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Abstract

A fractal is a function or a process in which an identical motif repeats itself on an
ever diminishing scale. The motif of a fractal can be a feature influenced by
chance. Fractals can be found in nature everywhere, for instance the surface of the
moon is a fractal, where the motif of craters is repeated in a scale from inches to
miles. It is created by random collisions with space objects. Fractals are also called
self-similar, because they show the same picture when looking at them in differ-
ent scales. Fractals can be found in the load profile of data and video traffic, too.
Fractal behavior has serious consequences for the modeling, design and operation
of packet switched networks like ATM. They are: 1) no smoothing effect while
traffic is multiplexed and, 2) unpredictable burst lengths. This leads to difficulties
in buffer dimensioning and in traffic control schemes. Understanding and model-
ing the fractal behavior is a new research challenge. More knowledge is needed to
understand reasons for the fractal properties and to model them in order to
design networks, services and even applications with regard to it. There are sev-
eral methods to find out fractal properties of data and video traffic. One of them,
the so called pox diagram, will be applied. We will show results achieved by
application of this approach on measured video traffic. Additionally results of
other measurement in data networks and in the Internet will be presented.

1. Wolfgang Frohberg is with the ALCATEL Telecom Research Division - Location Stuttgart, D-
70430 Stuttgart, Germany



1 Introduction

Modeling of the load of communication systems often is based on statistical
assumptions which are easy to handle either analytically or by simulation.
Dimensioning of critical system parts like buffers, based on this modeling, some-
times fails under certain real life load conditions. The reason is, that traffc sour ces
do not behave like their models. Fractal properties of real sources have been
found to cause this unexpected behavior.

So a bundle of question arise: Where are these properties to be expected? How can
they be described or even modeled? Where do they come from? What conse-
quences do they have and how can one come along with them?

Up to now there are some investigations describing the phenomenon in one or the
other context, all of them on a high theoretical level. Traff¢ engineers ar e fright-
ened by messages like ‘Poisson modeling fails” or even ‘burst traffe is unpr edict-
able’. Indeed, fractal or self-similar traff¢ pr operties can cause a variety of
problems to communication systems, mainly if Quality of Service is concerned.

This paper tries to give some explanation about self-similarity at all and summa-
rizes the state of the art. Its special focus are ATM systems as own measurement
has been done in an ATM environment. Conclusions raise some questions and
directions to think about the answers. All this is to sensitize the research commu-
nity to the subject.

The rest of the paper is organized as follows: First, I describe some technical
meaning of fractals and self-similarity (section 2). Following, one method of find-
ing fractal properties will be introduced (section 3). I then give a description of the
measurement I did in an ATM network and their fadings, this will be followed
by scanning other fihdings fr om the literature (section 4) and a brief description of
the serious consequences of fractal traffc for A TM systems (section 5). I fhally
end up with conclusions and some remarks on future work (section 6).

2 Fractals and Self-similarity

2.1 Fractals in Nature

A fractal is a geometrical fgur e in which an identical motif repeats itself on an
ever diminishing scale [LAU91]. A very intelligible example is the so called loga-
rithmic spiral, as shown in Figure 1. This spiral always shows the same picture, no
matter what the scale of view is. In Figure 1, the logarithmic spiral is plotted in
two different scales of r in polar coordinates (r,68). The logarithmic spiral is called a
protofractal. The motif of the logarithmic spiral isthe spiral itself.
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FIGURE 1. Growing Logarithmic Spiral

The motif of a fractal can be influenced by chance. The motif of the fractal in Fig-
ure 2 is an angle of 90 degrees with its two legs. The length of both legs is influ-
enced by chance. The fractal grows from its root in the middle. During each
iteration a new angle grows at each end of all angles of the previous generation.
All length disturbances are calculated using random numbers from the same dis-
tribution. Generations look similar, because some basic features (angle) and the
statistics of other features (leg length) are the same. Fractal and statistical proper-
ties are superpositioned. The tree in Figure 2 looks much more natural than it

would look without the influence of coincidence.

FIGURE 2. Fractal Tree

Having this in mind, fractals can be found in nature everywhere. The logarithmic
spiral is the plan for the growth of the Ammonite, and tree fractals can be found

fractal tree with randomly disturbed growing
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in real trees. One impressive example is the surface of the moon. The surface of
the moon is a fractal, where the motif of craters is repeated in a scale from milli-
meters to kilometers. It is created by random collisions with space objects of dif-
ferent size.

Fractals are also called self-similar, because they show the same picture when
looking at them in different scales, as you will always see craters on the moon's
surface when looking from the earth and from 1cm above the surface as well. Fig-
ure 3 gives an impression. Self-similarity is another term for fractal behavior.

FIGURE 3. The Moon’s Surface

An example similar to the moon’s surface, but simpler because it is two dimen-
sional and it can be found on earth, are coast lines. Imagine the following experi-
ment:

* Measure the coast line of California on a country map using a 5 mm meterstick
by counting how many meterstick steps you have to make to walk along the
whole coast line.

* Do the same on a hiking map using the 5 mm meterstick again.

The result of the experiment will be that there are differences in the total length of
the coast line. The experiment is called Richardson’s experiment [LAU91]. When
plotting the total length found for a specift coast line versus the used measur e-
ment unit in a double logarithmic plot, the values concerning one specifc coast

will be closed to a straight line. This is, because coast lines are fractal. The slope of
the line in the plots resulting of Richardson’s experiment indicates a fractal dimen-
sion. It gives some information about the degree of meandering of the coast line
in just one parameter. Figure 4 shows an example of the plot. Expressing a fractal
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dimension is a basic idea I will use in this paper to describe the fractal behavior of
video and data traffe, too.
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FIGURE 4. Richardson’s Experiment

2.2 Mathematical Meanings of Self-similarity

Investigating measurement series having fractal properties, this feature expresses
itself by a couple of observations. Assume a time series X = (X; t =0, 1, 2...) and
aggregated series X™ = (X, (™: k = 1, 2, 3 ...), created by summing the original
series X over non overlapping blocks of size n.

First, the autocorrelation function r(k) = E[(X; - M)(Xi;x - 1)] of all aggregated
series is the same, it is invariant of n.

Second, r(k) is approximate kP with 0 < B < 1 as k becomes infiite. This corr ela-
tion function decays hyperbolically and is non summable. This feature is called
long range dependence.

Third, the variance of samples of size n from such series do not decrease as a func-
tion of n but rather by n'P. This feature is called slowly decaying variances.

Fourth, the power spectrum of such series X is hyperbolic and rising to infnity at
frequency zero. The power spectrum is hyperbolic.

Last but not least the probability P[X>=x] is about x™® as x becomes infhite. a is
between 0 and 2. The asymptotic shape of P is hyperbolic. The distribution is
called heavy-tailed.

3 Exploration Methods

There are several methods, based on long range dependencies ([LEL93] and
[MANG69]), slowly decaying variances (variance-time plots, [LEL93]), power spec-
trum slope (periodograms, [LEL93]) and new approaches like in [CRO95].



One method has been investigated and used for this paper: Rescaled Range Sta-
tistics [LEL93], [MANG6Y]. It is based on long range dependencies. The data we
will analyze describes the investigated traffe as time series, for instance the num-

ber of ATM cells in one time unit. To find long range dependencies, measur ed
data has to be evaluated in different time-scales.

The same sample of cell numbers versus time has to be cut into pieces, so called
lags. Cuts have to be done several times, varying the number and length of lags.
The length of the lags n is the time base for further investigations. It is the number
of observations in the lag, in our case a number of consecutive time intervals. Fig-
ure 5 shows an example for cutting a sample one time into seven pieces and
another time into 14 pieces.

o ———
|sample |

——_——_—_-_—l

| seven lags of length n, |

14 lags of length n, n'" measured value of the 8" small lag

second measured value of the 81 small lag
first measured value of the 8" small lag

FIGURE 5. Cutting a Sample into Lags

For each n, a number of lags are selected randomly. This number of lags must be
the same for all values of n. It is obvious, that in the example above, the number
of selected lags must not exceed seven.

For selected lags, two parameters are calculated:
* R(n) = max(0, W1, Wy,..., W,)) - min(0, W{, W,,..., W,)

with W; = (X1 + X5 + ... + X;) - iX(n) is the sample range of the lag.
« S%(n) is the variance of the set {X; + X, +... + X} of one lag.
From [LEL93] we can learn, that for short range dependent sets of observations
the expected value E[R(n)/S(n)] is about conll . Contrar%to that, for long range
dependent sets of observations E[R(n)/S(n)] is about ¢yn™ with 0.5 <H < 1. H is

equal to 1- /2 (refer to section 2.2) and ¢ is a constant of minor importance. The follow-
ing steps describe how to evaluate E[R(n)/S(n)] graphically.

* The quotients of R(n) and the corresponding S(n) have to be calculated.
 After that, the mean of all quotients belonging to one n have to be calculated.

* The quotients and their means are plotted in a double logarithmic plot versus
n, the so called POX diagram.



Figure 6 contains a POX diagram. R/S quotients are marked by dofheir means are
marked by ‘+'.There are sen quotients peat. The plots form a straight line. The slope of
this line is called thélurst parameteH. If there is no fractal bekisor, H is circa 0.5. An

H of greater than 0.5 is a sign for self-similarity or fractal bemaThe greateH, the
greater is the fractal dimension of theasticated trafic. Again, one parametexpresses
the fractal behaor.

Encoder = JPEG max 2646 cps, min 0 cps, mean 2197 cps, Std = 163.4, H = 0.8416
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FIGURE 6. Example POX Diagram

4 Traffic Measurement and Results

4.1 Experiment Description

All measurement has been done with videditrah the MAY network [HTTP1] using the
configuration presented in Figure 7. Therkstation performing the measured sources
was asparcb workstation runningSolaris2.5 equipped with é&unVideo board and an
Interphase ATM board [HTTP2]. The AM cell stream as linked to alLattisCell ATM
Switch Model 10114-SM [HTTP3]. This Switch ders 16 Sonet/SDH 155Mbit/s ports. A
tool namecht nst at was used to measure th&M cells arrving in each second.

Different video encoders used in thiec tool were used to encode a video stream from a
camera: H261, JPEG and, N&special Xerox wented format. Thei ¢ program ofers
some possibilities to tune encoding and transmission quahigre can be chosen a frame
rate and a transmission rate.vi@gheless these predefinedlues are adapted during
transmission to the evkstations performance constrainter Rll experiments, the pre-
defined frame rate and transmission rateehaeen selected for the highest quality trans-
mission. That is, 30 fps frame rate and 3072 kbps transmission rate.
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FIGURE 7. Measurement Configuration

Thevi ¢ encoder produces UDP frames which are pddkto IP pacéts (Classical IP
RFC 1577), as to be seen in Figure 8tfie UDP (User Datagram Protocol) peiskthere
are added 8 bytes for the UDP hea@6rbytes for the IP (Internet Protocol) heagars 8

bytes for the PDU trailer of the AALS.
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FIGURE 8. Protocol Stack

4.2 Results

The following plots are cell rateersus time plots of the measurement describedeabo
The average cell rate is indicated by aygs®lid line. The time resolution of the plots is
one second.



H261 8 hour measurement
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FIGURE 9. H261 Time Plot

For H261 there ws a minimum cell rate of about 50 cells per second. Cell rates thado

are probably caused byovkstations performance problems, as for instance the zero cell
rate short after the gening of the measurement is caused by the screen lock procedure.
Most of the time the cell rate is near the mean of 80.43 cps.urkeness as the quotient

of peak cell rate and mean cell rate is 10.8. The measuremer# ishpressiely, that the
essential of this encoding scheme iswa lasting cell rate, superimposed by sskvhen
pictures are updated due to scene changes.
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FIGURE 10. JPEG Time Plot



The behwgior of the JPEG encoder is muchfdient. You will find variations around a
mean cell rate, i.e. the cell rataries to high and to Vo values. Een the mean cell rate
itself varies. There areaviations in a minute time-scale andythare superimposed by
variations in a hour time-scale. Ruvays to lav cell rates are caused by therkstations
behaior, as for the H261 encodérhe JPEGnean cell rate is the highest of all measured
encoders, Wt the \ariance is one order of magnitude belihe mean, which dérs from
other encoding schemes, too.

nv 8 hours measurement
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FIGURE 11. NV Time Plot

The NV encoding scheme befes quite similar to the H261 scheme. $gilare higher
than in the H261 scheme. Therstiness measured for one second itisris about 250.
Zero cell rates are runays for these measurement, too.

All measurement @as tested according to self-similarifihe folloving plots shw the
self-similarity tests. The lag size ranges from 5 seconds to a size where at leastérnon o
lapping lags could beuilt from the measured data. The quotieRLS are plotted by sin-
gle dots, the mean of the quotients corresponding to a speaifecmarkd by ‘+’ and the
solid line shavs a rgression line of the means to find the slope. The figures, shat all

3 encoders he fractal behdor, especially the JPEG decoderwha high alue ofH.
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FIGURE 12. Self-similarity Test of the Encoders
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As shavn in [LEL93], this feature manifests whervegal cell streams are multipied. In
theory when sequences of the sakheare multipleed, this should result in the sarde
again for the multiplged sequence.dF that reason, the follang has been performed
with the measured data: Each data set of approximately 8 hours leagttutvinto 10
pieces first and then these 10 streams were mukigleo one stream using an idealized
loss free multipleer. The cut of the original stream results in streams of approximately the
sameH. On the multiplged stream, the same procedure for self-similarity testing as for
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the original data was applied. After that, the same has been done cutting the original date
into 100 pieces, simulating the multiplex of 100 cell streams.

Table 1 summarizes al experiment statistics and results.

TABLE 1. Experiment Statistics and Results

H

. 10 .

Measure- max cells | mean cells Single Multi- 100 Multi-
a

Encoder grennet sum cells per sec per sec std Cell plexed plexed

Stream Streams
Streams

H261 50,094 s 3,420,462 524 68.2809 32.0104 0.6849 0.7319 0.7648

JPEG 28,782s | 63,221,534 2,646 2,196.6 163.3749 | 0.8416 0.7146 0.6243

NV 27,845s 7,730,465 2,766 277.6249 319.8612 | 0.6583 0.7216 0.7230

a. std ... Standard Deviation of the number of cells per second

The Hurst parameters of the multiplexed streams are more or less in the same range as for
the single streams. It must be taken into account, that the POX diagram is just one test for
self-similarity and there might be different values for H in different parts of the sequences.
Further investigation is necessary, in particular to check the JPEG results.

4.3 Comparison to Other Published Results

In [LEL93], one of the basic papers concerning self-similarity of trafft in commu-
nication systems, Bellcore investigated Ethernet traffe to very active fie servers
inside a LAN, traffc between parts of a LAN inter connected by a bridge, external
traffe of an Ethernet LAN and Internet traf fi. Ther e were found Hurst parame-
ters H between 0.53 and 0.99. H was increasing for more aggregated trafft (mor e
users) and with moving from low to heavy traffc of the individual users.

In [CRO95] sequences of fle r equests were used to measure bursts in terms of
bytes versus time. Hurst parameters of about H = 0.8 were found, caused by the
distribution of WWW document sizes, caching, user reaction time and traffe
aggregation in LANSs. It was found, that sources behave like ON/OFF sources
with heavy-tailed ON and OFF period lengths.

In [GRI95] fie system traces in a Sprite fie system for events like ‘open’, ‘close’,
‘block transfers’, ‘delete’ and ‘dir ectory use” were used to search for fractal prop-
erties. All these fie system events r equire communication, so kernel calls to client
machines were monitored with a precision of 10 ms. The analysis was made by
application of different detection methods. There were found Hurst parameters H
between 0.54 and 0.99.
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In [ROS95] several video sequence were analyzed. They were all encoded with
MPEG. Hurst parameters were between 0.51 and 0.99. The paper concluded, that
apart from exceptions a larger H refécts a lar ger amount of movement in the
video sequence.

5 Consequences of Fractal Traffic

The most serious consequence of self-similar traffc concerns the size of bursts.
Within a wide range of time-scales, the burst size is unpredictable, at least with
traditional modeling methods. This has some very practical meanings for buffer
dimensioning and service creation:

* buffers for fractal traffc cannot be dimensioned using Poisson modeling,
* cell loss guarantees based on Poisson traffc assumptions will fail,

* connection admission based on knowledge about a natural burst length will
fail,

* Poisson modeling based congestion control schemes can fail and,

* variable bit rate services are especially diffeult to design.

normalized nr. of packets
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FIGURE 13. Statistical Multiplexing of Poisson and Fractal Traffic

The rigidity of Poisson modeling can be illustrated by the following comparison.
Assume several traff¢ str eams of Poisson trafft on one hand and a number of
fractal traffe str eams on the other hand. If these traffc is multiplexed, Poisson
with Poisson and fractal with fractal, it can be observed, that the characteristic of
the multiplexed Poisson traffe becomes smooth, as to be seen in the left part of
Figure 13. It is obvious that dimensioning of any resources can easily be based on
this feature. For fractal traffe, multiplexing the same number of traf f¢ str eams
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leads to a less smooth traffe, also to be seen in the right part of Figur e 13. Any
resources must be dimensioned for a much higher peak to mean ratio of the
resulting traffe str eam than in the Poisson case.

6 Conclusions and Future Work

There must be much more research about fractal traffe. One topic is the r easons
for it. Knowing them, we could either create applications with less fractal traffe
or systems getting along with fractal traffc or both. In any case ther e is an advan-
tage from knowing self-similarity parameters and using them in new modeling
techniques. Learning about the possible reasons has started in [CRO95], for
instance. One step towards less self-similar traffc pr oducing applications is the
comparison of different video encoders.

Some of the crucial questions are:

* Is fractal traffe cr eated by the encoding techniques or the content, that means is
it immanent to the transmitted data?

* Does self-similarity become the more important the more encoding is done
because encoding removes redundancy from the data?

* Has self-similarity to do with human perception because video encoding
schemes are designed to show the human brain what it likes?

* Oris the reason, that as well data sources as video sources are not memoryless?

To fnd answers ther e is necessary:

 an in depth analysis of previous investigations of self-similarity in packet traf-
fe,

* a completion of the theoretical background by exploring mathematical views
on self-similarity and by exploring how other sciences deal with self-similarity

(e.g. physics, geology etc.),
* the development of customized test methods and parameter sets,

* an analysis of a broad spectrum of traff¢ to get universal knowledge about
relations between applications and traffe featur es and about reasons for fractal
behavior and,

* the development of modeling approaches for self-similarity to be able to assist
application, network and service design by analytical modeling and simula-
tion.

Superposition of ON-OFF sources with heavy tailed ON- and OFF- length distri-
butions is one of the possible modeling approaches. To summarize, more theory is
necessary, but only worth combined with extensive measurement.
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