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Abstract

In formal theories for reasoning about actions, the qualification problem denotes the
problem to account for the many conditions which, albeit being unlikely to occur, may
prevent the successful execution of an action. While a solution to this problem must in-
volve the ability to assume away by default these abnormal disqualifications of actions, the
common straightforward approach of globally minimizing them is inadequate as it lacks
an appropriate notion of causality. This is shown by a simple counter-example closely
related to the well-known Yale Shooting scenario. To overcome this difficulty, we propose
to incorporate causality by treating the fact that an action is qualified as ordinary fluent,
i.e., a proposition which may change its truth value in the course of time by potentially
being (indirectly) affected by the execution of actions. Abnormal disqualifications then
are initially assumed away, unless there is evidence to the contrary. Our formal account of
the qualification problem includes the proliferation of explanations for surprising disqual-
ifications and also accommodates so-called miraculous disqualifications, which go beyond
the agent’s explanation capacity. In the second part, we develop a fluent calculus-based
encoding of domains that require a proper treatment of abnormal disqualifications. In
particular, default rules are employed to account for the intrinsic nonmonotonicity of the
qualification problem. The resulting action calculus is proved correct wrt. our formal
characterization of the qualification problem.

A short version will be presented at the Fifth International Conference on Principles of

Knowledge Representation and Reasoning (KR’96), Camebridge, MA, Nov. 5-8, 1996.
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1 Introduction

A fundamental requirement for autonomous intelligent agents is the ability to reason about
causality, which enables the agent to understand the world to an extent sufficient for acting
intelligently on the basis of his or her knowledge as to the effects of actions. The first formal
approach in AI research to model this ability has been suggested in [McCarthy, 1959], where
agents are proposed to infer, on the basis of general causal knowledge and by means of deduction,
the impact of the execution of an action sequence in a particular situation.

It was again McCarthy who two decades later pointed out a key problem in this context
which occurs whenever agents need to reason about actions in other than artificial environ-
ments, where complete knowledge of all relevant facts cannot be assumed: The qualification
problem [McCarthy, 1977] arises from the fact that generally the successful execution of actions
depends on many more conditions than we are usually aware of. The reason for this unawareness
is that most conditions are so likely to be satisfied that they are assumed away in case there is
no evidence to the contrary.

A standard example to illustrate this is when we intend to start our car’s engine, then we
usually do not make sure that no potato in the tail pipe prevents us from doing so, despite the
fact that a clogged tail pipe necessarily renders this action impossible.! While this prima facie
ignorance is rational as it is generally impossible to verify all preconditions,? these cannot be
completely disregarded in a formal causal model. Yet a proposition like “there is no potato in
the tail pipe” should not be treated as a strict precondition in the formal specification of the
action “start the engine,” for otherwise the reasoning agent always has to verify this condition
before assuming that the action can be successfully executed. Moreover, it is often difficult if
not impossible to even think of all conceivable disqualifications in advance [McCarthy, 1977].

Assuming away so-called abnormal disqualifications by default naturally implies that if fur-
ther knowledge hints at such unexpected disqualifications, then we have to withdraw the pre-
vious conclusion that the action in question is qualified. Thus the entire process is intrin-
sically nonmonotonic. As a consequence, McCarthy’s proposal was to employ circumscrip-
tion with the aim of minimizing abnormal disqualifications [McCarthy, 1977; McCarthy, 1980;
McCarthy, 1986). Little has been achieved since then towards formally integrating this concept
into a specific action formalism, or towards an assessment of its range of applicability. In fact,
a surprisingly simple example illustrates that the straightforward global minimization of abnor-
mal disqualifications is inadequate. The example shows some similarities to the problem—first
illustrated with the Yale Shooting example [Hanks and McDermott, 1987]—which occurs when
neglecting causality in tackling the frame problem.

Imagine the following scenario (c.f. Figure 1): We can put a potato into the tail pipe whenever
no abnormal disqualification prevents us from doing so (e.g., the potato surprisingly turns out
to be too heavy); likewise we can start the engine except in case of an abnormal disqualification
(like a potato in the tail pipe). Now, what would we predict as to the outcome of first trying to
place a potato in the tail pipe and, then, trying to start the engine? Clearly, since nothing hints
at an abnormal disqualification of the former action, we should expect this one to be successful.
Then its effect (viz. a potato in the tail pipe) implies that the second action will be (abnormally)
disqualified.

! According to [Ginsberg and Smith, 1988b], this example is also due to McCarthy.

2 Aside from the fact that besides a clear tail pipe there are lots of other disqualifying, albeit unlikely, obstacles,
how can we ensure that after checking the tail pipe it does not become clogged during us walking to the front
door and taking a seat, prior to trying to start the engine?



Figure 1: In general, we would consider it abnormal if we fail to start our car. But would we
still do so if we deliberately insert a potato into the tail pipe beforehand?

But what happens if abnormal disqualifications are globally minimized in this scenario? One
minimal model is obviously obtained by considering the put-potato action qualified and the
start-engine action unqualified, as expected. However, if instead the first action, put-potato, is
assumed unqualified, then this avoids assuming a disqualification of the second, start-engine.
For if the former is not qualified it fails to produce what otherwise causes the disqualification of
the latter. Hence, in so doing we can construct a second minimal model for our scenario—which
is clearly unintended.

The reason for the existence of the second, counter-intuitive model is that global minimization
does not allow to distinguish disqualifications which can be explained from the standpoint of
causality. Successfully introducing a potato into the tail pipe produces an effect which causes
the fact that the second action, starting the engine, is unqualified. That is to say, while an
abnormal disqualification of put-potato comes out of the blue in the unintended minimal model,
an abnormal disqualification of start-engine, as claimed in the first minimal model, is easily
explicable. One even tends to not call the latter abnormal since being unable to start the engine
after having clogged the tail pipe is, after all, what one would normally expect. The reader might
notice the similarities to the Yale Shooting problem: A gun that becomes magically unloaded
while waiting deserves being called abnormal, whereas causality explains the death of the turkey
if being shot at with a loaded gun.?

The only existing alternative to global minimization of abnormalities as an approach to the
qualification problem is based on chronological ignorance [Shoham, 1987; Shoham, 1988]. The
basic idea there is to assume away by default abnormal, disqualifying circumstances, and si-
multaneously to prefer minimization of abnormalities at earlier timepoints. While this method
treats our example scenario correctly, it is inherently incapable of handling non-deterministic
actions, or non-deterministic information in general, as has already been argued elsewhere. A
detailed account of this approach is given in the concluding discussion, Section 5.

Given the inadequacy of global minimization and the limited expressiveness of chronological
ignorance, we propose a formal account of the qualification problem which incorporates a suitable
concept of causality. We accomplish this by assuming, by default, the world starts normal, as

? The Yale Shooting problem goes as follows (cf. [Hanks and McDermott, 1987]): Suppose we call abnormal
any change of a proposition’s truth value during the execution of an action (as suggested in [McCarthy,
1986]). Given that shooting at a turkey with a loaded gun causes the former to drop dead, we would expect
exactly this to happen when we start with the gun loaded, wait for a short period, and then shoot. Yet
globally minimizing abnormalities in this example produces a second model where the gun becomes unloaded
during the first action, waiting, and the turkey survives. While this magical change of the gun’s status is
abnormal, the turkey surviving the shot is normal in the above sense (as opposed to the change of its life
status in the intended model)—hence, this second model minimizes abnormality as well, though it is obviously
counter-intuitive.



opposed to assuming the world is normal at every instant. More specifically, it is assumed, as
far as possible, that each action be qualified initially.” Formally, the proposition that an action
is abnormally disqualified is taken as a fluent, i.e., a proposition that may change its truth value
in the course of time. By virtue of being fluent, this proposition may be indirectly affected by
the execution of an action and otherwise is subject to the general law of persistence. This helps
to distinguish action disqualifications which are (indirectly) caused by actions that have been
observed. In particular, it solves our key problem: We can safely assume that both actions, viz.
putting a potato into the tail pipe as well as starting the engine, are qualified at the beginning.
Yet, the successful execution of the former affects this assumption regarding the latter—starting
the engine becomes unqualified. Notice that this involves no abnormality at all. In contrast,
the model in which the put-potato action is disqualified in the first place requires to assume an
abnormal disqualification from the start, which is why the counter-intuitive model now vanishes
when minimizing abnormalities.

Our approach requires to accommodate indirect effects of actions, which is commonly re-
ferred to as the ramification problem [Ginsberg and Smith, 1988a). Not being part of the
respective action specification, indirect effects are consequences of general laws describing de-
pendencies among components of the world description. In particular, we will employ so-called
domain constraints relating fluents of the form disq(a) —stating that action @ is abnormally
disqualified—with known unlikely impediments of performing « , such as in

disq(start) = tail-pipe-clogged V tank-empty V low-battery V engine-problem (1)

E.g., whenever some action (as a direct or indirect effect) causes fluent tail-pipe-clogged to
become true, then this indirectly causes disq(start) to become true as well. For an appropriate
treatment of indirect effects we will adopt the approach to the ramification problem proposed
in [Thielscher, 1997], which incorporates a suitable notion of causality.

Aside from providing means to assume away abnormal disqualifications by default while prop-
erly taking into account possible causes for these disqualifications, the successful treatment of
the qualification problem should include the proliferation of possible explanations in case an
action has been—unexpectedly—observed unqualified. For example, suppose that, to our own
surprise, we encounter difficulties with starting the engine, then we naturally seek a suitable ex-
planation for this among the conceivable alternatives. Suppose further we have already cleaned
the tail pipe, checked the tank, and have successfully switched on the radio (confirming the good
status of the battery), then it is reasonable, on the basis of (1), to assume a problem with the
engine as the cause for the surprising disqualification.

It may of course happen, though, that we are still unable to perform an action even if we have
explicitly excluded, to the best of our knowledge, any imaginable preventing cause. However
surprising this might be, it just shows us that we have only partial knowledge of the world,
that is, the collection of conceivable explanations (like in (1)) turns out to be incomplete. We
call miraculous a disqualification which is inexplicable in this sense. Thus, a disqualification is
to be considered miraculous whenever it cannot be explained even if abnormal circumstances
are granted. Consequently, miraculous disqualifications are to be minimized with higher pri-
ority than abnormal disqualifications which admit an explanation. Another characteristics of
miraculous disqualifications is that they may occur or vanish even if, from our perspective, the
situation has not changed. Again this is due to our lack of omniscience.

* Here “starts” refers to the initial sitnation in the scenario under consideration.
® Throughout the paper, by “(dis-)qualified” we mean “physically (im-)possible.” The refinement that actions
may be unqualified as to producing a certain effect will be discussed at the end, in Section 5.



To summarize, consider the general task of drawing reasonable conclusions given a domain
specification consisting of causal knowledge as to the effects of actions plus some specific ob-
servations made during the execution of actions.® This might include the observation that in
particular situations particular actions cannot be performed. A suitable treatment of the quali-
fication problem should then involve the following. First, it should allow to jump to the default
conclusion that an action is qualified once all of its strict preconditions have been verified and in
case there is no evidence as to an abnormal disqualification. This should of course be achieved
without getting caught in the ‘causality trap’ illustrated by our version of the Potato In Tail Pipe
scenario. Second, if, on the other hand, an action unexpectedly turns out to be disqualified, then
it should be possible to explain this, namely, by choosing among the conceivable, albeit unlikely,
impediments which are known to render impossible the action in question. Third, the formalism
should not capitulate if faced with miraculous, i.e., inexplicable, disqualifications. The formal
account of the qualification problem presented in this paper satisfies all of these requirements.

In the second part, we develop, on the basis of the fluent calculus [Holldobler and Schneeberger,
1990; Holldobler and Thielscher, 1995], an action calculus which includes a proper treatment
of abnormal disqualifications. Our encoding builds on the fluent calculus-based solution to the
ramification problem developed in [Thielscher, 1997]. Since the qualification problem requires
some sort of nonmonotonic feature, we employ default rules in the sense of [Reiter, 1980] to
formalize the initial normality assumptions as well as the assumption that miraculous disqual-
ifications do not occur. In view of the required priority of the latter, we use the concept of
Prioritized Default Logic [Brewka, 1994; Rintanen, 1995]. While nonmonotonicity is inherent in
the qualification problem, the basic fluent calculus augmented by the aforementioned solution
to the ramification problem itself is monotone. This appears to be a decisive advantage when
integrating a solution to the qualification problem, for one does not have to worry about pos-
sible unintended interferences among different forms of nonmonotonicity which are employed
to tackle different problems within a single formalism. The resulting action calculus is proved
correct wrt. our formal characterization of the qualification problem.

The paper is organized as follows. In the next section, 2, we introduce a basic action theory
including domain constraints and non-deterministic actions. In addition, we recapitulate the
aforementioned solution to the ramification problem, which is based on the notion of so-called
causal relationships and their application to account for indirect effects of actions. (Section 2.2).
As a side gain, this enables us to accommodate implicit strict preconditions of actions, which are
not part of an action specification but derive from certain domain constraints (see Section 2.3).
This is sometimes considered part of the qualification problem, e.g. in [Ginsberg and Smith,
1988b; Lin and Reiter, 1994]. In Section 3, our action theory is extended by a formal account
of the qualification problem in the way informally described above. In particular, we formalize
the notion of a model for a given domain specification and introduce a suitable preference
relation among these models, by which abnormal and miraculous disqualifications are minimized.
In Section 4, we then turn to the fluent calculus, extend it by means to successfully handle
abnormal disqualifications of actions, and prove the adequacy of this extension with regard
to the theory developed in Section 3. Finally, our results are summarized, reviewed and, in
particular, compared to related work in Section 5.

6 The term “reasonable conclusions” appeals to what common sense suggests as to how the given observations
are to be interpreted.



2 A Theory of Actions with Ramifications

We first introduce, in Section 2.1, a suitably simple action theory including non-determinism and
domain constraints. In Section 2.2, we then recall the causality-based solution to the ramification
problem proposed in [Thielscher, 1997]. The latter involves the notion of additional, implicit
strict preconditions of actions, which will be illustrated in Section 2.3.

2.1 A Basic Theory of Actions

The basic entities of action scenarios are states, each of which is a snapshot of the underlying
dynamic system, i.e., the part of the world being modeled, at a particular instant. Formally, we
describe a state by assigning truth values to a fixed set of propositional constants.”

Definition 1 Let F be a finite set of symbols called fluent names. A fluent literal is either
a fluent name f € F or its negation, denoted by f. A set of fluent literals is inconsistent iff it
contains some f € F along with f. A state is a maximal consistent set of fluent literals. =

Notice that formally any combination of truth values denotes a state, which, however, might be
considered impossible due to specific dependencies among some fluents (see below). Throughout
the paper we assume the following notational conventions: If £ is a fluent literal, then [¢| denotes
its affirmative component, that is, |f| = |f| = f where f € F. This notation extends to sets
of fluent literals S as follows: [S| = {|¢{|: £ € §}. E.g., for each state S we have |S| = F.
Furthermore, if ¢ is a negative fluent literal then ¢ should be interpreted as |¢|. In other words,
f = f. Finally, if S is a set of fluent literals then by S we denote the set {{: { € S}. E.g.,
F contains all negative fluent literals given a set F of fluent names.

The elements of an underlying set of fluent names can be considered atoms for constructing
(propositional) formulas to allow for statements about states. Truth and falsity, respectively, of
these formulas wrt. a particular state S are based on defining a literal £ to be true if and only

it £esS.

Definition 2 Let F be a set of fluent names. The set of fluent formulas is inductively defined
as follows: Each fluent literal in F U F and T (fautology) and L (contradiction) are fluent
formulas, and if ' and G are fluent formulas then so are FAG, FVG, F DG ,and F =G .8

Let S be astate and F' a fluent formula, then the notion of I being true (resp. false) in S
is inductively defined as follows:

1. T is true and L is falsein 5';

2. a fluent literal £ is truein S iff £€ 9;

3. FAG istruein § iff F and G are truein S5

4. FV G istruein S iff /7 or G is truein S (or both);

5. FD G istruein S iff F' isfalsein S or G is truein S (or both);

6. FF=G istruein S iff I and G are truein 5, orelse F' and G are false in § .

T A more expressive language, involving non-propositional fluents, will be used in the second part of the paper.
8 As negation can be expressed through negative literals, we omit the standard connective “
for the sake of readability as it avoids too many different forms of negation.

=7, This is just



Fluent formulas provide means to distinguish states that cannot occur due to specific dependen-
cies among particular fluents. Formulas which have to be satisfied in all states that are possible
in a domain are also called domain constraints.

Example 1 To model a basic version of the Potato In Tail Pipe scenario, we use the fluent
names F = {pot, clog, runs, heavy} to state whether, respectively, there is a potato in the tail
pipe, the tail pipe is clogged, the engine is running, and the potato is too heavy. The fluent
formula

pot D clog (2)

expresses the fact that the tail pipe is clogged whenever it houses a potato. Taken as do-
main constraint, this formula is true in the state {pot, clog, runs, heavy}, say, but false in
{pot, clog, runs, heavy} . [

The second basic entity in frameworks to reason about dynamic environments are actions,
whose execution causes state transitions. Since stress shall lie on the qualification problem rather
than on sophisticated methods of specifying the direct effects of actions, we employ a suitably
simple, STRIPs-style [Fikes and Nilsson, 1971; Lifschitz, 1986] notion of action specification.
Each action law consists of

o A condition C', which is a set of fluent literals all of which must be contained in the state
at hand in order to apply the action law.

e A (direct) effect E , which is a set of fluent literals, too, all of which hold in the resulting
state after having applied the action law.

It is assumed that |C| = |E|, that is, condition and effect refer to the very same set of fluent
names. This is just for the sake of simplicity, for it enables us to obtain the state resulting from
the direct effect by simply removing set C' from the state at hand and adding set £ to it.
This assumption does not impose a restriction of expressiveness since we allow several laws for
a single action, and since any (unrestricted) action law can be replaced by an equivalent set of
action laws which obey the assumption.

Definition 3 Let F be a set of fluent names, and let A be a finite set of symbols, called
action names, such that FN A = {}. An action law is a triple (C,a, E) where C', called

condition, and F , called effect, are consistent sets of fluent literals such that |C| = |E|; and
a€cA.

If S is astate, then an action law a = (C, a, F) is applicable in S iff C' C S . The application
of a to § yields the state (S\C)UE. ]

Obviously, S being a state, C' and F being consistent, and |C| = |F| guarantee (S\C)UFE to
be a state again—mnot necessarily, however, one which satisfies the underlying domain constraints.

Example 1 (continued) We define the action names start (starting the engine) and put-p
(putting a potato into the tail pipe), which are accompanied by these action laws:

({runs}, start, {runs} )
< {WL pUt'p7 {pOt} >

(3)



In words, starting the engine is possible if it is not running and causes it to do so; similarly, a
potato may be added to the tail pipe. The second law, for instance, is applicable in the state
S = {pot, clog, runs, heavy} since {pot} C S . Its application yields

(S\ {pot}) U {pot} = {pot,clog, runs, heavy}

Notice that while the produced set of fluent literals constitutes a state in the sense of Definition 1,
it does not satisfy our underlying domain constraint, pot D clog . |

Our example illustrates that a state obtained through the application of an action law may
violate the underlying domain constraints since only direct effects have been specified: Putting
a potato into the tail pipe has the indirect effect that the latter becomes clogged. The problem
of accommodating additional, indirect effects is commonly referred to as the ramification prob-
lem [Ginsberg and Smith, 1988a). In the following section, we recall a solution to this problem
which is based on so-called causal relationships and their posterior application to the result of
the application of an action law.

Prior to this, observe that according to Definition 3 it is possible to construct a set of action
laws which, given a state, contains more than one applicable law for a single action name. This
can be used to formalize actions with non-deterministic effects.

Example 2 Suppose we park our car in a neighborhood that is known for its suffering from
a tail pipe marauder.” We therefore must expect that after waiting for a certain amount of
time, a potato may have randomly been introduced into our car’s tail pipe. This is formally
captured by giving a non-deterministic specification of an action with the name wait. Let
F = {pot, clog, runs} and A = {wait, start} . Performing a wait action either has no effect at
all, or else it causes pot become true provided there is not already a potato in the tail pipe.
Accordingly, we employ the following two action laws:

({},wait,{}) and ({pot}, wait,{pot}) (4)

Both of them are applicable, for instance, in the state {pot,clog, runs}, which suggests two
possible outcomes, viz. {pot, clog, runs} and {pot, clog, runs} . [

2.2 The Ramification Problem

The ramification problem arises as soon as it does not suffice to compute the direct effects
of actions only, for the resulting collection of fluent literals may violate underlying domain
constraints, which in turn give rise to additional, indirect effects. In [Thielscher, 1997], it has
been proposed to regard the resulting collection of fluent literals, obtained after having applied
an action law as described in Definition 3, merely as an intermediate state, which requires
additional computation accounting for possible indirect effects.!'® More specifically, a single
indirect effect is obtained according to a directed causal relation between two particular fluents.

Definition 4 lLet F be a set of fluent names. A causal relationship is an expression of the
form e causes ¢ if ® where ® is a fluent formula and ¢ and p are fluent literals. |

? This example has been suggested by Erik Sandewall (personal communication).

10 Related approaches to the ramification problem have been developed in, e.g., [Elkan, 1992; Geffner, 1992;
Brewka and Hertzberg, 1993; Lin, 1995; McCain and Turner, 1995]. See [Thielscher, 1997] for a detailed
comparison.



The intended reading is the following: Under condition & , the (previously obtained, direct or in-
direct) effect ¢ triggers the indirect effect o . E.g., the causal relationship pot causes clog if T
will be used below to state that the effect pot always gives rise to the additional effect clog .

Causal relationships operate on pairs (9, ), where S denotes the current state and £ con-
tains all direct and indirect effects computed so far. The reason for employing and manipulating
the second component, F,is that identical intermediate states S can be reached by different
effects I, each of which may require a different, sometimes opposite treatment (see [Thielscher,
1997] for details).

Definition 5 Let (5, F) be a pair consisting of a state S and a set of fluent literals E', then
a causal relationship ¢ causes p if ® is applicable to (S, E) iff ®Ap istruein S and € € F.
Its application yields the pair (57, ') where S = (5\ {2})U{e} and F' = (F\{o})U{e}.

Let R be a set of causal relationships, then by (9, E) ~x (5, E') we denote the existence
of an element in R whose application to (5, F) yields (S5, E’). [

In words, a causal relationship is applicable if the associated condition ® holds, the particular
indirect effect p is currently false, and its cause ¢ is among the current effects. Notice that
if S is a state and £ is consistent, then (5, E) ~x (S5, E’) implies that S is a state and
E’ is consistent, too. In what follows, we say that a sequence of causal relationships r1,...,7,
is applicable to a pair (So, Fo) iff there exist pairs (51, F1),...,(S,, E,) such that for each
1<i<mn, r; is applicable to (5;_1, £;—1) and yields (5;, £;). We adopt a standard notation
in writing (9, E) 5w (87, E') to indicate the existence of a (possibly empty) sequence of causal
relationships in R which is applicable to (5, F) and yields (5, E’).

Example 1 (continued) The following two causal relationships state, respectively, that the
effect pot always gives rise to the indirect effect clog, and that the effect clog (as a result of
clearing the tail pipe, say) always gives rise to the indirect effect pot :

pot causes clog if T

(5)

clog causes pot if T

Recall the state S = {pot, clog, runs, heavy} and action put-p. The application of the cor-
responding action law in (3) yields the state S5,., = {pot, clog, runs, heavy} along with the
effect £ = {pot}. Given the pair (S,ew, ), the first causal relationship in (5) is applica-
ble on account of both T A clog being true in S,., and pot € E. The application yields

((Snew \ {clog}) U {clog}, (E\ {clog}) U {clog}) , i.e.,

({pot, clog, runs, heavy} , {pot, clog} ) (6)

Now, suppose given a suitable underlying set of causal relationships and a set of fluent liter-
als 5 as the result of having computed the direct effects of an action via Definition 3. State S
may violate the domain constraints. We then compute additional, indirect effects by (non-
deterministically) selecting and (serially) applying causal relationships. If this eventually results
in a state satisfying the domain constraints, then this state is considered a successor state.

Definition 6 Let F and A be sets of fluent and action names, respectively, £ a set of action
laws, D a set of domain constraints, and R a set of causal relationships. Furthermore, let S
be a state satisfying D and a € A. A state S’ is a successor state of S and a iff there exists
an applicable (wrt. §') action law (C,a, E) € £ such that



L. (S\C)UE,E) g (S, E') for some E’, and
2. 5 satisfies D.
n

E.g., recall the state-effect pair (6). By virtue of being consistent wrt. our domain constraint,
pot D clog, its first component constitutes a successor state of {pot, clog, runs, heavy} and
put-p . The analogue holds for Example 2: There are two successor states of {pot, clog, runs}
and wait , viz. {pot, clog, runs} and {pot, clog, runs} .

Based on the above definition, a set of causal laws along with a set of domain constraints and
a set of causal relationships determine a causal model ¥ which maps any pair of an action name
and a state to a set of states as follows: ¥(a,5):={5": 5’ successor of S and a} .

While the order in which causal relationships are applied might be crucial insofar as a different
ordering may allow for a different set of causal relationships be applied, we have order indepen-
dence in case a unique set of relationships is used to obtain a successor state (see [Thielscher,
1997] for details). Yet it is important to realize that neither uniqueness nor the existence of a
successor state is guaranteed in general; that is, ¥(a,5) may contain several elements or may
be empty. The former characterizes actions with non-deterministic behavior even though these
actions might be deterministic as regards their direct effects. If no successor exists although an
applicable action law can be found, then this indicates that the action under consideration has
implicit preconditions which are not met. The latter is the subject of the following section, in
which we also raise the crucial issue of how to obtain an adequate set of causal relationships on

the basis of given domain constraints.

2.3 Implicit Qualifications

Obtaining the intended result by applying causal relationships in order to compute indirect
effects of actions relies, to state the obvious, on a suitable collection of these relationships. The
two elements in (5), for instance, serve this purpose for our Potato In Tail Pipe domain. While
clearly there is a close correspondence between these causal relationships and the underlying
domain constraint, not every causal relationship suggested from a pure syntactical point of
view by a domain constraint is desirable.!! In [Thielscher, 1997], we have argued that since
the mere domain constraints do not provide sufficient information to exclude unintended causal
relationships, additional domain knowledge is required as to possible causal influences between
fluents. Called influence information, this knowledge is formalized by a binary relation 7 on
the underlying set of fluent names. Whenever (fi, f2) € 7, then this is intended to denote that
a change of fi’s truth value might possibly influence the truth value of f;. On this basis, an
adequate set of causal relationships can be automatically extracted from a given set of domain
constraints as follows:

Definition 7 Let F be a set of fluent names, D a set of domain constraints, and 7 C F x F
some influence information. These determine a set of causal relationships R according to this
procedure:

1. Let R :={}.

1 The classical example illustrating this is a domain constraint relating the positions of two switches and the
state of a light bulb in an electric circuit. Although being syntactically suggested, toggling one of the two
switches must not cause the other one to jump its position in order to preserve the status of the light bulb;
see [Lifschitz, 1990].



2. Let DyA...AD, (n > 0) be the conjunctive normal form (CNF) of AD. For each
Di=6LV... VL, (i=1,...,n) do the following:

3. Foreach j=1,...,m; do the following:

4. For each k = 1,...,m;, k # j such that (|{;],|¢x]) € Z, add this causal relationship
to R:
(; causes (; if N (7)

The reader may verify that given Z = {(pot, clog), (clog, pot)} , the application of this procedure
to the domain constraint pot O clog results in the two causal relationships (5).

The following extension of Example 1 shows how domain constraints in conjunction with
suitable influence information sometimes give rise to implicit strict preconditions rather than
indirect effects.

Example 3 The set of fluent names employed in Example 1 is augmented by key, which
is intended to be true if a key is in the ignition lock. Then the additional domain constraint
runs D key expresses the fact that the engine running requires a key. While a change of the
truth value of key may also influence the truth value of runs (namely, removing the key causes
the engine to stop), a change of runs cannot possibly influence key (that is, the key cannot
magically appear nor disappear by changing the status of the engine). We thus employ the
influence information 7 = {(key,runs)}. The application of Definition 7 then yields causal
relationships as follows:

o The CNF of runs D key is runsV key .

e Incase j =1,k =2 we have (runs, key) ¢ T ; therefore, no causal relationship is gener-
ated.

e Incase j =2,k =1 we have (key, runs) € Z ; therefore, the following causal relationship
is generated:
key causes runs if T (8)

Now, consider the state {pot, clog, runs, heavy, key} and action start. Following Definition 3,
the first law in (3) is applicable and produces the state S’ = {pot, clog, runs, heavy, key} along
with the effect F = {runs}. Clearly, S’ violates the domain constraint runs D key, which
is why the former does not constitute a successor state. Moreover, the only causal relationship
obtained above, (8), is not applicable to (57, '), nor are the ones listed in (5). Hence, according
to Definition 6 there is no successor state of executing start in the state above. |

An analysis of this situation reveals key to be an additional, implicit qualification for starting
the engine: Whenever key is false, the domain constraint runs D key prevents a state obtained
by the application of start from being consistent—and no causal relationship exists that may
‘correct’ this. In general, the non-existence of a successor state despite an applicable action law
can be found, hints at additional, implicit preconditions for the action at hand. Notice, however,
that these preconditions still are strict and as such not part of the qualification problem dealing
with the necessity of assuming away abnormal qualifications.
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3 Abnormal Disqualifications

We now take the action theory introduced in the preceding section as the basis for our formal
account of the qualification problem. As indicated in the introduction, the general objective is to
appropriately interpret a given formal scenario description and to draw reasonable conclusions
about it. Any such description involves general action laws in conjunction with causal rela-
tionships, plus specific observations as to both the values of certain fluents and, especially, the
non-executability of certain actions in particular situations. The term “reasonable conclusions”
appeals to what common sense suggests as to how the given observations are to be interpreted.

Definition 8 Let F and A be sets of fluent and action names, respectively. An observation
is an expression of one of the following forms:

P after [aq,...,a,] (9)
a disqualified after [ai,...,a,] (10)
where F' is a fluent formula and «,aq,...,a, are action names (n > 0). ]
Intuitively, observation (9) indicates that if the sequence of actions [aq,...,a,] were performed
in the initial state, then F would hold in the resulting state. Likewise, (10) indicates that after
performing the sequence of actions [aq,...,a,]|, action @ would be unqualified. For instance,

given the fluent and action names underlying Example 1, these are possible observations:

pot A runs after []

start disqualified after [put-p]

Definition 9 A domain description (or domain, for short) consists of sets F and A of
fluent and action names; sets £, D, and R of action laws, domain constraints, and causal
relationships, respectively; and a set (O of observations. ]

In the remainder of this section, we develop formal notions of interpretations and models for
domain descriptions, and we introduce a suitable preference relation among models in view of
assuming away, by default, abnormal disqualifications. This model preference criterion induces
a (nonmonotonic) entailment relation. Together these concepts constitute our proposal as how
to formalize the qualification problem.

3.1 Persistence of Action Qualifications

The unintended model which occurs in the Put Potato In Tail Pipe example when globally
minimizing abnormal disqualifications illustrates the necessity of distinguishing disqualifications
that admit a causal explanation. We have already argued that this can be accomplished by
considering the fact that an action is or is not abnormally disqualified as potentially being
affected by the execution of other actions and otherwise being subject to the general law of
persistence. In other words, the proposition that an action is or is not abnormally disqualified
is taken as a fluent. According to the general assumption that the world is ‘normal’ unless
there is information to the contrary, this fluent is assumed initially false by default. Restricting
the assumption of normality to the initial state enables us to consider it normal, as intended,
when an action occurs whose effects suggest an action disqualification which, under general
circumstances, would be abnormal.
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Let, for each action name a, disq(a) be a fluent name.'? The intended meaning is that if
disq(a) holds in some state, then action a is not disqualified for some abnormal reason—which
shall imply that a be qualified if and only if all strict preconditions are satisfied.!®> Recall, for
instance, Example 3. Whenever disq(start) € S holds in some state S, then the action start
shall be qualified iff runs, key € S, for these two fluent literals are the explicit and implicit
strict preconditions of starting the engine.

Abnormal disqualifications indicate abnormal circumstances. These may be described by
fluents which, too, are to be assumed false by default. Example fluents of this kind might be
clog and pot , as one normally assumes that the tail pipe is not clogged, let alone the possibility
of its housing a potato. Fluents describing abnormal circumstances can be combined in domain
constraints to describe the conditions for a particular action being abnormally disqualified. In
particular, it is often desirable to equate a fluent disq(a) with the disjunction consisting of all
(to the best of the agent’s knowledge) the causes for an abnormal disqualification of a, like
in (1). This does not only allow to derive an action disqualification from the occurrence of one
of its causes, it also supports the proliferation of explanations for abnormal disqualifications
that have been observed (see Section 3.2.2, below).

To make all this precise, let F and A be sets of fluent and action names, respectively, of a
domain description. From now on we always assume determined a certain subset F,, C F of
fluents that will be considered initially false by default. It is assumed that disq(a) € F,; for
each action a € A. A typical domain constraint involving these special fluents is of the form

disg(a) = \/ fi (11)

1€l

for some index set I, such that each f; € F,,. That is, each of the ‘abnormality’ fluents f; is
a potential cause of an abnormal disqualification of action @ .'* These domain constraints may
give rise to indirect effects, namely, a change of the truth value of an element in the disjunction
may also affect the truth value of disg(a). These indirect effects are formally obtained according
to a suitable set of causal relationships. Suppose given that as for the influence information we
have (f;, disq(a)) € T for each ¢ € I, . According to Definition 7, then, a domain constraint of
the form (11) determines the following causal relationships:

o The CNF of (11) is [disq(a)V V,eq, fil A Nier,[disq(a) V fi] .

e The first conjunct determines the causal relationship

fi causes disq(a) if /\ fi (12)
J€L\{s}

for each 7€ 1, .

e Bach conjunct disq(a)V f;, i € I, , determines the causal relationship

fi causes disq(a) if T (13)

12 T order to fit our definition of a fluent, each instance disq(a) should be considered a (unique) symbol.

13 For the moment we neglect the possibility of miraculous disqualifications, which will be discussed later, in
Section 3.3.

'* Instead of explicitly providing the “only-if” part in (11), i.e., disq(a) D Viela fi, this could be implicitly
obtained through circumscribing [McCarthy, 1980] the predicate disq in a given set of domain constraints;
c.f. [Lifschitz, 1987], where this idea is applied to strict preconditions of actions.
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In words, if a disqualifying cause disappears and none of the alternative causes holds then disq(a)
becomes false, (12), whereas disg(a) becomes true through the appearance of any disqualifying
cause, (13).

Example 1 (continued) Let the set F,; consist of the fluents pot, clog, heavy, along with
disq(start) and disq(put-p). Suppose further that the set of domain constraints includes

disq(start) = clog (14)

disq(put-p) heavy

aside from pot D clog. Given (clog, disq(start)),(heavy, disq(put-p)) € T, the additional do-
main constraints determine these four causal relationships:

clog causes disq(start) if T heavy causes disq(put-p) if T (15)

clog causes disq(start) if T heavy causes disq(put-p) if T

in conjunction with the ones shown in (5). Suppose, now, we perform action put-p in the

state S = {pot, clog, runs, heavy, disq(start), disq(put-p)} . The application of the corresponding
action law in (3) yields the state-effect pair

({pot, clog, runs, heavy, disq(start), disq(put-p)} , {pot})

The first component does not satisfy pot O clog, but we can apply the first causal relationship
in (5), viz. pot causes clog if T , yielding

({pot, clog, runs, heavy, disq(start), disq(put-p)} , {pot, clog} )

While now the aforementioned domain constraint is satisfied, the first fluent formula in (14) is
no longer so, which is why we further apply the appropriate causal relationship in (15), namely,
clog causes disq(start) if T , which results in the pair

({pot, clog, runs, heavy, disq(start), disq(put-p)} , {pot, clog, disq(start)} ) (16)

Its first component satisfies all domain constraints and, thus, constitutes a successor state.
Notice that action start is declared abnormally disqualified in the resulting state. This disqual-
ification occurs as an indirect effect of having performed put-p. On the other hand, executing
this action did not affect the fluent disq(put-p), which thus remains false according to the law
of persistence. |

3.2 Assuming Qualification by Default

The intention of distinguishing a set of ‘abnormality’ fluents F,; is to prefer among all suitable
interpretations of domain descriptions those in which they are initially false. This would enable
us to assume away abnormal circumstances whenever that is reasonable. Prior to discussing
preference, however, we need to formalize the notions of interpretation and model in general.
Clearly, they both ought to respect the causal model ¥ underlying the domain in question. Each
interpretation (and model) contains a partial function Res which maps finite action sequences
to states with the intended meaning that Res([aq,...,a,]) would be the result of executing
the action sequence [aq,...,a,]| in the initial state (which itself is determined by Res([])). If
Res([aq,...,a,]) is undefined, then this indicates that some action a; in this sequence is un-
qualified in the corresponding state Res([a1,...,a;—1]). All this is made precise in the following
definition:
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Definition 10 Let ¥ be the causal model determined by a domain description with fluent
and action names F and A, respectively, and domain constraints D . A pair (Res,X) is an
interpretation for this domain iff Res is a partial mapping from finite sequences of action names
to states such that the following holds:

1. Res([]) is defined and satisfies D .

2. For any finite sequence [ay,...,a,_1,a,] of action names (n > 0), Res([a1,...,an_1,05])

is defined iff
(a) Res([a1,...,a,—1]) is defined;
(b) disq(ay) holds in Res([a1,...,a,-1]); and
(¢) X(an, Res([ar,...,an-1])) # {}
If it is defined, then Res([a1,...,an_1,0a,]) € X(ay, Res([a1,...,an-1])).
[

If Res([ai,...,a,]) is defined, we also say that the action sequence [a1,...,a,] is qualified.
Then Definition 10 states that [ai,...,a,-1,a,] is qualified if so is [a1,...,a,—1], if all (ex-
plicit or implicit) preconditions of @, are met—which implies the existence of a successor
state of a, and Res([a1,...,a,-1]) —, and if the state Res([a1,...,a,—1]) does not imply
an abnormal disqualification of a, —which is indicated by fluent disq(a,) being false in this
state. If [a1,...,@,-1,a,] is qualified, then Res([a1,...,@a,—1,a,]) must be a successor state of
Res([a,...,a,-1]) and a, . Notice that all function values of Res which are defined necessarily
satisfy the underlying domain constraints since Res([]) does, as required in clause 1.

Based on the given a set of observations, an interpretation for a domain is considered a model
iff all the observations hold in that interpretation.

Definition 11 Let ¥ be the causal model of a domain description with fluent and action
names F and A, respectively, and observations (. An interpretation (Res,Y) is a model
of O iff each observation in O holds in (Res,Y), where

1. F after [a1,...,a,] is said to hold in (Res,¥) iff Res([a1,...,a,]) is defined and F' is
true in Res([ay,...,a,]);

2. a disqualified after [a1,...,a,] is said to hold in (Res,X) iff Res([ai,...,a,]) is
defined but Res([ay,...,a,,a]) is not.

In words, an observation of type (9) holds if the respective action sequence is qualified and
the assigned state satisfies the given formula. An observation of type (10) holds if again the
respective action sequence is qualified while in the resulting state the additional action, a,
cannot be performed—either because an abnormal disqualification occurs (c.f. Definition 10,
clause 2(b)) or some strict precondition is not satisfied (c.f. Definition 10, clause 2(c)).

Example 1 (continued) Let ¥ be the causal model determined by the action laws (3), the
domain constraints (2) and (14), and the causal relationships (5) and (15). Suppose given the
observation

runs after [] (17)
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and consider, say, these four initial states:'®

Resi([]) = {pot, clog, runs, heavy, disq(start), disq(put-p)}
Resy([]) = {pot, clog, runs, heavy, disq(start), disq(put-p)} (18)
Res3([]) = {pot, clog, runs, heavy, disq(start), dzsq(put-p)}
Resq([]) = {pot, clog, runs, heavy, disq(start), disq( put-p)}

While (Resy,X) is not an interpretation since Resq([]) violates the second domain constraint
in (14), and (Resz,Y) is not a model since it violates the given observation (17), both (Ress, ¥)
and (Resy,Y) are models. Notice, however, that no ‘abnormality’ fluent is true in Ress([]),
as opposed to Ress([]). Since disq(start) € X(put-p, Ress([])) (c.f. (16)), the model (Ress,X)
entails that the engine cannot be ignited after putting a potato into the tail pipe. In contrast,
the model (Ress,Y) is the formal counterpart of the counter-intuitive conclusion where the
action put-p is assumed to be abnormally disqualified in the first place. |

While an interpretation must satisfy the given observations in order to constitute a model,
this criterion alone does not suffice to assume away abnormal disqualifications. Obviously,
the addition of observations can only decrease the set of models, never produce new ones.
Consequently, if one defines an entailment relation stating that an observation is entailed by a
set of observations if the former holds in all models of the latter, then this relation is monotone.'®
In view of the qualification problem, however, this kind of monotonicity needs to be dropped
because additional observations, such as detecting a potato in the tail pipe, may force us to
withdraw previous (default) conclusions, like the conclusion that we are able to start the engine.
This is formally achieved by introducing a preference relation among the set of models, with the
intention to select those which initially minimize truth of fluents in F,; to the largest possible
extent. When talking about entailment, attention is then restricted to models which are preferred
in this sense. The following definition constitutes the core of our formal characterization of the
qualification problem:

Definition 12 Let F D F,;, be the set of fluent names and @ the set of observations of a
domain description with causal model . An interpretation M' = (Res',Y) is less abnormal

than an interpretation M = (Res,X), written M’ < M ,iff Res'([]) N Fup & Res([]) N Fup .
A model M of O is preferred iff there is no model M'" of O such that M’ < M. An
observation o is entailed, written O vy o, iff o holds in each preferred model of O . ]

In words, the less fluents in F,; occur affirmatively in the initial state in a model the better.
Obviously, the induced entailment relation, vy , is nonmonotonic as the addition of obser-
vations may change the set of preferred models entirely. In the sequel, we illustrate how this
formal account of the qualification problem satisfies all the requirements which we demanded in
the introduction.

3.2.1 How to assume away abnormal disqualifications

The fundamental issue of the qualification problem is to assume away abnormal disqualifications
by default. This, however, should only concern those disqualifications which do not admit a

!> Notice that if all actions in a domain are deterministic (that is, each X(a,S) is singleton or empty), then
an interpretation is uniquely characterized by its initial state, Res([]). We assume that the following four
functions Resy are defined accordingly, i.e., wrt. the underlying causal model in the example.

16 This phenomenon is called restricted monotonicity in [Lifschitz, 1993]; see also Section 5.
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causal explanation. Our key example, in particular, is now treated in the expected way. Namely,
any potential abnormal disqualification preventing us from putting a potato into the tail pipe is
assumed away, for there is no evidence to the contrary. Likewise, any abnormal disqualification
preventing us from starting the engine is assumed away as regards the initial state, whereas
an abnormal disqualification of this very action after the insertion of a potato follows from the
causal model without the necessity of granting abnormal circumstances.

Example 1 (continued) Recall from (18) the two models Mz = (Ress,X) and My =
(Resys, X)) of the observation (17). Following Definition 12, we have M3 < M4 due to Ress([])N
Fapr = {} and Ress([]) N Fup = {heavy, disq(put-p)} . Since each ‘abnormality’ fluent is false in
the initial state in M3, the latter obviously constitutes the unique preferred model. Whatever
holds in M3 is thus entailed by the domain. In particular, from pot, disq(put-p) € Ress([])
and from runs, disq(start) € Ress([]), we conclude that both [put-p] and [start] are qualified,
according to the underlying causal model ¥ . But, as we have seen in (16), we also know that
disq(start) € Ress([put-p]). This implies that [put-p, start] is not qualified in Mj, which in
turn sanctions the entailment of

start disqualified after [put-p]

This constitutes the intended solution to our key example: The first action, put-p , is qualified
by default and, as a consequence, action start is unqualified afterwards. |

3.2.2 How to explain observed abnormal disqualifications

Aside from assuming away abnormal disqualifications by default, one naturally seeks conceivable
explanations in case a disqualifications has been—unexpectedly—observed without an apparent
cause. FEach preferred model that contains an abnormal disqualification also includes, provided
the underlying domain constraints support this, a particular explanation. For otherwise the
domain constraints would be violated in the state in which the disqualification occurs. The set
of conceivable explanations thus is determined by the set of preferred models, as the following
example illustrates.

Example 4 We extend the set of fluent names given in Example 1 by tank-empty, low-battery,
and engine-problem, each of which shall belong to the subset F,;. These fluent names are
combined in this domain constraint:

disq(start) = clog V tank-empty V low-battery V engine-problem (19)

which shall replace the first formula in (14). Now suppose we are in a state where the engine is
not running and where we also know that the tail pipe is not clogged nor is the tank empty, but
nonetheless we encounter difficulties with starting the engine. The corresponding observations,
i.e.,

runs after []

clog A tank-empty after []
start disqualified after []

admit two preferred models (Res, ), each of which satisfies disq(start) € Res([]) since [start]
is unqualified according to the third observation although the only strict precondition of start,
viz. runs, is initially true according to the first observation. Given disq(start) € Res([]), the
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above domain constraint, (19), requires an additional ‘abnormality’ fluent be initially true in
any model. The second observation excludes both clog and tank-empty . Hence, each preferred
model satisfies either low-battery € Res([]) or engine-problem € Res([]). This in turn sanctions
the entailment of the observation

low-battery V engine-problem after [] (20)

In other words, both problems with the battery and problems with the engine itself are the
conceivable explanations of the observed abnormal disqualification of start. |

3.2.3 How to assume away unnecessary abnormal explanations

Unless an abnormal disqualification follows from the standpoint of causality, as in Example 1,
conceivable explanations themselves describe some unusual circumstances, such as the two ex-
planations found in (20). As such, we expect these explanations, too, be assumed away to the
largest possible extent. That is to say, if an observed abnormal disqualification can be explained
by some abnormal circumstances which have to be assumed anyway, then it is reasonable to
consider this the appropriate explanation and to exclude other unlikely causes. Our model
preference criterion affords this, which is illustrated with the following example.

Example 5 Let us extend further the previous Example 4 by radio-on, radio-problem € F
and the action name turn-on-radio along with the action law

({radio-on}, turn-on-radio, {radio-on} )
and the domain constraint
disq(turn-on-radio) = low-battery V radio-problem (21)

Suppose again the engine is not running and further that the radio is silent but we know it is
intact. Nonetheless we encounter that we are not able to start the engine nor to turn on the
radio. Given the formal observations

runs A radio-problem after []
start disqualified after []

turn-on-radio disqualified after []

each model must include both disq(start) and disq(turn-on-radio) since the respective strict
preconditions are satisfied and yet both [start] and [turn-on-radio] are not qualified. From (21)
and the first observation it then follows that each model satisfies low-battery € Res([]). Ac-
cording to domain constraint (19), low-battery also accounts for the observed abnormal dis-
qualification of start . Hence, the domain admits a single preferred model, which entails, among
others,

clog after []

That is to say, since the failure of trying to turn on the radio suggests a battery problem,
which also explains the failure of trying to start the engine, we arrive at the reasonable (default)
conclusion that the tail pipe is not clogged. |

17



3.2.4 How to deal with non-deterministic information

The failure of the chronological ignorance approach to the qualification problem [Shoham, 1987;
Shoham, 1988] in case of non-deterministic actions demonstrates a crucial difficulty with com-
bining both abnormal disqualifications and non-determinism. As will be shown in more detail
later, in Section 5, the problem occurs whenever non-deterministic information provides suffi-
cient evidence for an abnormal disqualification without, by virtue of being non-deterministic,
necessitating it. Any formalism by which abnormal circumstances are negated whenever they do
not provably hold, ignores uncertain evidence and, in so doing, supports unsound conclusions.
As the following example illustrates, our formal characterization of the qualification problem
does not interfere with non-deterministic information and treats the latter in the appropriate,
namely, the cautious way.

Example 2 (continued) Suppose given the observation
runs after []

Then the set of preferred models for the Tail Pipe Marauder domain divides into two classes.
Since it is consistent with the observation to consider initially false all members of Fg;, any
preferred model (Res,Y) must satisfy

Res([]) = {pot, clog, runs, disq(wait), disq(start)}

The action wait being non-deterministic (c.f. (4)), we know that Res([wait]) = Res([]) or
Res([wait]) = {pot, clog, runs, disq(wait), disq(start)} holds in preferred models. Therefore,
nothing definite follows about the status of the tail pipe, hence of the qualification of start,
after performing [wait]. Consequently, the observation runs after [wait, start], say, is not
entailed, as intended. |

3.3 Miraculous Disqualifications

Thus far our theory supports generating explanations for surprising disqualifications by select-
ing among the conceivable reasons for this abnormality. Yet whenever the domain description
renders invalid each of these explanations, then this goes beyond the capacity of the theory.
Suppose given, as an example, the two observations

start disqualified after [] (22)
runs after [wait, start]

where wait is assumed to have no effects at all on the underlying fluents. No however (a priori)
‘unlikely’ model exists which simultaneously satisfies both of the observations. The reason is
that any abnormality explaining the first disqualification necessarily transfers to the state after
waiting, which contradicts the following success of performing start . Nonetheless, such situa-
tions, where the available explanations are insufficient to account for surprising disqualifications,
are well conceivable and just prove our lack of omniscience.

We therefore need to extend our formalism to allow for observed yet inexplicable, in the above
sense, action disqualifications. To this end, the formal notions of interpretation and model are
enhanced by a component accommodating these so-called miraculous disqualifications. As we
have seen, a miraculous disqualification may appear or disappear even though the truth values
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of the fluents suggest identical states. This is why any such disqualification is to be associated
with the sequence of actions after whose execution it occurs, rather than with the respective
state. Formally, the new component, denoted by T, consists of non-empty action sequences
indicating the following: If [ai,...,a,-1,a,] € T (n > 0), then action a, is disqualified in
the state resulting from performing [aq,...,a,] even if all strict preconditions of a, and also
disq(a,) hold in that state. The following extends Definitions 10 and 11 accordingly.

Definition 13 Let ¥ be the causal model determined by a domain description with fluent
and action names F and A, respectively, and domain constraints D . A triple (Res, X, T) is
an interpretation for this domain iff T is a set of non-empty, finite sequences of action names
and Res is a partial mapping from finite sequences of action names to states such that the
following holds:

1. Res([]) is defined and satisfies D .

2. For any finite sequence [aq,...,a,_1,a,] of action names (n > 0), Res([a1,...,an_1,0a,])

is defined iff

a) Res([ai,...,ay,—_1]) is defined;
b) disq(a,) holds in Res([ay,...,an_1]);
) X(an, Res([a1,...,a,-1])) #{}; and

(
(d) [a1,...,a¢n-1,a,) € T.
If it is defined, then Res([a1,...,an_1,0a,]) € X(an, Res([a1,...,an-1])).

(
(

C

An interpretation (Res,¥,T) for a domain with observations O is a model of O iff each
observation in O holds in (Res, ¥, T), where

1. F after [ai,...,a,] is said to hold in (Res,¥,Y) iff Res([a1,...,a,]) is defined and F
is true in Res([a1,...,a,]);

2. a disqualified after [aq,...,a,] is said to hold in (Res, ¥, Y) iff Res([a1,...,a,]) is
defined but Res([ay,...,a,,a]) is not.

The additional clause, 2(d), states that a sequence of actions can only be qualified if it is not
miraculously disqualified.

Example 6 The domain discussed in Example 1 is extended by the action name wait in
conjunction with the action law ({}, wait, {}). Furthermore, suppose given the aforementioned
observations (22). While no model (Res,X,T) with T = {} exists for this domain, as argued
above, both these observations hold in the interpretation (Res,¥,T) where

Res([]) = {pot, clog, runs, heavy, disq(start), disq(put-p)}

23
T = {[start]} (23)

This interpretation thus constitutes a model. |
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Clearly, miraculous disqualifications, too, are to be minimized to the largest possible extent.
Moreover, miraculous disqualifications are meant as means to account for abnormal disqualifi-
cations which do not admit an explanation even by granting abnormal circumstances. As such,
miraculous disqualifications need to be minimized with higher priority. As opposed to explica-
ble disqualifications, miraculous ones can well be minimized globally, that is, without worrying
about causality—would they admit a causal explanation they would not be miraculous. We thus
arrive at the following extension of our preference criterion:

Definition 14 Let F D F,;, be the set of fluent names and @ the set of observations of a
domain description with causal model ¥ . An interpretation M’ = (Res', X, Y') is less abnormal
than an interpretation M = (Res,X,T), written M’ < M , iff

1. either Y/ G T,

2.0 Y =T and Res'([])N Fop G Res([]) N Fup -

The notions of preferred model and entailment of Definition 12 modify accordingly. |

Example 6 (continued) We have seen that the domain considered above does not admit a
model without miraculous disqualifications. It follows that the model M = (Res,¥,T) which
satisfies (23) is preferred, for it declares a single action sequence miraculously disqualified and
negates each ‘abnormality’ fluent in the initial state. As a matter of fact, M is the only preferred
model since any model (Res’, ¥, T') must satisfy [start] € T’ and also Tuns € Res'([]) (the
latter is due to [wait, start] being qualified according to (22)). ]

This completes our formal characterization of the qualification problem. Let us summarize:
Each domain is supposed to contain a distinguished set of fluents F,; , each of which describes
abnormal circumstances and thus is to be assumed false by default. This assumption, however,
needs to be restricted to the initial state, so that these fluents are subject to the general law of
persistence but are also potentially (directly or indirectly) affected by the execution of actions.
Among these ‘abnormality’ fluents are propositions, denoted disq(a), which state that an ac-
tion a is abnormally disqualified. Domain constraints relating these fluents with possible causes
of an abnormal disqualification support the proliferation of explanations in case an abnormal
disqualification—surprisingly—occurs. In addition, miraculous disqualifications accommodate
situations in which a suitable explanation cannot be provided. The default assumption of ‘nor-
mality’ is formally represented by a model preference criterion (Definition 14), which induces a
nonmonotonic entailment relation among observations.

4 A Fluent Calculus Solution to the Qualification Problem

Following our proposal for a formal account of the qualification problem, the second part of the
paper is devoted to the development of an action calculus which is capable of handling abnormal
action disqualifications. Our encoding employs the representation technique underlying the flu-
ent calculus [Holldobler and Schneeberger, 1990; Holldobler and Thielscher, 1995]. We begin by
repeating the fluent calculus-based formalization of causal relationships developed in [Thielscher,
1997] (Section 4.1). In Section 4.2, this calculus is extended by a suitable encoding of observa-
tions. Finally and as a solution to the qualification problem, in Section 4.3 we embed the entire
formalism in a default theory, where default rules are used to express the various assumptions
of normality. As the main result of this second part of the paper, the action calculus is proved
correct wrt. the formal characterization of the qualification problem developed in the first part.
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4.1 Fluent Calculus and Ramification

The atomic elements of state descriptions have been restricted, for the sake of simplicity, to
propositional constants throughout the first part of the paper. For our calculus, we introduce
a richer notion of fluents. A fluent is now an n-place predicate with arguments chosen from a
given set of objects (or entities) [Sandewall, 1994; Kartha and Lifschitz, 1994]. This involves
both a generalized concept of action laws and fluent formulas including quantifications.

Definition 15 Let & be a finite set of symbols called entities. Let F denote a set of fluent
names, each of which is associated with a natural number called arity. A fluent is an expression
fler,...,e,) where f € F is of arity n and eq,...,e, € £. A fluent literal is a fluent or its
negation, denoted by f(e1,...,e,).

Let V be a denumerable set of variables. An expression f(#1,...,t,) and its negation
f(t1,...,t,) are called fluent expressions iff f € F isof arity n and ¢, € EUY (1 <i<n).
[

As before, a state is a maximal consistent set of fluent literals. For the sake of simplicity, from
now on we assume given an arbitrary but fixed set £ of entities, a set F of fluent names with
subset Fup, and a set V of variables, respectively. It is assumed, also for the sake of clarity,
that if fu € Fup C F, then any instance fip(er,...,e,) expresses abnormal circumstances,
thus is subject to minimization.

As opposed to the situation calculus [McCarthy and Hayes, 1969; Reiter, 1991], the fluent
calculus employs structured state terms, each of which consists in a collection of all fluent literals
that are true in the state being represented. To this end, fluent literals are reified [Quine,
1960], i.e., formally represented as terms. These terms are connected via a special binary
function, which is illustratively denoted by o and written in infix notation. For instance,
suppose S = {in-pipe(po), heavy(po), clog} is a state, then a term representation of S is

(in-pipe(po) o heavy(po)) o clog (24)

where the bar denoting negative fluent expressions is formally a unary function. It has first been
argued in [Holldobler and Schneeberger, 1990] that this representation technique avoids extra
axioms (e.g., frame axioms [McCarthy and Hayes, 1969; Green, 1969]) to encode the general
law of persistence: The effects of actions are modeled by manipulating terms like (24) through
removal and addition of sub-terms. Then all sub-terms which are not affected by these operations
remain in the state term, hence continue to be true.

Intuitively, the position at which a fluent literal occurs in a state term should be irrelevant.
That is, (24) and the term heavy(po) o (clog o in-pipe(po)), say, represent identical states. This
intuition is modeled by requiring the following formal properties for the connection function o:

Vi,y,2. (xoy)oz = xo(yoz) (associativity)
Y, y. Toy = you (commutativity)
V. zol = =z (unit element)

where the special constant () denotes a unit element for o. This constant represents the
empty collection of fluent literals. The above axioms constitute an equational theory, which we
abbreviate by AC1. Given the law of associativity, from now on we omit parentheses on the
level of o. Notice that the axioms AC1 formalize essential properties of the datastructure “set.”
For formal reasons, we introduce a mapping 7 from sets of fluent expressions A = {{y,...,¢,}
to the term representation 74 = ¢y 0---0/f, (including T = 0).
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In order that the inequality of two state terms follows whenever they consist in different
collections of fluent literals, an extension of the standard unique name assumption is needed,
namely, the concept of unification completeness known from logic programming (see, e.g., [Jaffar
et al., 1984; Shepherdson, 1992; Thielscher, 1996]): Let E be an equational theory, that is, a set
of universally quantified equations. Two terms s and ¢ are said to be F-equal, written s =g t,
iff s =1 isentailed by E plus the standard axioms of equality (see (25), below). A substitution
o is called an E-unifier of s and t iff s6 =g to. A set cUg(s,t) of E-unifiers of s and
t is called complete if it contains, for each F-unifier of s and ¢, a more or equally general
substitution.'” A consistent set of formulas E* is then called unification complete wrt. E iff E*
contains the following:

1. The axioms in F .

2. The standard equality axioms, viz.

=z (reflexivity)

r=y D y==zx (symmetry)
rT=yAy=2z D x=2 (transitivity) (25)
=y D fle1, ., Tiye ey @n) = f(@1,0 0 Yy o, Tp) (substitutivity I)

=y D [Plz1,...,24 ..., 20) = P(z1,...,y,...,24) (substitutivity IT)

for each n-place function symbol f and predicate P, and for each 1 < 7 < n. All
variables are universally quantified.

3. Equational formulas, i.e., formulas with “ =" as the only predicate, such that for any two

terms s and ¢t with variables Z the following holds:

(a) If s and t are not FE-unifiable, then E* |= -3z. s=t.

(b) If s and t are FE-unifiable, then for each complete set of unifiers cUg(s,t) we have

E* VT |s=t > \/ 3y o (26)
c€cUg(s,t)

where 7 denotes the variables which occur in o— but not in 7 .'®

As shown in [Hélldobler and Thielscher, 1995], a unification complete theory for our axioms AC1
can be obtained by computing, for each two terms s,t, some complete set cUaci(s,t) of ACI-
unifiers (see, e.g., [Stickel, 1981; Biittner, 1986]) and taking the corresponding equational formula
which is to the right of the entailment symbol in (26). In what follows, this theory will be called
extended unique name assumption, abbreviated FUNA. As an example, consider the terms
heavy(z)oz and in-pipe(po)oheavy(po)oclog. The singleton {{z — po,z — in-pipe(po) o clog}}
is a complete set of AC1-unifiers of these terms. According to (26), FUNA thus entails

Va,z[ heavy(z) o z = in-pipe(po) o heavy(po) o clog DO = = po A z = in-pipe(po) o clog |

17 That is, whenever so =g to then there exists some o' € cUg(s,t) such that (o' <g o) [Var (s)Uvar(t) -
Here, Var (t) denotes the set of variables occurring in term ¢, and (¢’ <g o)|v means the existence of a
substitution 6 such that (0’6 =g o) |v . The latter holds iff for each variable z € V', the two terms (zo')8
and zo are FE-equal.

18 By o= we denote the equational formula z; = ¢ A ... Az, = t, constructed from the substitution o =
{1 —t1,...,Zn—tn}.
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The following crucial properties of FUNA show how, respectively, the subset relation and
the set difference and union operations can be modeled on the term level. This will later be
exploited when manipulating state terms according to action laws and causal relationships.

Proposition 16 [Thielscher, 1997] Let A, B be two sets of fluent literals.
1. IF ACB then FUNA|=3z.7140z=171p, else FUNAREYz.T402z# 15.
2. If AC B then EUNA |= Vz[rg402z=78 = z2=Tg\B]-
3. If AN B={} then FUNA = Vz[z=Tq07TB = z = TauB]-

The fluent calculus is based on a many-sorted logic language, here consisting of five sorts,
namely, fluent literals, collections (of fluent literals), actions, sequences of actions, and entities.?
Collections are composed of fluent literals, the constant (), and our connection function o.
Variables of the sort “fluent literal” are indicated by £, variables of the sort “action” by a,
variables of the sort “sequence of actions” by «*, and variables of the sort “entity” by =z,
sometimes with subscripts. All other variables are of the sort “collection.”
implicitly assumed to be universally quantified.

The following two foundational axioms determine the constitutional properties of state terms:

Free variables are

Holds({,s) = Jz.Loz=3s (27)
State(s) = VL[ Holds({,s) = - Holds({,s)] A Vl,z.s #(oloz (28)
In words, Holds({,s) is true if £ occursin s;and s represents a state if it contains each fluent

literal or its negation but not both, and if no fluent literal occurs twice (or more) in s. This
formalization has been proved adequate in the following sense:

Proposition 17 [Thielscher, 1997] Let s be a collection of fluent literals, then
FUNA,(27),(28) = State(s) iff there exists some state S such that FUNA |= s = 15, else
FEUNA,(27),(28) |= ~State(s) .

Based on the extended notion of a fluent, fluent formulas may now quantify over entities.

Definition 18 The set of fluent formulas is inductively defined as follows: Each fluent ex-
pression and T and 1 are fluent formulas, and if F° and G are fluent formulas then so are
FANG, FVG, FOG, F=G, Jz.F,and V. F (where z € V).

A closed formula is a fluent formula without free variables, that is, where each occurring
variable is bound by some quantifier. Let S be a state and F a closed fluent formula, then the
notion of F' being true (resp. false) in S is inductively defined as follows:

1. T is true and L is falsein 5';

2. a fluent literal £ is truein S iff £€ 5 ;

3. FAG istruein S iff F and G are truein 5;

4. FV G istruein S iff I or G is truein S (or both);

5. O G istruein § iff I is false in S or G is truein S (or both);

19 Under the extended notational expressiveness, actions are composed of action names and entities, such
as put(po) ; see Definition 20 below for a precise definition.
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6. FF=G istruein S iff FF and G are truein 5, orelse I and G are false in 5';
7. Jz. F is truein S iff there exists some e € £ such that F'{z — e} is truein S;
8. VYz.F is truein S iff foreach e € &, F{z +— e} is truein 5.

Here, F{z — o} denotes the fluent formula resulting from replacing in F all free occurrences
of z by o. |

The encoding of fluent formulas in the fluent calculus is straightforward. To state that a fluent
formula is true in a state represented by some term s, each fluent literal ¢ occurring in this
formula is replaced by the expression Holds({, s); for an example see (34), below. For notational
convenience, we will write Holds(F,s) to denote this encoding of a fluent formula /. Given the
definition of Holds, (27), and the extended unique name assumption, this encoding is correct:

Proposition 19 [Thielscher, 1997] Let I be a fluent formula and S a state, then
FEUNA,(27) |= Holds(F,ts) iff I’ is true in S, else FUNA,(27) = —~Holds(F,s).

In particular, we call possible a term that satisfies a given set of domain constraints D :

Possible(s) = /\ Holds(D,s) (29)
DeD

We proceed by introducing an extended notion of action laws. An action law may now contain
variables, in which case it is considered representative for all of its ground instances. In what
follows, the expression Z (resp. € ) denotes a finite sequence of variables chosen from the given
set V (resp. entities chosen from &) of arbitrary but fixed length. If Z is a sequence of the
variables that occur free in some expression £, then this is written £[Z]. Let T = zy,...,2,,
then a ground instance of some expression £[Z] is obtained by applying a substitution 6 =
{z1—e1,...,2,—€,} to £, where ey,...,e, € £. Let € = ey1,...,¢e,, then £[Z]8 is also

denoted by £[€].

Definition 20 Let A be a set of action names, each of which is associated with a natural
number called arity. If @ € A of arity n > 0 and € = eq,...,e, is a sequence of entities, then
the expression a(€) is an action.

An action law is a triple (C[Z], a(Z), F[z]) where C[z] and E[Z] are sets of fluent expressions
and ¢ € A is of arity equal to the length of Z. It is assumed that |C[€é]| = |F[€]| for any
sequence € of entities.

If S is a state, then a ground instance a[é] of an action law «a[Z] = (C[7], a(7), F[Z]) is

applicable in S iff C[e] C S . The application of a[e] to S yields (S\ C[e])U E[é]. [

A set of action laws £ = {(C1[Z1],a1(Z1), F1[Z1]), - - -, (Cpl[Zn], an(Zr), En]Z,])} is encoded by
the following formula:

Action(c,a,e) = \/ dz; {c =Top] N e= ai(Zi) A e = TEz'[Ea]] (30)
i=1

Similar to the case of action laws, we may exploit the extended notational expressiveness to
formulate causal relationships with variables in their components. These relationships are then
considered representatives for all of their ground instances.
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Definition 21 A causal relationship is an expression of the form ¢ causes p if ® where ¢
is a fluent formula and ¢ and o are (possibly negated) fluent expressions.

Let (9, F) be a pair consisting of a state S and a set of fluent literals F . Furthermore, let
r = ¢ causes g if ® be a causal relationship, and let ¥ denote a sequence of all free variables
occurring in ¢, g, or ®. Then an instance 7[¢] is applicable to (S, E) iff S |= ®[¢] A o[¢]

and ¢[€] € F. Tts application yields the pair (5', E') where S = (5\ {0[€]}) U {o[€]} and

B = (E\ (o[} U {ole]}

Let A be a set of action names, £ a set of action laws, D a set of domain constraints, and
R a set of causal relationships. Furthermore, let S be a state satisfying D, ¢ € A of arity m,
and € a sequence of entities of length m . A state S’ is a successor state of S and a(€) iff
there exists an applicable (wrt. S ) instance a[é] of an action law «a[Z] = (C[Z],a(7), F[Z]) € L
such that

1. ((S\C[e))u E[e], E[e]) ~r (S5, E') for some E’, and
2. 5" satisfies D.
m

The encoding of a set of causal relationships R = {ri[Z1] = &1 causes gy if ®q,...,1,[T,] =
€, causes g, if ®,} in the fluent calculus follows this definition. We introduce a predicate
Causes(s, e, s, e') which is intended to be true iff there is an instance of a causal relationship
in R which is applicable to (5, F') and whose application yields (5’, E')—where s,e,s’ ¢’ are
term representations of S, E,S’, F':

Holds(®; A9;,s) A 32(0ioz=8A s =20p;) )
A
n Jv.g,0v=ce
Causes(s,e, s’ e') = \/ Jz; A (31)
i=1 Vw.ojow#e N e =eop,;
\
Jw(giow=e AN € =wop;) )

The first row in the right hand side of the formula encodes the two conditions ®; Ag; be true
in S and 5" = (5\{oi})U {0} . The second row represents the condition ¢; € E . Finally, to
model that E' = (E\ {2:})U{0i}, two cases need to be distinguished: If 9; ¢ £, then we just
have to add p; to the corresponding term e (third row). If, on the other hand, 9; € £, then
we have to additionally remove the sub-term p; from e (fourth row).

According to Definition 21, a successor state is obtained from the respective intermediate
state by repeatedly applying causal relationships until a state results that does not violate the
domain constraints. In order to formalize this in our fluent calculus, we define a predicate
Ramify(s,e,s’). It is intended to be true if the successive application of causal relationships to
(S, E) eventually results in a pair whose first component, S, satisfies the domain constraints—
where s,e,s are term representations of S, F,S’. This essentially requires to construct the
transitive closure of the Causes relation. As this cannot be expressed in first-order logic, we
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use the standard way of encoding transitive closure using a second-order formula:

V81,€1. H(51761731761)
A
V817617827627‘937€3
Ramify(s,e,s’) = VII (II(s1,e1,82,€2) A Causes(sq, g, S3, €3)
D) H(81761783763)) (32)
D)
Je'. I(s,e, s, €)

A Possible(s')

That is, Ramify(s,e,s’) is true if there is some €' such that (s,e,s’,¢’) is in the transitive
closure of Causes, and if s’ satisfies the domain constraints according to formula (29).

Finally, an instance Successor(s,a,s’) shall be true if s’ represents a successor state of
action @ and the state represented by s:

Successor(s,a,s’) = Tc,e,z[ Action(c,a,e) A coz =5 A Ramify(zoe,e,s')] (33)

Notice that the first equation, ¢ o z = s, ensures that the condition of the action law at hand
be contained in the state represented by s (c.f. clause 1 of Proposition 16). This equation also
guarantees that z contains all fluent literals in s but not in ¢ (c.f. clause 2 of Proposition 16).
Thus, z oe represents the state resulting from the application of an action law (c.f. clause 3
of Proposition 16); hence, the pair (zoe,e) constitutes the starting point of the ramification
process (32).

To summarize, let FC, ;s denote the union of FUNA with the definitions of Holds (27),
Possible (29), Action (30), Causes (31), Ramify (32), and Successor (33), based on given
sets of domain constraints, action laws, and causal relationships. The following correctness result
is known:

Theorem 22 [Thielscher, 1997] Let FCramis be the encoding of sets of, respectively, domain
constraints, action laws, and causal relationships. Furthermore, let S, S’ be two states, a an
action name of arity m, and € a sequence of entities of length m . Then

FCramis = Successor(s,a(€),s')
iff there is a successor state S’ of S and a(€) such that EUNA |= s’ = 1g/, else
FCramiy |E —Successor(s,a(€),s')

Example 7 We take the singleton set of entities £ = {po} (whose element represents a
particular potato) along with the unary fluents in-pipe and heavy plus the nullary fluent clog,
each of which shall belong to F,;,. We also define the unary action name put to describe the
insertion of an object into the tail pipe. The various fluents are related through these domain
constraints:

Jz. Holds(in-pipe(z),s) D Holds(clog, s)
Possible(s) = A (34)
Va [ Holds(disq(put(z)),s) = Holds(heavy(z),s)]
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That is to say, the tail pipe is clogged whenever it houses an object, and putting an object into
the tail pipe is abnormally disqualified if the former is too heavy. The domain constraints give
rise to the following four causal relationships:2°

in-pipe(z) causes clog if T heavy(z) causes disq(put(z)) if T

in-pipe(z) causes clog if Vy.in-pipe(y) heavy(z) causes disq(put(z)) if T

which in turn determine the encoding of the Causes predicate:

Holds(clog,s) A 3z(clogoz =5 A s =zoclog) )
A
Jv. in-pipe(z)ov = e
Jz A
Causes(s,e, s, e') = Yw. clogow # e A € = eo clog
\
Jw(clogow =€ N € =wo clog) )

vV
Finally, our only action is specified by
Action(c,a,e) = Jx[c = in-pipe(z) N a = put(z) A e = in-pipe(z) ]

Let FC; denote the entire fluent calculus-based formalization of this domain, then we have, for

instance,
FCr = Successor( in-pipe(po) o heavy(po) o clog o disq(put(po)),
put(po),
in-pipe(po) o heavy(po) o clog o disq(put(po)) )
according to Theorem 22. |

4.2 Observations and Models

The fluent calculus encoding we arrived at in the previous section provides a formal account
of successor states, including a solution to the ramification problem. Next, and prior to ad-
dressing the qualification problem, we formalize the application of whole action sequences to an
(unspecified) initial state. This provides means for encoding observations. Our objective is to
extend FC,qpmi in such a way that there is a one-to-one correspondence between the (standard,
i.e., ‘classical’) models of the resulting set of formulas and the models of a set of observations in
the sense of Definition 13.

At the core of this extension are three new predicates named, respectively, Qualified, Result,
and Miracle. Their intuitive meaning is the following. If an instance Qualified(a*) is true,
then this indicates that the action sequence a* is qualified. If an instance Result(a*,s) is true,
then this indicates that s represents the state which would result from performing the action
sequence a® in the initial state. Finally, if an instance Miracle(a*) is true, then this indicates
that the action sequence a* is miraculously disqualified. As a notational convention, if a* is
a (possibly empty) action sequence and @ an action, then [a*|a] denotes the action sequence

20 See [Thielscher, 1997] for how Definition 7 can be extended to cope with domain constraints that contain
quantifications.
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which consists in «* followed by a. The crucial properties of the new predicates are then
determined by the following axioms:

Qualified([]) N = Miracle([]) (35)

Result(a*,s) A
Qualified([a*|a]) = Qualified(a*) A ~Miracle([a*|a]) A Ts,s" | Holds(disq(a),s) A (36)

Successor(s, a, s')
Result([a*|a],s’) D Vs|[Result(a*,s) D Successor(s,a,s’)] (37)

The reading of the topmost conjunction, (35), is obvious. Formula (36) states, in words, that
an action sequence [a*|a] is qualified if so is a*, if [a*|a] is not miraculously disqualified, if
the result s of performing a* does not entail an abnormal disqualification as regards a, and
if there exists a successor s’ of s and a. The implication in (37) ensures that s’ can only
be the result of performing a sequence [a*|a] if s’ is a possible successor when executing @ in
the state resulting from performing a*. Notice, however, that (36) and (37) do not entail the
existence of a resulting state whenever the corresponding action sequence is qualified, nor do
they entail uniqueness of resulting states. We therefore need to add the following:

Js. Result(a™,s) = Qualified(a™) (38)

Result(a*,s) A Result(a*,s') D s=45 (39)

Finally, the term intended to represent the initial state should qualify as such, namely, both in
being a proper state term and in satisfying the domain constraints, that is,

Result([],s) D State(s) A Possible(s) (40)

The reader may notice that the formulas (35)—(40) are domain-independent axioms.

Example 7 (continued) Let us consider the set of formulas FCr; U {(35)—(40)}, and suppose
that in addition we are given the fact —Qualified([put(po)]). According to (36) and (35), the
latter entails

= Result([],s) V
Miracle([put(po)]) V Vs,s' | ~Holds(disq(put(po)),s) V
= Successor(s, put(po), s
)

8
From (35), (38), and (40) we know that ds[ Result([],s) A State(s)] is always true, and from
Theorem 22 we further conclude that FC; |= State(s) D Vs .ﬁSuccessor(s,put(po), s') iff
FCr [ Holds(in-pipe(po),s) since in-pipe(po) is the only strict precondition of put(po).

Hence, the above implies
Miracle([put(po)]) V Vs|[Result([],s) D Holds(disq(put(po)),s)V Holds(in-pipe(po),s)] (41)

That is to say, put(po) being disqualified in the initial state either implies a miraculous dis-
qualification, an abnormal disqualification, or that there already is a potato in the tail pipe.
[

In what follows, we prove that by adding the above formulas we achieve what we have
promised. Suppose given a domain with causal model ¥, and let FC,un;; denote its en-
coding as described in Section 4.1. If ¢ is a model of the formulas FC, i U {(35)-(40)} and
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(Res, %, T) an interpretation for the domain at hand, then we say that « and (Res,X,T) cor-
respond iff for all action sequences a* , states 5, and collections of fluent literals s such that
EUNA |= s = 75, we find that?!

Res(a*) = S iff [Result(a*,s)]" is true

(42)
a* €Y iff [Miracle(a*)]" is true

Then we can prove the following:

Theorem 23 Let FC,omis be the encoding of a domain description with causal model X, then
for each model v of FC amifU{(35)—(40)} there exists a corresponding interpretation (Res, X, T)
and vice versa.

Proof: See appendix.

This result shows the adequacy of the domain-independent axioms (35)—(40) as regards the
formal notions both of action sequences being qualified and of states resulting from performing
action sequences. Next, we concentrate on the domain-specific expressions which are based on
these concepts, namely, the observations. Their formalization in our calculus is straightforward.

An observation of the form F after [ay,...,a,] is encoded by
ds [ Result([aq,...,a,],s) A Holds(F,s) ] (43)
That is to say, the action sequence [aq,...,a,] must admit a resulting state in which, moreover,
fluent formula F holds. An observation of the form « unqualified after [ay,...,a,] is
encoded by
Qualified([aq,. .., a,]) A 7 Qualified([a1, . .., an,a]) (44)
That is to say, the action sequence [aq,...,a,] must be qualified while [ay,...,a,,a] must

not so. The addition of these formulas FC,qmi U {(35)-(40)} automatically restricts the set of
classical models to those which correspond to interpretations in which the respective observations

hold.

Example 7 (continued) Suppose given the two observations

put(po) disqualified after [] (45)
clog after []

We have already seen that the encoding of the first one, viz. Qualified(]])A—Qualified([put(po)]),
entails the disjunction (41). The encoding of the second observation, viz.

3s[ Result([],s) A Holds(clog, s)]

implies Vs [ Result([],s) D —3z. Holds(in-pipe(z),s)] according to (40) and the underlying do-
main constraints, (34). Given this, (41) can be strengthened to

Miracle([put(po)]) V Vs [ Result([],s) D Holds(disq(put(po)),s)] (46)

Correspondingly, every model (Res,,T) of the observations (45) satisfies [put(po)] € T or
disq(put(po)) € Res([]), or both. n

2! Below, by “[P(t1,...,1,)]" is true” we mean that the n-tuple (#;,...,1%) is member of the relation which ¢
assigns to predicate P, where ¢; (1 <i < n) denotes the element of ¢’s universe to which ¢ maps term ¢; .
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Let, given a domain description, Wxe denote its fluent calculus encoding consisting of the for-
mulas FCgpmif , the axioms (36)—(40), and the formulas representing the underlying observations
as in (43) and (44). This encoding is correct according to Definition 13.

Theorem 24  Let Wre be the encoding of a domain description with causal model 3 and
observations O, then for each model v of Wxe there exists a corresponding model (Res, %, T)
of O and vice versa.

Proof: Let ¢ be amodel of FC,umifU{(36)-(40)} and (Res,¥,T) a correspond-
ing interpretation. Given Theorem 23, it suffices to show that ¢ is a model of (43)
and (44) iff the respective observations hold in (Res, ¥, T).

1. By definition, an observation F after [aq,...,a,] holds in (Res,¥,T) iff
Res([aq,...,ay]) is defined and F' is true in that state. This in turn is equiv-
alent to ¢ being model of (43) according to (38), Proposition 19, and the fact
that ¢+ and (Res,¥,Y) correspond.

2. By definition, an observation @ unqualified after [ai,...,a,] holds in
(Res, X, T) iff Res([a1,...,a,]) is defined but Res([ai,...,a,,a]) is not. This
in turn is equivalent to ¢ being model of (44) given that ¢ and (Res,X,T)
correspond.

4.3 Fluent Calculus and Qualification

We have now reached the stage where we concern ourselves with the qualification problem in
the fluent calculus. Since nonmonotonicity is an intrinsic feature of the qualification problem,
the encoding we arrived at will be embedded in a nonmonotonic framework. Notice that the
fluent calculus provides a monotonic solution both to the frame problem as well as to the
ramification problem. For the set Wre is composed only of axioms in classical logic, and these
formulas are interpreted in the standard way. This property of the fluent calculus is of advantage
when additionally coping with the qualification problem because it avoids possible unintended
interferences among different forms of nonmonotonicity employed to tackle different problems
within a single formalism.

The nonmonotonic extension of the fluent calculus we propose in the sequel is based on the
machinery of Default Logic [Reiter, 1980]. More precisely, the formulas Wgre are taken as
the foundational axioms of the default theory to be constructed, and so-called default rules
are used to express the necessary defeasible assumptions of normality. Namely, by default an
‘abnormality’ fluent f,5(e1,...,€,) is false in the initial state and a sequence of actions is not
miraculously disqualified. Since the latter default assumption needs to be preferred in case of
conflicts, a special variant of Default Logic is required which is capable of dealing with priorities
among default rules. In what follows, we first recall the basics of standard Default Logic;
thereafter, we give a brief but sufficiently detailed introduction to the aforementioned variant,
namely, Prioritized Default Logic [Brewka, 1994]; and finally, we use these concepts to solve the
qualification problem in the fluent calculus.

Default Logic

The fundamental idea in Default Logic is to extend classical logic, which is taken to encode
precise knowledge, by expressions that formalize somehow vague, defeasible knowledge. Called
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default rules (or defaults, for short), these expressions allow for stating that some property «
‘normally’ implies some property w. The reference to normality is made precise by specifying
circumstances = which must provably hold in order that the conclusion from a to w shall
not be valid. The formal syntax of a default is

a:j

w

where a (the prerequisite), § (the justification), and w (the consequence) all are formulas in
classical logic. For our purpose, it suffices to only consider defaults which are of the form =%,
i.e., where justification and consequence coincide. Any such default may informally be regarded
as a deduction rule stating that “If a has already been deduced and w is consistent with (i.e.,

does not contradict) what has been deduced so far, then conclude w.” E.g., the default

: Vs [ Result([],s) D ~Holds(disq(put(po)), s)]
Vs[ Result(]],s) D = Holds(disq(put(po)),s) ]

(47)

states that if it is consistent to assume that there be no abnormal disqualification of the ac-
tion put(po) in the initial state, then this very conclusion is to be drawn. In case one or more
components of a default contain free variables, the default is considered representative for all of
its ground instances. The default (50) below, for example, in which the variable a* occurs free,
stands for all the assumptions that a particular action sequence normally is not miraculously
disqualified, e.g.,

: = Miracle([put(po)])

= Miracle([put(po)])

A default theory A = (D, W) consists of a set of defaults D and a set of closed formulas W,
the latter of which is called world- (or background) knowledge. Reasoning in default theories is

(48)

based on the formation of so-called extensions. The idea is to start with the background knowl-
edge, W . and to successively apply defaults chosen from D, that is, to add their consequences
provided their justification is consistent with what is finally obtained as extension. Once there
are no more applicable defaults left, the deductive closure of the resulting set of formulas con-
stitutes an extension. An extension may be regarded as one conceivable view on the state of
affairs. The formal definition is as follows:

Definition 25 [Reiter, 1980] TLet A = (D,W) be a default theory, and let E be a set of
closed formulas. We define??

1. FO =W
2. Ty := Th(Tio1) U {w : 22 c Dand a € ;g and ~w ¢ E}, for i=1,2,...
Then F is an extension of A iff F=J2,1;. [

A default theory may admit multiple extensions, each of which is obtained by applying dif-
ferent subsets of the underlying defaults. Then a closed formula is said to be skeptically en-
tailed in a default theory iff it is contained in all extensions of the latter. Suppose, as an
example, W = {Miracle([put(po)])V s [ Result([], s) A Holds(disq(put(po)),s)]} (c.f. (46)) and
D = {(47),(48)}, then the default theory (D,W) determines two extensions, one of which in-
cludes Miracle([put(po)]) A Vs | Result([],s) D —Holds(disq(put(po)),s)] while the other one

22 Below, Th(¥) denotes the deductive closure of the set of formulas ¥, that is, Th(¥):= {¢: ¥ =4} .
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includes —Miracle([put(po)]) A ds[ Result([],s) A Holds(disq(put(po)),s)]. The reason is that
after adding to W the consequence of (47), say, the resulting set of formulas is inconsistent
with = Miracle([put(po)]), which blocks the application of (48). Notice that there is no formal
preference between the two extensions. Consequently, —Miracle([put(po)]) is not skeptically
entailed. This, however, would be desirable in this example since miraculous disqualifications
ought to be primarily minimized. In order to accomplish this, we employ a suitable extension
of classical Default Logic.

Prioritized Default Logic

When constructing extensions of a default theory according to Definition 25, all defaults are
applied with the same priority. Yet an adequate solution to the qualification problem requires
that, in case of conflicts, minimizing miraculous disqualifications is to be preferred over min-
imizing ‘abnormality’ fluents. A recent variant of Default Logic, namely, Prioritized Default
Logic [Brewka, 1994], serves this purpose by supporting the specification of (possibly partial)
preference orderings among defaults. This ordering is exploited to select among the extensions of
a default theory those in which the most preferred defaults have been applied. In what follows,
we adopt a formalization of Prioritized Default Logic proposed in a subsequent paper.

Definition 26 [Rintanen, 1995] A prioritized default theory is a triple (D, W, <) where D
and W are as in classical Default Logic and < is a partial ordering on D .

If F is a closed set of formulas, then a default ** is said to be applied in E iff a,w € E . Let
A = (D,W,<) be a prioritized default theory, then an extension F of the (standard) default
theory (D, W) is a prioritized extension of A iff there is a strict total ordering < extending <
such that the following holds for all extensions E’ of (D, W) and all defaults 6’ € D: If ¢ is

applied in E’\ E, then there is some §<§é’ which is applied in E\ E’. [

In words, a standard extension F is prioritized if we can find a total ordering respecting < such
that the following is true: Whenever some default 6’ is not applied in E but in some other
standard extension F£’, then there is also a default ¢ which is applied in £ but not in £’
and which has higher priority than &6’ according to the total ordering. Recall, for instance, our
example default theory (D, W) discussed right after Definition 25. If we define (48) < (47),
then the prioritized default theory (D, W, <) declares only one of the two extensions of (D, W)
as prioritized, viz. the one that includes = Miracle([put(po)]). The reason is that, as regards the
alternative extension, there is no ‘compensation’ for applying default (47) but not default (48).
Hence, if we restrict attention to prioritized extension, then —Miracle([put(po)]) is skeptically
entailed, as intended.

We are now prepared for embedding the basic fluent calculus into a suitable nonmonotonic
framework in view of successfully coping with the qualification problem. For a given domain
description, we construct a prioritized default theory in which the formulas Wgre constitute the
background knowledge. The necessary default assumptions of normality are formalized as default
rules. A particular preference ordering among these defaults allows to prefer minimization of
miraculously disqualified action sequences whenever this conflicts with minimizing abnormal
circumstances in the initial state.

For each ‘abnormality’ fluent f,; € F,p , to begin with, the default rule

: Vs [ Result([],s) D ~Holds( f,5[Z], s) ]
Vs [ Result([],s) D —Holds( fo]Z],5)]
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is used to express the default assumptions that a ground instance f,;[€] be false in the initial
state. That is to say, as long as it is consistent to assume that f,;[€] does not hold in the initial
state, do it. The various assumptions of normality as regards miraculous disqualifications are
formalized by the default rule
: 2 Miracle(a™)
= Miracle(a*)

That is to say, as long as it is consistent to assume that a particular sequence of actions is not
miraculously disqualified, do it. Since miraculous disqualifications are to be minimized with
higher priority than initial truth of ‘abnormality’ fluents, we define a partial ordering <rz¢ as
follows: For any action sequence «¢* and any ground instance of an element of F,;, we have
(50)<]:c(49) .

This completes our action calculus for domain descriptions involving potential abnormal dis-
qualifications of actions. The prioritized default theory Axe = (Dre, Wre, <xc) constitutes a
solution to the qualification problem in the fluent calculus.

(50)

Example 7 (continued) Let Agrc, = (Drc,, Wre,, <zc) be the fluent calculus encoding of
the domain considered in this example, including the observations (45). In particular, Dz¢, con-
tains instances of the default (49) for each of in-pipe(po), heavy(po), clog, and disq(put(po)).
As we have seen, Wre, entails the disjunction (46). This implies that the defaults

1 aMiracle([put(po)]) and Vs [ Result([],s) D ~Holds(disq(put(po)),s)]
= Miracle([put(po)]) Vs [ Result([],s) D ~Holds(disq(put(po)),s)]

are mutually exclusive, for either consequence in conjunction with (46) implies the negation
of the other rule’s justification (given (35),(39) € Wge,). According to the priority order-
ing <z¢ , the first of these two defaults has to be preferred. Now, Wre, and Vs|[ Result([],s) D
Holds(disq(put(po),s))]| imply Vs[ Result([],s) D Holds(heavy(po,s))] according to the under-
lying domain constraints, (34). Thus the instance f,;[€] = heavy(po) of default (49), too, is
not applicable. The justifications of all other defaults in D¢, , however, are consistent with
Wge, U {—~Miracle([put(po)])}, so that the default theory Axc, admits a unique prioritized
extension FE which includes —Miracle(a*) for any action sequence a*. Moreover, the initial
state is completely determined in F since there is no fluent that does not belong to F,,. Hence,
FE also includes the formula

Vs[ Result([],s) D s = in-pipe(po) o heavy(po) o clog o disq(put(po))]

Notice that the domain description admits a unique preferred model (Res, Y, Y) which satisfies
T ={} and Res([]) = {in-pipe(po), heavy(po), clog, disq(put(po))} . m

The last observation suggests a close correspondence between the models of a domain and the
prioritized extensions of the domain’s encoding in the fluent calculus. As the main result of this
second part, we prove that this holds in general, which shows that our embedding of the fluent
calculus into a (prioritized) default theory solves the qualification problem. Let Ax¢ be the
encoding of a domain description, then a prioritized extension F of Axc and an interpretation
(Res, %, T) of this domain are said to correspond iff for all instances f,5[€] wrt. Fup and all
action sequences a*, we find that

a* ¢ Y iff - Miracle(a*) € E (51)
fus[€] € Res([]) iff Vs[Result([],s) D —Holds(fu[€],s)] € E
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This notion is used to state the correctness of our action calculus wrt. the formal characterization
of the qualification problem developed in the first part of the paper.

Theorem 27 Let Axc be the prioritized default theory encoding a domain description with
observations O, then for each prioritized extension of Agxc there exists a corresponding pre-
ferred model of O and vice versa.

Proof: See appendix.

An immediate consequence of this one-to-one correspondence is that, as far as observations are
concerned, the notion of skeptical entailment in our action calculus and the notion of entailment
suggested by our formal account of the qualification problem coincide.

Corollary 28 Let Axe be the prioritized default theory encoding a domain description, then
an observation is entailed by the domain iff the corresponding formula (i.e., (43) or ({4)) is
skeptically entailed in Axc .

This result completes the second part of the paper. It shows that our nonmonotonic extension of
the basic fluent calculus successfully deals with potential abnormal disqualifications of actions.
The resulting action calculus thus combines in a single framework solutions to three of the most
recognized problems in reasoning about actions, the frame, the ramification, and the qualification
problem.

5 Discussion

We have proposed a formal characterization of the qualification problem from the perspective
that requiring global minimization of abnormal disqualifications is obviously inadequate. We
have argued that the property of an action to be abnormally disqualified should be formalized
as a fluent. These fluents are to be assumed false in the initial state unless there is evidence
to the contrary. In the course of time, by virtue of being fluents, these propositions are poten-
tially indirectly affected by the execution of actions. This accounts for the fact that unusual
disqualifications may be caused, in which case their occurrence is not to be considered abnor-
mal. The fact that action disqualifications might be indirect effects of actions necessitates a
suitable solution to the ramification problem. Our theory moreover accommodates miraculous
disqualifications, which need to be assumed whenever an action disqualification cannot be ex-
plained even if abnormal circumstances are granted. Consequently, miraculous disqualifications
are minimized with higher priority.

Assuming away by default abnormal or miraculous disqualifications is an inherently nonmono-
tonic process. In [Lifschitz, 1993], a property called restricted monotonicity has been claimed
generally desirable in theories of actions. A formalism possesses this property if additional ob-
servations can only increase the set of observations that are entailed by a domain description.
This, however, is no longer appropriate when being confronted with the qualification problem.
As a consequence, the entailment relation vy induced by our model preference criterion is
nonmonotonic.

Using a suitably simple action language, the focus in this paper has been on the qualification
problem. The underlying principles of our theory, however, are sufficiently fundamental and
general to not depend on this specific language. Thus these principles could equally well be em-
ployed in other, more elaborated formal theories of actions like, e.g., [Gelfond and Lifschitz, 1993;
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Sandewall, 1994; Thielscher, 1995], to tackle the qualification problem. Likewise, existing ac-
tion calculi may be enhanced on this basis in order that they become capable of dealing with
abnormal action disqualifications. As an example formalism, in the second part of the paper
we have embedded the fluent calculus in an appropriate nonmonotonic theory. The adequacy
of the resulting framework has been established by relating it to our formal characterization
of the qualification problem. This adds another item to the list of ontological aspects which
the fluent calculus—besides being closely related, in its basic form, to the Linear Connec-
tion Method [Bibel, 1986] and reasoning about actions based on Linear Logic [Girard, 1987;
Masseron et al., 1993]—is capable of dealing with, such as non-deterministic and concurrent
actions [Bornscheuer and Thielscher, 1997], indirect effects of actions [Thielscher, 1997], or con-
tinuous change [Herrmann and Thielscher, 1996].

Besides the proposal pursued in this paper, the only existing alternative to global minimization
as a solution to the qualification problem is the concept of chronological ignorance [Shoham,
1987; Shoham, 1988]. Roughly speaking, the crucial idea there is to assume away, by default,
abnormal circumstances, and simultaneously to prefer minimization of abnormalities at earlier
timepoints.?® Formally, the approach employs a certain kind of modal logic as a means to express
the distinction between provable facts and propositions which might or might not be true. For
instance, our introductory example one would formulate in the framework of [Shoham, 1987;
Shoham, 1988] by these two action descriptions:

O TRUE (¢, put-p) A OTRUE(L, heavy) DO OTRUE(t + 1, pot) (52)
O TRUE (¢, start) A O TRUE (¢, pot) D OTRUE (f + 1, runs) (53)

where OTRUE(#,/) should be read as “at time ¢ fluent literal ¢ provably holds” and
OTRUE(t,£) as “at time ¢ fluent literal ¢ may or may not hold.” Thus the first of the
two implications states that if it is known that the action put-p occurs at time ¢ and it is
possible that heavy holds at that time, then pot provably holds at time ¢ + 1. Likewise, if
it is known that the action start occurs at time ¢ and it is possible that pot holds at that
time, then runs provably holds at time ¢+ 1. Observe how abnormal disqualifications, like
heavy and pot, are assumed away whenever the contrary does not provably hold. Now sup-
pose given OTRUE (1, put-p) A OTRUE(2, start). Then chronological ignorance tells us that
O TRUE (1, heavy) holds since nothing is known about TRUE (1, heavy) itself. Hence, (52) im-
plies OTRUE (2, pot) , which in turn gives us =< TRUE (2, pot) .>* Thus the antecedent of (53)
is false and, consequently, the second action, start, cannot be successfully executed, as in-
tended. Notice that this being the unique conclusion relies on the chronological order in which
minimization is performed. Otherwise, it could equally well be concluded that & TRUE (2, pot)
holds, for, in the first place, nothing is known about TRUE (2, pot) itself. This in turn entails
- TRUE (1, heavy) , i.e., OTRUE (1, heavy) , since the implication (52) is logically equivalent to

OTRUE (¢, put-p) A OTRUE(t + 1,pot) D =< TRUE (¢, heavy)

This alternative conclusion corresponds to what we have called the counter-intuitive model but,
as indicated, it is not supported by chronological ignorance.

The interesting, albeit informal, reason for chronological ignorance coming to the desired
conclusion in this and similar cases is a certain respect of causality hidden in this method: By

2% This explains the naming: Potential abnormal disqualifications are ignored whenever possible, and this is
done in chronological order. Assuming away obstacles whenever their occurrence cannot be proved, Shoham
also calls the ostrich principle, or: what-you-don’t-know-won’t-hurt-you.

2% As usual in modal logic, ~OTRUE (t,£) is equivalent to < TRUE (¢, ) .
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minimizing chronologically, one tends to minimize causes rather than effects—which is the right
thing to do—simply because in general causes precede effects. On the other hand, it has already
been shown elsewhere (e.g., [Kautz, 1986; Sandewall, 1993; Stein and Morgenstern, 1994]) that
the applicability of chronological minimization is intrinsically restricted to domains which do
not include non-deterministic information. This is best illustrated with the Tail Pipe Marauder
scenario of Example 2. The following formula expresses the fact that if at some time ¢ there is
no potato in the tail pipe, then at time ¢+ 1 this may or may not have changed:

OTRUE (¢, pot) D OTRUE(t+ 1,pot) V OTRUE(t+ 1, pot) (54)

Consider this in conjunction with (53), and suppose given O TRUE (1, pot) A O TRUE (2, start) .
Then from (54) nothing definite can be concluded about TRUE (2, pot) , which is why chronolog-
ical ignorance tells us that & TRUE(2, pot) holds, hence O TRUE (3, runs). Thus, chronological
ignorance sanctions the conclusion that start is qualified at timepoint 2, despite the possibil-
ity that the tail pipe marauder has struck by then. The reason for this undesired conclusion
is that the what-you-don’t-know-won’t-hurt-you principle is not suited for non-deterministic in-
formation. While the qualification problem means to assume away abnormal circumstances
whenever they do not provably holds, this is in general too optimistic if the execution of a
non-deterministic action renders quite possible such circumstances. Our characterization of the
qualification problem accounts for this as the minimization procedure applied to abnormal or
miraculous disqualifications does not interfere with the results of non-deterministic actions. It
thus seems justified to say that our approach introduces a smart ostrich principle, or: what-
you-can’t-expect-won’t-hurt-you—-clearly, an abnormal disqualification of start after carelessly
parking the car in the dangerous neighborhood is to be expected from one of the possible effects
of waiting, which is why this potential disqualification ought not to be assumed away.

Our characterization of the qualification problem shares with Motivated Action Theory [Stein
and Morgenstern, 1994; Amsterdam, 1991] the insight that an appropriate notion of causality is
necessary when assuming away abnormalities. In the latter framework, occurrences of actions
and events are assumed away by default while considering the possibility that they are caused
(or, in other words, motivated, hence the name). This minimizing unmotivated events and our
minimizing non-caused abnormal disqualifications are somehow complementary while based on
similar principles. Of course, the formal realizations are quite different. An unsatisfactory prop-
erty of Motivated Action Theory is that the preference criterion, that is, motivation, depends
on the syntactical structure of the formulas representing causal knowledge. As a consequence,
logical equivalent formalizations may induce different preference criteria, of which only one is
the desired. Moreover, the formal concept of motivation becomes rather complicated in case
of disjunctive (i.e., non-deterministic) information, which entails difficulties with assessing its
range of applicability.

Throughout the paper, we have taken action disqualifications as rendering the execution
of the respective action physically impossible. A desirable refinement is to consider actions be
disqualified as to producing a certain effect (c.f. [Gelfond et al., 1991], e.g.). This is accomplished
with a simple, straightforward extension of our theory. In addition to the fluents disq(a), we
introduce fluents of the form disq(a, (), whose intended reading is “action a fails to produce
effect £.” These fluents, too, belong to the set F,; and may be related to other ‘abnormality’
fluents by means of domain constraints, like in

disq(shoot, alive) = bad-sight V bad-shooter V bad-gun

Suppose, then, (C,a, F) is the action law to be applied to some state 5. The effect which «
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actually manages to produce if performed in § is formally given by E’:= E\{{: disq(a,l) € S} .
Let C':=C\{{,f:¢€ E\ E'}, which guarantees |C’| = |E'|, then (S\ C’)U E’ is taken as
the intermediate state which is subject to the following ramification process. The notion of a
successor state modifies accordingly while all further concepts, viz. interpretations, models, and
the preference criterion, remain unaltered.

Finally, it needs to be mentioned that we gave emphasis only to the representational aspect of
the qualification problem, as opposed to the computational aspect. That the latter is of equal
importance has been pointed out in, e.g., [Elkan, 1995]. Our analysis has revealed some hitherto
unnoticed problems with the representational aspect and, to state the obvious, the computa-
tional aspect cannot be pursued without an appropriate representation of the problem. Named
the computational part of the qualification problem, the challenge is to find a computational
model that enables the reasoning agent to assume that an action be qualified without even think-
ing of all possible disqualifying causes—unless some piece of knowledge hints at their presence.
In principle, the special fluents disq(a) employed in our theory serve this purpose: By assum-
ing disq(a), one jumps to the conclusion that a be qualified provided all strict preconditions
are met. Still, on the other hand, in order that this assumption be justified, its consistency as
regards the underlying domain constraints must be guaranteed. In a standard reasoning system,
this in turn involves consideration (and exclusion) of all the potential disqualifying abnormal
circumstances. A solution to the computational part of the qualification problem thus requires
a different computational model, presumably based on some parallel architecture, by which all
related domain constraints are ignored unless they are explicitly ‘activated’ by some piece of
information. Although this aspect was not among the topics of this paper, the foundations have
been laid.
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Appendix. Proofs of Theorems 23 and 27

Theorem 23 Let FC,umis be the encoding of a domain description with causal model ¥, then
for each model v of FCramifU{(35)~(40)} there exists a corresponding interpretation (Res, X, T)
and vice versa.

Proof:

N

Let ¢ be a model of FCrami U {(35)-(40)}. We define a set of action sequences T and a
partial mapping Res from finite action sequences to states as follows: Res(a*) is defined
whenever [Qualified(a*)]" is true; and in case it is defined, let s be a collection of fluent literals
such that [Result(a*,s)] is true, then Res(a*) := 5 where FUNA | s = 7g. Furthermore,
a* € T iff [Miracle(a*)]" is true. By induction on n, we show that, for any action sequence
a* =[ay,...,a,], Res(a*) along with T satisfy the conditions of Definition 13, which proves
(Res, %, T) constitute an interpretation that, by construction, corresponds to ¢ .

In the base case, n = 0, following Definition 13 we have to show that Res([]) is defined
and satisfies the domain constraints, and that [] € Y. According to (35), [Qualified([])]" is
true; hence, Res([]) is defined. Given that [Qualified([])]" is true, (38) and (39) imply that
there is a unique (modulo AC1) term s such that [Result([],s)] is true. In conjunction with
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Proposition 17, formula (40) guarantees that s represents a state which, moreover, satisfies the
domain constraints following (29) and Proposition 19. Finally, [Miracle([])]" is false according
0 (35); hence, [|¢ T.

For the induction step let » > 0 and suppose the claim holds for the action sequence
[@1,...,an—1]. According to Definition 13, we have to show both that Res([a*|a]) is defined
iff clauses 2(a)-2(d) hold and that, in case it is defined, it denotes a successor state of Res(a*)
and a, . From (36) and the induction hypothesis for ¢* we conclude that [Qualified([a*|a])]’
is true iff Res(a*) is defined, both [Miracle(a®)]’ and [Holds(disq(a), Treyq))]" are false,
and there exists a term s’ such that [Successor(Tpes(qv),@n,s')]" is true. In turn, these four
conditions are equivalent to clause 2(a), clause 2(d) (according to the construction of T ),
clause 2(b) (according to Proposition 19), and clause 2(c) (according to Theorem 22). More-
over, (38) and (39) imply that if Res([a*|a,]) is defined then there is a unique (modulo AC1)
term s such that [Result([a*|a,],s)]" is true. From (37), the induction hypothesis for a*, and
Theorem 22, it follows that s represents a successor state of Res(a*) and a,, .

Y
Let (Res,X,T) be an interpretation of the domain description, and let ¢ be an interpretation
of FCramir U {(36)—(40)} which satisfies the following:

1. ¢ is a model of FC,4pis;

2. for any action sequence a* and collection of fluent literals s,

(b) [Result(a™,s)] is true iff Res(a”) is defined and EUNA |= s = Tg.y(q) ; and

(a) [Qualified(a*)]" is true iff Res(a*) is defined;
]L
(c¢) [Miracle(a®)]" is true iff a* € Y.

We have to show that ¢ is a model of FC, 4 U {(36)-(40)}, in which case it corresponds to
(Res,X,T) by construction. Given that ¢ is a model of FC,qpmis , it suffices to show that it
is also a model of (36)—(40). This in turn can be proved by induction on the length of the
argument a* of Qualified, Result, and Miracle. This induction proof is entirely analogous to
the above. [

Theorem 27 Let Axc be the prioritized default theory encoding a domain description with
observations O, then for each prioritized extension of Agrc there exists a corresponding pre-
ferred model of O and vice versa.

The proof of this proposition requires some preparation. In what follows, for notational con-

venience we use the abbreviation [Initially({) = Vs Result([],s) D ~Holds({,s)]. Let Axc be
the encoding of a domain description with ‘abnormality’ fluents F,;, and let F be a set of
formulas which consists in the following:

1. Wge;
2. either = Miracle(a*) or Miracle(a*), for each action sequence a*; and
3. either Initially(f,,) or —Initially(f,;) , for each ground instance f,; of an element in F,y .

Then we call F = Th(F) a potential extension of Axc. Notice that potential extensions
may be inconsistent, e.g., if Wre entails a miraculous disqualification of, say, [put(po)] but
= Miracle([put(po)]) € I
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Given a potential extension £ = Th(F'), we call induced by F any total ordering < that
extends <z¢ such that

1. (50)y*<(50)px whenever —~Miracle(a*) € I and Miracle(b*) € F'; and
2. (49)f,,<(49)s,  whenever Initially(fap) € F and —Initially(f7,) € .

Induced orderings will be used below to verify the conditions of Definition 26 for potential
extensions which are claimed to constitute prioritized extensions. It is easy to verify that the
standard extensions of a theory (Dzc, Wxe) are always potential extensions.

Lemma 28 Let Are = (Dre,Wre,<zc) be the encoding of a domain description, then each
(standard) extension of (Drc,Wrc) is a potential extension.

Proof: Let F be an extension of (Dz¢,Wre), and let
1. To=Wge;
2. It = Th(I'y) U{w : =2 € Drc and ~w ¢ £} ; and
3. Ty = Th(Iy).

Since all possibly applicable defaults in Dgze have been applied to compute I'y and since F
is extension, we know I'y = F according to Definition 25. By construction, I's, hence F, is
subset of some potential extension. Thus it remains to show the following:

: = Miracle(a*) .
—Hiracte(a®) € Dre and the construction of I'y,

we know that either - Miracle(a*) € Ty C E or else Miracle(a™) € F .

1. Let a* be any action sequence. From

2. Let f,5 be any ground instance of a member of F,,. From i nmitially(foy) - ¢ Dre

. Initially( fop)
and the construction of I'y, we know that either [Initially(f,) € Th C FE or else

~Initially( fup) € E .

Let Axc be the encoding of a domain description. The notion of correspondence introduced
in Section 4.3 is extended to potential extension in the obvious way, that is, a potential extension
E = Th(F') and an interpretation (Res,X,T) correspond iff the conditions in (51) hold for all
ground instances f,[€] wrt. F,; and all action sequences a*. Notice that each interpretation
has a unique corresponding potential extension, whereas there might be multiple interpretations
corresponding to a single potential extension. Notice further that whenever F is consistent then
there exists a corresponding interpretation which is model of the underlying observations O .
This is granted by Theorem 24, for if F is consistent then it admits a (classical) model ¢.

We are now prepared to prove Theorem 27.

Proof:

[44 ¢ 77:

Let M = (Res,¥,T) be a preferred model of O, andlet £ = Th(F') be the potential extension
corresponding to M . First, we prove that F is a standard extension of (Dzc, Wre). Let

1. To=Wge;
2. It = Th(I'y) U{w : =2 € Drc and ~w ¢ £} ; and
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3. I'y = Th(I'y).
Then we have to verify that I'; = E (c.f. the proof of Lemma 28). Clearly, I'; C E, since

for any = € Dzc such that w € I't, we have —w ¢ F, which in turn implies w € E
as F is a potential extension. Moreover, the assumption I's G E leads to a contradiction:
Given T'y & E, this indicates the existence of some =% € Dge (where w = = Miracle(a*) or
w = Initially( f,p) for some action sequence a* or some ground instance f,;, wrt. Fgup ) such
that —w € E but —w ¢ I'y. Let Q be the set of all these w,ie., Q:={-we F:-w¢Tly}.
Then E':= (E\Q)U{w: -w € 2} is an extension of (Dg¢, Wr¢). From Lemma 28, we know
that E’ is potential extension. Let M’ be an interpretation corresponding to E’ such that M’
is a model of O. From the construction of £’ and from (51), it follows that A’ contains
strictly less abnormality assumptions than M , given that € is non-empty. Thus, M’ < M ,
which contradicts M being preferred model.

It remains to be shown that F is prioritized according to Definition 26. Let < be any total
ordering induced by F . Furthermore, let E’ be any extension of (Drc,Wre), and let M’ be
an interpretation corresponding to E’ such that M’ is a model of . Suppose ;}‘*,’/ € Drc is
a default which is applied in E’\ E . We consider two cases:

1. If ' = - Miracle(a*) for some action sequence a*, then a* € T’ but a* ¢ Y. M being
preferred model, we know that M’ A M . Thus there also exists some b* € T such that
b* ¢ Y’ . Hence, ~Miracle(b*) € E, —=Miracle(b*) ¢ E', and —2racte(bl) o ioMiracte(a)

—Miracle(b*) —Miracle(a*)
(since < is induced by F), that is, there exists a default which is preferred (wrt. <)
(A)l

to =%~ and which has been applied in £\ £.

2. If W' = Initially(f,;) for some ground instance f,; of some fluent name in F,;, then
fap € Res'([]) but fup & Res([]). Again, M being preferred model, we know that
M’ £ M . Thus either there exists some action sequence «* such that ¢* € T and
a* € Y', or there exists some f!, € F,, such that f/, € Res([]) and f!, & Res'([]).

:w'
(A)/

As above, this implies the existence of some default —*< which has been applied

in E\E".

[43

= 7: Let E be prioritized extension of Age . From Lemma 28 we know that F is potential
extension. Let M be an interpretation corresponding to F such that M is a model of O. We
prove by contradiction that M is preferred. Suppose there exists a preferred model M’ of O
such that M’ < M . This implies the existence of a corresponding prioritized extension FE’
of Are according to the first half (“ < ”) of this proof. Given M’ < M , we distinguish two
cases:

: 2 Miracle(a*)
ﬁMiracle(a*)
in E'\ E. Tt also implies there is no #{%,ﬂ%} € Dzc which is applied in E\ E’. Since
each total ordering in the sense of Definition 26 must respect <gz¢ , this contradicts &

1. Suppose Y& T . This implies the existence of some € Dgc which is applied

being prioritized extension.

2. Suppose Y = T and Res'([]) N Fup G Res([]) N Fup. This implies the existence

: Indtially(f1,)
Initialty(f!,)
: Initially(Fap)

no el () € Drc which is applied in F \ E’. Moreover, there cannot be some
nitially( fqp

%{el&(g) € Drc which has been applied in £\ E’ due to T/ = T . Altogether, this

contradicts F being prioritized extension.

of some € Dgc which is applied in E'\ E. It also implies there is
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