -, wx € ST}

Finally, we write ®,,(w') instead of ¢y (pair(w,w')), with respect to some fixed uni-
versal program U according to Theorem 8.1. Without loss of generality, we suppose that
@74 (pair(w,w')) is undefined if w ¢ {ro,r}7.

Thus, for every w € S*, &, denotes a deterministically S—computable partial string
function, and w can be considered to be the code of a corresponding D-program. Con-
versely, by Theorem 8.1, to every deterministically S—computable unary partial function
@: St =—— 57T, there is a string w € {rg, 1} such that ¢ = ®,,.

We have the following s-m-n theorem.

Proposition 8.1 (s-m-n Theorem) 7o every m,n € IN,, there is a deterministically
S—-computable (m + 1)-ary total function o™ : ({ro,r1}7)™ Tt — {ro,r1}* such that

Doy ([w1, 3 Wiy W15+ + W]) = (I)cr;?(wmwl,---,wm)([wm-l-la S Wil),

for all wo,wy, -+, wy, € {ro,m1}T and all wyy1, -+, Wpin € ST.

Indeed, for given wq, w1, - - -, Wy, the string @, ([w1, -, Wy, Wt1, -+, Wrnyn]) can be
computed from the input [w,, 41, -, Wyntn] by a program P (wo w1,y) Which transforms
the input into [wy, -+, Wy, Wnt1, "+ Wmtn], in & preprocessing stage, and works according
to (the universal program computing) ®,,, then. Now, as in classical theory of computation,
there is a program which transfers all codes of tuples [wg, wy,- -, w,,] into codes of such
programs Py, w, - w,,) Dy modifying the code of the universal program ¢. O

We remark that the restriction to strings wo, wy, -+, w,, € {rg,r1}T is essential if we
want to deal with proper programs only. For wy,---,w,, € ST, P (wo w1y) 18 only a
quasiprogram in general.

Now one obtains the recursion theorem, the fixed—point theorem and Rice’s theorem in
the same way as in the classical theory, cf. [16, 56].

39

Proposition 8.2 (Recursion Theorem) Let n € IN, , and ¢: (S*)"t! =—— SF be a
deterministically S —computable function. There is a string wo € {rg, 1} such that, for all
Wy, -, Wy € S+;

O(wo, wi, -+, Wy) = Doy ([wr, -+ -, wy)).
To show this, we define
llz/)(luﬂ Wyt ey wn) = QD(U%(U, u)7 Wy, ey wn)

Since 1 is an S—computable function, there exits a string w € {rg,r4}* such that
w(u7 Wy, ey wn) = Qw([uy Wy, ey wn]) = Qa}l(w,u)([wlv) wn])

For u = w, and wg = ol (w,w), we have ¢(wq, w1, -, w,) = &, ([wy, -, w,]). O

Proposition 8.3 (Fixed—Point Theorem) Let n € IN,, ¢ : St >—— ST be a unary
deterministically S —computable function. There is a string wg € {rg, 1} such that, for all
Wi, -, Wy € S—I—;
Qwo([wlv Tt wn]) = Qw(wo)([w17 Tt wn])
This is proved by considering the function

o)

¢(w7w17"'7wn) (I)ap(w)([wlv"'vwn])'

By the recursion theorem, there is a string wo € {rg, 71} ™ such that
¢(w07 Wy, ey wn) = ¢wo([wla Ty, wn]) o

Proposition 8.4 (Rice’s Theorem) Let F be a set of deterministically S—computable
unary partial functions which does not contain all such functions but does contain the empty
function . Then the index set

I(‘F) = {w twe {T07r1}+7 q)u) € f}
is not (deterministically) S—recognizable.

If Z(F) would be recognizable, the function

o) = { w_ if weI(F),

undefined otherwise,

where w_ is an index of a deterministically S—computable unary partial function which
does not belong to F, would be computable. Thus, by the fixed—point theorem, there is an
index wg € {rg,r1}T such that, for all w € ST,

(Dwo (w) = @w(wo)(w).

From wg € Z(F), it would follow ¢(wg) = w_ ¢ Z(F), in contrast to the above equation.
Thus, we have wyg ¢ Z(F), and ¢(wq) is undefined. Then ®,, must be the empty
function) € F, i.e. wg € Z(F). This is a contradiction, too. O
From Propositions 8.4 and 4.1, it follows

Corollary 8.1 Under the suppositions of Proposition 8.4, the index set Z(F) is not recur-
stely enumerable in the classical sense. O

40

9 Effectively Encodable Structures

Generalized computability theory has usually been studied with respect to structures of
finite signatures. As we have tried to demonstrate in Sections 2-7, however, our approach
works also on structures of infinite signatures. Of course, the programs are not necessarily
representable as strings over some finite alphabet then, but this is already not the case for
quasiprograms over finite signatures.

Now we are going to deal with universality and related concepts over arbitrary signa-
tures. These investigations are especially encouraged by S. Smale’s question if there are
N P—complete sets over the structures R;, or R lin < see [43, 44, 47]. K. Meer [43] conjec-
tured that this is not the case, since these structures don’t even own universal functions.
Recently, C. Gafiner [25] has shown that both structures have N P—complete sets. So it
seems to be appropriate to consider the concept of universal function a little more detailed.
Moreover, in the next section, we shall deal with m—completeness which is the recursive
analogue of N P-completeness.

We consider bipotent structures

SI<S;(CZ'ZZ'EIc);(RZ':Z'EIR);(FZ':Z'EIF) >,

with arbitrary index sets I¢, Ig, Ir, and constructible elements rg,7; € §.
By an effective encoding of S, we understand a triple

H:<507I{R7"{F>

of surjective functions k¢ : ST >— Ic , kp: ST =— Ig , kp: ST = Ir , such
that there are S—computable string functions ¢¢, ¢r, ¢r satisfying

vo(w) = Cip(w) for all w € dom (k¢),
or(pair(w,sy---8K,)) = X;O’“()(81,"',81%), for all w € dom(kR), $1,---, 5k € 5,
KRlW)
or(pair(w,sy---s1,)) = Fow)(s1,-+,8), forall w e dom(kp), s1,---, s, € 5.

Here, x"0"1 denotes the characteristic function of the relation R, with values from
" ARy kr(w)»
{ro, 71}; more precisely,

70,71
R
wRr(w)

L s € R,
(317 7Ski) - { ro if (81,"‘75kg) ﬁé RHR(“’)'

Roughtly speaking, the definition means that the base constants, relations and functions
are encoded by strings of elements of the structure such that the constants can S—effectively
be obtained from their codes, and, given its code and a string (of appropriate length) of
arguments, the value of any base relation resp. function can S—effectively be computed,
too. There is no other requirement of effectivity than that of the computability of the
functions ¢¢, or and @pr. In particular, the sets of all codes of base constants, relations
and functions, f-@al (Ie), K]_%l(IR), KEI(IF), are not required to be effective in any sense (p.e.,
recognizable). Thus, for any effective encoding & like above, every triple &' = (k(,, K, K),
where K, C k¢, kp C kR, Ky C KF, is an effective encoding too, as long as k., k', K are
mappings onto the corresponding index sets. This means, an effective encoding can always
be assumed to consist of biunique functions k¢, KR, KE.

41

From the uniqueness of the encodings, it immediately follows that effectively encodable
structures can have at most card(ST) many base constants, relations and functions.

Lemma 9.1 If both Ir and Iy are finite, the structure S is effectively encodable.

For the proof, we assume without loss of generality that the index sets of the families of
base relations and base functions consist of positive natural numbers, Ir,Ir C IN, . Then
the base relations resp. functions are encoded by the ‘binary’ representations (within the
alphabet {rqg,r1}) of their indices. The base constants are encoded by themselves (each
considered as a string of length 1). Therefore, there is no restriction of their cardinality. It
is simple to show the existence of functions ¢¢, ¢r, ¢r, according to the definition. O

The just constructed effective encodings for structures with finitely many base relation
and functions will be denoted as standard encodings in the sequel.

The notion of universal function is straightforwardly defined: a partial string function
0yt ST =—— ST is said to be universal (with respect to deterministic computability) if it
is deterministically S—computable and, for every S—computable function ¢ : §T =—— S+,
there exists a string wy € ST such that

ou(pair(wy,v)) = ¥(v), for all v € ST .
Theorem 9.1 A structure is effectively encodable iff it owns a universal function.

If there is a universal function ¢,, one can define an effective encoding in the following
way. For every base constant C;, the constant function ¢, with ¥¢(w) = C;, for all
w € 51, is S—computable. Thus, the strings wc;, for which ¢, (pair(wy,;,v)) = C;, for
all v € ST, can be taken as codes of the constants C; (i € I¢). The function ¢¢ defined by

vo(w) 2 @y pair(w,rg)), w € ST,

satisfies the requirement from the definition of effective encodings.
For every base relation R;, the function ¥g; defined by

T if w=sy---s, and (s1,---,s;,) € Ry,
Yri(w) =< 1o if w=sy---s, and (s1,---,s%,) ¢ Ry,
undefined otherwise (i.e., length(w) # k;),

is deterministically S—computable. Then the string wg;, with
ou(pair(wp,;,v)) = Yri(v), forallve ST,

can be taken as a code of relation R; (i € Ir). ¢r = ¢, satisfies the related requirement.

The codes of the base functions are analogously defined.

To prove the converse direction of the assertion, let k = (k¢ , kg, kF) be an effective
encoding of a structure §. Now the code code,(P) of an S—quasiprogram P can be defined
quite analogously to the case of finite signature in Section 8, only that the base constants,
relations and functions occurring in P are represented by means of their k—codes instead
of strings from {rg,r1}*. (For the standard encoding of a structure of finite signature, we

42

obtain the code as used in Section 8.) In order to obtain a unique code of each quasiprogram,
we may suppose that the encodings k¢, kR, kF are biunique.

Analogously to Theorem 8.1, there is a universal program U, which, for a given pair
of a code of some quasiprogram P and an input string w € ST, simulates the behaviour
of P on that input string w. Three programs computing the functions ¢¢, ¢r and ¢F,
respectively, have to serve as subroutines in the course of these simulations. O

Notice that, also analogously to Theorem 8.1, there are nondeterministic universal pro-
grams, for both kinds of nondeterminism, too. In contrast to Lemma 8.1 however, the
sets of all codes of (D—, N;— resp. Ny—) programs or quasiprograms are not necessarily
decidable.

It has turned out that, on any effectively encodable structure, we even obtain a properly
computable function which is universal for all quasicomputable functions. It is interesting to
notice that, in contrast to the remark on normality at the end of Section 7, it does not yield
a new concept if we consider quasi—effective encodings or quasi—universal functions in the
sense that the functions ¢, @R, ¢r and ¢,, respectively, have to be quasicomputable only.
This follows, since the quasiconstants which may be used to compute those functions can
alternatively be given by prefixes of the code strings, whereas the correspondingly modified
functions ¢}, ¢'p, ¢ and ¢!, respectively, become properly computable, cf. Lemma 3.3.

Now we show that the basic ingredients of recursion theory rather straightforwardly
hold over arbitrary effectively encodable structures.

Theorem 9.2 For every effectively encodable structure S, there is a D—computable function
oy which is universal for the set of all D-quasicomputable functions over § and satisfies the
corresponding s-m-n theorem, recursion theorem, fixed—point theorem, and Rice’s theorem.
More precisely, if we define

®,(v) = . pair(w,v)), for all w,v € St
every ®,, represents a D—quasicomputable function, and, for every D-quasicomputable

string function), there is an index wy such that ®,,(v) = ¥(v), for allv € St.
Moreover, we have:

1. s-m-n Theorem. To every m,n € IN_, there is a D-computable (m + 1)-ary total
function o™ : (ST)™H — §F such that, for all wo, -+, Wy, +, Wpan € ST,

(I)wo([wlv 0y Wimy W1, '7wm+n]) = (I)cr,’?(wo,whm,wm)([wmﬁ-la e '7wm+n])-

2. Recursion Theorem. Letn € IN_, ¢ (ST w s SF be a D—quasicomputable
function. There is a string wg € ST such that, for all wy,---,w, € ST,

@(wov wy, -~ '7wn) = (I)wo([wlv e 7wn])

3. Fixed—Point Theorem. Let n € IN,, ¢: ST >— St be a D-quasicomputable

unary function. There is a string wo € ST such that, for all wy,---,w, € ST,
q)wo([wla v 7wn]) = (I)w(wo)(['wla T 7wn])
43

4. Rice’s Theorem. Let F be a set of D—quasicomputable unary functions which con-
tains the empty function (), but does not contain all D-quasicomputable functions.
Then the indezx set

I(F)={w:we ST, &, ¢cF}

is not S —quasirecognizable.

If the codes of quasiprograms and the universal function ¢, are defined like described
in the sketch of proof of Theorem 9.1, the assertions of the present theorem can be proved
quite similarly to their analogues from Section 8. O

Proposition 9.1 The structures R;p,, Ry, «» Rsc are not effectively encodable.

Assume, there is a universal function ¢, over Ry;,,. Let ri,---,7; denote the scalar
factors of multiplications used by some R ;,,~program P, computing .
For every r € IR, there must be a string w, € IR™ such that

ou(pair(w,,z)) =r -z, for every z € IR.

Let w, = s1---8,,, where s1,---,s, € IR. Then the elements y occurring in P,
computations on inputs z € IR, can be represented in the form

/

m m a, a,
f— ajl « s s s . a‘]l AN ‘]1 s s s s . ‘]l
Yy = E T T z; + E Ty e,
i=1 =1
with m,m’ € IV, aj1,- -+, e, oy, -+, 0% € IN, and z; € {z,s1, -, 5, }. (Notice that the

dots “-” denote multiplications in the representation of y.)

Thus, y can take countably many values which don’t depend on the input z (for the
cases where z; # z, for all j € {1,---,m}, in the representation of y), or values which
belongs to countably many straight lines in the (z,y)-plane whose slopes are from the set

Ay = {3 s me N, ap e N(1<j<m, 1<A<D))
=1

Therefore, if we choose some r € IR\ A,, then, on inputs = € IR, the program P, yields
only countably many values. On the other hand, we have {¢,(w,,z): = € IR} = IR. Thus,
the assumption is wrong.

The proofs for the structures Rlin,< and Rge are analogous. O

One also shows easily that the structure NMge = (N, ;1;=;(pp : p € Prim)), where
Prim denotes the set of prime numbers, is not effectively encodable. On the other hand,
the linear structure over the natural numbers, Ny, = (IN, ;1;=;(up : p € Prim),+), is
computationally equivalent to the standard structure of natural numbers, A, which is of
finite signature. Thus, there is a universal function over Ay,

Now we are going to descibe two classes of effectively encodable structures.

First, let

S=(S5;C;R;02)

44

be a structure whose family of functions, Og = (F; : ¢ € Ir), consists of binary operations
only. We consider the family of all unary operations obtained from Os by fixing the first
arguments:

0O, = (F(Z'75/) 1€ Ip, = S),

where F{; oy(z) = Fi(s',z), for all z € S.
The Megiddo extension of S is defined by adding all these unary functions to the family
of operations,

EXMeg(S):< 5;C;R; 01,02 >
Lemma 9.2 If S is effectively encodable, then EX pr.,(S) too.

Indeed, the additional operations F{; ;) can be encoded by the strings pair(w;, s'), where
w; is a code of the base function F; (i € Ir). O

N. Megiddo [47] considered such extensions (of structures S of finite signatures) in order
to show that his basic construction of N P—complete sets also applies to certain structures of
infinite signatures. This was encouraged by Smale’s question if there are N P—complete sets
over R;, and/or le‘, cf. our remarks at the beginning of this section. By Proposition
9.1 and Lemma 9.3, it is obvious that the linear structures over the reals are not Megiddo
extensions of any effectively encodable structures.

A second type of effectively encodable structures is obtained by adding all constructible
elements, all decidable relations, and all computable total functions over the universe to
some structure’s base. More precisely, the computational extension of a structure § is

EXComp(S) =(5; CcCompi Rcompi ¥ Comp),

where Ccomp = (s: sis an S—constructible element),
Reomp = (r: rC S*for some k € IV, , r is S—decidable),
FComp =(f: f: 8" — S for some [€ IV, ,
The decidability of relations r and the computability of functions f as they occur in the
definition have to be understood straightforwardly.
Theorem 9.2 implies that FX ¢, is effectively encodable if S is. Indeed, the con-

and f is S—computable).

structible elements are encoded by themselves, and as the function ¢¢ one takes the iden-
tity. The relations and functions of the computational extension can be encoded by means
of codes of S—programs computing them, where their arity has to be marked additionally.
The functions ¢ and ¢F are obtained from a universal function for the structure S.

Now it is obvious that, by the same method, also the quasicomputable extensionis shown
to be effectively encodable. This is the structure

EXQComp(S) =(5; Cocompi RQcompi FQComp)

where CQCom =5, RQComp consists of all quasidecidable relations, and FQComp con-
sists of all quasicomputable total functions (both in &, with arbitrary arities).

Lemma 9.3 If the structure S is effectively encodable, then EX comp and EX goomy, too.
O

45

The [quasiJcomputational extensions of structures are interesting, since they character-
ize the [quasilcomputational power of the original structures. Two structures §; and S,
with the same universe S are said to be [quasi]computationally equivalent if their classes of
[quasiJcomputable string functions (over S*) coincide. For example, one sees easily

Lemma 9.4 Two structures S and Sq are [quasilcomputationally equivalent iff their

[quasi]computational extensions coincide, i.e., EX[Q] Comp(Sl) = EX[Q] Comp(SQ)' O

46

10 m—Completeness

Analogously to classical recursion theory, a set of strings, W C ST, is said to be m—complete
if it is recognizable (in the basic sense of Section 2) and, moreover, every other recognizable
set V C ST is m—reducible to W.
The latter means that there is a (D—) computable total string function g : S* — ST such
that

v eV iff p(v) € W, forallve ST,

The function p is also called an m—reduction in this case, and we write briefly: V <, W.
If the structure is effectively encodable and ¢, a universal function, the general halting
problem (with respect to ¢,) is the set

GH = {[w,v]: @u([w,v])is defined },

«“

where “[w,v]” abbreviates “ pair(w,v)”, cf. Section 8.

Lemma 10.1 For an effectively encodable structure, GH is recognizable but not decidable.

The first assertion holds by Proposition 6.1: GH = dom(¢,) N {[w,v]: w,v € ST}, and
the set of all (codes of) pairs is decidable.

The second assertion follows by the standard diagonalization: if GH would be decidable,
there would exist a computable function 7 such that ¥(v) is defined iff [v,v] € GH (for all
v € ST). For an index wy, of ¢ with respect to the universal function ¢,, we would obtain:
Ou([wy, wy]) = P(w,y) is defined Hff [wy, wy] € GH Hf @, ([wy, wy]) is not defined. O

More precisely, we have just shown that the set of all self-applicable codes,

K = {w: @u([w,w])is defined }

is not decidable, and that K <,,GH. Thus, since the halting sets are closed under pre-
images of computable functions, cf. Section 6, if GH would be decidable, K would be
too.

Like in classical theory, one shows that GH<,, K.

GH represents the classical prototype of an m—complete set. On the first view, this may
seem to be true also within our setting. Indeed, a recognizable set V = dom(1)) seems to
be m-reduced to GH by the function ¢ defined by

o(v) = pu([w,v]) (veEST),

where w = wy, is an index of the function . Unfortunately, to compute this function p,
one needs the constructibility of the string w.
We shall say that the universal function ¢, admits constructible programs if, for every

S—computable function %, there is an S—constructible string w, € St such that ¥(v) =
u([wy, v]), for all v € ST. So, we have shown

Proposition 10.1 If the structure owns a universal function which admits constructible
programs, then the corresponding general halting problem is an m—complete set. O

47

Analogously to Theorem 9.1, one can show that there is a universal function admitting
constructible programs iff the structure is effectively encodable in such a way that all code
strings (of base constants, base relations and base functions) are constructible. In particular,
this holds for all structures of finite signatures.

The following theorem shows that the properties of structures to be effectively encodable
and to own m—complete sets, respectively, are independent over general structures.

Theorem 10.1 There are both effectively encodable structures that don’t own m—complete
sets and structures that own m—complete sets but are not effectively encodable.

A bipotent structure which is not effectively encodable but owns an m—complete set is
given by
N = (IN;0,1;<;(tp:n€IN,)),

where jz,, : IN? — IN is defined as follows.

—) nez ifn-z <y,
n(@,y) = { T otherwise.
Without loss of generality, let 7o = 0 and r{ = 1.
We first show that N is not effectively encodable. Assume, there is a universal function
¢, over A/. Then, for every m € IN, there is a string w,, such that

pm(z,y) = o([wp,zy]), forall z,y€S.

Let ¢, be computed by a program P, which uses only the functions g, , -, ,,, for
numbers ny,---,n; € IN, . Thus, at every step of working of P,, on input strings [w,,, zy],
where z,y € IN, all elements of the current string can be represented in the form

a]‘ . L)
nq ny

where z € {z,y,0,1}, or z is an element of the string w,,. (The dot “-” denotes the
multiplication in this representation !)

Now let m have no prime divisor common to some of the numbers nq,---,nz; and let p
be a prime number which is neither a divisor of m, ny,- - -, n; nor of elements from w,,. If
Wy, = 8181, We consider

Im
'r:p'HS/\a
A=1

and take a prime y greater than m -z as the second element of the argument string. In

particular, y is not a divisor of elements of w,,.
Then

M(xay) =m-z,

but we have seen that this product cannot be obtained as an element in the course of the
computation of program P, on the input string [w,, zy].
Therefore, A cannot own a universal function.

48

Now we show how to construct an m—complete set over N. Here we follow the idea used
by C. Gafiner to construct NiP—complete sets for the linear structures over the reals. We
sketch the main steps of our construction. For more details, the reader is referred to [25].

Let P be an /vfprogram using only the functions fi,, -, fin, (ny,--+,n; € IN,). The
string precode(P) is defined similar to the code of the program, cf. the beginning of Section
8. The difference is that, instead of the codes of the occurring functions, only their indices
from {1,---,1} are noted (binarily encoded) at the corresponding places. Of course, this
precode is not sufficient to simulate the behaviour of P on some input. For an input string
w =8-S (81, -+, 8, € IN), let the string prod(P,w) consist of all products of the form

‘n/?]‘ DR ‘n/lal . SH)
for all elements s, of w and all exponents ay < max(sy,---,sg), where these products are
arranged according to some predefined ordering, say lexicographically with respect to the

vector (aq, -+, ar, K).

Given (the code of) a triple [precode(P), w, prod(P, w)], a suitable Jvfprogram Ppu can
simulate the behaviour of the program P on the input string w by taking the elements to
be obtained in the course of that P-computation from the string prod(P,w), by means of
a suitable index processing. In particular, it stops if P would stop on the input string w.
Such a P, could be called a pre-universal program over N. Now the reason for taking
in (instead of the scalar multiplication g,) is obvious. In this case, for every input string

w = 81 - - - Sk, the results of the multiplications are bounded by maa(sy,-- -, sx), and a finite
string of products is sufficient for the correct simulation.
Let

W = { [precode(P), w,v]: P is an N -program,

w,v € INT, and the pre-universal program P,,

stops on the input string [precode(P), w,v] }.
Since the set of all precodes of /V—programs is decidable, the set W is recognizable. Notice
that the component v is not supposed to be the product string, v = prod(P,w). This
property is not N—decidable.

Finally, we see that every Jvfrecognizable set V is m-reducible to W. Indeed, if V is
the domain of some string function computed by an /vfprogram P, the function o defined
by

o(w) = [precode(P), w, prod(P, w)]

is an m-reduction of V to W.
We define an effectively encodable structure without m—complete sets as follows.

H = (Nt U{e,e};e,e;(a,: neIN),*).

@

Let us stress that IV is the set of all non—empty strings of natural numbers. “#” denotes

the concatenation of strings, where e and €’ are neutral elements, i.e.,
exw=wre=€esw=wxe =w, foralwelNT.

Moreover, for n € IN, let

(w) = wxn ifwelNT,
= w if we{e, e}

49

e and €’ are the only H-constructible elements. They are used in order to obtain a bipotent
structure.

The extension of H, H = (INtU{e,e'} ;e e (a, :n € INU{e,e'}), x), where both a,
and a. is the identity, is just the Megiddo extension of the structure (INT U {e,e'};e, €/; %)
which is of finite signature. The effective encoding of H according to Lemma 9.2 yields
obviously an effective encoding of H.

It is a little confusing to deal with strings over H, since their elements may be strings
from INT. Thus, in the following discussion, we call the first ones “hyperstrings” and
separate their elements (which may be strings) by the concatenation symbol “*” from each
other.

The sets of hyperstrings

Ay={w*w-n': we N*,ic N}, neclN,,

¢ IR ¢

‘w-n---n”in INT, are ﬁfrecognizable, as one
easily shows. Assume, there is an m—complete set W, every A, would be m-reducible to
W via some H—computable function p,.

where “w - n*” means the concatenation

Let a program P,, computing p,, use the a—functions with the indices ng = n,ny,---,n; €
IN (I € IN). On inputs of the form z *y (hyperstrings of lenth 2), all elements of current
strings at some step of program P,, are of the form e, €, or

Zemgy - ooy, , where z € {z,y}, A€ IN; iy,---,4\ € {0,---, 1}

(Herein the dot “-” denotes concatenation within INT !)

Suppose that z # y and z,y & {no,n1,+--,n;}T U {e,€e’}. Then, on inputs z * y, the
equality tests in the course of working of P, are satisfied either for all such inputs or for
none of these. Thus, for all those inputs z * y, the program terminates after the same
number of steps, say T, and the elements of the resulting hyperstrings g, (z * y) have the
same term representation within H (with and y considered as variables).

Now we deal with the program P, which recognizes W, applied to input strings o, (z *y).
Let n be unequal to all the indices of the functions ag,- -, a,,, used by program P. The
elements of current strings in the course of working according to P are of the form e, ¢,
or

ZeMyy ot MG, s My, - e omy,, Where A < T,
EAS {$7y}7 A7"{':Eﬂ\/v7 7:17"'71./\ 6{07"'71}7.7.17"'7].56 {077k}
Let = be a number greater than max(ng,---,n;, mg, my,---,my), and take 7 > 7. On

the inputs o,(z * z - n7), all test equations in the course of working of program P are
not satisfied if they are not trivial (i.e. always true). Thus, those inputs follow the same
computation path as inputs o,(z * y), for every number y > z. Since z xz -n” € A,, but
z+y & A, 0, cannot be an m-reduction of 4, to W. O

Let the notions of m—guasicompleteness and of an m—quasireduction be straightfor-
wardly defined. Since every string is quasiconstructible, the general halting problem with
respect to a universal function is always m—quasicomplete.

Proposition 10.2 If a structure owns a universal function, the corresponding general halt-
ing problem is m—quasicomplete. There are structures that own m—quasicomplete sets but
are not effectively encodable.

50

It remains to show the second assertion. We consider the structure A from the first part
of the previous proof. An m—quasicomplete set over N is obtained by modifying the set W
defined there in such a way that precodes of quasiprograms P are admitted, too. In these
precodes, instead of the quasiconstants r1,---,r, € IV, only their indices are given at the
corresponding places. To make possible a pre—universal simulation, the string prod(P,w),
for w = s1 - --sg, consists of all products

nyteooenftes, (1<k<k) and nft----onter, (1<p<m),

where ay < max(sy, -+, Sk, 71, Tm). O

We remark that even on effectively encodable structures the concepts of m—completeness
and m—quasicompleteness do not coincide if there is a non—constructible element s. Indeed,
if W be an m—complete set of strings, then W = {s-w : w € W} is m—quasicomplete. W is
not m—complete, since the existence of a computable m-reduction of St to W would imply
the constructibility of element s

Now we are going to consider the scalar and linear structures over the reals, Rsc, Rse,< »
Riin> Riin<» as well as their discrete counterparts Nsc, Nse<, Ny, » le'n,< . Even if
not all these structures has explicitly been specified, their definitions should be clear now.

All these structures are constructive. So, the notations with respect to quasicomputabil-
ity coincide with their analogues with respect to computability.

Since Ny;, and lin,< are computationally equivalent to the structure A/, they own m—
complete sets (as well as universal functions). For Ry, , Rlin,< and Ngc< , the problem
is open.

Proposition 10.3 The structures Rsc, Rsc< and Ngc don’t own m—complete sets.

We consider the case of structure R ge¢.

Assume, there is an m—complete set of strings, W, over Rgc. Let W be recognized by
a program P which uses the functions s, ,- - -, s, , for some m € IN, sy,---,5,, € IR.

For r € IR\ {0,1,—1}, we define the sets

={z*y: z,y€ R, and y = ' - z, for some i € IN}.

Here we again use the star “

x” to denote the concatenation, the dot “-” denotes the
multiplication now.

It is easily seen that every set V, is Rgc—recognizable. Therefore, there is an m-reduction
o, of V, to W, which is computed by some Rgc—program P, that uses some scalar multi-
plications with indices ro = r, 71, - -+ ,7; € IR. Then the current elements in the course of

working of P, on inputs “z % y” are of the form
ao s s s s . al .
L ez,

where ag,---,a; € IN, and z € {0,1,z,y}. Thus, every nontrivial equality test during the
working of P, holds either for finitely many “z * y” only, or for all those inputs which
correspond to the points of some straight line in the (z,y)-plane. Therefore, disregarded
a finite subset, for almost all i € IV, the inputs “z 7* - 27 follow the # —path within the

computation tree of P,. This path stops after some number, say T, of steps.

51

Now let 7 be chosen in such a way that

for all 7 € IV, and all integers (1, -+, 3,. This is possible by reasons of cardinality.
We consider the action of program P on inputs g,(z * y) obtained on the # —path of
program P,. The current elements during this computation have always the form

{ m

IR

A=0 u=1

where Qg, -, € {0717"'7T}7 ﬁla'.'aﬁm € ﬂVa z € {0,1,$,y}-

Again, every nontrivial equality test between such elements holds at most for the points
of only one straight line in the (z,y)-plane. Therefore, there are exponents i; # iy with
equality tests valid for the inputs “z 7% -y ” resp. “z 7% -y ” and having the same pairs

of systems of a—exponents (considered both sides of the equations). So we obtain

{ m { m ,
H e H sﬁ“ = " and H e H st o= 2
A=0 n=1 A=0 u=1
for integers ay, 3,, ﬁL This yields r'17% = [T= sﬁ“_ﬁ’/‘ ; in contrast to our supposition.

The case of structure Rgc < can similarly be treated. We assume the existence of W
and define V, like above. There is a terminating path in the computation tree of program P,
computing an m-reduction g, of V, to W, which corresponds to continuum many segments
of the straight lines defined by y = 7* -z in the (z,y)-plane.

Now we chose 7 like above and apply a program P recognizing W to the output strings
of such a computation path of P,. The vertices of the computation tree of P correspond
to polygonal domains in the (z,y)-plane. To recognize exactly strings from o,(V,), these
domains must finally degenerate to straight—line segments. So we have representations of
some 71 and 7% like above, and the related contradiction too.

For N ge, the proof is easier, since one can use prime number properties. O

We close with some remarks on the existence of Godel functions. In a certain sense,
they represent the analogue to the m—complete sets, with respect to computable functions
instead of recognizable sets.

A string function ¢ : ST =—— ST is said to be a Gadel function if, to every S—
computable function %, there exists an S—computable total function o : St — ST such
that

P(pair(w,v)) = @ pair(e(w),v)).

By standard techniques, one shows the following results. A string function is a Godel
function iff it is universal, admits constructible programs, and satisfies the s-m-n theorem. If
the structure § owns a universal function which admits constructible programs, then it has
such one which satisfies the s-m-n theorem, and it even owns an optimal Godel function, i.e.,
for every computable function 3 there is a translation g satisfying the conditional equation
above, and, moreover, length(o(w)) < length(w) + k, for some constant number k.

52

References

[1]
2]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

G. Asser, Rekusive Wortfunktionen. Zeitschr. f. math. Logik und Grundlagen d. Math. 6, 1960, 258-278

B. Balzer, Erkennbarkeitsbegriffe viber allgemeinen Strukturen. Diploma Thesis, E.—M.—A.—Universitat
Greifswald, 1996

E. Bishop, Foundations of constuctive analysis. McGraw—Hill, New York, 1967

M. Ben-Or, D. Kozen, J. Reif, The complexity of elementary algebra and geometry. JCSS 32, 1986,
251-264

L. Blum, Lectures on a theory of computation and complezity over the reals (or an arbitrary ring).

ICSI, Berkeley, CA, TR-89-065

L. Blum, A theory of computation and complexity over the real numbers. ICSI, Berkeley, CA, TR-90-
058

L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation: a manifesto. ICSI, Berkeley,
CA, TR-95-042

L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-
completeness, recursive functions and universal machines. Bulletin of the AMS 21, 1989, 1-46

L. Blum, S. Smale, The Gddel incompleteness theorem and decidability over a ring. ICSI, Berkeley,
CA, TR-90-036. also in: From Topology to Computation: Proc. of the Smalefest. Springer—Verlag,
New York, Berlin, 1993, 321-339

E. Borger, Berechenbarkeit, Komplexitat, Logik. Vieweg—Verlag, Braunschweig, Wiesbaden 1992

R. E. Byerly, Ordered subrings of the reals in which oulput sets are recusively enumerable. Proc. of the
AMS 118, 1993

F. Cucker, M. Matamala, On digital nondeterminism. Preprint 1993

F. Cucker, M. Shub, S. Smale, Separation of complexity classes in Koiran’s weak model. TCS 133, 1994,
3-14

L. van den Dries, Alfred Tarski’s elimination theorie for real closed fields. J. Symb. Logic 53, 1988,
7-19

E. Engeler, Algorithmic properties of structures. Math. System Theory 1, 1967, 183-195
E. Engeler, P. Lauchli, Berechnungstheorie fiir Informatiker. B. G. Teubner, Stuttgart, 1988

Ju. L. Ershov, Theorie der Numerierungen I, II, 11l. Zeitschr. f. Mathem. Logik u. Grundl. d. Math.,
v. 19, 1973, 289-388; v. 21, 1975, 473-584; v. 23, 1977, 289-371

J. E. Fenstad, General recursion theory. Springer—Verlag, Berlin et al., 1980

M. C. Fitting, Fundamentals of generalized recursion theory. Studies in Logic and the Foundations of
Mathematics. v. 105, North—Holland, Amsterdam, 1981

H. Friedman, Algorithmic procedures, generalized Turing algorithms, and elementary recursion theory.
Logic Colloquium 1969, North—Holland, Amsterdam 1971, 361-390

H. Friedman, R. Mansfield, Algorithmic procedures. Trans. of the AMS 332, 1992, 297-312

R. O. Gandy, Curch’s thesis and principles for mechanisms. The Kleene Symposium, ed. by J. Barwise,
H. J. Keisler, K. Kunen, North-Holland PC, Amsterdam, 1980, 123-148

53

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[40]
[41]
[42]

[43]

[44]

[43]

[46]

R. O. Gandy, C. M. E. Yates (editors), Logic Colloguium’69. North-Holland PC, Amsterdam, London,
1971

S. J. Garland, D. C. Luckham, Program schemes, recursion schemes, and formal Languages. JCSS 7,
1973, 119-160

C. GaBiner, On N P—-completeness for linear machines. submitted for publication

K. Godel, Uber formal unentscheidbare Sdtze der Principia Mathematica und verwandter Systeme, I.
Monatshefte fur Math. u. Phys. 38, 1931, 173-198

J. B. Goode, Accessible telephone directories. J. Symb. Logic 59, 1994, 92-105

C. E. Gordon, Finitistically computable functions and relations on an abstract structure (abstract). J.
Symb. Logic 36, 1971, 704

A. Hemmerling, On genuine complezity and kinds of nondeterminism. J. Inform. Process. Cybernet.
ETK 30, 1994, 77-96

A. Hemmerling, Computability and complezity over structures of finite type. Preprint Nr. 2-1995,
Preprint—Reihe Mathematik, Ernst—Moritz—Arndt—Universitat, Greifswald, 1995

G. T. Herman, S. D. Isard, Computability over arbitrary fields. J. London Math. Soc. 2, 1970, 73-79
Tu. 1. Janov, The logical schemes of algorithms. Problems of Cybernetics 1, 1960, 82-140

A. J. Kfoury, R. N. Moll, M. A. Arbib, A programming approach to computability. Springer—Verlag,
New York et al., 1982

A. J. Kfoury, Definability by programs in first—order structures. TCS 25, 1983, 1-66

A. J. Kfoury, Definability by deterministic and non—deterministic programs (with applications to first—
order dynamic logic). Information and Control 65, 1985, 98-121

K.—1. Ko, Complexity theory of real functions. Birkhauser, Boston et al., 1991
G. Kreisel, Some reasons for generalising recursion theory. in [23], 139-198

D. Lacombe, Recursion theoretic structure for relational systems. in [23], 3-18

D. C. Luckham, D. M. R. Park, M. S. Paterson, On formalised computer programs. JCSS 4, 1970,
220-249

A. 1. Malcev, Constructive algebras I. Russian Math. Surveys 16, 1961, 77-129
A. 1. Malzev, Algorithmen und rekursive Funktionen. Akademie—Verlag, Berlin, 1974
K. Meer, Computations over Z and IR: a comparision. J. of Complexity 6, 1990, 256-263

K. Meer, A note on a P # NP result for a restricted class of real machines. J. of Complexity 8, 1992,
451-453

K. Meer, Komplezititsbetrachtungen fiir reelle Maschinenmodelle. Verlag Shaker, Aachen 1993

K. Meer, C. Michaux, A survey on real structural complezity theory. to appear in Bulletin of the Belgian
Mathematical Society

N. Megiddo, Towards a genuinely polynomial algorithm for linear programming. SIAM J. Comp. 12,
1983, 347-353

94

[47]

[48]

[49]

[50]

[51]
[52]

53]

[54]

[55]

[59]

[60]

[61]

[62]

[63]

[64]

[68]

N. Megiddo, A general NP—completeness theorem. From Topology to Computation: Proc. of the Smale-
fest. Springer—Verlag, New York, Berlin, 1993, 432-442

C. Michaux, Ordered rings over which output sets are recursively enumerable. Proc. Amer. Math. Soc.
112, 1991, 569-575

C. Michaux, P # NP over the nonstandard reals implies P # NP over IR. TCS 133, 1994, 95-104

M. L. Minsky, Computation: finite and infinite machines. Prentice—Hall, Inc., Englewood Cliffs, N.J.,
1967

Y. N. Moschovakis, Abstract computability and invariant definability. J. Symb. Logic 34, 1969, 605-633
Y. N. Moschovakis, Abstract first—order computability. I,11. Trans. Amer. Math. Soc. 138, 1969, 427-504

B. Poizat, Les Petits Cailloux, Une approche modele—theorique de I’Algorithmie. NUR AL-MANTIQ
WAL-MA’RIFAH, 1995

F. P. Preparata, M. I. Shamos, Computational Geometry. Springer—Verlag, Berlin and New York, 1985

M. O. Rabin, Computable algebra, general theory and theory of computable fields. Trans. Amer. Math.
Soc. 95, 1960, 341-360

H. Rogers Jr., Theory of recursive functions and effective computability. McGraw—Hill, New York, 1967

R. Saint John, Output sets, halting sets and an arithmetical hierarchy for ordered substrings of the real
numbers under Blum/Shub/Smale Computation. ICSI, Berkeley, CA, TR-94-035

R. Saint John, Theory of computation for the real numbers and subrings of the real numbers following
Blum/Shub/Smale. Dissertation. University of California at Berkeley, 1995

P. Schreiber, Theorie der geometrischen Konstruktionen. Deutscher Verlag der Wissenschaften, Berlin,
1975

J. C. Shepherdson, Computation over abstract structures: serial and parallel procedures and Friedman’s
effective definitional schemes. Logic Colloquium °73. ed. by H. E. Rose and J. C. Shepherdson, North—
Holland P.C., Amsterdam, 1975, 445-513

J. C. Shepherdson, Algorithmic procedures, generalized Turing algorithms, and elementary recursion
theory. Harvey Friedman’s research on the foundations of mathematics. ed by L. H. Harrington et al.,

North Holland, Amsterdam, 1985, 285 —308

J. C. Shepherdson, Mechanisms for computing over arbitrary structures. The Universal Turing Machine,
A Half-Century Survey. ed. by R. Herken, Springer—Verlag, Wien, New York, 1994, 581-601

J. R. Shoenfield, Recursion theory. Springer—Verlag, Berlin et al., 1993

1. N. Soskov, Prime computability on partial structures. Mathem. Logic and Its Appl., ed. by D. G. Sko-
rdev, Plenum Press, New York and London, 1987, 341-350

1. N. Soskov, Definability via enumerations. J. Symb. Logic 54, 1989, 428-440
1. N. Soskov, An external characterization of the prime computability. Ann. Univ. Sofia 83, 1989, 89-110

1. N. Soskov, Computability by means of effectively definable schemes and definability via enumerations.
Archive for Math. Logic 29, 1990, 187-200

A. A. Soskova, An external approach to abstract data types I. Ann. Univ. Sofia 87, 1994, no. 1

95

[69] A. A. Soskova, I. N. Soskov, Effective enumerations of abstract structures. Heyting’88, ed. by P. Petkov,
Plenum Press, New York, 1990, 361-372

[70] A. Tarski, A decision method for elementary algebra and geometry. University of California Press,
Berkeley, 1951

[71] J. Tiuryn, A survey of the logic of effective definitions. in: Logic of Programs, ed. by E. Engeler,
Lecture Notes in CS, v. 125, 1979, 198-245

[72] K. Weihrauch, Computability. Springer—Verlag, Berlin et al., 1987

[73] K. Weihrauch, A simple introduction to computable analysis. Informatik—Berichte 171-2/1995, Fern-
Univ. Hagen, 1995

56

