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Abstract

This paper studies interactive proof systems using public coin tosses, respectively
Arthur-Merlin games, with a sublogarithmic space-bounded verifier. We provide ex-
amples of specific languages and show that such systems working with bounded num-
ber of rounds of interaction are unable to accept these languages. As a consequence,
a separation of the second and the third level of the round/alternation hierarchy is
obtained. It is well known that such a property does not hold for the corresponding
polynomial time classes: in [?Proceedings of the 17th ACM Symposium on Theory
of Computing”, ACM Press, 1985, 421-429] Babai showed that the hierarchy of com-
plexity classes AMTime(POL) collapses to the second level.
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1 Introduction

A stochastic Turing machine model (STM) as introduced by Papadimitriou [Pa85] is a nondeter-
ministic machine extended with the ability to perform random moves. Alternative characterizations
can be given by interactive proof systems of Goldwasser, Micali and Rackoff [GMR&9] and Arthur-
Merlin-games of Babai see also [GoSi86] and [Co89]. In a probabilistic state a stochastic machine
M chooses among the successor configurations with equal probability.

A computation of M on an input X can be described by a computation tree. To define acceptance
of X, for each nondeterministic configuration one chooses a successor that maximizes the probability
of reaching an accepting leaf. The acceptance probability of X is then given by the acceptance
probability of the starting configuration in this truncated tree. M accepts a language L in space S
if

e for all X € L, the probability that M accepts X is more than 3/4,

e every X ¢ L is accepted with probability less than 1/4, and

e M never uses more than S(|X|) space.

Definition 1 Let M A Space(S) (resp. AMySpace(S)) denote the set of languages that can be ac-
cepted by such a machine in space S making at most k — 1 alternations between nondeterministic
and probabilistic configurations and starting in nondeterministic (resp. probabilistic) mode. For such
a machine we also say that it works in space S and k rounds.

This paper studies space complexity classes defined by stochastic machines that use less than
logarithmic space. We provide examples of specific languages and show that such machines are
unable to accept these languages. As a consequence, new separation results for considered classes
are obtained.

Dwork and Stockmeyer were the first who investigated interactive proof systems with small space-
bounded verifiers [DwSt92]. The separation results presented in [DwSt92] are stated for constant
space, but they can be extended to any sublogarithmic bound (see e.g. [Co93]).

It has been shown that for sublogarithmic space bounds it makes a difference whether the random
moves are known, as it is the case for a STM, resp. for Arthur-Merlin games, or whether they are
hidden as in interactive proof systems. The language PALINDROME of all strings that are palindromes,
is an example that can easily be recognized by an interactive proof system with a constant space-
bounded verifier and hidden random moves, but requires logarithmic space otherwise (see [DwSt92]
and [Co93)]).

This property does not hold for the corresponding polynomial time classes AMTime(POL).
Here, POL denotes the set of all polynomials. Furthermore, it has been shown [Ba85] that for
polynomial time any number of rounds can be reduced to two rounds, that is

M AsTime(POL) C AM;Time(POL) = AMconTime(POL) .

One might expect that for at least logarithmic space bounds similar to alternating Turing ma-
chines (ATMs) the alternating stochastic hierarchy collapses to some level. On the other hand we
have obtained some evidence that for space bounds S € SUBLOG = Q(llog)No(log) the situation
is different. Here llog denotes the logarithmic function log iterated twice.

Extending an impossibility result for 2-way probabilistic finite automata one can show that the
language

CENTER := {wlz|w,z€{0,1}* and |w|=|z|}

cannot be recognized by a sublogarithmic space-bounded probabilistic Turing machine with any
error probability € < % [FrKa94]. However, there exists a constant space interactive proof system
for CENTER. Hence, for any S € o(log), languages CENTER and PALINDROME yield the following
separations:



BPSpace(S) = AMySpace(S) C AM Space(S) C AMSpace(log) =P .

The last equivalence is due to Condon [Co89].

A sublogarithmic STM may require exponential expected time. It is shown in [DwSt92] that
some languages cannot be recognized by such machines faster — CENTER is one of such example. On
the other hand, the power of sublogarithmic space bounded STMs restricted to polynomial expected
time is still an open problem. In this case we do not even know if stochastic finite automata can
recognize nonregular languages (see [DwSt92] and [CHPW94]).

Let BIN(m) := bin(0)# bin(1)# bin(2)# ...# bin(m), and define

PATTERN = {wi % wa* ... % wy*u*BIN(2Y) |wy, ..., w, € {0,1}*
for some t, k € N and w € {w,...,we} }.

One of the main results of this paper says the following:

Lemma 1 For S € o(log), an S-space-bounded STM cannot recognize PATTERN in 2 rounds starting
wn probabilistic mode, that is

PATTERN ¢ AM;Space(o(log)) .

On the other hand, it is not hard to see that switching the quantifiers the problem can be solved
within small space.

Lemma 2 For arbitrary small € > 0, there exists an llog —space-bounded STM M for PATTERN with
error probability € that works in 2 rounds starting in nondeterministic mode, that is

PATTERN € M AsSpace(llog) .

Moreover, M works in polynomzal time.
Therefore, we obtain the following separation
Theorem 1 M AsSpace(llog) € AM;Space(o(log)) .

We conjecture that the alternation hierarchy for sublogarithmic space-bounded STMs is infinite,
similar as for standard ATMs, that means

AM, Space(S) C AMsSpace(S) C AMszSpace(S) C ...

It is interesting to notice that the AMjSpace(S) and M ApSpace(S) classes do not seem to be
complementary, since

Lemma 3
PATTERN ¢ M AsSpace(o(log)) .

Obviously, this result implies that at least for sublogarithmic space bounds S the classes M A3 Space(S)
and M AzSpace(S) are not closed under complement. An interesting open problem is whether the
same holds for remaining M Ay Space(S) and AM} Space(S) classes.

The remainder of this paper is organized as follows. In Section 2 some definitions and notions are
introduced. Section 3 contains the proofs of our lower bound results (Lemma 1 and 3). In Section
4 a stochastic Turing machine for PATTERN is described what proves Lemma 2.



2 Preliminaries

The Turing machine model we consider is equipped with a two-way read-only input tape and a single
read-write work tape. The input word is stored on the input tape between end-markers $.

A memory state of an STM M is an ordered triple @ = (¢, u,7), where ¢ is a state of M, u a
string over the work tape alphabet, and ¢ a position in u (the location of the work tape head). A
configuration of M on an input X is a pair (o, j) consisting of a memory state o and a position j
with 0 < j < |X|+ 1 of the input head. j = 0 or j = |X| + 1 means that this head scans the left,
resp. the right end-marker. We say that a configuration (a, j), with & = (g, u, i), is nondeterministic,
probabilistic (or random), accepting or rejecting, according to gq.

We call a phase of computation of M a probabilistic round if M starts the phase in a probabilistic
configuration and makes only probabilistic steps during the phase. Analogously we call a phase of
computation a nondeterministic round if M starts in a nondeterministic configuration and performs
only nondeterministic steps during the phase. Let for a probabilistic configuration C' and an arbitrary
configuration D

Rmovex c (D)

denote the event that M with X on its input tape and starting in C' reaches the configuration D in
a probabilistic round. Let for a nondeterministic configuration C

Nmovex ¢ (D)

denote the predicate that is true if and only if M starting in C' on the input X reaches the configu-
ration D in a nondeterministic round.

The word probabilities of M on a word Z over the input alphabet of M is defined as follows. A
starting condition for the word probability is a pair («, h) where « is a probabilistic memory state
of M and h € {1,|Z]|} what means that M starts according to the value of h on the first or on the
last symbol of Z in memory state a. A stopping condition for the word probability is either:

1. a pair {(a, h) as above meaning that in a probabilistic round the input head falls off the h-th
symbol of 7 with M in memory state «,

2. ”R-Loop” meaning that the probabilistic computation of M loops forever within Z, or

3. 7Alter, ,” meaning that within Z M alternates from a probabilistic to a nondeterministic
round visiting for the last time an end of 7 in configuration («, h).

For each starting condition ¢ and each stopping condition 7, let p(Z, o, 7) be the probability that
stopping condition occurs given that M started in starting condition ¢ on Z. Note that for any
starting condition («, h) and any stopping condition of type (3) it holds that p(Z, («, h), Alterq: p1) =
0 if (o, h) # (o', h').

We model computations of a probabilistic round of M by Markov chains with finite state space,
say 1,2,...,s for some s. A particular Markov chain is completely defined by its matrix R =
{rij}lgi,jgs of transition probabilities. If the Markov chain is in state 7, then 1t next moves to state
J with probability r;;. The chains we consider have the designated starting state, say, state 1, and
some set T of trapping states, so v, = 1 for all k& € Tg. For k € Tg, let p*[k, R] denote the
probability that Markov chain R is trapped in state & when started in state 1.

Let 8 < 1. Say that two numbers r and 7’ are §-close if either (i) r =’ =0, or (ii) » > 0, 7' > 0,
and g~! < r/r’ < B. Two Markov chains R = {rijhi<ij<s and R’ = {7'2]»}19'7]'53 are f-close if 74
and 7'2]» are [-close for all pairs 1, j.

Lemma 4 (Dwork, Stockmeyer) Let R and R’ be two s-state Markov chains which are 3-close,
and let k& be a trapping state of both R and R’. Then p*[k, R] and p*[k, R'] are (3*-close where
z = 2s.



We characterize a word 7 according to a nondeterministic round of M on Z by word transitions.
As previously, a starting condition for the word transition is a pair («, h) where « is a nondeter-
ministic memory state of M and h € {1,|Z]}. A stopping condition for the word transition is
either:

1. a pair (a, h) as above,
2. ”N-Loop” meaning that the nondeterministic computation of M loops forever within Z,

3. 7Accept” meaning that M halts in the accepting state before the input head falls off either
end of Z, or

4. "Reject” meaning that M halts in the rejecting state before the input head falls off either end
of 7.

For each starting condition ¢ and each stopping condition 7, the word transition ¢(7, o, 7) equals to
one if M starting in o can reach 7 on Z during a nondeterministic phase; otherwise it is zero.

3 Lower bounds

In this section proofs of Lemma 1 and 3 will be given. To show this results, we extend the methods
from [DwSt92] and some of [LiRe93].

Let us assume that M be an arbitrary STM, of space complexity S € o(log). By Vol(N) we
denote the number of possible memory states of the machine M on input words of length N. Let n
be a sufficiently large integer of the form 2.

Proof of Lemma 1. We will show that M making first a probabilistic and than a nondeter-
ministic round can be fooled when it works on the inputs of the form

W1k Wa *k ...k Wy k Wpp1 * ...k Wap * U *x BIN(n) ,
with |w;| = |u| = k. Let N denote the length of such input, i.e. let
N :=2n-(k+1)+k+1+|BIN(n)|.

Note that Vol(N) < 2005(N)) Moreover, since S(N) € o(log N) note also that S(N) € o(log n).
We will consider the word probabilities and the word transitions as defined in the previous section.
We restrict ourselves to words Z from a set

Wop Clwy s wg *...kxwy x |wy,...,w, E{O,l}k}
such that
1. for any word wq * wg * ... % w,* and x1 * g * ... % z,* in W, it holds:

{wi,wa, .., wa b\ {z1,29,...,2,} # 0

2. |W,| =27

Note that sets as assumed above exist. Let W, be fixed. Denote by N = n - (k + 1) the length of
words in W,,. Hence for arbitrary Z € W,, the number of word probabilities

dy = 8- (Vol(N))? +2-Vol(N)
and the number of word transitions
dy =4-(Vol(N))* +6-Vol(N) .

Fix some order of the pairs (o, 7) of starting and stopping conditions for word probabilities as well
as some order of the pairs (o, 7) for word transitions. Let p(Z) be the vector of the d, probabilities
and let t(7) be the vector of the d; transitions according to these orderings.



Fact 1 If p is nonzero element of p(7), then p > 2~ Vo) N

This claim follows easily from the fact that the shorter computation path of M on Z that starts
and ends in specific configurations is not longer than Vol(N) - N.

Divide first W,, into equivalence classes defining that two words 7 and 7’ are equivalent if and
only if p(Z) and p(Z’) are zero in exactly the same coordinates. Let E, be the largest equivalence
class. Hence |Ey,| > |W,|/2%. Let Z € E,. Note that by Fact 1 the interval in which each nonzero
coordinate of p(Z) lies is [2=V (NN 1],

Let log p(Z) be the vector with the i-th coordinate equals to log p(Z)(i) if p(Z)(i) > 0 and
zero otherwise. Hence each coordinate of log p(Z) lies in the interval [-Vol(N) - N, 0]. We divide
each interval [=Vol(N) - N, 0] into subintervals of length g. Tn this way we divide the space

[-Vol(N) - N, 0]% into (W)dr‘ cells, each of the size p x p x ... x p.
We want to choose pi very small but large enough that the number of cells is smaller than |E,,|/29.
To guarantee the last condition we want to have

Vol(N) - N\™  |W,| .
< p ) = 2hod ®

Let us assign

poi= 2=V

For this value inequality (i) holds, for sufficiently large n, since

N) 8-(Vol(N))?+2-Vol(N) .
< 2™

912:(Vol(N))*+8-Vol(N) <V01(N) :
0

Assuming (i) there must be more than 29t words Z in E,, such that log p(Z) belong to the the
same cell. Let us denote such a subset of F,, by F,,. Therefore for any pair of different words 7
and Z' from F), if p and p’ are two nonzero probabilities in the same coordinate of p(Z) and p(Z7'),
respectively, then

|log p —log p'| < p
and it follows that p and p’ are 2#-close. Therefore p(7) and p(Z’) are componentwise 2F-close.
Since there are at most 2% different transition vectors, hence there must be two different words
Z,7'" € F,, with the same transition vector.

So, to sum up there are two different words X and Y in W, such that p(X) and p(Y) are
componentwise 2¥-close and t(X) = t(Y).

Let us fix such two different words X and Y. Let X = xixxox*.. xzyx and let Y = yyxyq*. . xy, *.
From the definition of W,, there exists a word € {z1,2z3,...,2,} \ {v1,¥2,...,yn}. We describe
Markov chains Rxy, Ryx, Rxx, and Ryy which model the probabilistic phase of computation of
the machine M on inputs

Zxy = XY xBIN(n),
Zyx = Y X zBIN(n),
Zxx = X X xBIN(n),
Zyy = Y Y zBIN(n),

respectively. Let us denote the set of these four inputs by Z. Each chain has
s = 14-Vol(N)+4
states. The first 7- Vol(N) states have the form («, h), where a is a memory state, and
he H:={0,1, NN N+1, 2N, 2N+1, N+1}.



An intuitive meaning of a state (a, h) of the chain Rxy is: start M in configuration («, h). Since
|X|=|Y|= N and |Zxy| = N position h = 1 or h = N means that M scans the left end of X, resp.,
the right one; h = N +1 or h = 2N means that M reads the left or the right end of the string Y and
the position h = 2N + 1 means the left end of z BIN(n) $. h = 0 or h = N + 1 means that M’s head
scans the left, resp. the right end-marker. The meaning of state («, k) for the remaining chains is
analogous. The next 7-Vol(N) states of each chain have the form ” Alter, »”, with « and h as above.
Its meaning is: M alternates from a probabilistic to a nondeterministic round scanning for the last
time before this alternation a position in H in configuration (a, h). The last four states are the
following: R-Loop;, R-Loop,, R-Loops, R-Loop,. For chain Rxy they mean that the probabilistic
computation of M loops forever on the left end-marker, within X, ¥, z BIN(n) $, respectively. For
remaining chains the meaning is analogous. Let Cy = (g, 1) be an initial configuration of machine
M. The initial state of each chain is {ag, 1).

The transition probabilities r;; of Rxy are obtained from word probabilities of M on the sub-
strings: $, X, Y, z BIN(n) $, and assuming the following definition of the set of trapping states:

{Altery p | @ is a memory state, h€ H} U {R-Loop; | i =1,2,3,4}.

More precisely, the transitions r;; such that states ¢,j are applied both to the same substring:
$, X, Y, or z BIN(n) $ are equal to an appropriate word probabilities of M on this substring. E.g. if
i = (a,2N) and j = (8, N +1) then r;; = p(Y, (o, N}, (3, 1)) since the position 2N and N + 1 means
the last resp., the first symbol of the substring Y in Zxy. The transitions r; = 1 for any trapping
state k. Remaining values r;;, i.e. transitions for states ¢, j connecting with two different substrings
are defined as follows. If i = (a1, h1) and j = (a3, hs) then the transition equals to the probability
that M reaches in one step the configuration (as, hs) starting in (aq, h1). Otherwise r;; = 0.

The transition probabilities of Ry x, Rxx, and Ryy are obtained analogously.

W.l.o.g. we assume that the left symbol of X is the same as the left one of Y. Note that
by definition, the right symbols of X and Y are equal. Hence a transition for any pair of states
t,j connecting with two different substrings, is the same in all considered chains. From this and
from the fact that p(X) and p(Y) are componentwise 2¥-close we have that for any pair of chains
R,R' € {Rxy,Ryx, Rxx, Ryy }, they are 2¢-close. Hence using Lemma 4 we obtain

Fact 2 For each state Alter,  the probabilities p*[Alter, », R] and p*[Alter, », R'] are 223k _close.

We consider now a probability that M accepts an input Z € Z. Let R be the Markov chain for
7 and let ACCEPT(Z) be the set of nondeterministic configurations D such that M starting in D
with Z on the input tape accepts in a nondeterministic round. Then

Pr[ M accepts 7] = Z Pr[ Rmovez ¢y, (D) ] .
DEACCEPT(Z)

Let Z; ¢, with 0 < j < £ < |Z] denote the substring of the word Z consisting of j-th, j+ 1-st, ..,
£-th symbol of the word Z. Moreover, let for a probabilistic configuration («, h), where h € {j, ¢},
and for a nondeterministic configuration (8, 1), with j <i < ¥,

b(Zj,Za «a, haﬂal)

be the conditional probability that M started in configuration (a,h) and making a probabilistic
round with the input head within Z; , reaches configuration (3,4) under the condition that M
alternates from a probabilistic to a nondeterministic round working within 7; ; when started in

(o, h).



Fact 3 Let (3,7) be a nondeterministic configuration, and let 1, hy be two consecutive numbers in
H such that hy <7 < hy. Then it holds that

Pr[ Rmovez ¢, (3,1)] = Z p*[Altery 5, R] - b(Zp, 5y, 0, h, 3,17) .

a—random
he{hi,ha}

Proof. Denote by A(a, h), with h € {h1, ha}, the event that M with Z on its input tape has a
computation path Cy, ..., Cy such that

- Cly,...,Cy_1 are probabilistic and the last configuration C} is nondeterministic;
— the input head position of C} lies between h; and hs;

— in the sequence Cy, ..., C; («, h) is the last configuration with the input head position equals
to hy or to hs.

Let B(a, h) denote the same event as A(a, h) but with the restriction that the last configuration
Cy = (B,1). Moreover, let Ay, p,(a, h), be the event that M alternates from a probabilistic to a
nondeterministic round working within Zp, », when started in («, h) and let By, 5, (o, h) denote the
event that M started in configuration («, k) and working in a probabilistic phase with the input
head within Zj, 5, reaches configuration (3,4). Obviously,

Pr[A(a, h)] = Z Pr[M performs C] - Pr[Ap, n,(a, h)],
CERPATH(a,h)

where RPATH(«v, h) denotes the set of all probabilistic paths of computation that start in the initial
configuration Cy and end in (e, h). Similarly

Pr[B(a, h)] = Z Pr[M performs C] - Pr[Bp, »,(a, h)] .
CERPATH(a,h)

If Pr[A(a, h)] # 0 then it holds that

Pr[B(a,h)]  Pr[Bp, n,(a,h)] .
PrlA(a, )]~ Prldp(a k) ket 2

since By, n,(a,h) C Ap, (e, h). Hence
Pr[B(a, h)] = Pr[A(a, h)] - b(Zh, by, 0, b, 3,9) .

Clearly, this equality holds in case Pr[A(«, k)] = 0, too. Therefore we have

Prl Rmovezcy(B,i)] = 0 PrBlah)] = 3 PrA(@h)]-b(Znynarash, B)
a—random a—random
h€{h1,h2} he{hi,ha}
what proves the fact since Pr[A(«, h)] = p*[Alter, p, R]. |
Now define
P(Z) = > > pi[Altera n, Rl - b(Z) x, @, h, B, )

(8,i)€EACCEPT(Z) «a-random
1<i<N he{1,N}



Py(7Z) = Z Z p*[Alterq 5, R] b(ZNnt1,08, 0, b, 3,0) +

(8,i)€EACCEPT(Z) a—random
N+1<i<2N he{N+1, 2N}
> > p*[Altera n, R] - b(Zyx 41 N1 @, b, B, 6)
(8,i)€EACCEPT(Z) a—random

ANH1<i< N+1 he{2N+1, N+1}

W.l.o.g. assume that M does not alternate with the input head positions in H. Hence and by Fact 3
we have
Pr[ M accepts Z ] = Pi(Z)+ P2(7) .
By the fact that X and Y have the same word transitions (i.e. t(X) = t(Y’)), we conclude that for
any ¢ with 1 <4 < N and for a pair of input strings 7 = Zxy, 2’ = Zxx or Z = Zyx,Z' = Zyy
i.e. for a pair of inputs from Z with the same substring on positions 1,2,..., N holds:
(3,1) € ACCEPT(Z) = (B,1) € ACCEPT(Z') . (i1)
This equivalence also holds for i with N +1 < i < N 41 and a pair of inputs: Z = Zxy,Z' = Zyy
or 4 = Zy)(,Z" = Zxx.
Fact 4 The vectors
( Pi(Zyy), Pa(Zyy), Pi(Zxy), PaZyx)) and
( Pi(Zyvx), Pa(Zxv), Pi(Zxx), PaZxx))

are componentwise 2%°“-close.

Proof. We show that the numbers Py(Zyy), and Pi(Zyx) are 2**#-close. The proof that the
remaining pairs are 22*#-close is similar and we omit it here.
From the definition we have

Pi(Zyy) = > > p[Altera , Ryy] - b(Y, o, b, 3,1) .
(8,i)EACCEPT(Zyy) a-random
1<i<N he{1,N}

Since for each configuration C' = (8,i), with 1 < i < N, C € ACCEPT(Zyx) if and only if C €
ACCEPT(Zyy) (by the equality (ii)) hence

Pi(Zyx) = > > plAltera s, Ryx]-b(Y,a, h, B,4) .
(8,i)€EACCEPT(Zyy) a-random
1<i<N he{1,N}

The claim follows since by Fact 2, for each state Alter, , the probabilities p*[Alter, 5, Ryy] and
p*[Altery », Ry x] are 225k _close. |

Note that because 22%# is close to one, the above fact says that the appropriate values are very
close to each other.

Now we can easily show that the AM5; machine M is unable to accept PATTERN . Let us assume
to the contrary that M recognizes the language with probability 1 — ¢, where ¢ < 1/4. Since
Zxv,Zyx,Zxx € PATTERN we have that for these inputs Z, Pr[ M accepts Z | > 3/4. Hence, and
by Fact 4 the probability that M accepts the input Zyy can be estimated as follows:

Pr[ M accepts Zyy ] Pi(Zyy)+ Pa(Zyy)

2750 (P (Zyx) + Po(Zxy))

272 (6/4 = (Pa(Zyx) + Pi(Zxv)))
272K (6/4 — 221 (P (Zxx) + P2(Zxx)))
929k . 6/4— 1 .

vV IV IV IV



But for the chosen value p and sufficiently large n we have
272 gf4— 1 = 27w (VIS g4 1 > 1/3,

what yields a contradiction since Zyy ¢ PATTERN. |
Proof of Lemma 3 (Sketch). Assume now that M is a M Az machine that recognizes PATTERN.
We show that M can be fooled when it works on the inputs of the form

W1k ...k Wy k Wyg1 * ...k Wap * Wapg1 * ... W3, * U *x BIN(n) |

with |w;| = |u| = k. To show this we slightly modify the previous proof.

Let N := 3n-(k+ 1)+ k+ 1+ |BIN(n)| be the length of the considered input words and let X
and Y be two words in W,, as described in the proof of Lemma 1. Now we consider a behaviour of
M on the input

Jyy =YY Yz BII\I(n)

that obviously belongs to PATTERN. Let p be the probability that M accepts the input, i.e. let

p = max {Pr[M accepts Zyy started in C] | Nmovez,, ¢,(C)} .

C —universal

Denote by C, = (a,, 1) a probabilistic configuration, with Nmovez, , ¢,(Cp), and the probability
that M accepts Zyy started in C, equal to p. Then three cases can occur:

e 0<i, <N,
oN—i—lSipS?N,or
e 2N +1<i, < N+1.

We will consider the first case only. The remaining cases are analogous and we omit them here.
Similarly as in the proof of Lemma 1 we will consider Markov chains Rxy, Ryx, Rxx, and Ryy
which model the probabilistic round of the machine M on inputs

Zxy = Y XY=z BII\I(n) ,
Jyvx = YY X«x BII\I(n) ,
Jxx = Y X Xz BIl\I(n) ,

and on Zyy, respectively. Each chain has s = 20 Vol(N) + 5 states. The first 10 - Vol(N) states
have the form (a, h), where « is a memory state, and

h €{0, ip, ip+1, N, N+1, 2N, 2N +1, 3N, 3N +1, N+1} .

The next 10 - Vol(N) states of each chain have the form ” Alter, ”, with o and h as above. The
last five states are the following: R-Loop; with j = 1,...,5. The meaning of the states and the
definition of the transitions r;; is the same as in the proof of Lemma 1. The only difference is that
we assume now that the initial state of each chain is (a,,ip). Obviously, for any pair of the Markov
chains Fact 2 holds.

Let us define for each word Z € {Zxv,Zvx,Zxx,Zyvy }

P(Z) = > > prlAltera s, Rl -b(Zos,, o, h, B,1) +
(8,i)EACCEPT(Z) «a-random
0<i<iy he{0,i,}



3 > p[Alteran, Rl b(Z;, 41 5oa b, B0) +

(8,i)€EACCEPT(Z) a—random

i, +1<i<N hef{i,+1,N}
> > p*[Altera n, R] - b(Z5 41 o5, @, b, B,9)
(8,i)€EACCEPT(Z) a—random
N+1<i<2N he{N+1,2N}
Py(Z) = > > p[Altera n, R] - b(Zyy 41 a5, o, b, B,1) +
(8,i)€EACCEPT(Z) a—random
2N+1<i<3N he{2N+1, 3N}
Z Z p*[Altera,haR] 'b(ZSN-}-l,N-I—l’aah;ﬁa Z)
(8,i)€EACCEPT(Z) a—random

3N+1<i<N+1 he{3N+1, N+1}

It is easy to see that for the values as defined above Fact 4 holds.

Now we are ready to estimate the value p. Note that for any Z € {Zxvy, Zyv x, Zx x } because word
transitions ¢(X) and ¢(Y") are equal and because we have that Nmovez,. . ¢,(Cp), Nmovez c,(Cp)
holds, too. Therefore the probability that M accepts Z starting in C, does not exceed 1/4 since
7 ¢ PATTERN. On the other hand, by Fact 4 we have

Pr[M accepts Zyy] = p Pi(Zyy)+ P2(Zyy)

< 2¥F(Pi(Zyx)+ Pa(Zxy))
< 28K (1/2 = (Pa(Zyx) + Pi(Zxy)))
< 2BH(1/2 =270 (P(Zxx) + Po(Zxx)))
< 2EHEL1/2
< 2/3.
This yields a contradiction since Zyy € PATTERN. |

4 Space efficient algorithms for STMs

In this section we show a 2-round, llog-space bounded STM M that starting in nondeterministic
mode recognizes PATTERN . This proves Lemma 2. An algorithm for M is based on [Fr79).

The machine M checks first whether the input is of the form wy*xws*. . . xw;*u BII\I(Qk) for some
integer k£ > 0 and words wy, ws, ..., w;,u € {0,1}%. Then it verifies the condition u € {wy, ..., ws}
as follows:

1. nondeterministically it guesses an index ¢ with 1 < i <¢;

2. randomly it chooses a prime q with 2 < ¢ < k? and then computes r := n,,, mod q, where n,,,
denotes an integer with the binary representation w;;

3. it accepts if r = n, mod ¢q; otherwise it rejects.

If for some 2, with 1 < ¢ < ¢, the strings w; and u are equal then of course n,, = n, mod ¢
for any value ¢ and machine M accepts correctly in step 3. If w; # u than it could happen that
Ny, = Ny mod ¢ and M reaches in step 3 the accepting state that is wrong however. We show that
this happens with small probability. Indeed. Since |n,, — n,| < 2* hence n,, — n, has at most 2*
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Lk different primes at the

different prime divisors. On the other hand, M chooses from about 5
beginning of step 2. So the probability that it chooses value ¢ that divides both n,, and n, is at
most &%Lk what tends to 0.

Obviously, M uses O(llog n) space.

5 Conclusions and Open Problems

In this paper a separation was obtained for sublogarithmic AM}Space complexity classes on the
second level of the round/alternation hierarchy. An interesting open problem is if our separation
can be generalized on any level. Is it true that similar to ATMs, this hierarchy is infinite?

How looks the round/alternation hierarchy for at least logarithmic space bounds? Using a simple
simulation of space-bounded NTMs by one-sided-error probabilistic TMs (see e.g. [Gil77] or the
survey paper [Ma95]) one can easily show that

AMsSpace(log) = AM;Space(log) ,

that means the AMjs-class is quite weak in case of space bounds — contrary to time bounded classes.
Is it also true that

AM>Space(SUBLOG ) = AM;Space(SUBLOG ) ?

What is the situation for space bounds S smaller than llog? The most interesting case seems
to be space bounds restricted to constant functions. It is well known that M A;Space(CON) =
N Space(CON) coincides with the class of regular languages. This result, however, does not extend
to the probabilistic classes. Freivalds has shown the surprising result [Fr81] that

COUNT := {1"01™ |n = m},

can be accepted by a probabilistic TM in constant space with an arbitrarily small constant for
the error probability. Is there a language that separate AM;Space(CON) and AMjSpace(CON)
classes, for some k > 1?7 Dwork and Stockmeyer ([DwSt92]) showed that CENTER does not belong to
AM; Space(CON) and that there exists a constant space interactive proof system for this language
([DwSt92]). Can the system be improved to make only constant number of rounds?
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