Structural Classification

A Preliminary Report

Jana Koehler* Kilian Stoffel
James A. Hendler?
TR-96-023
July 1996

Abstract
A new type of classification algorithm is introduced that works on the folded represen-
tation of concepts. The algorithm comprises two phases: a preprocessing phase working
on the normal-form representation of concepts to test for unsatisfiability and tautol-
ogy, and a structural classifier that generates predecessors and successors of concepts
by exploiting new optimization techniques not available to standard classifiers.
Working on the folded terminology instead of its expanded and normalized representa-
tion allows to significantly reduce the number of subsumptions tests that are necessary
to correctly classify a concept. We describe the algorithm, and prove it sound and
complete for two different languages. It can be extended to more expressive languages
when combined with a new method for reasoning about number restrictions over role
hierarchies based on diophantine equations.
The algorithm is very fast and very well parallelizable taking less than 4 hours for the
classification of a terminology of 100,000 concepts on an SP2.

*On leave from German Research Center for AI (DFKI), Stuhlsatzenhausweg 3, D-66123
Saarbriicken, Germany, e-mail: koehler@dfki.uni-sb.de

tUniversity of Maryland Department of Computer Science College Park, MD 20742, USA, e-mail:
stoffel @cs.umd.edu

{University of Maryland Department of Computer Science College Park, MD 20742, USA, e-mail:
hendler@cs.umd.edu

Contents
1 Introduction
2 Classification

3 The Description Logic 7F
3.1 Syntax
3.2 Semantics

4 The generative Classifier
4.1 Testing for Unsatisfiability and Tautologies
4.2 Generating Immediate Successors oL oL L
4.3 Generating Immediate Predecessors

5 Soundness and Completeness
6 An Example

7 Conclusion and Future Work

8 Appendix: Proofs of Theorems

23

23

26

27

1 Introduction

The demands of modern information technology applications, such as search engines
for large heterogeneous knowledge sources like the World Wide Web or the mining of
knowledge from databases, place new requirements on the development of the tech-
nology of knowledge bases. These systems must now scale to extremely large sizes
while still being able to deliver the benefits of knowledge based inferencing in terms of
expressivity and powerful inferential capabilities. Work in the PARKA project has been
focusing on the application of high performance computing technologies to Al knowl-
edge bases with a specific focus on developing knowledge representation languages that
can support applications with millions of assertions.

In particular, our work focuses on developing both an implementation and underlying
computational science of the development of very large knowledge bases. We have de-
signed and implemented several versions of the KR language PARKA, which have been
supported on various supercomputers (including a recent implementation in C which
runs on a wide variety of machines including IBM SP-2, CRAY T3D, and Paragon plat-
forms). In addition, PARKA is being used to support applications including case-based
planning, defense transport logistics, and medical informatics — supporting reasoning
in knowledge bases ranging from tens of thousands to millions of logical assertions
(14, 13, 15].

However, although previous work has focused on developing a powerful language in-
cluding exception handling during inheritance, a graphical query interface, and tools
for browsing and editing very large knowledge bases, until recently little work has gone
into examining the underlying formal properties of the system. Thus, while PARKA
can handle complex “structure-matching” queries for a two million assertion knowl-
edge base in a few hundred milliseconds on a single processor Sparc, we have not
clarified the underlying descriptive reasoner or related the work to ongoing research in
the area of description logics.

In this paper, we take a step at removing this deficiency by relating the underlying
algorithm for some of PARKA’s most efficient inferencing to work on the classification
algorithms for description logics. We show that PARKA’s techniques yield a new type
of classification algorithm relying on the structure of concepts descriptions and prove
it sound and complete.

2 Classification

Description logics offer a convenient way to represent the taxonomic and conceptual
knowledge of a domain in the form of a terminology. To reason about terminologies,
two main inferential services are necessary. Subsumption, which determines whether
all instances of a concept are necessarily instances of another concept by taking into
account the concept definitions, and classification, which computes the concept tazon-
omy, i. e. all the subsumption relationships that hold between all the atomic concepts
in the terminology.

The efficiency of classification is crucial to the overall performance of descriptive rea-

soners, because it plays an important role in many reasoning activities of these systems.
The informal definition of classification as given above suggests that one can classify
a concept by computing its subsumption relationships to all other concepts. This
idea of classification through subsumption is a de facto standard in current descriptive
reasoning systems such as CLASSIC [4], KRIS [2], and LOOM [8]. In a preparatory
step, all concept descriptions of a given terminology are expanded by replacing de-
fined concepts through their definitions. Subsequently, the expanded descriptions are
transformed into a normal form that is required by a specific subsumption algorithm.
The classifier is working on the resulting normal-form terminology by invoking the
subsumption algorithm when needed.

There is common agreement that the cost for a single subsumption test is less critical
to the overall performance of a classifier than the number of subsumption tests that
are necessary to correctly classify a concept [6]. Optimization techniques therefore try
to minimize these tests [3]. A standard classifier traverses the taxonomy both from the
top down and the bottom up to find both the immediate predecessors and successors of
a concept in the taxonomy. Bottom and top search use positive and negative informa-
tion about successful or failed tests to infer further subsumption relationships without
invoking the costly test. These optimizations rely first of all on the transitivity of the
subsumption relation and can reduce the number of explicit tests significantly when
the taxonomy is deep, i. e. there are long “vertical chains” of concepts that the stan-
dard classifier can prune. If a taxonomy is large, but rather flat with many concepts
classified directly between top and bottom, significant optimizations are much harder
to achieve.

To make it possible for PARKA to scale to the extremely large knowledge bases needed
or the applications it is being put to, we developed an extremely efficient, parallelizable
“structure-matching” algorithm for computing numerous knowledge based inferences
in both serial and parallel versions. In formalizing this algorithm, we have realized
that the heart of it is a classifier which does exploit optimizations that are different to
those used by standard classifiers.

The structural algorithm we are going to present uses optimization techniques that
exploit the structure of concepts as it is available in their original and folded represen-
tation. Expansion and normalization steps “destroy” the internal structure of concept
descriptions and make all available information about existing subsumption relation-
ships vanish that can directly be read off a concept. For example, let us consider the
three concepts a =Vr.d, b =Vr.f, and ¢ = allb. The folded representation of ¢ tells a
classifier immediately that @ and b are its direct predecessors, while this information is
hidden in its expanded and normalized representation ¢ = Vr.(dM f). In contrast to the
standard classifier, which starts from the top and the bottom of a taxonomy to classify
¢, our structural algorithm starts its search at the subconcepts a and b mentioned in
the description of ¢, i. e. somewhere inside the taxonomy and then works towards the
bottom and the top.

The PARKA classifier consists of two parts: In a preprocessing step, concepts are tested
for unsatisfiability or tautology. Here, standard expansion and normalization algo-
rithms are applied to the concept description as in any common approach to classifica-
tion. In the second step, the structural classifier is activated on the folded terminology.

[ts normal-form representation can be discarded, but the knowledge of inconsistent and
tautological concepts and subconcepts is made available to the structural algorithm.
In the remainder of this paper, we first describe the particular description logic which
underlies the PARKA knowledge representation language (Section 3), and then describe
PARKA’s generative classifier (Section 4). Section 5 states the soundness and complete-
ness of the classifier for two different languages, and Section 6 presents an example of
its use. Section 7 presents conclusions and directions for future work, while all proofs
of theorems can be found in the Appendix.

3 The Description Logic 7F

PARKA uses slightly different languages to represent the knowledge bases in the various
applications. The languages differ mainly in the presence or absence of certain con-
cept forming operators. To make the presentation of the classification algorithm more
straightforward, we consider a language that covers these representation formalisms
as sublanguages. This enables us to define one classification algorithm instead of pre-
senting several versions of the classifier for each sublanguage. The superset of all these
languages corresponds to the concept description language 7 F defined in [10]. (PARKA
also offers an assertional representation formalism, multiple inheritance, transitive clo-
sure of roles, role composition, exceptions, and an expressive query language but these
are not considered in this paper.) In the following, we very briefly review the syntax
and semantics of 7F and define only the notation that we need to precisely describe
the classifier.

3.1 Syntax

The basic “building blocks” of the language 7F are concepls and roles, which denote
subsets of the objects of the application domain D and binary relationships over D
connecting objects, respectively. The concept T (TOP) denotes the whole domain,
while L (BOTTOM) denotes the empty set. Concepts are defined intensionally in terms
of descriptions that specify the properties which an object must satisfy to belong to
that concept.

Definition 1 Let ¢ and d be syntactic variables for concepl descriptions thal are buill
out of atomic concepts denoted by a, let v be a syntactic variable for role names, and
n be a non-negative finite integer. The following concept descriptions can be formed:

a (atomic concept)
T (universal concept)
1 (empty concept)

cld (concept conjunction)

Vr.c (value restriction)

Isnr (atleast number restriction)
Jd<nr (atmost number restriction)

New atomic concepts can be introduced with the help of terminological axioms and
terminological specializations.

Definition 2 Let a be an atomic concepl and d be a concept description, then a = d
is a terminological axiom.

Terminological axioms introduce atomic concepts as defined concepts by linking the
name of the atomic concept to its definition. Terminological specializations introduce
atomic concepts or roles as primitive concepts or roles, which remain completely un-
defined in the terminology.

Definition 3 Let a be an atomic concepl, d be a concept description, and r, s be roles,
then a < d and r < s are terminological specializations.

Definition 4 A terminology T is a set of terminological axioms and terminological
specializations.

As usual, we require that a terminology 7 is unique, which means that each atomic
concept and each role occur only once on the left-hand side of either an axiom or a spe-
cialization (they are either primitive or defined) and that 7 is cycle-free, i. e. an atomic
concept is not used (directly or indirectly) in its own definition. Roles are restricted to
be primitive and can only be introduced through terminological specializations. But
in contrast to CLASSIC [4] for example, we allow subroles in the language. The role
hierarchy forms a tree structure, since each subrole is restricted to be a subrole of
exactly one role.

Definition 5 An atomic concept ¢ is defined in T if it occurs on the left-hand side of
an axiom in T . It is primitive if it occurs on the left-hand side of a specialization.

To describe our classification algorithm we have to make a clear distinction between
the name of an atomic concept and its definition. When we speak of an atomic con-
cept we always refer to its name as occurring on the left-hand side of an axiom or a
specialization. When we speak of the definition of a concept ¢ we mean the right-hand
side of the terminological axiom or specialization introducing ec.

Definition 6 Let ¢ =T11; ¢; be a terminological axiom or ¢ < Me; be a terminological
specialization in T. DEF(c) is the set of concepl descriptions ¢i1,c¢q,...,¢; conlained
in the right-hand side of the axiom or specialization introducing c.

As an example, Vr.d € DEF(c) denotes that the definition of ¢ contains a value
restriction of the form Vr.d where r is a syntactic variable for a role name and d is a
syntactic variable for a concept description.

Definition 7 A term in T is either an atomic concepl or a primilive role.

3.2 Semantics

The formal model theoretic semantics of description logics uses the set of objects, the
domain D, for the interpretation of concept descriptions. Concepts denote a (sub)set
of objects, while each role denotes a set of object pairs. These sets are called extensions
of concepts and roles.

Definition 8 An interpretation T consists of a domain D and an extension function
E mapping each atomic concept ¢ to a subset E[c] from D and each role name r to a
binary relation E[r] over D.

Definition 9 Let C be the set of concepl symbols and R be the set of role symbols. D
is an arbitrary set and £ an arbitrary function:

C — 2P
&= R — 9DxD

& 1s an extension function iff the following equations hold:

ET] = D
ElL] = 0
Elend] = &l NE&d]
EVre = {a€eD|V3:{a,pB)€lr]=p€&[]}

E3xnr] = {aeD||{s € Dl{a,§) € E[r]}]| = n}
EBcnr] = {aeD||{s € Dl{a, §) € E[r]}]| < n}
The interpretation of a terminological axiom ¢ = d is the equation £[¢] = &£[d], while

the interpretation of a terminological specialization ¢ < d is the subset relationship

Ele] € &[d].

Definition 10 An extension function £ is a model of a terminology T iff E[c] = E[d]
for all terminological axioms ¢ = d and E[c] C E[d] for all terminological specializations
¢ < d are satisfied in T .

Definition 11 A concept ¢ is salisfiable iff it has a nonempty extension E[c] # 0 in
some model of T .

In order to prove soundness and completeness of the classifier we will need the notion
of subsumption.

Definition 12 Let T be a terminology and c,d be terms. d subsumes ¢ in T (¢ Cr d)
iff E[c] C E[d] holds in all models of T .

Definition 13 Two terms t1 and ty are equivalent in T (written t; = t3) if and only
if E[t1] = E[t2] in all interpretations T = (D, ext) of T.

The subsumption problem of this language has been proven to be co-NP-hard in [9].
The interaction of the subrole hierarchy, number restrictions, and value restrictions
makes the satisfiability problem PSPACE-complete [5, 7]. The availability of subroles
and number restrictions allows for the formulation of disjoint concepts, which seems
to be of interest for practical applications. Problems in computing subsumption have
already been illustrated in [10] (see also Section 4.1), but no solution has been devised
until today that would scale to real-world applications and common practice is to live
with an “almost” complete algorithm. Currently, all knowledge bases that have been
represented in PARKA did not make use of the full expressivity of the language 7 F,
but used one of the following two sublanguages:

1. TF° provides no subroles, but the whole range of 7 F-operators M, V, 35, 3<.

2. TF* allows to formulate subrole hierarchies (restricted to trees), but provides
no J< operator

The classifier is complete for these sublanguages, but incomplete for 7F because it
misses certain subsumption relationships that require to compute the actual number
restriction of a concept, cf. Section 4.1. The new approach to reasoning about number
restrictions over role hierarchies based on diophantine equations that has been devel-
oped in [11] would overcome this deficiency, but has not yet been integrated into the
classifier.

In discussing classification, we will also need the notion of the immediate successor and
the immediate predecessor of a term in a taxonomy.

Definition 14 Let ¢, d be terms for which ¢ CTr d but d # ¢ holds in all models of T .
The term ¢ is an immediate successor of d (written ¢ <. d) if and only if for all terms
b holds: If b T d then either ¢ = b or ¢ [L7 b. The term d is an immediate predecessor
of ¢ (written d = ¢) if and only if for all terms b holds: If ¢ T1 b then either d = b

or bl d.

Again, this treatment has been necessarily brief, and the reader is directed to [10] for
further details and discussion.

4 The generative Classifier

Given a terminology consisting of a fixed set of terminological axioms ¢ = IM;¢; and
terminological specializations ¢ < M;¢;, the general process of classification proceeds
as usual. The classifier starts with the empty taxonomy containing only the bottom
and top concepts and begins to insert primitive concepts ¢ < T and roles r < T.
Subsequently, defined concepts that are built out of already inserted subconcepts can
be classified. We assume that “redefinitions” of concepts are not allowed, 1. e. we cannot
remove a concept definition and replace it by a new one. In this case, a reclassification
of the affected parts of the taxonomy is necessary that we do not address in this paper.
Each single classification step proceeds in two main phases in PARKA. The prepro-
cessing phase takes a concept ¢ and computes its normal-form representation X'(¢, 7).

7

Then it invokes the tests TAUT and USAT to determine whether ¢ is tautological and
unsatisfiable, respectively. After the tests have been performed, X'(¢,7) is discarded
and the main classification phase returns to the original folded representation of ¢ and
analyses the ¢; used in its definition. Starting from their position in the taxonomy,
successors and predecessors are determined. This leads to the set of all (including non-
immediate) successors ;. and all (also including non-immediate) predecessors /|, of c.
A reduction operation removes all non-immediate successors and predecessors from the
two sets and with that the sets of of immediate successors SUCC(c) and immediate
predecessors PREC(c) of the concept ¢ in the taxonomy are known.

4.1 Testing for Unsatisfiability and Tautologies

In principle, in order to deal with the two special cases ¢ = T and ¢ = L any available
satisfiability and tautology checkers, for example methods based on constraint solving
techniques [5] or tableaux calculi [12], can be implemented here. In the following, we
describe the specific tests used in PARKA.

Normal-Form Representations

The preprocessing begins with the standard transformation of the terminology into a
normal form, see for example [10]. Primitive concepts that are introduced through a
concept specialization are transformed into defined concepts using auxiliary concepts
(usually called primitive components) that remain completely undefined in the termi-
nology, i. e. if ¢ < d then ¢ = d M ¢. Roles do not need to be normalized because we do
not have role forming operators in the language and the role hierarchy is thus fix for all
concepts in the taxonomy. The resulting terminology contains only defined concepts,
primitive components, and primitive roles. Similarly to the definition of an extension
function £ and an interpretation Z = (D, £) for the terminology, an extension func-
tion & and interpretation 7' = (D', &’) for the corresponding normal-form terminology
can be defined with £[t] = £'[t] for any term ¢ in the terminology. For details and
a proof we refer again to [10]. Based on the normal-form terminology, all concepts
are expanded, 1. e. defined concepts are replaced by their definition, which makes all
restrictions explicit that a concept inherits.

Definition 15 The expansion of a concept ¢ in T is defined as

X(d, T) ife=d € T
) VrX(d,T) ifc=Vrd
X(e,T) = X(er, T)NX (e, T) ife=c1Me
c otherwise

The expansion process terminates, since we assume that the terminology is cycle-free.
The process is also completely deterministic due to the uniqueness assumption. Ex-
pansion is extension-preserving, because replacing atomic concepts by their definition
does not change their meaning, i. e. £[¢] = E[X (¢, T)].

Based on the expansion of a concept ¢, PARKA computes the concept 7. that makes all
restrictions of a role r explicit that are inherited over the role hierarchy by ¢ and that
combines them with value restrictions of r that are spread over the definition of c.

Definition 16 Let ¢ be an atomic concept and X (¢, T) its expansion in T. IfVr.d €
DEF(X(c¢,T)) then the actual value restriction v. of r in ¢ is obtained as v, = M; f;1d
for all concept descriptions of the form ¥ s;.fi € DEF(X (¢, T)) where s; € {},. The

set £, comprises all predecessor roles of r and is compuled as
O, = {s|s>,r ors€ly withq-_r}U{r}

The set £}, is obtained by first looking up r in the taxonomy and then following ils links
to its immediate predecessors s. Then starting from all immediate predecessors s, their
predecessors q are collected recursively until T is reached and the process terminates.
When describing the classification algorithm, we will also need the set of all successor
roles of r that are collected from all paths starting in r and leading to L:

by = {s|s<,r or s €l withq<,r}U{r}

As an example let us consider the terminolog ¢ = aMVr.d,a =Vs.f,r <s, f = gMh.
We obtain 7. = d ¢ M h, which represents the actual value restriction of r in ¢ with
respect to 7. Replacing the concept description d with 7. in all occurrences of value
restrictions on r of form Vr.d is an extension-preserving transformation.

Tautologies in 7F

In general, tautologies can be formulated using disjunction and negation as in ¢ U —e.
Disjunction alone allows for the formulation of a tautology as T U L, i. e. joining a
tautology with an unsatisfiable concept. The lack of disjunction and negation in 7F
makes it impossible to formulate tautologies in this way and only two syntactical forms
of concept descriptions can lead to tautologies: ¢ =V r.T and ¢ = 3507.

Definition 17 Let X (¢, T) be the expanded normal-form representation of the concept
c. We define the recursive function T AUT (¢) as follows: T AUT (¢) is true if and only
if one of the following conditions holds

1. X(e,7T)=T

2. X(c¢,7)=350r

3. X(e,T) =Vr.d with TAUT(f,) = TRUE

4. X(e,T)=anb with TAUT(a) = TRUE and TAUT(b) = TRUE

Proposition 1 The test TAUT(c) for ¢ given in either TF® or TF* delivers TRUE
if and only if E[c] = D in all models of T .

All proofs of propositions and theorems can be found in the Appendix.

Unsatisfiability in 7F

Although the language 7 F contains no negation, unsatisfiability of concepts can be
caused by contradicting value and number restrictions.

e Vr. L Mds1r is unsatisfiable since the value of a role is restricted to the empty
set in the value restriction, while the number restriction requires the existence of
atleast one role filler.

e dc3r M d52s M 3521 is unsatisfiable if s and ¢ are subroles of r and the sets of
role fillers for s and ¢ are disjoint.

Disjointness of role fillers can be formulated in 7F by using contradicting number
restrictions as value restricting concepts. The following examples illustrate problems
that reveal how difficult it can be to discover the unsatisfiability of a concept.

Example 1 Given is the following set of concept definitions

B = BlMnB2
Bl = Vr.(3ls)
B2 = Vr.(3>2s)

with s and r arbitrary roles. The concepts Bl and B2 are satisfiable when considered in
isolation, but the conjunction B leads to an interaction between the roles, i. e. we have

B = Vr.(3<lsM3s2s)=Vr.L

where the value restricting concept is unsatisfiable. Therefore B would be a successor
of any concept A =V r.x since L is a successor of any concepl.

In general, the inheritance of restrictions over the role and concept hierarchies can lead
to contradictions that are much trickier to detect. The subsequent example illustrates
a simple case caused by disjoint value restrictions on subroles.

Example 2 The concept P introduces a person who has exactly two children, where
atleast two of them are girls and one of them is a boy.

P = 352kids M d<2kids T1 352 ¢girl T 351 boy
MV girl. 352 xchrom 1 Vboy.3<1 xchrom

The roles girl and boy are subroles of the kid-role, i. e. girl < kids and boy < kids
reflecting the fact that each girl or boy is also a child. The fillers for the girls and boys
roles are defined as being disjoint by stating a contradicting property for them using
the has-z-chromosomes role. Since the sets of girls and boys are disjoint, it can be
concluded that P must have atleast three children, which contradicts that P has atmost
two children, i. e. P has an empty extension. When the requirement <2 kids is absent,
i. . we only know that P has atleast two children, it follows immediately that 353 kids
must hold. Thus P would be subsumed by any concept descriplion containing 353 kuds.

10

In the following, we describe the unsatisfiability test used by PARKA. This test is
incomplete for the language 7 F, but complete for the sublanguages.

Definition 18 Let X (¢, T) be the expanded normal-form representation of the concept
c. We define the recursive function USAT(c) as follows: USAT(¢) = TRUE if and
only if one of the following conditions holds

(e,7)
2. X(e,T)=alb with USAT(a) = TRUE or USAT(b) = TRUE

3. X(¢,T)=VrdM3Isnsnc with USAT(7.) = TRUE and n > 0 and s € ly,
4. X(¢,T)=3snrN3cksNc withs € {), and n > k.

Proposition 2 Let ¢ be a concept description given either in TF® or TF* then
USAT(c¢) = TRUE if and only if E[c] = 0 in all models of T.

For the special cases TAUT(c) = TRUE or USAT(c) = TRUE no further classification
steps are necessary, since ¢ inherits successors and predecessors of T and L, respectively.
If ¢ is neither tautological nor unsatisfiable, USAT and TAUT forward a list of concepts
r. representing the actual value restrictions 7. of each role r contained in ¢ to the
classifier. If 7. is tautological it is simplified to 7. = T, if it is unsatisfiable it is
simplified to 7. = L. This knowledge is used during various steps of the classification
process and decides which successors or predecessors are generated. Other expansions
are no longer needed since the classifier works with the folded concept description.

4.2 Generating Immediate Successors

The basic idea for the generation of successors for a concept ¢, i1s to split ¢ into its
defining conjunctive elements ¢; and find concepts y that contain conjunctive elements
y; such that for all ¢; there is a y; which is a successor of it. In this case, y is a
successor of ¢ even if it contains or inherits concept descriptions x. As an example, let
us consider ¢ = ¢; MegMez and y =y My MNa. If y1 C ¢, y2 C ¢, and y3 C ¢3 holds,
then y1 Mys C ¢ Meg Mes is a valid conclusion and of course, y1 My M E ¢ Meg Mes
follows for arbitrary concepts x, i. e. y I ¢. This means that local tests on y; and ¢; are
sufficient for y to be a successor of c.

In the following, x and y denote atomic concept names contained in the taxonomy,
while ¢ and ¢; always refer to the current concept to be classified and its subconcepts.
Given a new axiom or a new specialization ¢ = ;¢; or ¢ < M;¢;, the classifier deals
with two special cases first:

o If ¢ < M,¢; has to be classified, the algorithm immediately returns SUCC(c)
= {L}. The justification for this result becomes apparent when we consider the
expanded normal form of ¢, which is X' (¢,7) = X(M;¢;,7) M ¢. Note that ¢ is
a new atomic concept name not contained in the taxonomy and that ¢ remains
completely undefined. Therefore there can be no concept y that contains ¢ and

11

with that, no y; can be a successor of ¢. Consequently, only bottom as a successor
of any concept remains in the solution set. Let us consider the following example,
where T comprises the two concepts man < person and father = man 1 351 child.
Obviously, father is a successor of man, but the algorithm does not return it the
reason being that man has to be classified before father can be inserted into the
taxonomy to make all subconcepts of father known to the system. This means,
when man is classified, no concept can exist in the taxonomy that uses it directly
or indirectly in its definition. Of course, when classifying father later on, man is
found as a predecessor of it.

o If ¢ = ¢; has to be classified and ¢; is atomic, then ¢ and ¢; are equivalent and ¢
inherits all successors of the node ¢; in the taxonomy.

input: ¢ = M;¢; or ¢ < M
preprocessing:

TAUT(¢) — {TRUE,FALSE}
USAT(¢c) — {TRUE,FALSE}
X(e,T) — 7. for any value restriction Vr.d in X(¢,7T)

SUCC: 1ifc=T¢
then if 1 = 1 (¢ = ¢1, ¢1 atomic) then SUCC(¢) := SUCC(ey)
if TAUT (¢) = TRUE then SUCC(c) :={T}
if USAT (¢) = TRUE then SUCC(c) := {L}
else compute /4.
reduce {1, to SUCC(c)
else (¢ < Mic;)
if USAT(M;¢;) = TRUE then ERROR (¢ < 1 not admitted)
else SUCC(c) := {1}

Figure 1: The simple Cases for SUCC

Figure 1 summarizes the simple cases for the SUCC algorithm. Note that the concepts
T and L represent also all concepts y that are equivalent to T (the test TAUT (y)
delivered TRUE) and L (the test US AT (y) delivered TRUE), respectively. The classifier
returns only T and L as the representatives of these classes of equivalent concepts.

The main and much more elaborate part of SUCC is the computation of the set ¢, that
is necessary for all ¢ that are defined as a single non-atomic ¢; or as a “true” concept
conjunction. For each ¢; € DEF(c) four possible cases are distinguished for which
separate generation steps are activated: ¢; can be (1) an atomic concept, (2) a value
restriction, (3) an atleast number restriction, or (4) an atmost number restriction.

12

Finding /.
Case 1: ¢; 1s atomic

Since ¢; is either a primitive or defined concept and thus already contained in the tax-
onomy its immediate successors can easily be collected by moving down the taxonomy.
Note that we add ¢; to the set £, contains ¢;.

by = {yly <, a} U {a} (1)

;; ¢; and the set of all immediate successors of c¢;

Figure 2: Search Space during Successor Generation

Figure 2 illustrates the search performed by the classifier during Step 1. Let us assume
that a concept ¢ = ¢;MeyMes has to be classified where each ¢; is an atomic concept, 1. e.
a node in the taxonomy. The structural classifier starts at these nodes and adds their
immediate successors (grey nodes) by following all possible paths towards the bottom
concept. The only concept in the taxonomy (besides L) that is a valid successor of all
three ¢; is the black node in the middle of the taxonomy that can be reached from each
of the grey nodes. A standard classifier when searching successors in its bottom phase
as described in [3] tests all black nodes first and discards all but the middle one. Then
the grey nodes are tested and since they are not a successor of ¢, it concludes that ¢
must be placed above the middle black node. For a taxonomy that is rather flat than
deep, the structural approach seems to be of advantage.

Case 2: ¢; =Vr.d

The classifier accesses the actual value restriction of r in ¢ as represented in 7. and
proceeds depending on whether 7. is a tautology or not. Remember that it has been
simplified to T in this case during preprocessing.

Hr.=T
gTCi = {T} (2)

;; the special case TLC Vr.T

13

It 7o £ T

{y|Vs.f € DEF(y) and s € £}, and §, = L } U
;; the special case rCs=Vs.LCVrd

{y|Vs.f € DEF(y) and s € {}, and 3, € {7, } U
;; the rule r Cs A fEd=>Vs.fCVrd is satisfied

{y|3<0s € DEF(y) and s € £, }
;3 the rule rC s = 3<0sC Vr.d is satisfied

The rules require to test all concepts from the taxonomy that mention value restrictions
on predecessor roles of r explicitely in their definition. To find them with reasonable
effort, the name of each concept with such a value restriction is stored in a hash-
table relating concept names to role names. Note that we do not consider concepts
that inherit value restrictions over the taxonomy in this generation step, but they are
added later.

The second generation step states the condition §, € #4;_ according to the underlying
subsumption rule. This condition requires to return to the expanded normal-form
representation of the actual value restrictions for s in y and r in ¢ (as computed
during preprocessing according to Definition 16) in order to achieve soundness and
completeness.” Since neither §, nor 7, need to be contained in the taxonomy, this test
leads to additional classification tasks. The special case, 7. = L is simple, since it
requires that 3, = L holds for the test to be successful. In all other cases, the classifier
needs to access 7. = I;d; and compute the sets of all successors for all d;. Note that 7.
is a concept given in the fully expanded normal-form representation and therefore each
d; is either primitive or non-atomic. For each d; the set /{4, is computed depending on
the syntactic structure of d;:

e d; is primitive. The set /14, can be directly read off the taxonomy by following
all paths from d; to L.

e d; =3dsnrord; =3cnr. Anauxiliary concept ¢’ = d; is classified and (14, := {1..

o d; =Vr'.e. A recursive subcall of the algorithm with the actual value restriction
of " as input is activated to determine the successors for d;.

The resulting set of concepts }; contains the successors with respect to each single d;.
Vi = {y|Vs.f€ DEF(y) and s € {}, and §, € {4, } (4)

To test whether the condition 5, € {44, is satisfied, either 5, can be classified to test
whether d; is a predecessor or the classifier can verify whether 3, = ', f; contains a
f; that is contained in /4. For example, if d; is primitive, it must be contained in

*In fact, using the completely expanded normal form means to ingnore a very important potential
for optimization of the structural algorithm and is not always necessary to be sound and complete.
For example in ¢ = Vr.d with d being a defined concept, the algorithm can immediately work with
d because 1t is a node in the taxonomy instead of returning to the normal form of a possibly very
longwinded concept definition. Further work is necessary to make use of this optimization potential.

14

Sy, 1. e. there must be a f; = d;. This test is often simpler than classification of 5,
but the condition is only sufficient, not necessary, i. e. if f € {44, succeeds s, € {44,
can be concluded, but if the test fails, 5, & {14, cannot be concluded and the original
test requiring the classification of 5, has to be performed. The next step completes
the sets }; by adding all successors for each concept contained in the set, i. e. concepts
inheriting successor value restrictions are now added:

by, = ViU {z|Vyeditxely} (5)

;3 for all y all their successors z are added

Finally, the intersection of the sets {1y, is computed that preserves all concepts that
are successors of each d; and with that of r.. This leads to the final set /;,:

e = (1, (6)

The following example illustrates the generation of successors for the second generation
step:

Example 3 Let us assume thatl the classifier has to find successors of the concepl
¢; = Vr.[arb] with a,b primitive and that the tazonomy contains the concepts y = c¢1Mcy,
¢y =Vr.a, and ¢ =V r.b. The classifier determines 7. = aT1b and proceeds according
to Rule (3) because of 7. # T. The first and third generation steps return the emply
set, because the taxonomy contains no concepts with unsatisfiable value or number
restrictions.

The second generation step sets di = a and dy = b and begins to compute all their
successors as {a, L} and {b, L}, which involves a call to the classifier for each d;.
Now the sets Yy = {c1} and Y, = {cy} are generated. The concepls ¢ and ¢y satisfy
the tests, because the expanded normal-form representations of their value restricting
concepts a and b are successors of the respective d;. The sets are completed by adding
all successors of ¢; and ¢y to them:

gTJﬁ = {clava—}

ETJ& = {627y7J—}
The intersection of both sets returns the successors of c¢; in the tazonomy as ly, =
{y, L}
Case 3: ¢; = dsnr

Generation proceeds depending on the value of n.

fn=0

by = {T} (7)
;; the special case T C 3507

15

by == {y|I>kse€ DEF(y) and s € {, and k > n } (8)

;; the rule sCr Ak>n=3d>ksCd>nr is satisfied

Case 4: ¢; = denr

{y|Vs.f € DEF(y)and s € {}, and §, = L } U

;; the rule rCs=Vs.l T dcnr is satisfied

by = 9
! {y|3<ks e DEF(y)and s € {;, and k <n } ©)

;; the rule rCs A k<n=3d<cksC dcnr is satisfied

After all sets ¢4., have been generated for all ¢;, the classifier still does not know all
successors with respect to the single ¢;. In particular, the concept L that is a successor
of any concept has been ignored in all generation steps. Furthermore, a set £, can be
empty if none of the concepts in the taxonomy satisfied the tests required in the various
structural rules. In this case, L is added. All non-empty sets need to be extended by
adding for all y all their successors z. This situation was already illustrated in Figure 2.
In the current stage of the classification process, each ¢4, contains only the grey nodes,
but we are interested in finding the black node that is a successor of them. Therefore,
the classifier continues to follow the < links from each y until bottom is reached.

For all ¢4,
if gTCi :Q) then KTCE‘ = {J_}

;; the rule 1 C ¢ is satisfied (10)
else (., =l U {x|Vy€Ely,:x€lyy}

;35 for all y add all their successors z including L

Finally, the classifier computes the intersection of the sets /. to determine those
concepts that are successors of all ¢; and with that of ¢:

le = {1} (11)
k3
;3 the rule yC ey AyEca=yL ey Mea is satisfied

With /. the classifier has determined the set of all successors of ¢ in the taxonomy.
If /4. is a singleton, we are done. Otherwise, the set can comprise immediate and
non-immediate successors. In order to eliminate all non-immediate successors from /£y,
each element is analysed whether it is a successor of another element in the set. For
all elements y in ¢;. we know that y C ¢ and if we find an element z with y C z that

is not equivalent to y, it follows that y cannot be an immediate successor according to
Definition 14.

Definition 19 The set of immediate successors of a concept ¢ is the set SUCC(¢) with
Uy, if Ly, singleton
{y|y € 4. andVz € {4, withy Zx :y ¢ (1} otherwise

SUCC(e) = {

16

4.3 Generating Immediate Predecessors

One might argue that the generation of predecessors for ¢ proceeds symmetric to the
generation of successors, but this is not the case. There are two main differences: First,
the local tests performed on the various y; during successor generation are no longer
sufficient. When a concept y satisfied a structural rule for one of its y;, then it was
indeed a valid successor of a ¢; since y; C ¢; implies y C ¢;. For predecessors, this is
not automatically true. Again, we split ¢ into its conjunctive elements ¢; and if we find
a concept y which is a predecessor of ¢; then y will also be a predecessor of ¢. The
problem is that we cannot consider conjunctive elements y; in isolation, since ¢ C 14
usually does not imply ¢ C y; I y5 unless some global criterion is satisfied by all y;.

Example 4 Let us consider the concepts ¢ = a N 3s4r and the concepls y, = I>4r
and y, = b d>4r. When analysing c the subconcept ¢; = I>4r is isolated and we
look for concepts thal are predecessors of it. Both y, and y, contain 3541 in their
definition, but only y, is a valid predecessor, while yy is not because of ¢ IL b.

As the example suggests, any candidate predecessor has to meet additional require-
ments concerning its own predecessors in order to be a valid predecessor of c.

The second difference is that the classifier has to “switch” search directions. During
successor generation, search starts in the ¢; and proceeds downwards towards the bot-
tom concept, i. e. only successors are considered. Now search cannot be restricted to
predecessors alone, but the classifier has to take into consideration successors of pre-
decessors, since they can be predecessors of ¢ as well. We call these concepts indirect
predecessors.

not avalid indirect predecessor

valid indirect predecessor

direct predecessors

concept to be classified

Figure 3: Predecessors and Non-Predecessors of a Concept

Example 5 Lel us assume that ¢ = bMeM f and that b < a, x = aN [and e < d,
z =dMNf are contained in T . A concepl y = x Tz is a predecessor of ¢, but it is neither
a predecessor of b nor a predecessor of e, i. e. the classifier would never find it when
only considering predecessors of ¢;. Instead, y is a successor of the predecessors a and
d. Figure 3 helps illustrate problems that are related to finding indirect predecessors.

17

Given a concept ¢ = Mi¢; or ¢ < Mc;, two special cases are again treated separately.
If ¢ = ¢1 (¢q atomic) then ¢ inherits all immediate predecessors from ¢1, because both
concepts are equivalent. If ¢ < ¢; (¢1 atomic) then ¢; is the only immediate predecessor
of ¢. Figure 4 summarizes the simple cases for the predecessor-generation algorithm.

input: ¢ = M;¢; or ¢ < M
preprocessing:

TAUT(¢) — {TRUE,FALSE}
USAT(¢c) — {TRUE,FALSE}
X(e,T) — 7. for any value restriction Vr.d in X(¢,7T)

PREC: ifc=Tl¢
then if 1 = 1 (¢ = ¢1, ¢y atomic) then PREC(c) :== PREC(¢y)
if 'AUT (¢) = TRUE then PREC(c) :={T}
if USAT (¢) = TRUE then PREC(c) := {L}
else compute /).
reduce {|. to PREC(c)
else (¢ < Mic;)
if i = 1(c = ¢1,¢1 atomic) then PREC(¢) := {e1}
if USAT(MN;¢;) = TRUE then ERROR (¢ < 1 not admitted)
if TAUT(M;¢;) = TRUE then PREC(c) :={T}

else compute /).

Figure 4: The simple Cases for PREC

For all other cases, we distinguish again the four syntactic possibilities for a ¢;. Concept
specializations ¢ < [M;¢; are treated identically to concept definitions ¢ = M;¢;.

Finding /.
Case 1: ¢; 1s atomic

As a first step, the classifier generates the set of “direct” predecessors for each of
the atomic ¢;. All atomic ¢; are nodes in the taxonomy, i. e. starting at these nodes
the classifier moves upward following their explicit links to their immediate and non-
immediate predecessors.

ly=rc} U {atU
;5 ¢; and the set of all immediate predecessors of c;
{z|Vy withy >_¢;: 2 €L}, and TAUT(x) = FALSE }

;; for all y all their predecessors z (except T) are added

18

The concept top and all concepts that are equivalent to it are ignored in this generation
step. Top is a predecessor of any concept and is added at the end of the generation.
The set of direct predecessors pf, of ¢ is collected as the union of the sets generated
for the individual ¢;.

p(l)c = Uglci (13)

Any element of p?c is guaranteed to be a valid predecessor of it, since the links in the
taxonomy guarantee that ¢; C y, which implies ¢ C y. Direct predecessors provide
therefore a set of “safe seeds” for the subsequent generation of further predecessors.
Note that each ¢; is also contained in @?c, since a concept is its own predecessor.

In a second phase, the classifier generates the set of “indirect” predecessors of ¢ by
analysing successors of direct predecessors. Starting at concepts contained in @f, it
moves downward through the taxonomy towards the bottom concept. The generation
proceeds recursively by first analysing all immediate successors of all direct predeces-
sors. Any immediate successor satisfying the requirements of Definition 21 given below
is added to p(fc leading to a set p}c. For this extended set, again all immediate suc-
cessors of its elements are investigated leading to a set p]. and so on, until bottom is
reached or no further valid indirect predecessors are found, i. e. pf, = goTc_l and a fixed
point of the predecessor generation is reached.’

Definition 20 The set pf. of indirect predecessors of c in the tazonomy is the set of
concepls x

Pl = {J:|VyEpTc_1:$ESUCC(y)} (14)

;3 for all y all their immediate successors x are analysed
where each x is covered by ¢ as defined in Definition 21.

Definition 21 A concept x is covered by a concept ¢ if and only if

l.z=N;z; €T
The concept x is restricted to be defined, i. e. it is introduced into T with the help
of a terminological axiom. No concept specializations need to be considered.

2.V, € DEF(z): TAUT(x;) = TRUE or z; € {).

Any x; contained in the definition of x must be a valid predecessor of c.
The condition z; € |, is tested differently depending on the syntactic structure of z;.

o If x; is atomic, the classifier tests whether x; is covered.
In many cases, a simple look up z; € =, pjc will verify the covering condition
for z;. If z; is not yet generated as a predecessor, then a recursive call of the
generation process is necessary to verify the covering condition for it. Since the
terminology is cycle-free the process is guaranteed to terminate.

T At this point, it becomes also obvious why we did not add T to the set of direct predecessors.
This would blow up the search space to the entire taxonomy if all successors of T had to be analysed.

19

e If z; is non-atomic, the classifier tests Va;, € DEF(x): d¢; € DEF(c¢) with z; €
l.,.
Any z; of the syntactic structure Vr.d, 3>nr, and d<nr contained in z must also
be a valid predecessor of ¢. This condition is verified using the structural rules
16 to 21 defined below and testing the existence of a ¢; for which the z; satisfy
at least one of the rules.

No concept specialization can be a predecessor unless it is a direct predecessor of ¢ that
can be reached when the classifier follows the > relations. If 2 is introduced through
a concept specialization then its expanded normal form is X (z,7) = X(M;z;,7) M .
Since r remains undefined, x can only be a predecessor of ¢ if x is contained in the
definition of ¢ (i. e. x must be an atomic ¢;) or if x is inherited by one of the ¢;, i. e. ©
must be a predecessor of at least one ¢;. In both cases, must be a direct predecessor.
Figure 5 illustrates the general line of inference for the generation of indirect predeces-
sors. The classifier knows of a y subsuming ¢ and of y subsuming z. The conclusion
that must subsume ¢ is valid if and only if all concepts @ subsuming x are also
subsuming ec.

Figure 5: Necessary and Sufficient Criteria for Indirect Predecessors

The set of indirect predecessors of ¢, which also comprises the set of direct predecessors
as the base case of the recursion, is obtained as the union of the sets pjc

pre = gl (15)
=0

In the third phase of the predecessor generation, the classifier analyses the non-atomic
¢; € DEF(c) using structural rules to determine whether these ¢; allow for the gener-
ation of “structural” predecessors.

20

Case 2: ¢; =Vr.d
Ifr.=1

{y|Vs.f € DEF(y) and s € {3, } U
;; the special case sCr=Vr.LCVs.f

{y|3<ks € DEF(y) and s € {4, }
;; the rule sCr=Vr.LC dcks is satisfied

by = {y|Vs.fe DEF(y) and s € {4, and 3, € {};, } (17)
;; the rule sCr AdC f=>VrdCVs.f is satisfied

Note that the classifier has to use again the actual value restrictions 7, and s, of r and s
for both value restricting concepts in the last generation step. To reduce computational
costs, the classifier addresses the special case 7. = T first. In this case, §, = T has to
hold. In any other cases, the classifier generates the candidate predecessors according
to the structural rule and then tries to verify that each f; in §, =1, f; is a predecessor
of r.. Testing f; € {4, for one d; is sufficient for f; € £}; , but not necessary, 1. e.
a failed test f; € ()4 requires to verify f; € {}s, 1. e. classification of 7. becomes
necessary.

The following example illustrates why a restriction to d would violate completeness.

Example 6 Let us consider the example ¢ =V r.alV r.b and the concept in the taxon-
omyy =Vr.(alb). The successor generaltion can consider a and b as the single d; in
isolation, since all successors of allb have to be successors of a as well as of b. During
predecessor generation, such a local testing would be insufficient. All predecessors of a
and all predecessors of b are also predecessors of amlb, but a conjunction usually implies
more than each of its single conjuncts. In the example, aTlb is only found as a valid
predecessor when 7. = a b is taken as input to the classifier.

Case 3: ¢; = dsnr

Ifn=0
bz, =0 (18)
;; the special case I0rC T
Ifn>1
bz, = {y|3skse DEF(y) and s € £}, and k < n } (19)

;; therule rCs Ak<n=d>nrCd>ks is satisfied

In the case n = 0 the empty set is returned as a preliminary result. A concept ¢; = 3507
is equivalent to T, which is its only predecessor, but also a predecessor of any concept
and therefore added at the end of the predecessor generation in Step 23.

21

Case 4: ¢; = d<nr
Ifrn=0

{y|Vs.f € DEF(y) and s € {4, } U

;; the rule sCr=3d<0rCVs.f is satisfied
£l3< = - (20)
= {y|3<ks e DEF(y) and s € {4, }

;; the rule sCr Ak>n=3d<nrC dcks is satisfied
Ifn>1
liz. = {y|3<ks€ DEF(y) and s € {1, and k > n } (21)

;; the rule sCr Ak>n=3d<nrC dcks is satisfied

The sets £}y, |3, , and £|5_ add candidates y that satisfy that one of their y; is subsumed
by ¢. Obviously, the classifier has to verify that for each y all y; are subsumed by c.

Definition 22 The set R|. of structural predecessors of ¢ in the tazonomy is the set
of concepts y with y € fj3, Ulj3_ ULy and y being covered by c, i. e. satisfying
Definition 21.

Definition 21 makes sure that y is a defined concept and that all y; are valid predecessors
of c. With that, N|. contains only valid predecessors. The set is now completed by
adding all their predecessors (except T) to it.

R, = N, U {z|VyeR,:2€/l, and TAUT (z) = FALSE } (22)

;; Tor all y all their predecessors z (except T) are added

Finally, there is still the possibility that successors of p|. and N, are indirect prede-
cessors of c. Therefore, p7, is called again with p|. U R as input. If new indirect
predecessors are found, a further recursive call is necessary taking the updated sets
as input. The recursion terminates when no new elements are added to g, and N,
i. e. until a fixed point of the generation process is reached leading to the final sets of
predecessors gol"c and Nfc. With that, the set ¢|. is obtained as

0, = pjc U Rt u{T} (23)

Based on (|, the set PREC(c) of immediate predecessors of ¢ can be computed per-
forming a reduction operation dual to the one defined for ¢;..

Definition 23 The set of immediate predecessors of a concept ¢ is the set PREC(c)
with

m if £1. singleton

PREC(c) :=
() { {yly €. andVx € {), withy Zx:y &} otherwise

If PREC(c) N SUCC(c) # 0, then ¢ is equivalent to the concepts contained in this
intersection.

22

5 Soundness and Completeness

The following theorems state the soundness and completeness of the structural classifier

for the languages 7F* and T F°©.

Theorem 1 ((Soundness and Completeness of SUCC)) For any two atomic con-
ceptsx,c € TF* orxz,c € TF® and an arbitrary terminology T salisfying the syntactic

restrictions of either one of the two sublanguages, * € SUCC(¢) if and only if in all

models of T x C ¢ and for all atomic concepts z in T holds: If z Cr ¢ then either

z=zxorzlLrz.

Theorem 2 ((Soundness and Completeness of PREC)) For any two alomic con-
ceptsz,c € TF* orxz,c € TF® and an arbitrary terminology T satisfying the syntactic
restrictions of either one of the two sublanguages, © € PREC(c) if and only if in all
models of T ¢ T x and for all atomic concepts z in T holds: If ¢ Ty z then either
2=z orzlLrx.

All proofs can be found in the Appendix.

6 An Example

The following small example illustrates the behavior of the structural classifier. We
assume that 7 contains the specializations and axioms shown in Figure 6. (The left-
hand side of the figure shows the taxonomy that is induced by 7.)

Color < T
Red < Color TOP
Blue < Color T
Yellow < Color COLOR ™
Purple = Red 1 Blue RED BLUE YELLOW
Orange = Red M Yellow S>> MEM1 TEM2
Green = Blue 11 Yellow PURPLE ORANGE ~GREEN
Black = Purple 1 Orange M Green e o3
[tem < T \/
lteml = Item IV coloring.Red BOTIOM
ltem2 = Item IV coloring.Blue
ltem3 = Iteml I ltem?2

Figure 6: The Example Terminology
Let us assume that we want to insert the concept N-ltem, which is defined as

N — Item = Item I Vcoloring.Purple

23

We start by generating SUCC(N-Item). The classifier sets ¢; = ltem and ¢; = V coloring.Purple
and begins with the generation of ¢;., and ¢;.,. Case 1 matches to ¢;, because it is
primitive, while Case 2 matches to ¢,, because it contains a value restriction.

For ¢;, its immediate successors are determined from the taxonomy from which the
classifier can read off lteml <_ Item and ltem2 <_ Item. This leads to

lye, = {Item1, ltem2}

For ¢; = V coloring.Purple, the generation depends on whether the value restriction is
a tautology or not. In the example, the classifier obtains . = Red 'l Blue, which is
satisfiable, but not a tautology. Therefore, the three structural rules (3) are applied.
The terminology contains neither number restrictions nor unsatisfiable value restric-
tions and thus, only the second rule can return successors. Since d is non-primitive,
the classifier needs to invoke tests with respect to each d; following Rule (4)

This binds
d; = Red dy = Blue

Now, the classifier has to generate the sets {yp.q and {;pjye. It traverses the taxonomy
and adds all successors of these two concepts.

Uy peq := {red, purple, black} {1 B1ue := {blue, purple, black}

As the next step in order to generate {;.,, the classifier has to generate the set | .o1oring,
which is the singleton {coloring} in 7.

Now, the classifier looks for concepts that contain Vs.f in their definition where s €
{coloring} and where §, € {red, purple, black} or s, € {blue, purple, black}. It finds Item1
and ltem2 that contain matching concept descriptions. All their successors are added
to the candidate set. Thus, it generates

Uy 1tem1 := {Item1, ltem3, L} U 1tema := {Item2, ltem3, L}

Still working on the generation of successors for ¢z, the intersection of the last two sets
is computed and the set {ltem3, L} is obtained as the final result for l1veoloring Purple-
With that the sets ¢, and ¢, can be completed by adding all their successors leading
to

lye, = {Item],ltem2, Item3, L} Uy, = {Item3, L}

This completes the successor generation for the single ¢;. Finally, according to Rule (11),
the intersection of the two sets is computed. We obtain {1n_rten as

UiN—Item = {ltem3, L}

The reduction operation eliminates 1, since it is a successor of Iltem3. With that we
obtain SUCC(N-Item) as {ltem3}.

Now, PREC(N-Item) can be computed and the classifier starts generating the prede-
cessors of the atomic concepts contained in the definition of N-ltem. In the example,

24

this amounts to computing the predecessors if ltem ignoring top, which is only Item
itself, i. e.

p(lJN—Item = {ltem}

Now, successors of all elements in p?N—Item have to be investigated. The classifier

starts by generating piN—ltem which contains the immediate successors of Item. Can-
didates for this set are the concepts Iteml and ltem2. Both concepts are defined as
conjunctions and the classifier has to test that each conjunct is a valid predecessor.
ltem is contained in ¢{y_z.,, and for the conjuncts V coloring.Red and V coloring.Blue
the structural Rule (17) is activated. Since Red and Blue are primitive concepts and
the roles are identical, the tests are very easy to perform. The concept 7. = Red M Blue
is classified, which returns Red and Blue as predecessors.

OIN_Item = {Iteml, ltem2}

Now the successors of Item1 and ltem2, which is only ltem3, have to be analyzed. Item3
is also defined as a conjunction of valid predecessors and it is therefore a predecessor
of N-Item as well.

pTN—Item = {ltem3}

The successor of Item3 is bottom and with that the generation of indirect successors is
completed and we obtain

OIN—TItem := {Item,Iteml, Item2, Item3}

Now, the classifier addresses the remaining non-atomic concept V coloring.Purple con-
tained in the definition of N-ltem following Rule (17). The expansion of Purple leads
to 7. = Red I Blue. With that Rule (17) generates lteml and Item2 as possible prede-
cessors, which satisfy the condition that the remaining defined concept Item contained
in their definition is a predecessor of N-ltem.

N N_1tem := {Item], ltem2}

In this example, Xy _rsep, did not lead to any further predecessors and thus the fixed
point of the generation process is achieved as

U N—Ttem = QN—Ttem U {T} = {T, Item, Item1, Item2, [tem3}

Finally the reduction operation is applied to this set leading to PREC(c)= {ltem3}.
Since PREC(c) N SUCC(c) = Item3 the classifier concludes that N-ltem is equivalent
to ltem3.

The reader should note that the classifier would execute exactly the same generation
steps if the terminology contained millions of concepts not referring to any color or
item concepts in their definitions. For the example, the amount of necessary tests does
only increase when more concepts defined with the help of value restrictions on the
role coloring or its sub- or superroles are be added.

25

7 Conclusion and Future Work

We have presented a structural classification algorithm that works on the folded repre-
sentation of concepts. Current work is devoted to both further theoretical investigation
and implementational improvement of the PARKA classifier. First of all, the current
formalization of the classifier does not take full advantage of all optimization possibili-
ties. In particular, the preprocessing phase, during which a fully expanded normal-form
representation of value restrictions is computed needs further improval. Besides this,
we work on a detailed comparison of the structural approach with the optimization
techniques discussed in [3].

A classifier for an extension of the language 7 F allowing for arbitrary role hierarchies
and set operations on roles that combines the structural approach with an arithmetic
problem solver in order to achieve completeness for number restrictions over role hier-
archies [11] is currently under development.

We are also working on improving the performance of the classifier to allow scaling to
significantly larger knowledge bases. In order to handle very large taxonomies that do
not fit into resident computer memory, we are currently working on a representation of
these taxonomies using relational database technology and the implementation of the
generative classifier in terms of database operations. Preliminary results show that the
database-based generative classifier should allow us to deal with virtually arbitrarily
sized KBs by exploiting the database’s memory management schemes. In addition, we
are also working on a high performance implementation of PARKA’s classifier, which will
exploit a number of parallel optimizations and should improve on the current parallel
implementation, allowing the scaling to significantly larger taxonomies running on a
larger number of processors.

Acknowledgments

This research was supported in part by grants from NSF(IRI-9306580), ONR (N00014-
J-91-1451), AFOSR (F49620-93-1-0065), the ARPA/Rome Laboratory Planning Initia-
tive (F30602-93-C-0039), the ARPA I3 Initiative (N00014-94-10907) and ARPA con-
tract DAST-95-C0037. Jana Koehler is supported through an ICSI Fellowship Award.
Dr. Hendler is also affiliated with the UM Institute for Systems Research (NSF Grant
NSF EEC 94-02384).

We want to thank Hans Jurgen Ohlbach and Werner Nutt for their helpful comments
on a draft version of the algorithm’s formalization. Hans Jirgen Ohlbach helped us in
getting the formalization right and in relating it to results from the theory of description
logics by pointing out many critical examples. His comments heavily influenced the

paper.

26

8

Appendix: Proofs of Theorems

Soundness and Completeness of TAUT and USAT

Proposition 3 (1) The test TAUT(c) for ¢ given in either TF® or TF* delivers TRUE if
and only if E[¢] = D in all models of T .

Proof: The proof proceeds by structual induction over c.
Soundness: TAUT(¢) = TRUE only if £[c] = D in all models of 7.

1.

2.

E[T] = D follows immediately from Definition 9.

£[3>07] = D holds because the requirement of at least zero fillers is satisfied for any
domain element in D independent of whether the relation is defined for it or not.

. EVrd) = D for TAUT(7.) = TRUE because of £[f.] = D based on the induction

hypothesis and thus there can be no domain element a with a ¢ £[7.] = D.

. Elanb] = D only if £[a] N E[b] = D, which is only possible when £[a] = D and £[b] = D

according to the semantics of set intersection.

Completeness: TAUT(c) = FALSE only if £[c] C D in some model of 7. The function
TAUT(c) = returns FALSE only in the following cases:

1.

2.

¢ = 1 with £[L] = @ C D follows immediately from Definition 9.

¢ = a with £[a] C D because the interpretation of a primitive concept is a subset of D
according to Definition 9.

. ¢=anbthen TAUT(c) = FALSE if either TAUT(a) = FALSE or TAUT(b) = FALSE.

Thus there exists a model & with either £[a] C D or £[b] C D and therefore £[c] C D.

. ¢ = denr then TAUT(c) = FALSE since we can construct a model in which r has

more than n role fillers for at least one object in the domain, i. e. £[I<nr] C D unless
n = oo, which is not admitted since n is required to be finite.

. ¢=3>nr then TAUT(c) = FALSE for n > 1 and we can construct a model in which r

has no role fillers or is undefined for at least one object in the domain, i. e. [¢] C D.

. ¢ =Vr.dthen TAUT(c) = FaLsk if TAUT(#.) = FALSE. Thus there must be a § € D

with 8 ¢ &[F.] according to the induction hypothesis. Therefore, we can construct a

model £ with {(a,) € &'[r], but g & E'[#.] and thus &[] C D.

Proposition 4 (2) Let ¢ be a concept description given ein either in TF© or TF* then
USAT(c) = TRUE if and only if E[c] = O in all models of T .

Proof: Soundness: USAT(c)= TRUE only if £[c] = @ in all models of 7.

1.

2.

E[L] = § according to Definition 9.

Elamb] = B only if E[a] = B or E[a] = @ according to the semantics of set intersection.

27

3. E[Vr.LM3>ns] = @ because it requires the existence of a domain element z for which
no y exists satisfying r, but there is atleast one y satisfying s because of n > 1. Since
E[s] C &[r], and (z,y) in E[s] it follows that (z,y) in &£[r], i. e. there must be a y for
satisfying r and thus a contradiction occurs.

4. E[I>nrN3ck s] =) because we have atleast n pairs (z,y) in £[r] and since E[r] C E[s]
there must be atleast the same n pairs in £[s|, while £[s] is allowed to be satisfied by
only a strictly smaller number of pairs because of £k < n.

We prove completeness of USAT for the language 7 F © by constructing for the case USAT(c)=FALSE
an interpretation & with £[c] # 0. Without loss of generality we can assume that X(¢,7)

does not contain redundant information of the kind d>nr M d>mr and d<nr M dcmr. In

the first case 3> maz(n, m)r and in the second case I<min(n, m)r are sufficient.

The technique for constructing such an interpretation is borrowed from the completeness proof
technique for tableaux calculi. We define a set of labeled tableaux rules which computes an

open branch from which we can read off an interpretation satisfying ¢. We get only one single

such branch, since the language contains no disjunction and negation. Starting with an initial

set B = {a : ¢} where a is a fresh constant, we extend B by adding new facts according to

the following rules:

a:cyMeg — a:cy and a: ¢y
a:3snr — r(a,ay) and ... and r(a,a,) where the a; are fresh

a:Vr.dand r(a,b) — b:d

The rules mean that whenever B contains instances of the facts from the left hand side of the
rule then the corresponding instances of the facts from the right hand side are to be added
to B, and this as long as possible, but without repeated application to the same facts. Since
c is finite, this rule system always terminates.

A fully expanded branch B can be turned into an interpretation £ with domain D and
corresponding interpretation of the roles and concepts.

]
l

{a|la:de B}yU{a|r(a,b)e B or r(b,a)€ B} for some d,r,b

o
S
Il

{a|a:de B} for an atomic concept d
Elr] = {(a,b)|r(a,b) € B} for aroler

Now we have to show that if USAT(c) = FALSE and B is a fully expanded branch according
to the above rules and £ is the interpretation generated by B then & satisfies all facts in B
in the following sense:

If a:d e B then a € £[d] and if 7(a,b) € B then (a,b) € £[r].

In particular, this means for the starting term ¢ and the starting fact @ : ¢ € B that a € &][¢]
which implies immediately that £[c] # . By the construction of the interpretation of the
roles, this is obviously true for the role terms r(a,b) € B. For the concept terms a : d we
prove this claim by induction on the structure of d. The base case where d is atomic holds
by the construction of £. For the induction step we have to consider the following cases:

28

d =dj Mdga: If USAT(d) = FALSE then by definition of USAT it holds that USAT(d;)
= USAT(dy) = FALSE. Furthermore by the M expansion rule, a : d; € B and a: dy € B.
Thus we can apply the induction hypothesis which yields ¢ € £[di] and @ € £[d3] and
therefore a € E[dy M dy).

e d = dsnr: The expansion rule for 35 generates n r-successors for a. Therefore &
satisfies @ : Isnr.

e d = d<kr: Suppose r(a,ay),...,7(a,a,) € B with m > k. According to the con-
struction of B this can only happen if @ : d>mr € B, which is only possible if
a: (I>mrNdckr) € B. This violates the USAT(d) = FALSE assumption. There-
fore there cannot be more than k£ r—successors of ¢ in B.

o d = Vr.e: If there are any r-successors a; of @ in B we have «; : € € B according to the
extension rule for V. Furthermore a : 3>nr must be in B as well as a : Vr.eMdsnr.
Since USAT(d) = FALSE and by definition of USAT we know that USAT(e) = FALSE.
Thus, the induction hypothesis can be applied and we obtain for all r-successors a; of
a: a; € E[e]. Thus a € E[Vr.e]. If there are no r-successors of @ in B then £[r(a)] =0
and therefore a € E[V r.e].

Soundness and Completeness of SUCC

In order to prove soundness and completeness of SUCC, we first show soundness and com-
pleteness of {4 for the languages 7F © and 7 F *. The algorithm obtains a concept description
c = T;c; or ¢ § M;c; as input and returns a set of successor concepts y from the taxonomy.
The proofs proceed by structural induction over ¢ and y.

Soundness of /;.

Proposition 5 Let ¢,y be concept descriptions in a terminology T given in either TF® or

TF* then y € Ly, only if E[c] D E[y] holds in all models of T.

Proof:

We prove soundness directly by showing that y € {4, implies £[¢] D &[y]. The first part of the
proof considers the various syntactical base cases for ¢, then soundness is proven for ¢ being a
concept conjunction or concept specialization. For each of the syntactical possibilities of ¢ we
proceed recursively over the syntactic structure of the successor concepts y that are returned
by the classifier.

1.¢=T

This case is completely addressed in the preprocessing phase which returns SUCC(c) = {T}.
According to Definition 9 and soundness of TAUT we know that £[¢c] = D and £[y] = D and
therefore £[c] = &£[y] which implies £[¢] 2 E]y].

2.¢c= 1

The preprocessing phase returns SUCC(c) = {L}. According to Definition 9 and soundness
of USAT we know that £[c] = @ and E[y] = 0 and again &[c] = £[y] which implies £[c] D E[y].

29

3. ¢ = a with a atomic

The concept a is a node in the taxonomy and the classifier returns the successors of a as a
result following the <., relation in Step 1. According to Definitions 14 and 12

y<,a=>yCa= &yl CEla] = Ea] D E[y]

Since £[c] = Ela], it follows that £[¢] 2 £[y]. A similar construction is used in Steps 10 and 5
when the successors = of a successor y are recursively added to .. Soundness of these steps
follows from the transitivity of the subsumption and the successor relations

<, YNy <, a=>z <, a=E[a] D E[z]

4. ¢ =Vr.d

Note that ¢ is not a conjunction, but that d can be an arbitrary concept description. The
concept 7. represents the expanded normal-form representation of d, because ¢ does not
contain or inherit other value restriction on r.

Step 2 addresses the special case 7. = T and returns y = T. We know that TAUT(7,) must
have returned TRUE because of 7. = T and since TAUT is sound and complete, it follows
E[t.] = €[d] = D and thus £[¢] = D. Furthermore £[y] = D according to Definition 9 and
thus £[c] = &[y] which implies £[c] 2 E]y].

Step 3 considers the case 7. # T (including 7. = L). We proceed by structural induction
over the returned successor concepts y:

o y=Vs.f withsel), and 5, = L
The condition s € £}, holds only if £[r] C £[s] according to Definition 16. The pre-
processing phase sets 8, = L only if USAT(8,) = TRUE and because of Proposition 2
it holds &[f] = £[3,] = 0 since §, represents the expanded normal-form representation
of f and y is not a conjunction. Thus £[d] 2 £[f] is satisfied and soundness follows
according to the subsequent observation for any extension function &:

E[d) D E[fINE[r] CE[s] = E[Vs.d] D EVs.fl = ENr.d] D E[Vs.f]

o y=Vs.f with s € £, and 3, € {15,
Note that again £[3,] = £[f] and £[F.] = £[d] because of the syntactic restrictions on ¢
and y and that 3, € {;;_ implies £[d] D £[f] because of the induction hypothesis. Thus
E[r] C &[s] and &£[d] D &£[f] are satisfied and soundness follows based on the above
observation for £.

o y=3J<0s with s € £,
The condition s € £, satisfies £[r] C £[s] according to Definition 16. For any extension
function holds &[r] C &[s] = E[Vr.d] 2 £V s.d].
Any arbitrary concept d satisfies £[d] D £[L] and based on Definition 9 we know that
Eld] D E[L] = E[Vs.d] D E[Vs.L].

With that £[Vr.d] 2 £]Vs. L] must hold and thus £[Vr.d] 2 £[3<0 s] follows because of
ElVs.L] = E[3<04].

30

o y =Ty and y; : E[c] 2 E[y;]

A concept conjunction y is returned as a successor only if one of its conjuncts satisfies
the previous cases. Since £[M;y;] = N; E[y;] and E[y;] 2 N; E[ys] it follows E[c] D E]y].
If y is a successor because of an y; = Vs.f satisfying the generation rules, then the
conditions &[r] C £[s] and &[F;] D £[5,] are sufficient for £[c] D E[y] although £[3,] C
E[f] since y contains no disjunction. But §, represents the actual value restriction
on s, i. e. replacing all occurrences of Vs.f with V5.5, in y is extension preserving.
Soundness of the test 3, € £1;. follows from the following observations:

— In the special case 7. = L, soundness and completeness of USAT guarantee that
&[] = 0. The algorithm considers only value restrictions with 3, = L which
satisfy €[] D E[sy] because of £[3,] = 0.

— If #. # L the test is based on the syntactical structure of 7. = M;d;:
Elr] D E[3,] & E[Midi] D E£[5]
& N E[d;] O E[3,]
& Eldi] D E[8y] N E[da]) D E[8y] A .. A Eldy] D E]5y]

This justifies soundness of the successor generation for the single d;. Step 4
generates candidates y satisfying that 5, is a successor of d; leading to the sets
Y;. Then in Step 5 all their successors are added, for which soundness has already
been proven. The intersection of the single sets {1y, makes sure that only concepts
are preserved that satisfy N; £[d;] O £[§,] and with that £[7;] D £[3,].

If y is generated because of y; = 3<0 s then problems could occur if the actual number
restriction on s would be greater than 0. But if y contains or inherits a y; = d<m s
and m > 1 then no increase occurs because of min(0,m). If y inherits or contains a
number restriction y; = I>m s with m > 1 then y itself becomes unsatisfiable and is
a successor of any concept. Other possibilites are excluded in a language without role
hierarchies.

.c=3snr

o y=1T
is returned in Step 7 for the case n = 0. Soundness follows from soundness of TAUT:

Ele] = Ely] = D and thus E[c] 2 &[y].

o y=dskswith k> nand s € {y,
is returned in Step 8 for the case n > 1. Soundness of this step follows from the
observation

Elr] 2 €[s] AN k>n= E[T>ns] D E[A>ks] = E[d>nr] D E[I>k 5]

o y =Ty and 3y, : E[c] 2 E[y;]
A concept conjunction y is returned as a successor only if one of its conjuncts satisfies
y = d>ks with £ > n and s € {y,. The test on k becomes invalid when the actual
number restriction of s in y is smaller than k. If y contains or inherits a y; = d>m s
and m < k < n, soundness would still be guaranteed, since the number restriction on
s in y is max(m, k). If y; = 3<m s and m < k then y itself becomes unsatisfiable and

31

is a successor of any concept. In the language 7 F* the latter situation cannot occur,
because no d«< operator is provided.

6. ¢c = Elsnr

No case analysis over n is necessary and Step 9 returns:

o y=Vs.f withsel), and 5, = L
Since £[Vs.L] = £[3<0s] and £[I<0s] C £[I<n s] we can conclude that £[Vs.1] C
Edcnr] if E[r] C E]s].

o y=dckswith k< nandsefl,
Soundness follows from the observation

kE<n AE[s] 2 E[r] = E[<nr] D E[I<kr] = E[T<nr] D £[I<k 5]
o y =Ty and 3y, : E[c] 2 E[y;]
If y was returned as a successor because of one y; = V s. f satisfying the generation step,
then the test condition 3, = L will still be satisfied because 3, takes into consideration
all value restrictions that are inherited by y or spread over the various ;.

If y; = d<k s then the test £ < n becomes invalid if the actual number restriction of
s in y is greater than k. In the language 7.F© this is impossible without y becoming
unsatisfiable if it contained or inherited a y; = d>ms with m > n > k. But an
unsatisfiable concept is a succesor of any concept.

This completes the proof of soundness for the base cases of ¢. In the following we investigate
the impacts of ¢ being a concept conjunction and y being a concept spezialization.

7. ¢ = [—lici
o [ic; =T
Soundness and completeness of TAUT guarantee that £[c] = D is discovered. The
classifier returns y = T for which holds &[y] = D. Soundness follows because of

Ele] = Ely] = D = &[c] 2 £[y].

o Mic;, =L
Soundness and completeness of USAT guarantee that £[c] = @ is discovered. The
classifier returns y = L for which holds £[y] = 0. Soundness follows because of £[c] =

Elyl = 0 = &[] 2 Ey].

If M;e; # T # L, the classifier generates the sets £, for each ¢; and computes their intersec-
tion in Step 11. Soundness of this step follows from the observation

Ela] 2 EYI A - A Elen] 2 Ely] = Nifllei] 2 Ely] = E[Miei] 2 Ely] = £[c] 2 £[y]

Now we have to investigate whether soundness of the individual generation steps can be
affected because of interactions among value or number restrictions within c.

32

7a. c=Vrdnd

If ¢’ contains or inherits further value restrictions on r then the extension of the value restric-
tion on r in ¢ can be smaller than the extension of d, i. e. £[f.] C £[d]. This means, testing
3y € 14 would violate soundness and therefore the classifier uses the actual value restriction
of r represented in 7,. Soundness of the test 5§, € {17, has already been proven in Case 4.

Tb. c=dsnrnd

Let us assume that ¢’ contains or inherits a ¢; = I>m r.

o If n =0and m > 1 then y = T is no longer a valid successor. Soundness is preserved
in Step 11 because y is not contained in the successor set of ¢; because of soundness of
Step 8.

o If » > 1 and m > n, the classifier returns y = 3>k s satisfying & > n. If £ < m then
y is not a valid successor of ¢ because it is not a valid successor of ¢;. Soundness is
preserved in Step 11.

In both sublanguages under consideration, the actual number restriction of r can only be
greater than n if such a concept c; is contained in or inherited by ¢. The language 7F©
excludes role hierarchies and thus it is impossible that r inherits additional role fillers over
the role hierarchy. In 7 F*, a role hierarchy is admitted, but no d< operator is provided,
which makes it impossible to formulate disjointness on role fillers.

Tc. c=dcnrnd

Soundness of Step 9 would be affected if the actual number restriction on s were smaller
than n. In the language 7. F© without subroles this can only happen, when ¢’ contains or
inherits ¢; = d«¢mr and m < k < n. But y satisfying the generation tests with respect to
n would not sat_isfy it with respect to m, i. e. soundness is again preserved by Step 11 when
the intersection of successor sets for ¢; = 3<nr and ¢; is computed. Other possibilities for ¢
to have a smaller number restriction than n on r are excluded in 7 ©. We do not need to
investigate the language 7 F* because it does not provide the < operator.

8. c S ﬂici

If ¢ is a specialization, y = L is returned. Soundness follows immediatley since £[1] = § and
E[c] 2 @ for arbitrary ¢ according to Definition 9.

9. y < My

Concept specializations y are returned by the classifier if one y; satisfies £[¢] D E[y;]. Since
E[Miys] D E[y] according to the semantics of terminological specializations and the rule &[¢] D
Ely:]l = Ele] 2 E[M;y:] it follows E[c] 2 E[y] for y < Myy;.

With that the proof of soundness of {;. and for the simple cases directly solved by SUCC
has been completed. u

33

Completeness of /.

Proposition 6 Let ¢,y be concept descriptions in a terminology T given in either TF® or

TF*. y € by if E[c] D E[y] holds in all models of T.

We prove completeness indirectly by twofold induction over ¢ and y. Instead of showing that
Elc] 2 €ly] = y € 4. in all models, we show that y ¢ ¢, = E[c] 2 £[y] in some model by
constructing a model in which an object is contained in the extension of y, but not in the
extension of ¢. In some cases, the proof will also be based on general set-theoretic properties
of extension functions.

Proof:

1.¢e=T

The classifier returns SUCC(T) := {T} after preprocessing, with T representing the set of
all tautological concepts {y | £[y] = D} because of soundness and completeness of TAUT and
Definition 14. SUCC(T) is complete if all immediate successors of T are contained in this
set. Since TAUT(y) = TRUE & E[y] = D all concepts z that satisfy TAUT(z) # TRUE
satisfy £[z] C D. Applying Definition 14, such an z cannot be an immediate successor of T
because of z # y (since £[y] # &[z]) but z C y because of £[z] C D and E[y] = D.

2.¢c= 1

The classifier returns SUCC(L) := {L} after preprocessing, with L representing the set of
all unsatisfiable concepts {y|&[y] = 0}. Soundness and Completeness of USAT guarantee
that USAT(y) = TRUE & E[y] = @. Thus any concept z not returned by the classifier has a
non-empty extension in all models and therefore £[c] 2 £[z] because of E[c] = @, but E[z] # 0.

3. ¢ = a with a atomic

In Step 1 the classifier follows all possible paths in the taxonomy based on <. relations.
All concepts z that are not reached over these paths are not contained in /.. According to
Definition 14 z £, « if and only if either (1) z £ a or (2) # C @ and there is a concept z with
z# zand z C z and z <, a. For (1) holds that £[z] € &[a] according to the semantics of
subsumption and it follows &[c] 2 E[z] because of E[c] = £[a]. In the second case, it follows
that E[c] O £[z], i. e. the concepts z have to be added to £, to achieve completeness. This
is done in Step 10, when the classifier recursively follows the <., relations down to L and z
is added to £;. when reaching the path starting in z.

4. ¢ =Vr.d

The special case 7. = T is covered by TAUT during the preprocessing phase because of
TAUT(Yr.T)= TrUE. Completeness follows from the proof for Case 1.

For the case d # T (i. e. £[d] C D and therefore also £[¢] C D), we proceed recursively over
the structure of all y that are not returned in ¢4, by Steps 3 and 10 and show that £[c] 2 £[y]
holds:

y=T
Ele] 2 E]y] because of £[T] = D, but &[c] C D.

34

e y = a with @ primitive
We can construct a model with a domain element a € E[y], but a € E[¢]. Such a
domain element must exist because of &[¢] C D.

e y = a with a defined
Completeness is achieved by Step 10: a is not added to {{, only if it is a successor
of a concept z ¢ (1. and thus £[c] 2 E[z]. Since E[a] C £[z] there is a model with

Ele] 2 Ela].

o y=Vs.fand s ¢}, or 5, & l1s,.
If s g £}, then E[s] 2 &[r](inductionhypothesis).Thus, weconstructamodelE’ with
(a, B) € E'[r], but (o, B) & E'[s] and E'[¢] 2 E'[y] follows.

If 8, & €15, then E[7;] 2 £[3,] (induction hypothesis) and a model similar to above can
be constructed, i. e. £'[c] 2 &'[y] follows.

e y=dyns
We construct a model with (a, 8) € £[r] and (o, 3) € &[s], but with § ¢ £[d]. Such an
object # must exist because of £[d] C D and n > 0.

o y=3<0s with s ¢ (|,
There is a model with an object a for which no object 3 exists with (o, 8) € &[s], i. e.
s has no role fillers in this model and o € £[y]. But a ¢ &[] because of (o, §) & &[r],
which is possible since E[¢] C D and E[r] € £[s].

o y=dcnswithn>1
We construct a model with (a, 8) € £[r] and (a, 3) € &[s], but with § ¢ £[d]. Such an
object § must exist because of £[d] C D and n > 1.

Now we prove completeness for y = M;y; with Vy; : y; & (1., i. e. none of the y; is a successor,
but y can be a successor in the following cases:

e USAT(y)= TRUE
Even if all y; are satisfiable and y; & {1, holds, their conjunction can become unsatisfi-
able and thus £[y] = 0, i. e. y would be a successor. Completeness of U S AT guarantees
that all such y are discovered and since L is added to {{. through Step 10 also y is
represented in {1..

o y=Vs.fMy
Since y' can contain or inherit further value restrictions on s, the test 3, € fy; is
performed with 5, representing the actual value restriction on s in y according to
Definition 16. Testing f € {17, would violate completeness since if £[d] 2 £[f], it is
still possible that £[d] D £[3,] because of £[3,] C &[f].

o y=3dcnsly'
There is no possibility in 7 F © that the actual number restriction on s is 0 if ¥ contains
or inherits only number restrictions that are greater or equal to 1 because the language
contains no subroles. If y' contains or inherits y; = I5ks with & > n, it becomes
unsatisfiable. Completeness of US AT guarantees that unsatisfiability of y is detected
when y was added to the taxonomy. Therefore, y will be added to £, in Step 10 when
1 is added to the successor set.

35

Completeness for concept specializations y < M;y; is proven similarly. A specialization y is
only not considered as a successor if Vy; : E[c] 2 E[y:]. It follows that E[c] 2 £[M;y;] unless
M;y; is unsatisfiable or the concept description MM;y; is a successor because of y < Vs.f My’
and £[7.] D £[3,] since ¢ = Vr.d. In the first case, y is not a valid concept specialization,
which is detected during preprocessing and y is not added to the taxonomy. In the second
case, completeness is achieved because V s.f satisfies the generation rule and thus there is
one y; that is a successor of ¢ and y is therefore added as a successor.

5.c=dnr

For the case n = 0, Step 7 returns T as a successor and Step 10 adds all successors of T, i. e.
all concepts in 7.

For the case n > 1 we proceed recursively over the structure of all y that are not returned in
L1, by Steps 8 and 10 and show that £[c] 2 &[y] holds:

o y=T
Since &[c] C D, but [T] = D it follows E[c] 2 E[y].

e y = a and a primitive
We can construct a model with a domain element o € E[y], but a &€ E[c]. Since E[¢] C D
such an element must exist.

e y = a and a defined
Then @ must not be a successor of a concept = € {1, according to Step 10, i. e. a is
only a successor of non-successors z for which we know E[c] 2 £[z]. Since £[z] D &]qa]
there is model in which £[¢] 2 E]y].

o y=VYsud
We can construct a model in which either some pairs (a, 3) are in £[s], but not in &[r]
or where s has less than n role fillers.

e y=3dsksand s¢ ly, otk <n
If s ¢ {1, then there are pairs (o, 3) in £[s], but not in &£[r] and thus we can construct
a model with a domain object a € E[y], but a ¢ £[¢].

If £ < n then we can construct a model &£[c] with a domain object a € £[y] that has
less than n, but at least k role fillers for s. Obviously, @ would not be in the extension
of ¢. Such an element a must exist because y and ¢ are both satisfiable and £[¢] C D.

oYy = Hsk‘ S
Since s can have zero to k role fillers, but n > 1, any model in which s has zero role

fillers implies £[c] 2 E[y].

Finally, we investigate concept conjunctions and concept specializations again. If y = M;y;
and Vy; : y; & {4., completeness of USAT guarantees that unsatisfiability of y is detected
and y is added as a successor in Step 10. For y; = d> ks, it would be critical if the actual
number restriction of s in y is smaller than k. One possibility is that y contains or inherits
a y; = dems and m < n. But in this case, y is unsatisfiable and completeness of USAT
for TF® has been proven. If y contains or inherits a y; = d>m s with m < n, then the
actual value restriction of s in y is maz(k, m), i. e. no decrease occurs. Other possibilities
are excluded in the two languages under consideration. If y is a specialization and M;y;

36

is unsatisfiable, then y is not contained in the taxonomy. If y < I>ks My the above
argumentation applies in the same way.

6.c:E3§nr

Independent of n, concepts y of the structure y = T, y = @ and a primitive, ¥y = @ and «a
defined are not contained in £;.. The completeness proof proceeds identical to the previous
case.

For the special case n = 0 we know that ¢ can only have models where no pairs (a, 3) are in
E[r], while the concepts y = Vs.d with 3, # L,y = 3>ks, and y = I<ks with £ > 1 can all
have models were pairs (a,) are in E[s], i. e. E[c] 2 E[y] follows.

For the case n > 1, we have to analyse concepts y of the following syntactical structure that
are not contained in {q,:

o y=Vsdwithsg/{, ors, #1
If s ¢ £}, then &[r] € £[s]. Thus there is a model in which r and s are satisfied by
different object pairs, and thus there is a domain object a in the extension of y, but
not in the extension of c.

If 3, # L we can construct a model for y, in which an object has more than n role
fillers for s and all these fillers also satisfy r. This object is in the extension of y, but
not in the extension of ¢ because it has too many role fillers for r.

oYy = sz‘ S
We construct a model in which a domain object has more than n role fillers for s, and
all fillers would also be in r. This object is not in the extension of ¢ because it has too
many role fillers for r.

o y=dckswithsg{,ork>n
If s ¢ £}, then &[r] € £[s]. Thus there is a model in which r and s are satisfied by
different object pairs, and thus there is a domain object a in the extension of y, but
not in the extension of c.

If £ > n we construct a model in which a domain object a in the extension of y must
have at least n + 1 role fillers for s and all these fillers are also in the extension of 7.
Then « has too many role fillers for r and therefore cannot be in the extension of c.

If y =My, and Vy; : y; & Lqe, then y is a successor if USAT(y) = TRUE or if the actual
number restriction of a role s would be greater than k. Completeness for the first case is
again achieved by completeness of USAT. The actual value restriction of an atmost number
restriction cannot change in 7 .F ©, because even if y contains or inherits bigger atmost number
restriction on the same role, the actual number restriction is min(k, m). For specializations
y < IM;y; the analysis proceeds in the same way.

7. ¢ = [—lici

A concept y is not contained in £, if y is not a successor of at least one ¢;. In this case, we

know that £[c;] 2 E[y], which implies £[M;¢;] 2 E[y] because of E[¢;] 2 E[M;¢;].

e c=Vrdnd
The extension of the actual value restriction of r can be smaller than £[d] because

37

E[7e] C £[d]in both languages under consideration. Completeness would not be affected
because 3, € (14 is sufficient for 3, & {15, .

e c=3snrnd
Additional concepts could become successors if the number restriction on r is smaller
than n. In the two languages this can only happen if ¢ contains or inherits number
restrictions I>m r or d<m r with m < n. In the first case, the actual number restriction

is maz(k, m). In the second case, ¢ becomes unsatisfiable and completeness of USAT
applies.

e c=dcnrnd
Additional concepts could become successors if the number restriction on r is bigger
than n. Similar to the previous case, if ¢ contains or inherits a number restriction
d<mr with m > n, then the actual number restriction is min(m,n). If ¢ contains or
inherits a number restriction d>m r with m > n then ¢ becomes unsatisfiable, which is

discovered by USAT.

8. c S ﬂici

If c is a specialization and M;¢; is satisfiable, then the classifier returns only L as a successor
and with that all concepts that are equivalent to it. Transformation into normal-form termi-
nologies leads to ¢ = M;¢; M€ with ¢ remaining undefined in 7. Since no classified concept y
can have an undefined concept term in its definition, £[¢] 2 £[y] and with that E[c] 2 E[y]
for arbitrary y unless £[y] = 0. u

Finally, we have to prove that the reduction operation in Definition 19 preserves completeness.
Because of soundness and completeness of {1, we know y € 1. & E[c] D €[y]. The reduction
operation removes now all concepts from the set that are successors of another concept in the
set, i. e. z is removed if there is a y with £[z] # £[y] and E[y] D €[z]. Using Definition 14,
it follows that x is not an immediate successor of ¢, i. e. only non-immediate successors are
removed from the set and completeness follows.

Soundness and Completeness of PREC

We prove soundness of £|. directly using again structual induction over ¢ and y.

Soundness of /.

Proposition 7 Let ¢,y be concept descriptions in TF. y € L), only if E[c] C E[y] in all
models of T .

Proof:

1.¢=T

This case is covered by the preprocessing phase, which returns PREC(¢) = {T}. According
to Definition 9 and soundness of TAUT we know that £[¢c] = D and £[y] = D and therefore
E[e] = E[y] which implies &[c] C E[y].

38

2.¢c= 1

The preprocessing phase returns PREC(c) = {L}. According to Definition 9 and soundness
of USAT we know that £[c] = @ and £[y] = 0 and again &[c] = £[y] which implies £[c] C E[y].

3. ¢ = a with a atomic

Step 12 first returns y >, a with £[a] C E[y] because of Definition 14. Since &[c] = £[al, it
follows &[c] C £[y]. Subsequently, all predecessors z of a are added, i. e. [a] C &[z] and thus
E[e] C &£[z] due to transitivity of set inclusion.

4. ¢ =Vr.d

Note that ¢ is not a conjunction and that therefore £[7.] = £[d].
Step 16 addresses the case 7, = L. We know that USAT(d) must have returned true and
thus that £[7.] = £[d] = 0. We proceed by structural induction over y.

o y=Vs.fand s €y,
The condition s € £, implies £[s] C £[r], furthermore &[f] D £[d] because of £[d]
Soundness follows from the observation for any extension function &:

0.

Ed] CEfINEr] D E[s] > VrdCVr.f=>VrdCVs.f

o y=dcksand s €l
We now that £[s] C &£[r] = E[Vr.1] = £[I<0s] and that £[3<0 5]
trary k. With that we can conclude &[s] C £[r] = &[Vr.L] C £[F<k

follows.

C &[d<k 5] for arbi-
<k s] and soundness

Step 17 addresses the case 7. # L and the classifier generates predecessors y = V s.f with
s € ly, and 5, €)7 . It holds £[5,] = £[f] and E[7.] = £[d] due to the syntactic restrictions
on ¢ and y. With the induction hypothesis we have £[s] C £[r] and £[d] C &[f] and soundness
follows from the observation

E[A)CE[fINE[s] CElr] = EVsd] CEVs.fl= ENr.d] C EVs.f]

We investigate the case of y being a concept conjunction separately in Case 9.

5. c=dsnr

The case n = 0 is addressed in Step 18, which returns the empty set, followed by Step 23,
which adds T as a predecessor. Since £[3507] = D and £[T] = D it follows £[c] = E[y] which
implies £[c] C &[y].

If n > 1 generation proceeds according to Step 19, which returns y = 35 % s with s € £}, and
k < n. Due to the syntactic restrictions on ¢ and y the numbers n and k represent the actual
number restrictions on r and s. Soundness follows from the observation

Elr] CE[s]ANE <n= ET>nr] C E[I>k 4]

39

6. c=dcnr
Independent of n, generation Steps 20 and 21 return

o y=dckswithse€ly, and k > n
Due to the syntactic restrictions on ¢ and y, the numbers n and k represent the actual
number restrictions on r and s. Soundness follows from the observation

Es] CE[rIANk > n = E[T<cnr] C E[T<cn s] C E[T<k 5]
If n = 0 Step 20 additionally generates

o y=Vs.f with s € ;.
We know that £[d<0r] = £[Vr.L] according to Definition 9. Furthermore, £[Vr. 1] C
E[Vr.f] for abitrary value restrictions f. Since &[s] C £[r] (induction hypothesis) we
can conclude E[Vr.1] C £[Vs.f] and thus it follows

Els] C&[r] = €[3<07] C E[Vs.f]

7. ¢ = [—lici

o e, =T
The preprocessing phase returns y = T. Soundness of TAUT guarantees that £[c] = D
and thus £[c] = £[y] = D, which implies £[c] C &[y].

o Mic, =L
The preprocessing phase returns y = L. Soundness of US AT guarantees that [c] =
and thus &[c] = &[y] = B, which implies &[c] C E[y].

If Mje; 2 T # L, the classifier generates the predecessors with respect to a single ¢; and
returns their union. Soundness follows from the observation

Elei] C Ely]l = Niflei] C £yl = E[Nici] C Ely] = E[e] C E[y]

Again we investigate whether the validity of local tests on single ¢; is affected if ¢ contains or
inherits additional value or number restrictions.

Ta. c=Vrdnd

If ¢ contains or inherits additional value restrictions over ¢’ then £[7.] C £[d]. Steps 16 tests
7. = L and Step 17 tests 3, € £};.. Performing the same tests on d instead of on 7. would
not violate soundness: If £[d] = @) then &[] = 0 and £[d] C £[3,] implies E[7.] C E[3,]

7b. c=3snrnd

We do not need to analyse the case n = 0, because the classifier returns an empty predecessor
set in Step 18. If n > 1, the classifier returns y = 35k s satisfying k£ < n. If the actual number
restriction on r were smaller than n, then this test would become invalid:

e If ¢’ contains or inherits a concept ¢; = I>mr and m < n then the actual number
restriction on r is maxz(m,n), i. e. no decrease occurs.

o If ¢’ contains or inherits a concept ¢; = I<mr and m < n then c itselfs becomes
unsatisfiable and any concept is a predecessor of it.

Other possibilities are excluded in the two languages under consideration.

40

Te. c= Elsnrl_lc’

Independent of the value of n, the Steps 20 and 21 would generate invalid predecessors if the
actual number restriction on r would be greater than n:

e If ¢’ contains or inherits a concept ¢; = I<mr and m > n then the actual number
restriction on r is min(m,n), i. e. no increase occurs.

o If ¢’ contains or inherits a concept ¢; = 3>mr and m > n then ¢ itselfs becomes
unsatisfiable and any concept is a predecessor of it.

Other possibilities are excluded in the two languages under consideration.

8. c S ﬂici

The special cases M;¢; = L and M;e; = T are addressed during preprocessing. In the first
case, ¢ is not a valid concept specialization. In the second case, y = T is returned for which
soundness is obvious because of £[¢] C D for any concept c.

If Mje; # L # T then {4, returns predecessors y with £[M;¢;] C E[y]. Since E[e] C E[M;¢;] we
can conclude &[¢] C £[y] and soundness follows.

This justifies to treat concept specializations identically to concept definitions, i. e. a valid
predecessor of the defined concept is also a predecessor of the corresponding specialization.

9. y =y,

For all previous cases we have always assumed that y is not a conjunction, i. e. that £[¢;] C E[y]
holds which implied £[¢] C E[y]. If y is a conjunction the classifier tests that y is covered by ¢
as defined in Definition 21 and the covering condition on y is sufficient to maintain soundness
since it requires that each y; is a valid predecessor of ¢, i. e. Yy; : E[c] C E[y;] and thus,
Ele] C NiElyil-

Finally, we have to exclude the possibility that a test £[c] C E[y;] is invalidated by interactions
among the various conjuncts contained in .

9a. y =Vs.fMy

If 4/ inherits or contains additional value restrictions on s, then the actual value restriction
5, on s can be smaller than f, i. e. £[3,] C &[f]. Since Steps 16 and 17 test &[7;] C £[3,]
soundness is maintained, while testing £[7.] C £[f] would lead to incorrect predecessors.

9b. y =3dsksMy

If 3 inherits or contains a number restriction y; = I>ms with m > k then indeed the
actual number restriction on s would be maz(m,k) and y is no longer a valid predecessor
until £[c] C &[y;]. But since the covering condition has to be verified on y;, soundness is
maintained because y is only kept as a predecessor when y; is a predecessor.

Other possibilities of an increase of the actual number restriction are excluded in the two
languages under consideration.

41

9c. y =dcksny’

The test £ > n in Step 21 would become invalid if the actual number restriction on s in ¥ is
smaller than k. This can happen if y inherits or contains a number restriction y; = I<m s
with m < k. Indeed the actual number restriction on s would be min(m, k) and y is no longer
a valid predecessor until £[¢] C £[y;], which is verified when testing the covering condition
for y; and thus soundness is maintained.

If 3 inherits or contains a number restriction y;3>m s with m > k then y becomes unsatis-
fiable. The covering condition requires that both conjuncts of y have to be predecessors of
¢, which is impossible until ¢ is unsatisfiable itself. Since £, is only activated for satisfiable
concept descriptions ¢, only one of the conjuncts can be a valid predecessor, i. e. the cov-
ering condition for at least one conjunct is violated and thus y would not be returned as a
predecessor.

Other possibilities of a decrease of the actual number restriction are excluded in the language

TF®.

10. Yy S [_]Z'CZ'

A concept specialization y is only returned as a predecessor if it can be reached following the
> links starting in at least one ¢;. In this case, £[¢;] C E[y] holds according to Definition 14

and thus N;&[¢;] C E[y], i. e. soundness folllows.
"

Completeness of /).

Proposition 8 Let ¢,y be concept descriptions in a terminology T given in either TF® or

TF*. ye Ly if E[c] C E[y] holds in all models of T.

We prove completeness again indirectly by structural induction over ¢ and y and prove that
whenever y & (). then £[c] Z £[y] in some model of 7.

Proof:

1.¢=T

The preprocessing phase returns PREC(T) = {T}. Due to soundness and completeness of
TAUT, we know that TAUT(¢) = TRUE & &[¢] = D. The predecessor {T} represents the
set of all tautological conceps {y | TAUT(y) = TRUE}, i. e. for all y not returned in this set
holds £[y] C D because of soundness and completeness of TAUT. Thus completeness follows

with &[c] € £[y] because of £[c] = D.

2.¢c= 1

The preprocessing phase returns PREC(L) = {L}. PREC is complete if all immediate
predecessors of 1 are contained in this set. The predecessor L represents all unsatisfiable
concepts contained in 7, i. e. the set {y|USAT(y) = TRUE}. Because of soundness and
completeness of US AT we know that USAT(y) = TRUE < E[y] = @ and furthermore &[c] = .
All other concepts z with £[z] D @ cannot be immediate predecessors because of Definition 14.

42

3. ¢ = a with a atomic

If ¢ is atomic and thus contained as a node in the taxonomy, the classifier starts collecting
predecessors in a and following >, links until T is reached using Step 12 and then adding T
at the end of the generation in Step 23. The set of direct predecessors is complete according
to Definition 14 because the classifier performs an exhaustive search over >... To see that the
generation of indirect predecessors is complete when starting search at direct predecessors
note that all successors x of non-predecessors z of ¢ cannot be predecessors of ¢: Let us
assume that z is a non-predecessor of ¢, i. e. £[¢] € £[z], but z is a successor of z and thus
E[z] C &[z]. Clearly, £[c] € &[z] follows and thus z is not a predecessor.

Thus, the search performed by the classifier during the generation of indirect predecessors is
complete. It terminates if either L is reached, because L cannot be a predecessor of ¢ since
c is satisfiable, i. e. £[c] D @ and thus &[¢] € @, or if a non-predecessor is reached because all
successors of non-predecessors cannot be predecessors due to the above argumentation.

An indirect predecessor is not a valid predecessor if it violates the covering condition in
Definition 21, i. e. if it is a concept specialization or a successor of a non-predecessor.

To see that a concept specialization y < M;y; cannot be a valid indirect predecessor we
consider its transformation into a defined concept y = M;y; My, which is extension-preserving.
y remains completely undefined in the terminology and can only be a predecessor of ¢ if it
is reached following the > links. But in this case, y must be a direct predecessor of c.
Otherwise, y is a successor of the non-predecessor .

With that, completeness for the generation of direct and indirect predecessors follows with the
classifier starting in ¢ and performing a complete search over the >, links and then starting
in all valid direct predecessors and performing a complete search of all their successors until
a non-predecessor is reached. It remains to prove that the test for the covering condition for
non-atomic y; and the generation of predecessors for non-atomic ¢; is complete.

4. ¢ =Vr.d

Note that due to the syntactic restrictions on ¢ we have £[7.] = £[d].

For the special case 7. = L (i. e. £[d] = @), concepts y of the following syntactical structure
are not returned by the classifier in Steps 16 and 23: y = 1, y = a with a primitive, y = I5k s
and y = Vs.f with s € £y,. Since § C E[¢] C D completeness follows because of E[c] € E[y]
in at least one model for 7 for all these y: For y = L it holds that £[y] = @ and in all other
cases we can construct a model in which an object a is contained in the extension of ¢, but
not in the extension of y. Since £[c] C D such an object must exist.

o If y = @ and « is not primitive then y is either a defined concept or introduced through
a specialization. A concept specialization cannot be a valid predecessor unless it is a
direct predecessor as we have proven previously.

o If y is defined (i. e. y = MM;y;) then y is not a predecessor if one of its y; does not
satisfy the covering condition from Definition 21. But in this case, y is a successor of
a non-predecessor and therefore £[c] Z E[y].

The impact of a conjunctive y on number and value restrictions contained in y does not need
to be investigated for ¢ = V r.d since solely subsumption between roles is tested and thus the
generation result of the classifier is independent of the actual number or value restriction on
a role. For all remaining syntactical possibilities we do not again address the case that y is

43

a specialization or violates the covering condition, since it should be obvious that it cannot
be a predecessor in this case.

If 7. # L (€[d] # 0) generation proceeds according to Steps 17 and 23.

o If £[d] = D then &[c] = D and completeness follows as in the case of ¢ = T because
Step 23 returns T representing all y with E[y] = D.

e If £[d] C D then § C &[¢] C D and concepts y of the following syntactical structure
are not returned by the classifier in Steps 16 and 23: y = 1, y = a@ with @ primitive,
y=13>ks,y=3<ksandy =Vs.f withs & {1, or 8, € £}7,. The proof of completeness
is identical to the case 7. = L with the two additional cases of y=d<ksand y=Vs.f
with §y € flfc.

If y is a concept conjunction, we only need to investigate whether it can be a predecessor
even if its value restricting concept 5, does violate the test 5, € £|; . This cannot be the
case. Note that &[] = £[d], but that £[3,] C £[f]. To achieve completeness, only testing
E[r:] C &[f] would be sufficient, because a concept y satisfying E[7.] € &[f] for its value
restriction can never satisfy £[#;] C £[8,]. But as we have seen in the proof of soundness for
{|. using the actual value restriction on s in y is necessary to maintain soundness.

5. c=dnr

If n = 0 Step 23 returns T and since £[¢] = D completeness follows as proven in Case 1.

If n > 1 then £[c] C D and the following y are not returned by £|.;: y = L, y = a with a
primitive, y = 3<ks, y =Vs.f,and y = 3> ks with s € £}, or k > n. Because of § C E[c] C D
we can construct a model with an object a contained in the extension of ¢, but not in the
extension of y. For example, if y = 35k r with & > n then a with exactly n role fillers would
be in the extension of ¢, but not in the extension of y which requires for all objects to have
at least n + 1 role fillers for 7.

If y is a concept conjunction then y not returned by the generation steps could be a predecessor
if its actual number restriction is smaller than k. In the two languages under consideration,
this cannot happen. If y inherits or contains a y; = d>m s with m < k then the actual
number restriction on s is maxz(m,k), i. e. no decrease occurs. If y inherits or contains a
y; = d<m s with m < k then y becomes unsatisfiable and is not a predecessor of ¢ because ¢
is satisfiable.

6. c=dcnr

Independent of n, the following y are not returned by the classifier: y = 1, y = a with «
primitive, y = I<ks with s ¢ {1, or k < n, and y = 3>k s. Because of) C £[¢] C D we can
construct a model with an object a contained in the extension of ¢, but not in the extension
of y for all the syntactical cases (except y = 1) and completeness follows. If y = L then
Ely] = 0 and &[c] € E]y] follows because of E[c] D 0.

If n = 0 the classifier does not return y =V s.f with s ¢ {1,. With the induction hypothesis,
we know that £[s] € £[r] and a model can be constructed in which some role fillers for s for
an object «a exist.

If n > 1 no value restrictions y = V s.f are returned and we can construct a model with an
object a € &[c], but a ¢ E[y], e. g. where at least one of a’s role fillers is not in E[f].

44

7. ¢ = TMe;

A concept y is not returned as a predecessor of a conjunctive ¢ if
1. y is a spezialization not reachable following > links
2. there is no ¢; such that y is a predecessor of it

3. y does not satisfy the covering condition

Completeness for the first case has already been proven. For the second case, we know
Ve, : Ele;] € E[y] and thus it follows N;E[¢;] € E[y] and therefore E[c] € E[y].

For the third case, completeness follows from Jy; : E[c] € E[y;] = Elc] € NiElyi] = Ele] €
E[y]. Since the classifier is testing E[¢;] € E[y;] for all ¢; we have to make sure that the tests
performed are sufficient to generate all predecessors if interactions among value or number
restrictions in a concept conjunction occur:

e c=Vrdnd
The extension of the actual value restriction of r can be smaller than £[d] because
E[te] C &[d] in both languages under consideration. Completeness would be affected
when testing 8, € (|4, because if £[d] € £[3,] it is still possible that E[7;] C £[3,].
Using the actual value restriction is therefore necessary and achieves completeness.

e c=3snrnd
Additional concepts could become predecessors if the actual number restriction on r
would be greater than n. If ¢’ contains or inherits 35 m r the actual number restriction
on r is indeed maz(m,n), i. e. an increase occurs. But these predecessors are generated
when £, is computed and they are returned in the final set of predecessors £|. when
satisfying the covering condition.

Other possibilities of an increase cannot occur in the languages under consideration.

e c=3cenrnd
If the actual number restriction on r is smaller than n, completeness would be affected.
In the two languages under consideration this can only happen if ¢/ contains or inherits
Jd<mr with m < n, since a decrease occurs with min(m,n). But again these prede-
cessors are generated when f| is computed and they are returned in the final set of
predecessors £|. when satisfying the covering condition.

Completeness for the special case that ¢ is tautological or unsatisfiable follows from com-

pleteness of TAUT and USAT.

8. c S Hici

If ¢ is a specialization then the classifier returns all predecessors of the corresponding defined
concept ¢ = M;¢;. This set would be incomplete if there are predecessors of a specialization
that are not predecessors of the defined concept. To see that this is impossible let us consider
the normal-form representation of ¢ with ¢ = MM;¢; M ¢. The concept ¢ cannot have any
predecessors except of T because it remains completely undefined in 7 and a concept y can
only be a predecessor of ¢ unless ¢ is contained in the definition of y or inherited by y. But
then ¢ must already have been defined in 7, i. e. the terminology would violate the uniqueness
assumption and also contain terminological cycles, which we do not admit.

45

With that completeness of £, has been proven. Finally we have to show that the reduction
operation from Definition 23 on £|. only removes non-immediate predecessors. All concepts
in £, satisfy £[c] C E[y]. To obtain PREC, concepts = with E[z] # E[y] and E[y] C &[z]
are removed. Thus £[y] C £[z] follows and therefore 2 cannot be an immediate predecessor
according to Definition 14.

References

[1] J.A. Allen, R. Fikes, and E. Sandewall, editors. Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning. Morgan Kauf-
mann, San Mateo, 1991.

[2] F. Baader and B. Hollunder. KRIS: Knowledge representation and inference system.
SIGART Bulletin, 2(2):8-15, 1991.

[3] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An empirical
analysis of optimization techniques for terminological representation systems, or making
KRIS get a move on. In B. Nebel, W. Swartout, and C. Rich, editors, Proceedings of the
3rd International Conference on Principles of Knowledge Representation and Reasoning,
pages 270-281. Morgan Kaufmann, San Mateo, 1992.

[4] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm for subsumption
in the CLASSIC description logic. Journal of Artificial Intelligence Research, 1:277-308,
1994.

[5] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept lan-
guages. In Allen et al. [1], pages 151-162. extended version available as DFKI report
RR-95-07.

[6] J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. An empirical analysis of
terminological representation systems. Artificial Intelligence, 68(2):367-397, 1994.

[7] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In

Allen et al. [1].

[8] R. MacGregor. A description classifier for the predicate calculus. In Proceedings of the
12th National Conference of the American Association for Artificial Intelligence. AAAT
Press, MIT Press, 1994.

[9] B. Nebel. Computational complexity of terminological reasoning in BACK. Artificial
Intelligence, 34:371-383, 1988.

[10] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture Notes in
Artificial Intelligence 422. Springer, 1990.

[11] H.J. Ohlbach and J. Koehler. Reasoning about sets via atomic decomposition. Research
report, ICSI, 1996. In Preparation.

46

[12] H. J. Ohlbach, R. Schmidt, and U. Hustadt. Translating graded modalities into predi-
cate logic. Research Report MPI-1-95-2-008, Max-Planck-Institute of Computer Science,
1995. To appear in H. Wansing (ed), Proof Theory for Modal Logic, Oxford Univ. Press.

[13] K. Stoffel, W. Anderson, and J. Hendler. PARKA: Support for extremely large knowl-
edge bases. In Proceedings of the KRUSF Symposium on Knowledge Retrieval, Use and
Storage for Elfficiency, 1995.

[14] K. Stoffel and J. Hendler. PARKA on MIMD-supercomputers. Parallel Processing for
Artificial Intelligence, pages 132142, 1995.

[15] K. Stoffel, S. Sharma, J. Hendler, and J. Saltz. Integrating task-parallel computations
into data-parallel applications. In Proceedings of the SIPAR-95 Workshop, 1995.

47

