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Abstract
We study the well known problem of throwing m balls into n bins. If each ball in
the sequential game is allowed to select more than one bin, the maximum load of the
bins can be exponentially reduced compared to the ‘classical balls into bins’ game.
We consider a static and a dynamic variant of a randomized parallel allocation
where each ball can choose a constant number of bins. All results hold with high

probability. In the static case all m balls arrive at the same time. We analyze for m =
]/ logn

loglogn if r

n a very simple optimal class of protocols achieving maximum load O (

rounds of communication are allowed. This matches the lower bound of [ACMR95].
Furthermore, we generalize the protocols to the case of m > n balls. An optimal

load of O(m/n) can be achieved using lzogg(ﬁ%) rounds of communication. Hence, for
loglogn

Togloglog balls this slackness allows to hide the amount of communication. In
the ‘classical balls into bins’ game this optimal distribution can only be achieved for
m = nlogn.

In the dynamic variant n of the m balls arrive at the same time and have to
be allocated. Fach of these initial n balls has a list of m/n successor-balls. As
soon as a ball is allocated its successor will be processed. We present an optimal
parallel process that allocates all m = nlogn balls in O(m/n) rounds. Hence, the
expected allocation time is constant. The main contribution of this process is that
the maximum allocation time is additionally bounded by O(loglogn).

m=n



1 Introduction

In the ‘classical balls into bins’ game m balls are thrown independently and uniformly
at random (i.u.a.r.) into n bins. The distribution of the balls in the bins is well known

([KSC78]). For m = n there exists a bin getting © (101;{5()7;”) balls with high probability

(w.hp.)l. Azar et al. [ABKU94] consider a modified sequential game where each ball
chooses i.u.a.r. d > 2 bins and is placed in the bin with the smaller load. They show
a 0O (loglogn/logd) bound on the maximum load of the bins for this GREEDY strategy,
w.h.p.. This game has many applications to computing problems, e.g. dynamic resource
allocation, hashing, and competitive on-line load balancing (see [ABKU94]).

In this paper we consider the parallel version of the ’balls into bins’ game. In the parallel
case the balls do not arrive sequentially, instead several balls arrive simultaneously and have
to be placed into the bins. We are interested in parallelizations without a global control,
i.e., each ball is placed in a bin using only very local information. This leads to randomized
strategies. In contrast to the sequential case we have a third parameter, the degree of
parallelization, i.e., the number of balls that can be processed (thrown) at the same time.

Naturally, the question arises if the idea of choosing randomly more than one possible
destination for a ball has a similar great impact on the maximum load in the parallel case
as it had in the sequential case. To answer this question we consider a static and a dynamic
variant of a parallelization.

In the static variant all m balls arrive at the same time. A parallel protocol has to place
the balls in the bins minimizing the maximum load and using only a limited amount of
communication. Obviously, there exists a tradeoff between the amount of communication
available for the decision where to place the balls and the maximum load of each bin.

In the dynamic variant n of the m balls arrive at the same time. But as soon as a ball
is allocated, a new ball, a successor, is processed. Fach of the n balls at the beginning has
m/n successors. A parallel process has to allocate all m balls using O(m/n) rounds. That
is, we focus on optimal processes with constant expected allocation time. Our goal is to
minimize the maximum allocation time of a ball.

For m = n a parallel protocol and a parallel process are the same. Therefore, they can
be viewed as generalizations of this special case in different directions.

1.1 Parallel protocols

In the classical balls into bins game each of m balls is placed i.u.a.r. in one of n bins.

We consider an extension of this model described by Adler et al. [ACMRO95]. At the
beginning each of the m balls chooses i.u.a.r. d bins. In this paper we focus on the case
d = 2. The balls decide their final destination using r rounds of communication. A round
of communication consists of two phases. In a first phase each ball can send a message to
the two bins it has chosen. In a second phase each bin sends back a message to all balls
that it has received a message from. All these replies are done simultaneously. Finally, each
ball decides in which of the two bins to be placed.

A more restricted version of this model suffices to achieve significant improvements
compared to the ’classical balls into bins’ game. We consider only protocols that are non-

Dwith high probability’ means with probability at least 1 — n~* for a constant a > 1.



adaptive and symmetric. Non-adaptive means that the possible destinations are chosen
before any communication takes place. Symmetric means that all bins perform the same
underlying algorithm and all possible destinations are chosen i.u.a.r.

Adler et al. ([ACMR95]) consider the case where m = n balls are thrown into n bins.
Their main result is a lower bound on the maximum load of a bin for the restricted class of
protocols. They show an 2 ( Y lolgoﬁ)gn
communication are allowed. For a constant number of rounds of communication they match
the lower bound using a THRESHOLD protocol. If the number of rounds r grows with n,
their best result is a maximum load of loglogn + O(1) using r = loglog n + O(1) rounds of
communication. They achieve this result with a parallel version of the GREEDY algorithm

described by Azar et al. ([ABKU94]).

lower bound for the maximum load if » rounds of

We present a class of protocols, the COLLISION protocols, matching the lower bound
of Adler et al. ([ACMRY5]) for the whole range of r. In a k-CoOLLISION protocol a ball
can only be placed in a bin if at most £ — 1 other balls have chosen this bin. Obviously
this means that the maximum load of a bin is k. The simplicity of this protocol makes it
very practical. Therefore, we analyze the constants in the number of rounds and in the
maximum load. The COLLISION protocols can be reformulated such that they perform
almost asynchronously. This answers the open question of Adler et al. [ACMR95] if there
exists a simple protocol that achieves the same performance as their generalization of the
GREEDY protocol.

Furthermore, we extend the k-CoOLLISION protocols to values m > n. It is well known
that if m = Q(nlogn) balls are thrown into n bins we get a distribution where the maximum
load of the bins differs from the expected load only by a constant factor. That is, for large
values of m the ‘classical balls into bins’ protocol performs very well. We show that for
any m this distribution where the maximum load of all bins differs from the expected
load only by a constant factor can be achieved with the k-collision protocol. We have to
choose k = ©(m/n) and allow a sufficient amount of communication, Q (log log n/ log(m/n))
rounds. The protocols are optimal as the maximum load of each bin is obviously bounded
from below by the expected load m/n. If we take m = O(nﬁg‘f}%) balls, a distribution

loglogn

m ) rounds .

as described above can be achieved using an optimal number of r = O(

The analysis of our protocols only needs O(logn)-wise independent random variables,
i.e., the destinations chosen by the balls only have to be O(log n)-wise independent. Never-
theless, to keep the presentation simple we assume always that these variables are completely
independent.

The problems appearing in shared memory simulations are related to this model of load
balancing. In a shared memory simulation n requests have to be delivered to » memory
modules. Contention at the memory modules results in a delay of the simulation of a
parallel access. The main goal is to minimize the delivering time, i.e. the number of rounds
to satisfy all requests ([KLM92, GMR94, MPR94, CMS95, MSS95]). Nevertheless, several
ideas and techniques can be transferred to this problem. Especially, k-CoLLISION protocols
for m < n and constant k£ are also studied in [DM93, GMR94, MPR94, MSS95]. They
achieve the same bounds for this special setting of the parameters.



1.2 Parallel processes

A parallel process can be viewed as having n players and n bins. Fach player has a list of
7 balls to be allocated. At the beginning each of the n7 balls chooses i.u.a.r. a constant
number d of bins where it can be allocated. It suffices if a ball is allocated at one of the d
possible destinations.

The process performs in rounds. In each round each player can try to allocate the first
ball in its list to the d possible destinations. If several players try to allocate a ball at the
same bin, the balls are stored in a FIFO queue at the bin. The balls in the list of a player
have to be allocated one after the other, i.e., a player is only able to try to allocate the next
ball in the list if the previous one has successfully been processed. Hence, the situation can
also be viewed as generating a new ball as soon as the previous one has successfully been
allocated.

Our main goal is to minimize the allocation time of a ball, i.e. the difference between
the first round the ball is the first one in the list of the player and the round this ball is
finally allocated. We focus on optimal processes where all balls should be allocated in O(r)
rounds, i.e., the expected allocation time is constant. Within this class of processes we want
to minimize the maximum allocation time.

In a naive approach the players just try to allocate one ball after the other, choosing
for each ball d = 1 bin i.u.a.r.. Aiello et al. [LAB93] and independently Dietzfelbinger and
Meyer auf der Heide [DM93] show that for 7 = logn this SIMPLE process is optimal. But
the maximum allocation time is Q(logn/loglogn).

On the other hand gluing the CoOLLISION protocols together decreases the maximum
allocation time to O(loglogn) but the resulting process is not optimal.

We present an optimal process that needs O(7) rounds for 7 = logn and has maximum
allocation time O(loglogn). It chooses d = 3 possible destinations i.u.a.r. for each ball and
decreases the maximum allocation time exponentially.

Similar processes which try to achieve constant expected allocation time have also been
studied in other contexts, e.g. shared memory simulations (see e.g. [DM93, LAB93]).

1.3 Applications

Distributed load balancing

Consider a scenario described by Adler et al. [ACMR95] where m client workstations issue
jobs (balls) that have to be allocated at decentralized compute-servers. The clients are
ignorant about other clients submitting jobs. The main goal is to minimize the maximum
load at each server. Using a random strategy avoids the high cost of a global coordination.
The COLLISION protocols immediately apply to this scenario. In addition, this randomized
protocol is highly fault-tolerant. If a server crashes a client just makes new random choices.
The resulting maximum load is covered by our analysis for m > n balls.

Also the parallel process fits in this application. Assume a client has to wait for a
submitted job to be allocated until it can submit the next one. The parallel process gives a
probabilistic guarantee that for a sufficiently large number of jobs the expected allocation
time is constant. Also we get an O(loglogn) upper bound on the maximal allocation time.



Hence, a client knows an upper bound when he can start his k-th job in the worst case.

Parallel models with limited bandwidth

In the PRAM(7n) model, a recently proposed limited bandwidth model ((MNV94, ABK95]),
m processors communicate through a small, globally shared memory consisting of n memory
cells. Viewing the requests of the processors as balls that have to be allocated to the bins,
we can simulate a PRAM with large shared memory on this model. We use a constant time
simulation of a PRAM(n) on a module parallel computer (MPC) with n memory modules
described in [MNV94]. ¢ copies of each shared memory cells of the large PRAM are i.u.a.r.
distributed among the modules using ¢ random functions. The memory accesses to the
shared memory can be viewed as a ‘balls into bins’ game. Each request of a processor is a
ball thrown to the ¢ random locations in the modules of the memory cell that it wants to
access. An extension of the majority technique due to Upfal and Wigderson [UW87] allows
to restrict to the case that only one copy has to be allocated (see e.g. [CMS95]). Hence an
m-processor PRAM can be simulated on an m-processor PRAM(n) with O(m/n+loglogn)
delay, w.h.p..

Universal dynamic mapping on MIMD machines

Consider the problem of mapping dynamically generated tasks onto processors of a MIMD-
system. Decker et al. [DDLMO5] look at this problem and want to construct an algorithm
which can be integrated in a distributed runtime system like PVM or MPIL. In [DDLM95]
they consider only the sequential process of Azar et al. [ABKU94]. If more than one task
arrives at the same time, the COLLISION protocols and the parallel allocation process can
be used to bound the maximum load and the maximum allocation time.

1.4 Organization

In the next section we first introduce the class of COLLISION protocols. Then we analyze
their performance for the case m = n, matching the existing lower bound. In the last part
of Section 2 we extend the analysis to the case m > n. In Section 3 we finally present the
optimal parallel process that achieves maximum allocation time O(loglogn).

2 COLLISION protocols

In this section we consider a class of protocols called COLLISION protocols. That is, a ball
can only be allocated at a bin if at most £ — 1 other balls want to be allocated at this bin.

k-COLLISION
e in parallel each ball b chooses i.u.a.r. two bins i1(b) and iz(b).

e while there is a ball that has not been allocated

— in parallel each non-allocated ball b sends a request to i1(b) and iz(b)

— in parallel each bin getting at most k requests sends an acknowledgment to all
requesting balls.



— each ball getting an acknowledgment is allocated to the respective bin (ties are
broken arbitrarily)

We call one iteration of the while-loop a round. Obviously in each round each ball only
has to send two messages and each bin only has to handle £ + 1 messages. If a bin gets
more than k£ messages it can stop receiving and stays silent. If it gets less than k requests
it has to send at most k£ acknowledgments.

This protocol is synchronous, i.e., each ball has to wait for the end of each round to get
to know if it will get an acknowledgment or not. But the protocol can also be converted
into an almost asynchronous one.

ASYNCHRON-COLLISION
e in parallel each ball b chooses i.u.a.r. two bins i1(b) and iz(b).
e in parallel each ball b sends a request to i1(b) and iy(b)

e while there is a ball that has not been allocated

— in parallel each bin having at most k requests sends an acknowledgment to all
requesting balls.

— each ball getting an acknowledgment is allocated in the respective bin (ties are
broken arbitrarily) and sends a message to the other bin that it already has been
allocated.

The AsYNCHRON-COLLISION protocol only needs one synchronization just before the
while-loop starts. This is because a bin has to know if it will get at least k£ requests. The
while-loop can be performed asynchronously. Both protocols are from the point of view
of our analysis the same. Therefore, we only analyze the first protocol. Obviously both
protocols are non-adaptive and symmetric, i.e., the lower bound of Adler et al. ([ACMR95])
can be applied to both protocoals.

2.1 The case m=n

Even if the general case m > n subsumes the content of this subsection we want to present
this special case in detail for two reasons. First, it clarifies the ideas of the proof and
simplifies the presentation. Second we get a slightly better bound in this special case that
matches the lower bound of Adler et al. ([ACMRO95]) which only holds for this special case.
We evaluate the tradeoff between r, the number of rounds of communication, and &, the
maximum load of each bin, using n balls and n bins. The main result of this section is the
following theorem.

Theorem 2.1 Let m = n, a be a constant and 2 < r < log?}%. The k-COLLISION protocol
is finished after r rounds for k = max{{/ ?ggllsggs ,4(a+7)} with probability at least 1 — ——.




To analyze the k-CoLLISION protocols we model the ’balls into bins’ game as a game
on a graph G = (V, F). A similar modeling is also used in [KLM92, GMR94, CMS95]. As
we need this model also in the subsequent sections we define it for the general case m > n.
The bins are the nodes V of the graph G, |V| = n. The balls are represented by the edges
E, |E| = m. There is an edge (v1,v2) € E labeled b if the ball b chooses i.u.a.r. the two
bins i1(b) = vy and i3(b) = v,. Since the bins are chosen i.u.a.r. from each ball, G is a
random labeled graph with n vertices and m edges.

The k-CorrisioN protocol (the while loop of the protocol) can now be viewed as a
procedure of removing edges from the graph G. Again we perform in rounds. In each round
in parallel each node that has degree at most k£ removes all incident edges from the graph.
The procedure is finished when all edges are removed from the graph.

To analyze this procedure we need to know more about the structure of the random
graph G. First we want to determine what kind of substructure has to be embedded into ¢
such that an edge is still left after r rounds. This is the case if in the (r — 1)st round both
incident nodes had degree at least £+ 1. But this is only the case if these edges themselves
were incident in round r — 2 to nodes of degree k + 1. Repeating this inductive argument it
is easily seen that for an edge (or a node) being left after r rounds we get at least a complete
k-ary tree of depth r that has to be embedded in G. Let us call this complete k-ary tree
a witness-tree Wy, .. Unfortunately, W}, does not have to be a subgraph of G. Two nodes
of Wi, can be embedded to the same node of G. Then the subtree below the node on the
lower level can be completely mapped onto the subtree below the other node. Hence, the
size of the embedding of W}, is much smaller than the original size. That is, if we identify
nodes in the embedding, the tree is ‘folded together’. On the other hand, we create a cycle
if we embed two nodes of Wy, in the same node of (¢, i.e., we need for this embedding a
non-tree edge of G.

We want to describe the tradeoff between the size (number of nodes) of the embedding
and the number of non-tree edges used. Consider an embedding of W, using w non-tree
edges, i.e., the embedding is a tree with w additional edges. Only 2w of the k£ branches
starting at the root of Wy, can use a non-tree edge for the embedding. That is, for £ > 2w
at least & — 2w branches have to be embedded one-to-one in GG. Therefore a k-ary tree of
depth r where only the root has degree £k — 2w has to be a subgraph of (G. Note that the
embedding with the smallest number of nodes is the tree having w self-loops at the root.
For w > k/2 a deadlock can occur. This is a special case that has to be handled separately
in the analysis.

The proof of Theorem 2.1 is split into two parts for different sizes of w. For small w we
show that the ’large’ k-ary tree with root-degree k — 2w is very unlikely to be a subgraph
of G. For larger values of w the embedding becomes smaller but more dense. We show that
it is very unlikely for a dense graph to be a subgraph of G. Of course both arguments only
hold for values of k£ and r that are large enough.

The following two technical lemmas are the basis of our proofs. The first lemma is
already stated for the general case m > n. A simpler version for m < n is already included
in [KLM92].

Lemma 2.2 Let G be a random graph with n nodes and m = An edges, 1 < A < logn.
FEach subgraph S consisting of s < 3logn nodes has at most s+w—1 edges with probability



1—n"%forw >1+4+a+ (3 +logA) and constant o, 3 > 1.

Proof: Consider the probability that a graph 5 with s nodes and s + w — 1 edges is a
subgraph of the random graph G. We have at most (Z) possibilities to choose the s nodes,
<525+::£1—2) possibilities to choose the s + w — 1 edges, and at most m*T*~!
label these edges. The probability that all s4+w — 1 labeled edges have the right connections

is L Therefore, we can bound the probability that G has a subgraph S by

n\[s2+s+w—2 stw—1 1
(s) ( s+w—1 (An) n2(s+w-1)

(E) ((82 +st+w-— 2)6)S+w_1 stu—1 L

possibilities to

- S s+w—1 pstw=1
esA\ Y1
< ZA S _
¢ ()
2(210ge+10g/\)5 <@)w_l
n
For s < flogn and w > 1+ a + §(3 + log A) this term is smaller than n™°. O

Lemma 2.3 Let T}, be a complete k-ary tree of depth 2 < r < ilog logn where only

the root has degree k/2. For k > ¢ ?ggllgggg the graph Ty, is not a subgraph of G' with

probability 1 — n=2t1 for constant a.

Proof: Let ¢ be the size of T} ,, i.e. the number of nodes. At least %kr_l nodes in T},
have k children. We want to bound the probability that 7} , is a subgraph of G.

") ways to choose the ¢ nodes and ¢! ways to order them. There are #‘_1)),

There are (]
1 -1
Tk

ways to label the edges. Finally, as 1%, is a complete tree we have at least (k!)
automorphism which can be eliminated. The probability that all edges have the correct
connections is ﬁ

Hence, we can bound the probability that 7} , is a subgraph of G' by

t (n— (t— 1))!n2(t—1) (k!)%kr_l

nint—1 1 1 < <e)
=n n|—
n2t—2 (k!)%kr—l (k‘!)%kT_l — k

This expression is polynomially small for & > ¢/ ?ggllé’gg: and r < i log log n:
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Now we can prove Theorem 2.1.
Proof: [of Theorem 2.1] For an edge to be left after r rounds of the k-CoLLISION protocol

a witness-tree W}, has to be embedded into GG. First, as r < lﬁg?}—zgﬁ and k> ¢/ % the
size of Wy, is at most 2k < 2logn.

Hence, Lemma 2.2 states for m = n that the embedding of W}, uses at most w =7+«
non-tree edges with probability 1 — n=*. If we choose k > 4w at least a k-ary tree T}, of

depth r where only the root has degree k/2 has to be a subgraph of G. For k& > ¢ ?;%llsgg;n
Lemma 2.3 states that w.h.p. T}, is not a subgraph of G, i.e., there is no embedding of
Wy, using less than w non-tree edges. Hence, for £ and 7 in the stated bounds the theorem
follows.

O

As {/r can be bounded by two for r > 2, Theorem 2.1 matches the lower bound of Adler
et al. [ACMRY5]. Interesting special cases of Theorem 2.1 are for constant £, i.e., we want
to keep the maximum load in each bin as small as possible, and also for a constant number
of rounds r.

Corollary 2.4 The k-COLLISION protocol achieves w.h.p.

e maximum load k = 32 using 0.17 loglogn rounds and
e maximum load k = ”1?;1% using two rounds.

2.2 The case m > n

In this section we consider the case where m > n balls are thrown i.u.a.r. into n bins.
Again, we use the k-COLLISION protocol to distribute the balls.

Obviously, we have to choose k at least as large as the expected optimal load m/n. To
avoid dead-locks of the protocol we choose k = ¢ - 7* for a constant ¢ to be specified below.
For the rest of this section let m = An. We only analyze the case 1 < A < O(logn). For
larger values of A already the ‘classical balls into bins’ game performs optimal.

Theorem 2.5 Let m = An, k" = logn, and a be a constant. The k-COLLISION protocol
places m balls into n bins using r rounds for k > max{22°t2)\,28 + 4a + 8log A}, with
probability at least 1 — nal——l

We use the same proof techniques as in Subsection 2.1 to prove Theorem 2.5. We
reformulate a slightly weaker version of Lemma 2.3 for the general case of m > n.



Lemma 2.6 Let G = (V, F) be a random graph with |V| = n vertices and |E| = An edges,
A > 1. Let Ty, be a complete k-ary tree of depth r > 1 where only the root has degree

k/2. For k" > logn and k > 22a+2) the probability that T, is a subgraph of GG is at most
p—otl,

Proof: Let ¢ be the size of T} ,, i.e. the number of nodes. At least %kr_l nodes in T},
have k children. We want to bound the probability that 7} , is a subgraph of G.

We have () possibilities to choose the ¢ nodes and #! possibilities to order them. There
are #}5'_1)), possibilities to label the edges. Finally, as 7%, is a complete tree, we have at

least (k!)kr_1 automorphism which can be eliminated.
Hence, we can bound the probability that 7}, is a subgraph of G' by

n 4 m! 1 1
t '('rn, — (t — 1))' n2(t—1) (k')krz_l
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As k" > logn and k > 22°%2)\ the probability is at most n=F1. O

Now the proof of Theorem 2.5 can be done in the same way as the proof of Theorem 2.1
using Lemma 2.2 and Lemma 2.6.

Proof: [of Theorem 2.5] For an edge to be left after r rounds of the k-CoLLISION protocol
a witness-tree Wy, has to be embedded into G. We choose A such that (22“+2A)7’ < logn.
As k" < logn the size of W}, is at most 2k” < 2logn.

Hence, Lemma 2.2 states that the embedding of W}, uses at most w =7+ a + 2logA
non-tree edges with probability 1 — n=*. If we choose £ > 4w at least a k-ary tree T},
of depth r where only the root has degree k/2 has to be a subgraph of G. For k" = logn
and k£ > 222\ Lemma 2.6 states that w.h.p. T, is not a subgraph of G, i.e., there
is no embedding of W}, using less than w non-tree edges. Hence, for £ = logn and
k > max {222%2) 28 + 4a + 8log A} the theorem follows.

O

Theorem 2.5 says that it is always possible to place the balls such that the maximum
load k of each bin is at most constant times larger than the expected load A\. We need



Q(logn/log A) rounds of communication for this purpose. However, an interesting special
case is when the number of rounds r used is at most a constant factor away from the
maximum load of each bin. This distribution can be achieved in the classical ’balls into
bins’ game only for A = Q(logn).

Corollary 2.7 For A = O(loglogn/logloglogn) the maximum load k of each bin and the
number of rounds r of the k-COLLISION protocol are O().

3 Optimal parallel processes

In this section we extend the protocols described in the last section and by Adler et al.
[ACMRY5] to the case where each player wants to allocate more than one ball. Each of
the n players has a list of 7 balls to be placed in the n bins (servers). The balls in the
list of a player have to be allocated one after the other, i.e., a player is only able to try to
allocate the next ball in the list if the previous one has successfully been processed. Hence,
the situation can also be viewed as generating a new ball as soon as the previous one has
successfully been allocated.

We are interested in optimal processes, i.e., if each player has a list of 7 balls, all balls
should be allocated in time O(7). Therefore the expected allocation time is constant. Our
main goal is to minimize the allocation time of a ball, i.e. the difference between the first
round the ball is first in the list of the player and the round this ball is finally allocated.

A naive approach is the 7-SIMPLE process: Fach player has a list of 7 balls. The process
performs in rounds and at the beginning all players are not busy. In each round each
player that is not busy takes the first ball in its list, sends it to an i.u.a.r. chosen bin, and
becomes busy. Each bin has a FIFO queue. Balls arriving in the same round are placed in
an arbitrary order in the queue. In each round each bin accepts one ball from the queue.
All players of successfully allocated balls become non-busy. The protocol stops after O(r)
rounds or when all balls are allocated.

Aiello et al. [LAB93] and independently Dietzfelbinger and Meyer auf der Heide [DM93]
show the following result.

Lemma 3.1 For T = logn the 7-SIMPLE process allocates all balls within O(logn) rounds,
w.h.p..

Hence, the 7-SIMPLE process is optimal but the maximum allocation can only be bounded
by Q(logn/loglogn). On the other hand, we can just glue together 7 of the protocols
described in Section 2 to a process. This gives an O(loglogn) maximum allocation time
but the process needs O(7 loglog n) rounds to finish, i.e., it is not optimal. We combine both
techniques to get an optimal process with O(loglogn) maximum allocation time. First, we
describe a very simple process that is part of the final process.

(7,t)-ALLOCATION process

Input: Fach player P; posses a list of T balls, b;1,...,b;,. Fach ball b has two i.u.a.r.
chosen destinations i1(b) and i3(b).

Task: Allocate each ball to at least one of the two chosen bins.

10



Process: All players are non-busy.
Fach player performs the following round c -t times for a constant ¢ or until all its
balls are allocated.

o If the player is non-busy it takes the next ball in its list, sends a copy to the two
destinations, and becomes busy.

o The balls are stored in two FIFO queues at the bins. One queue for balls that
are first copies and one for second copies. Balls arriving in the same round are
stored in arbitrary order.

e Fach non-empty bin accepts one ball from each FIFO queue.

o A player whose ball has been allocated becomes non-busy and the other copy of
the ball will be eliminated.

As this process consists in essence of two parallel SIMPLE processes, the (logn,logn)-
ALLOCATION process allocates all balls in O(logn) time because of Lemma 3.1. A process
similar to (logn,logn)-ALLOCATION but with a stronger collision rule for the bins is ana-
lyzed in [DM93]. They split the players into a constant number of groups and handle the
groups sequentially to achieve the stronger result. Moreover, one can only get an O(logn)
upper bound for the maximum allocation time from their proof.

Unfortunately, we are not able to analyze the maximum allocation time of a ball in the
(7,t)-ALLOCATION process for all values of 7 and ¢. We have to split the process into phases
such that during some periods of time several processors stay idle and wait for the others.

7-ALLOCATION-PHASE process

Input: Each player C; posses a list of T balls bj1,...,b; .. FEach ball b has three i.u.a.r.
chosen destinations i1(b), i2(b), and i3(b).

Task: Allocate each ball to at least one of the three chosen bins.

Process: Repeat times the following phase:

T
loglogn

o Fach player only uses a cluster consisting of the nezt loglogn non-allocated balls
in its list. It performs the loglog n-SIMPLE process on this cluster using the first
random destination i1(b) for each ball b.

o Fach player that is still busy with a ball b performs the (1,loglogn)- ALLOCATION-
process with b using the two random destinations i3(b), and is(b).

Perform the (logn,logn)-ALLOCATION process with the remaining balls.

It seems that this process is not easier to analyze because the (7,%)- ALLOCATION Process
is a subroutine. However, we only use special settings of the parameter pair (7,7). The
splitting of the process into phases allows to analyze each phase separately. To bound the
running time we need the following lemma:

Lemma 3.2 For 1 < ylogn the T-SIMPLE process allocates in O(7) rounds all but 3+ balls,
w.h.p., for a sufficiently small constant ~.

11



For the proof we need a lemma that is implicitly stated in [LAB93] and also [DM93].

Lemma 3.3 A player has not allocated all its T balls after ¢y rounds of the T-SIMPLE
process with probability 1/2%7 for ¢; > 8 and T < log n.

Proof: [of Lemma 3.2] Let X;, 1 < i < n, be the random 0 — 1 variable indicating if player
¢ has allocated all its 7 balls after ¢; rounds of the 7-SIMPLE process. Lemma 3.3 bounds
the expected value of X =3"" , X,.

n

E(X)< g2

We want to bound the deviation from the expected value using a martingale tale estimate
[McD89]. Let w;, j = 1,...,7n, be the random choice made by ball b;. The w; are
independent and uniformly distributed over {1,...,n}. X is a function f in these random
choices: X = f(w1,...,ws,). For the martingale tale estimate we have to bound the change

C; of X if we change the value of one w;. The ball b; that changes its value from w}?ld to

w7 has direct influence to the next ball that should have been removed from the bin B,
J

from the bin B, new, and the next ball in the list of the processor b; belongs to. Hence, as
we tun the protocol at most ¢; 7 rounds, the change of w; has influence to at most 317 balls.
Therefore, at most C'; = 3“7 of the processors change their value X;. The formula for the
martingale tail estimate,

242

PrX —E(X)|>t)<e 2%,

gives the following bound:

n n

n -
2n2
S 6_247'7'7132617—
— 6_24T+log(‘r?)t|b-2log 3eqT
< eV

The last inequality holds for 7 < ylogn and v being a sufficiently small constant. O

We are now ready to formulate the main theorem of this section:

Theorem 3.4 The logn-ALLOCATION-PHASE process allocates all balls in O(log n) rounds
with maximum allocation time O(loglogn), w.h.p..

Proof: The first step of each phase of the 7-ALLOCATION-PHASE, the loglog n-SIMPLE
process, takes time O(loglogn). Using Lemma 3.2 we get that it allocates at least n loglog n—
Jogtsgw Palls, w.h.p.. Therefore, at most & processors are still busy with a ball after this
step.

As 7 = 1, the (1,loglogn)-ALLOCATION process in step 2 of each phase is a protocol
in the sense described in Section 2. The running time of the (1,loglogn)-ALLOCATION

process is dominated by the running time of a k-COLLISION protocol for constant £ because
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the FIFO rule of the (1,loglog n)-ALLOCATION process is dominated by the collision rule of
the k-CoLLISION protocol. This means that one step of the k-CoOLLISION protocol can be
simulated within O(k) steps of the (1,loglog n)-ALLOCATION process. Hence, Corollary 2.4
says that the allocation of these balls can be done in time O(loglogn), w.h.p., using the
other two random destinations of these balls. The main effect of this second step is that
all remaining non-allocated balls have never been touched before, i.e., they are completely
random and we are in the same situation as in the beginning of the phase. Only the lists
of many players are a little bit shorter.

Fach player now takes the next loglogn balls in its list and starts with a new phase.
(Note that balls which have not been allocated yet, remain in the original list.) After
log n/ loglogn phases at least

log n

=nlogn —

log 1 - — —
(nloglogn log n’loglogn log log n

balls have been allocated.

The final step of the 7- ALLOCATION-PHASE process, the (logn,log n)- ALLOCATION pro-
cess, allocates all remaining O( ;7557 ) balls in O(logn) rounds, w.h.p.. This follows from
Lemma 3.1 since the log n-SIMPLE process is a part of this final step. It remains to show
that these balls have maximum delivering time O(loglogn), w.h.p.. We want to view the
@ remaining balls of the final stage as a graph like in Subsection 2.1 with respect to
the first and the second copy of each ball. As edges (balls) are added and eliminated from
the graph we view the (logn,logn)-ALLOCATION process as a family of graphs over the

time, G,,7r=1,...,logn. Let G = J, G, be the graph consisting of all m = edges.

_n
loglogn

Using a modification of Lemma 2.2 for m < n that already appeared in [KLM93] we get
that G has connected components of size at most O(logn) and the connected components
are trees with only a constant number of additional edges.

Consider an edge (ball) that is the first time at the first position in the list of the player
at time 7 (thrown at time 7). Since we have FIFO queues at the bins, a ball can only
be blocked by balls that arrived before or at the same time, i.e., we only have to consider
the connected components of |J,«;G» C G. In a constant number of steps the constant
number of additional edges in each connected component can be removed by the process.
Hence, we only have to deal with trees as connected components. As in each step each
bin allocates a ball, the size of each connected component decreases in each step by at
least a half Therefore, a ball will be allocated in O(loglog n) rounds (see also the proof of
Theorem 6.5 in [KL.M93]). O

4 Conclusions

We have studied parallel allocation strategies,i.e. parallel ’balls into bins’ games. Especially,
we have investigated the effects if each ball chooses not only one but a constant number of
possible destinations where it can be allocated. If the number of balls equals the number
of bins we have shown a tight upper bound for the trade-off between the maximum load
of each bin and the amount of communication used. Extensions of this protocol in two
different directions for different settings of the parameters have shown that the multiple
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choices of the balls either effect the maximum load of a bin or the maximum allocation
time of the balls. As mentioned in [ACMRO95] a future direction would be to associate a
weight to each ball and minimize the maximum weight over all bins. Also we believe that
the natural process (logn, logn)-ALLOCATION, or a slight extension, should achieve the
same maximum allocation time as the more technical (log n)-ALLOCATION-PHASE process.
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