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Abstract

Modular process nets are a graphical and formal notation for the representation of technical and
business process models containing concurrentigesi. Originally this class of Petri netaws/
developed for the modeling, analysis, simulation and controlookfdows and computelbased
process control systemgythit is also suitable for use in all other areas where a foratal b
comprehensible description of complerocesses is needed.

After a description of the basic aims and design decisions for modular process nets, the report
gives a brief introduction toVe-level Petri nets including diérent types of transition rules and
aspects of the descrip#i and prescripte use of process models.

The main and most inrative points which arexplained in more detail are the introduction of

a hierarchical module concept for nets and the definition of elementary process nets. The
module concept is part of a more general (“object-based”) approach to Petri ngiisgallo
several types of abstraction, whereas the main points of elementary process nets are
synchronous and asynchronous communication between separately interpreted net instances
via events and toén passing.

Modular process nets arenldevel Petri nets equipped with these module and communication
concepts and optionally enhanced by the use of a task concept, a methodrbnothe areas
of computersupported cooperat work (CSCW) and wrkflow management.

Because the report is aimed at a systematic and easy-to-understand introduction to modular
process nets, it pvides a precisexplanation of this net class which ist as informal as
possible and enhanced by some typical applicatiameles.
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Introduction

1 Introduction

As one can obseavwby consideration of mgmev and &panding areas of information systems
research and application (e.g. Business Process Re-engineering, Procegsmnidbrkflow
Management, Enterprise Igmation, Concurrent Engineering, Computer Supported
Collaboratve Work, etc.), model-based “process thinking” is becoming a more and more usual
approach to understanding and changing the processes going on in tharleeal w

On the other hand, “process thinking” in a more abstract sense has been usual throughout the
history of computer science in itanous domains. Unfortunatelpe means of description used

vary strongly from domain to domain and are usually not communicable - in a reasonable time

- to persons outside of a certain commurigyt with the penetration of computer supported
communication and cooperation into more and more areas of human lifeyinggoircle of
computer users will need to understand such formal notations (e.g. gowguldlows in
workflow management systems, go#iation processes for the quality of service in
communication netarks etc.).

Bearing in mind that the processes to be described are inherentlyutistrio space and time,

the use of Petri net models is probably the best choice for a simplerdrise means of
communication about these processes. In addition to the static graphical representation of the
possible control fie, the so-called “to&n game” allaws the visualization of its dynamics.

In recent years, a greaanety of classes of net models has beerldped and used. In order
to enhance thexpressvity of net models, there has been a noticeable tegdewards using
more and more compleclasses of nets withgeral kinds of tokns, arc and node inscriptions
and other gtensions instead of the originally “simple” classes of Petri nets. Sucle@piment

is seemingly unaidable for coping with the compligy of models. But with the increasing
complity of the means of description, one of the most importanarsdges of the net
approach, namely easy communicability for humans, is lost. So the price of thevieighele
representation of complanodels is usually its (near) non-communicability to those with no
experience of Petri nets.

Fortunately there is one ay of obtaining comprehensible compact representations of comple
models: modularization and abstraction from the internal structure of modules. These methods
have much in common with “zooming in and out” of images, whiclamsiliar to most people

from a number of ubiquitous technicakiflities (e.g. graphical user intades, photo cameras,
video-recorders).

Two further problems for most of theisting classes of net models (including the higlele
nets mentioned abe) are the impossibility of describing changing h&btra and the
communication of “actie” nets with one another and with theiviganment.

Modular process nets V@ been designed to meet these challenges. Based on a general object-
based approach for Petri nets ytipeovide a hierarchical module concept as well as constructs
for communication between net instances and thairr@mment and for the creation and

1. i.e eecuted by an interpter or “enacted”, as often said in the workflow communiity the
following, the term “interpeted nets” will be used.
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destruction of net instances. Although originallweleped for human-machine interaction,
their use is not restricted to this area.dntf thg allow modeling of ag technical processes,
especially where aspects of concurgeand distrilution have to be included in the model.

Another essential application of the proposed module concept is the natural, local introduction
of “time” into Petri nets which leads to a more natural representation of disttisystems

using nets and se#8 as a basis for an igtated qualitatie and quantitate analysis of these
systems [ViHe95]. Here, the ¢y ideas are the composition of modules from so-called conflict
clusters and a quantite# abstraction of the bebiar of the modules by so-called DDP
(Defectve Discrete Phase) distations [Wka90], [Ciar95]. Though these points are not
discussed in this paper in detail, it is important to mention these applications in order to
emphasize the generality of the proposed module concept.

The aim of this report is a systematic and easy-to-understand introduction to modular process
nets. Emphasis has therefore been placed ovidimg a precise xplanation which is as
informal as possible, hopefully not resulting in unnecessary redundanc

After a brief description of the basic aims and of the design decisionedidrom them
(Section2) the usual definitions and some specifics of-llevel Petri nets are summarized
(Section3). The module concept for nets is introduced in Sedtidn Sectiorb, the definition

of elementary process nets isgn. These te concepts makpossible the definition of modular
process nets in Secti@nwhich is closely connected with the concept of tasks as it is usually
applied in the CSCW andoskflow communities. Sectior presents some simpleatktypical
examples of modular process netsalakrom the areas of mkflow modeling and softare
architecture procedure description in order to illustrate the modular process net approach.
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2 Aimsand design decisions

In addition to the requirement of compatibility witkigting Petri net classegtocess netaere
designed with the follwing basic objecties in mind. This class of net models should

(1) be simple, easy-to-learn and comprehensible,
(2) allow compact representation of complarocesses,
(3) allow automated computer interpretattofor enactment of the specified processes,

(4) allow the distrilution of its interpretation\@r different processors, to enable spatially
distributed (e.g. wrk) processes,

(5) Dbe flible, to allawv for changes in the net structure during interpretation,
(6) enable intgration with oganization models,

(7) be safe with respect to thexezution on one or seral processors.

These aims aye rise to the follewing design decisions, which are numbered in the same order
as the basic objewgss:

(1) Elementary la-level Petri nets are used as the underlying net class, i.e. #estake
identical and there can be a maximum of onemodn each place.

(2) Inorder to be able to represgatrtial netsof given nets independently of the surrounding
net parts, the concept nét modulesndmodule tansitionsis introduced. Wo concepts
are aailable for their use: one flat concege¢ompositionnto andcompositionof net
modules) and one hierarchicalo@rsening toand refinementof module transitions).
Module transitions on agn hierarchical M2l can be used to represent net modules of a
lower level.

(3) Generallytheimmediate firing rules assumed to be applied, stating that a transiiast
fire as soon as it is enablédT hemay firing rule(stating that an enabled transitioray
fire, but need not do so) can be simulated by using so-csdlesbor tansitionswhich are
a special kind oévent tlansitions(cf. point (4)).

(4) For the communication betweenféifent nets, which maywen be gecuted on dferent
processors, tar types of mechanisms are introducetkessge-based communication
(based oninterface placesshared by dierent nets) anavent-based communication
(based orevent tiansitionsin different nets which kv the same type avents.

Interface placesnable asynchronous communication between neken$ which are
placed on an inteate place of a net are als@#able at all places bearing the same name,
even in nets which are interpreted separately

Eventscan be triggered birigger transitionsas well as by other sofewe processes.

1. i.e execution on a intermter

2. A transition is enabled when all itsgplaces ag marled.
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Sensor tansitionsfire when and only when there enabled and awvent assigned to
them occur In addition to these types ofent transition there aset-alarm tansitions
and clearalarm transitions which signal eents at a certain time and delete them
beforehand, respeeély and PN-start transitiors andPN-end taensitions which are
responsible for generating and renmy net instances.

(5) In view of the aim of achmng flexibility, in particular for the implementation and
execution ofworkflow modelsthe concept ofasksincluding thecall concepthas been
introduced in the form o#&ctivities which may be considered as elementary “task”
module transitionsActivitiesare a special kind of module transitions whose refinements
communicate with other parts of a process modelwegats. In a wrkflow management
system based on process nets, tasks form theaogefdr the uses’interaction with the
interpreted nets.

(6) The essential link for the connection ofganization models and process models is
provided by roles which define the responsibilities and authorizationgp@sonsor
groups of pesonswith respect to the completion of tasks. Roles or persons can be
assigned to the tasks and aities as parameters.

(7) Process nets are designed toshée i.e. with a maximum of one tek on each of their
places. Refinement, fusion and calling of safe process nets should result in further safe
process neté Furthermore, a restrictédenesgproperty should apply: fovery process
net started, a PN-end transition (cf. Secbdl) must become enabled at some point.

The class ofmodular pocess netgcf. Section6) is constructed out of the basic class of
elementary pycess net¢cf. Sectiorb) using themodule conceptf process nets (Sectidh).

The main reason for thisuision into two separate classes is the intention to interpret the nets
using interpreters for elementary process netd#, tb use modular process nets for
communication with the usefor the lattertasks are captured by the module transitions called
actities (cf. point (5)) which are refined on thedeof elementary process nets to special net
modules.

The syntaxof elementary process nets corresponds to that of ordinary Petri nets whech ha
been &tended by introducing additional types of transitions (cf. Se&ibn For modular
process nets which are to be used forkifow management purposes in the form of process
modules (cf. Sectiof.2), some syntactical restrictions are required. On We¢ ¢¢ modular net
representation, this leads to conflict-free nets.

As in ary class of Petri nets, tleemanticof process nets is locally defined tibgnsition rules
(Section3.1). Thepragmatics i.e. the purpose and means of using a process net model, depends
on the intention of the usd?rocess nets can be used as both presergatid descripte models.

This distinction is discussed in Secti®r2.

1. The may firing rulewhich is standad in net theory (a enabledatnsition can fie kut does not have
to), can thus also be simulated by sensansitions.

2. This poperty equires further eseach which may maé it necessary toestrict the net class with
respect to the possibilities for these aiEms.

10
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3 Petri nets

Nets are bipartite directed graphs, i.e. directed graphs where each node is assigned tomne of tw
types and where adjacent nodes anags$ of diferent types. &t visualization, one of the types

is generally represented by round symbols and the other by rectangular ones (including bars).
In the folloving the round symbols will be referred to @aces and the rectangular ones as
transitions, these being the most usual notations.

Fig. 1: Example net with places a, b, ¢, d and transition t

Nets sere as a basis foravious classes of models (“net classes”) with which theviehaf
distributed systems can be represented graphically and with formal rigor

A net can be used, foxample, to model the control floin a distriluted system. Here, tw

types of branches and confluences of the contral dan be ®plicitly modeled: start and
completion of parallel threads of control (corresponding to the logical “and” and associated to
branching out of and into transitions) on the one hand, and start and completion of \adternati
control paths (corresponding to the logicatlasive “or” and associated to branching out of and
into places) on the other

A Petri net is a net with the folling information assigned to its nodes:

» The places can be markd with tokens (represented graphically as black dots) to denote
variable local states.

* The transitions are assigned #&ransition rule which locally defines the changes in the
markings of the places adjacent to them.

The terms dlobal) state or marking of a net are used to refer to the numbers ofeiok on the
places of the net at avgin point in time. The terhocal marking is used for a gen transition

to refer to the current marking of the places attached to this transition by incoming or outgoing
arrons.

11
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By assigning a transition riiethe system modeled by the net is assigned a non-deterministic
behaior whose characteristics (e.g. the set of reachable global states, freedom from deadlocks,
invariant$) can be devied from analysis of the net structure together with its initial marking
and the transition rules.

A visualized simulation allws the behaor of the described processes to be understood and
predicted. Computenterpretation of Petri nets (also callegkecutionor enactmentcan be
used to control real processes associated with the interpreted nets.

3.1 Transtion rules

The assignment oftaansition ruleto the transitions results in the assignmerftedfavior to a
net. Generallyit states that gnenabled transition can fire.

Firing of a transition means that ks are remad from each of its preplaces (i.e. those places
from which arrevs point to the transition) and ks are put on each of its postplaces (i.e. those
places into which arms point from the transition). Under the conditions being considered here
(i.e. neither predicates nor multiplicities are assigned to thevs¥rexactly one tokn is
removed from each preplace anxbetly one tokn is put on each postplace.

Theenabling ruleof a transition determines the conditions under which a transstiemabled
to fire (an equialent term is: when it hancession

3.1.1 Enabling of transitions

Regarding the first aspect of a transition rule (enabling), a distinction is made between the
normaland thesafeenabling rule. In the case of thermal enabling rule transition is enabled

for a given local marking when and only when all of its preplaces areaualk the case of the

safe enabling ruld is also required that all of a transitisrpostplaces are not mark

A net is said to beafeif the structure of the net guarantees that when using the normal enabling
rule there will nger be more than one tel on ag place. Safe nets thus shthe same bekér
under both enabling rules.

For process nets it is required thakew instance (i.e.very interpreted process net) is safe.
Thus, the interpreters can use the normal enabling utléhb nets will behae as if the safe
enabling rule has been applied.

1. whid is usually set identical for allansitions of a Btri net
2. seeeg.[Reis85] or [Star90]

3. Note that the behavior of a net is defined in fact locally (by the behavianstitions) it usually
naturally extends to a global one (by the connectedness of the net).

12
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3.1.2 Firing of enabled transitions

If a transition is enabled, ihay fire atsome timeor mustfire immediately The distinction
between these tnwcases is reflected in the distinction betweankinds of firing rules, thenay
firing rule and themmediate firing ruleNote that in the case of the may firing rule, an enabled
transition may lose its enabling to other enabled transitions which “ste@fsdkom the
preplace in question when thére. Thus, the global bewiar of a net with the may firing rule

is generally “richer” than the behar of a net with the same structureyt vhich uses the
immediate firing rule. Let us consider these twles in more detail.

May firing rule:

Any enabled ansition may fie kut it does not have to do so.

Assuming this to be the case, one can find out all the global states which the wet caaod.

The graph which is characterized by all the reachable global states of a Petri net (as its nodes)
and the corresponding state transitions (asaarés called theeadability graph of this net

and the analysis of the netbehaioral properties based on this graph is calieddhability

analysis

Immediate firing rule:

Any transition must fe as soon as it becomes enabled

The application of this firing rule implies that maximal sets of enabled transitivagdae

fired. Therefore, it is necessary to inthe global marking at gpoint in time in order to find

these sets. Another consequence of the firing of maximal sets of transitions is that certain
markings reachable under the may firing rule are no longer reachabtbidreason it is not
possible to simply transfer the results of the reachability analysis for a net with the may firing
rule to a net with the same structure whose transitions fire according to the immediate firing rule.

3.2 Descriptive and prescriptive models

The relation between et modela particular kind of belwé&r model) and the modeled real
system canary. On the one hand, the bef@ model can be a description of the obseror
assumed bek#r of a real system. @refer to such models dsscriptiveones. On the other
hand, a behaor model can be considered as a specification or program for the futuwobeha
of a real system. In this case we refer to the modetezxriptive

In the case of net models, there is a close connection between thé&aadsvof behaor model
and the tw types of firing rule described in Secti®.:

13
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Themay firing rulecorresponds to the descrigipragmatics of net models, because it reflects
the local vay of proceeding both with gard to obtaining a net model of reality from
obsenations and for reasoning about gassiblebehaior of a distriluted system described by

a net. The decisions concerning the “resolution” of conflicts between transitions, i.e. the
selection of one transition to be fired out of a set of transitions with concession, deentat ha

be plicitly stated. Instead, all the possibilities are non-deterministically included in the model.
In addition to being well suited for interpersonal communication (communication about and
understanding of all possible processes), these conditions are also appropriate for eomputer
based behaor analysis (finding deadlocks and unsafe situationsjeder, simulations should

be carried out manually (by playing the éokgame) or with computer support. In the general
case (i.e. where conflicts between transitions are possibjegdhenot be fully automated - in

view of the conflicts to be sobd by ‘hand’.

The may firing rule is1ot suitable for the automateadterpretation of Petri nets for process
control, because it neither guarantees progress in an operational model, nor does it prescribe
how to proceed in conflict situations. In such casesntineediate firing rulesshould be used and

the resolution of conflicts should be ensured by suitable mechanisms. Thus, the progress of an
interpreted net is ensured (in cases where the ngeiflieach reachable marking) as well as

the unique choice of a set of transitions (enabled and not in conflict with one another) to be fired
in every reached marking.

14
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4  Module concept

4.1 Introduction and summary

One of the aims of the introduction of modules into Petri nets is to be able to repregseat lar
comple nets in a more manageable form. This can be done by separation into and by
abstraction from the detailed structurepaftial nets. Obviously, partial nets should be able to

be further separated, sk individually and joined togetheMoreover, we wish to represent
partial nets asnodules(in the sense of sofve engineering) in order taig fundamental
adwantages in process technology similar to those brought to theasefife ¢cle by the use

of software modules. These atages include re-usability of modules, simplified testing and
separation of areas of responsibility

The main feature of the concept of tiet modulevhich most distinguishes it from that of an
“ordinary” partial net is thexlicit definition of interfaceswhich define the possibilities of
interaction of a net module with its veronment. Abstiaction from the modules internal
structure andrefinementof module “frames” by enriching them with structural and/or
behaioral information are tw further important aspects of a well applicable module concept
for nets.

Given the assumptions as describedvaba.e. modules are defined or generated by partial nets
- there are at least three possibilities for defining iate$ so that the composition of net
modules can be done in a well-definealyw

(1) The interhces are defined ysion nodesvhich are part of both modules. Composition
of modules is done by fusion of corresponding fusion nodes, i.e. of those with identical
names. Decomposing a net into partial nets leads to redundant fusion nodes, i.e. to fusion
nodes with the same name inferent partial nets (see Sectibr2)

(2) The interbces are defined arcs connecting nodes of d&rent modules. Because nets
are bipartite graphs, these intarés will be heterogeneous in the sense that the type of
every output node will be dérent to that of the corresponding input néde.

1. A partial net is defined as sua part of a net whitis daracterized by a subset of nodes of the
original net and whib contains all the anws between these nodes in the original net.

2. For nets whez the normal enabling rule is applied (see Secsidnl), a consistent hetgeneous
interface concept has beenvetoped in the conké of object nets. In this concept, the output nodes
are transitions and the input onesegplaces ([Wka90], [HeW95])

15
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(3) The interhces are composed of
- sets of (input and outpypprt transitionswhich are part of the modules and which are
referred to in the follwing asinput portsandoutput ports and
- sets ofnterface place¢buffers”) each of which is connected with an output port of one
module and with an input port of another one.
In contrast to option (1), both intade places and the arcs connecting them with the input
and output ports of modules are pure irsteef elements not belonging toyaof the
modules lile the inter&ice arcs in option (2). Note that in contrast to option (2), the inter-
faces here are “homogeneous”.

In the module concept proposed in the fwilog, a combination of the options (1) and (3) will
be used, i.e. we assume the modules to be transition-bordered subnets where the transitions of
a module connected with places outside a module are consideredatsits

The use of net modules as a special kind of transitienfiikdes allws a natural notion of
refinement and abstraction in netsvé&i a net module symbol, it can be refined to a partial net
which expands the original net structure. On the other hand, the module symbol can be used as
an abstract representation of aayi partial net. If the module symbol also contains symbols for
port transitions of the abstracted net, the arcs connecting these port symbols with the
surrounding intedce places W& the same semantics as in the refingduesion of the net, i.e.

every set of arcs connected with one port symbol implies an “and” relation for the places
connected with these arcs (see Fig. 9 in Sedtidr2.).

The interfce places used for the composition of modules can be interpreted as ordinary places
of a nav class of nets. In this net class (“Modular Process Nets”, see Sextiaraddition to
“ordinary” places and transitions, thewnaode type “module transition” can be used (as the
representation of transition-bordered partial nets, see Sdc8hrFor a unique unfolding of

nets containing module transitions with separatelgrgrefinements it is necessary to represent
these refinements together with the irded places. @ male clear that these intaxfe places

are redundant, tyeare highlighted on the refinementdéasfusion placegsee also Sectids).

For ease of use and for modules where iatag$ hae not yet been defined - e.g. for topatho

design of systems - we also alla semantically “wead” representation of net modules, called
representation without interfacgsee for gample Fig. 8 in Sectio.3.2). Here it is only

known that the represented partial net is transition-bounded. The arcs connecting such module
transition symbols he a restricted semantics compared with those of nets without module
symbols.

Semantically stronger abstractions/édeen deeloped in the concepts darkovian object

nets (see for gample [Wka90], [WiHe95]) and of‘lo gical” object nets([Whit93]). These
concepts allw semantic abstractions of partial nets and net modules by formaligorsdabe

scope of Petri nets (Mamkian processes and DDP distritons [Ciar95] on one hand and
temporal logics on the other) and will not be considered in more detail in this report. It is only
important to note that both concepts are based on a concept of modules similar to that described
here.

In the following sections, the module concept for process nets will be introduced in more detail.

16
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4.2 Decomposition and composition of nets

Let us assume that for a nedlecompositioris given, i.e. the set of its nodes is decomposed into
disjoint subsets. This permits a compiet to be represented by shing separate net modules
which can, in this case, be considered as “sections” ow&Vief the net, according to the
abstraction principle ahformation nglectionknowvn from software engineering. In order to be

able to reconnect the net modules defined by a decomposition, uniquecedeafe necessary
These intedices are represented pgrts and fusion placeswhile partial nets become net
modules. Br a gven partial net of a net, the fusion places are those places in the partial net
which are connected with transitions outside the partial net and those places outside the partial
net which are connected with transitions inside the partidl ige ports of the net module
corresponding to the partial net are those and only those transitions which are connected with
fusion places, where the output ports are the predecessors of fusion places and the input ports
are their successors. In order to be able to aeetdeunique composition of the net modules of

a gven decomposition, all the fusion places connected with the net modules are included in the
representations of each of them, i.e. redundantly (cf.xhegle in Fig. 2).

Fig. 2: Decomposition of a net into net modules

1. This definition is compatible with that of Baumgarten [Baum90] intwthie (elative) boundary of
a partial net with egard to an eerall net is talen to be the set of those nodes Whie connected
by arrows with the €maining net. The absolute boundary of a net consists of those nodes of a net
which have either no gidecessor or no successbhe term is also compatible with the fusion places
used in Sectiod.3.2 for efining module ansitions by tansition-bounded nets.

17
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The composition of seral separate partial nets whiclvédusion places with the same names
into one n&/ composite net is carried out by replacing all the fusion places bearing the same
name in all the arious partial nets with onewelace of that name which is no longer shaded.

In Fig. 3, which shavs the (re)composition of the decompositionvehn Fig. 2, the transitions
t and u are the output ports of the one module and v is the input port of thevbilec and d
represent the common fusion places.

a ﬁ) a b
t Tu
t u
(o d
O _
C d C d
Y \Y;

Fig. 3: Composition of net modules

The operationsestriction andembedding introduced by [Baum90] can be considered as special
cases of the decomposition (information abstraction) and composition (information enrichment)
operations with rgard to a specific partial net. Restriction means to decompose a net into an
“inner” and an “outer” (surrounding) net and embedding means to composergeneut of a

given net and its surrounding. Thefdience between the dapairs of concepts is that in the
case of restriction and embedding each of the netses gi special “role” (to be an “inner” or
“outer” net), whereas with decomposition and composition all the netltv@d are considered

to be equal.
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4.3 Coarsening nets and efining module
transitions

In contrast to the decomposition and composition of nets and (partial) nets as described in the
previous section, we mpassume that net modules can be encapsulated and that abstractions can
be made from the contents of a module, which corresponds to the abstraction principle of
information hiding in softnare engineering. An abstract module representation, which is
referred to as module transition, is used to abstract from the internal structure of a module b

also to gve interbice information which characterizes the htraof the module with respect

to its ewironment. This is achied by defining sets of input and output portst fodule
transitions created by the decomposition of a net into net modules, these ports must be
connected to the fusion places in the sarag as the transitions of the modules from which

they were dewed by decomposition.

The two procedures - coarsening and refining - which can be realized using this module concept
are described belo Applied to system design, theseotwethods correspond to the “bottom
up” and the “top den” approaches, respeatiy.

4.3.1 Coarsening transition-bounded partial nets

Assume a transition-bounded partial net is to be coarsened into a module transition. Those
places in the surrounding net which are connected to transitions of the partial net akanark
fusion places. These transitions are referred to as port transitiofts short,ports of the

sulunit. Where arravys run from a fusion place to a port, that port is calipdt port, for arraws

from a port to a fusion place the port is calbetbut port. Ports which are both input and output
ports are not permitted.

The net is nv decomposed into twlevels: In the “upper” coarse grainvkd the chosen partial

net is replaced by module transition symbol. All arrows from the fusion places to the input
ports and from the output ports to the fusion places are connected to the module transition (cf.
Sectiond4.3.1.1 and Sectiof.3.1.2.). The “laver” refinement leel consists of the chosen partial

net with the mar&d fusion places.

In order to ma& possible both the visualization of module irde€s in accordance with the
module concept and the comprehensible representation of nets with module transigons, tw
representation modes for module transitions dered:with interfaces andwithout interfaces.

4.3.1.1 Module transition r epresentation with interfaces

Here, the ports are part of the module symbol. Their number therefore depends on the structure
of the partial net to be represented. Input ports are symbolized by unshadsddubgut ports

by black boes. Whether a pair of incoming or outgoing asaare in an “and” or an “or”
relation to one another can be decidegegithe net on the coarse graiaele If two arravs
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belong to the same port, then ¢ols are fired through both of them together into (in the case of
an input port) or out of (in the case of an output port) the module transition. This corresponds
to an “and” relation between the an® If the arravs belong to dierent ports, then no
statement can be made about the possibility of simultaneous firing. This corresponds to the
“weak” (not eclusive) “or” relation.

3

Fig. 4: Representation with intaxfes of a module transition with one input and dwtput ports

If all outgoing (incoming) arnes are in anxxlusive-or (=“exor”) relation, i.e. if all output ports

have a common preplace or all input portydva common postplace, this can be denoted by
including a switch symbol in the module symbol. This constitutes a further refinement in the
representation of module transition interés compared to that of ports.

Thus, for @ample, the symbol skm in Fig.5 means that the mwoutput ports hae a common
preplace and the symbol st in Fig.6 means that the twinput ports hee a common
postplace.

G

Fig. 5: Representation with intades of a module transition withdvalternatve output ports

|y |

Fig. 6: Representation with inteddes of a module transition withadvalternatve input ports

1. In cases where several arrows go into one port, this may involve waiting for synchronization.
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4.3.1.2 Module transition r epresentation without interfaces

In this representation mode the ports are omitted from the transition symbol. This may be for
reasons of easier comprehension, for instance if there are tggorésmon a module transition,

or because the number and/or type of connections of the ports with the surrounding nodes has
not yet been determined. Graphicalthe representations without ineces of module
transitions consists of double-bounded transition symbols.

[]

Fig. 7: Module transition representation without irdegs

One adentage of representation with interés of module transitionsver representation
without interfaces is that since the ports are included, all thevammghich are connected to the
fusion places are also skw. This means that all the fusion places anags$ “complete” on the
coarse grain leel (including all incoming and outgoing arcs) so thai thexjuire no special
attention on this kel. As an gample, consider the amofrom place “a” to transition “y” in
Fig.8 and Fig9 in Sectiom.3.2: Whereas this amois not visible in the module transition
representation without intex€es (Fig8), it is well represented in the module transition
representation with inteates (Fig9).

4.3.2 Refining module transitions

The module transitions presented in Secid1 mak it possible to define nets which are not
yet completely specified. Such an approach is typical for teyn diesign, assuming that
module transitions may be further refined.

For such a refinement, all places which are connected to a module transition on the coarse grain
level are represented on the refinemewgli®elav as fusion places. This representation @sak

clear both the redundaynof representing this place - it appears on the refinemesitdesecond

time - and thedct that not all the incoming and outgoing as®f these places are present on

the refinement lel. If the module transition is represented with irdeds, then the ports on

the refinement leel are identified with the transitions connected to the fusion places.

1. Although this is very similar to the usuat® net transition symbol, in the case @&presentation
without interfaces the gups of incoming or outgoing aws ae neither in an “and” elation (as
is the case with émsitions) nor in an “or” relation (as is the case with places).oGps of arows
which are connected to one fusion place on one side andremed@orts on the other artheefore
also represented byxactly one arow.

2. In the case ofepresentation without interfaces aféient type of incompleteness on the toelés
possible see the aow from place a to fnsition y in kg. 8.
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u \) u \%
a b a b

Ot s X y
c d

Fig. 8: Representation without intades of module transition refinement

1. The epresentation of theefinement cogsponds to theepresentation principle of the MoPEd tool
[Hawi95]: The armows between fusion places and poansitions ae dashed in ater to eflect the
impossibility of editing these gphical objects on thesfinement teel.
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u \) u \"
a b a b

t —s X y
C d

Fig. 9: Representation with intedes of module transition refinement

4.3.2.1 Context conditions Pr refinement

By specifying the surrounding net of a module transition, and if necessary its input and output
ports, contet conditions are defined for the net to be refined, thus restricting the structure of this
net.
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If there is a representation without intés of a module transition, then the numbers of
preplaces and postplaces of the refining net can beeddrom net representation on the coarse
level. However, this does not determine the numbers ofv@srooming into and going out of the
refining net. All that is knan is that the number of these avsois greater than or equal to the
number of preplaces or postplaces, respelgti

If there is a representation with int@ces of a module transition, then the numbers of input and
output ports can also be dexd, as well as the specification of all &soconnecting the ports
to the surrounding places.

If a representation with intex€es contains $@r switches”, thenven more information is
available, as this implies theistence of a common preplace and/or a common postplace for all
output and/or input ports.

4.3.2.2 Marking moduletransitions

So far, module transitions lva been gamined from a structural point of welf the marking

of a flat net is to be includeden in its hierarchical representation with module transitions, then

it must also be possible to visualize the marking of a partial net represented by a module
transition. It is therefore useful to agree on a graphicalesdion (e.g. raising the outline or
coloring the sudce of the symbol) denoting the case that at least one of the transitions of the
represented net has concession.
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5 Elementary process nets

As required by the basic objeas (3) and (4) in Sectid?y the class of process nets to be
designed should allautomated computer interpretation with the possibility of digtiob on
several, interconnected processes which are interpretedabgug processors at flifent
locations.

Because these requirements are independent of the aims leading to the module concept (see
Section2, point (2)) and because the aim is to interpret onilgided (i.e. non-hierarchic) nets,

the class of process nets satisfying requirements (3) andit(4ob requirement (2) will be

defined in this section asementary process nets separately from the more general class of
modular process nets which will be introduced in Sectidh

The syntactic xensions of elementary process nets as compared to (elementary) Petri nets
consist in the\ailability of nev node types (as subtypes of places and transitions) which can

be used in particular for communication between interpreted nets and thenerent. This
“environment” may consist of other interpreted nets, safeAprocesses oven users.

More preciselythe structure of an elementary process net is a net (cf. S8ttiowhich each
place is assigned to one of three types and each transition to overotygees. These node
types are introduced in Sectibrl belav. The semantics of elementary process netsvisllo
from the meaning of the node typegkined in Sections 5.2 and 5.3.

5.1 Nodetypes

Each place in an elementary process net is assigngddtiyeone of the follewing node types:
- (ordinary) place

- fusion place

- channel.

Fusion places (see also Sectrand channels are also referred tst@sed places. Fusion
places are used to imm® the graphical representation ofgrnets. Channels are used to
support communication between nets vieetokassing.

Each of an elementary process si@tansitions is of one and only one of the folloy types:
- (ordinary) transition

- trigger transition

- sensor transition

- set-alarm transition

- clearalarm transition

- PN-trigger transition
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- PN-start transition
- PN-end transition

The last seen of the transition types deal with the handlingveintés and are also referred to as
event tlansitions Eventsare globally visible and recognizable occurrences which can be both
generated and gestered by both a process net and its surrounding net.pEnmit synchronous
communication between a running process net and its surrounding net as well as between
various process nets running simultaneausly

According to Petri net caentions, places and transitions are represented using circles and
boxes or bars. & ordinary transitions, the graphical representation of a transition as a square
box can be used to malkclear that this transition representsaation i.e. it may seemingly
“contain a tolen” for a non-specified amount of “time” in contrast to transitions which are
represented as bars and which stand for “timeless” changes. Fusion placewarassticcles

with a bay channels as shaded circles avehe transitions as besg with special arm symbols.

Unlike the names of ordinary places and transitions, it isatblig to state the names of fusion
places and channels as well as the namesvait® since these characterize process net
interfaces.

As a nav kind of inscription into transitions, angle-diksymbols hee been introduced for the
representation ofvents connected with transitions in the faling way: An angle whose ape
touches the “output side” of a transitfotlenotes the triggering of amemt. If the Igs of the
angle touch the “input side” of a transitforthis transition “vaits for” and recognizesvents

and is calledsensor If the transition symbol contains a second angle pointing in the same
direction, this indicates the generation of a net instance. Thedsulting cases - “ape
touching” and “lg-touching” - correspond to trigger and sensor transitions and are called PN-
trigger and PN-start transitions respeely (cf. Sectiorb.2). If a trigger transition has a second
angle pointing in opposite direction - i.e. a rhambnscribed in a square - this indicates the
deletion of the process net to which this transition belongs.

An overview of the node types used in elementary process nets including their graphical
representation isgen in Fig.10.

1. As a ecommendation for the gphical epresentation of mcess nets, all outgoing @& of a
transition should be connected to only one side - the "output side” - @naition, whit is the
lower one wher top-down is the main flow dition or the right one wheileft-to-right is the main
flow direction.

2. Analgyously the input side - the upper or right side of the squashould be connected with all
incoming acs.

26



Elementary process nets

Place

Q [PlaceName]
Fusion place

O PlaceName
Channd

@PlaceName
Transition

L or
I [TransitionName] [TransitionName]

> EventName

Trigger transition

Sensor transition

EventNameList

O> EventName

®> EventName

>> NetName
> NetName

<
EventName

Set-alarm transition

Clear-alarm transition

PN-trigger transition

PN-start transition

PN-end transition

Fig. 10: Node types for elementary process nets
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5.2 Transtions. Firing rules and event
communication

Due to the necessity of an automated simulation of elementary process natsnéuate

firing rule is used for all types of all transitions, i.eyamansition must fire as soon as it is
enabled. Note that if transitions represadtions- this can be made clear by using the box
symbol instead of the bar one (see Sedhidn - tolens may appear on the postplaces of such
transitions only after a (unspecified) delay

The event concepbf process nets leads toveeal modifications of this basic rule for the
different types of transition. The main aim of this concept is to enable synchronous
communication between a running process net andutsoement, where the communication
between dilerent running nets is a special case. A detailed description of these modifications is
given in the follaving:

(1) At the moment when #igger transition fires, a globally visible v&nt of the type
EventName is generated.
This can influence the progress of interpretation in the surroundingaseftimcluding
other interpreted process nets with a sensor transition whergNEame occurs in ewnt-
NameList (cf. (2)).

(2) A sensor tansitionfires when and only when it is enabled and@neassociated with it
occurs. If it doest’ have concession, there is nofesft! By definition an eent is
associated with a sensor transition if itseBiName appears in the sensor transgion’
EventNamelList.

(3) A set-alarm tansitiontriggers aneent of the type EentName which occurs after a delay
specified by the transition.

(4) A clearalarm transitionprevents the signaling of a delayegkat of the type EsntName
(cf. (3)). If the cleadalarm transition only fires after theemt has occurred or if no suitable
event has yet been initiated by a set-alarm transition, then the transition faeanlik
ordinary transition andvents hae no efect.

(5) The firing of aPN-trigger transitiontriggers aneent of the type NetName leading to the
generation of a me net instance of the type NetName (see point (6)).

(6) The occurrence of arvent of the type NetName which is associated witPNastart
transitiongenerates a meinstance of the net to which it belongs and causes the firing of
this transition. Since process nets amaglk generated only byents, gery executable
process net must contain at least one PN-start transition.

(7) The firing of aPN-end tansitionterminates the net instance in which this transition is
situated. At the same time ameat of the type EentName is triggered whose name
informs its emironment which transitios’ firing caused the net to terminate. (This is
important in cases where there areesal end transitions.)

In modular process nets, theeat concept is also used for resolving conflicts (cf. Seéjon

1. Since anwent can occur at any timeensor tansitions can be used to simulate the may firing rule
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5.3 Places. Local states, merging and
asynchronous communication

As is generally the case in Petri ngtlcessene to represent local states of the system being
modeled. If a place is mag#d, this signifies the currenéhdity of the condition gien by the

name of the plade(This applies to all the possible types of places in process nets, i.e. ordinary
places, fusion places and channels.)

The common feature ¢fhared placed(i.e. the fusion places and channels) consists in their
potential incompletenessgarding the numbers of incoming and outgoing\as:.olhe sum of

a shared placg’incoming and outgoing ais is equal to the union of the numbers of incoming
and outgoing arnes for all the shared places bearing the same naonéndreased clarity of a
graphical representation, the (“logical”) place in question can be considered as a fusion of all
shared places bearing the same name.

The diference between fusion places and channels consists in thveirfiglidusion placesan

be used for simple representation of comphets, these nets must all run on a common
interpreter (processoihannelson the other hand, can be used to representanesrbetween
various, separately interpreted process nets. Bnélent transitions, channels support
asynchronous communication, i.e. if a éokis placed on a channel, it is not necessarily
immediately visible to the transitions at the outgoingwastdOn the other hand, thigpe of
communications safe since tokns - unlile events in the case of transitions without concession
- cannot get lost. The disaavage of this “safe communication” consists in the possibility that
the resulting linkdnetswill be unsafé. If there are seeral process nets with a shared channel,
it is possible that the channel of a rea&y net receies tolens from sending nets without the
following transition haing fired between the avals of tolens and thus the net may become
unsafe oreen unbounded.

1. Note that this is true for safe nets, far nets wher at most one t@k can eside on any given place
In the case of “adinary” Petri nets whes several (black) tolens ae allowed to be on one pladhis
can be interpeted as multiple validity of a single condition or as a number of indistinguishable
objects. In the case of highvkd nets, ther may be seral colored tolens or diferent objects on one
place

2. Note the striking diérence between safe communication and safe nets: The former concerns the non-
loss of (“transmitted”) tolens whegas the latter concerns the limitation of the number @rslon
a place
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6 Modular processnets

Based on the conceptgained in the pndous sections, the complete class of modular process
nets will be introduced belo As a shorthand notation, this class of models can be defined as

modular process nets = elementary process nets + module concept

In view of their main application area - the modeling and managemerdrkflow processes -
modular process netsyebeen enhanced by the conceptagf modules andprocess modules.
Note that modular process nets can be - amd haen - applied without these concepts. But in
view of their canonicityof the &isting tools and of the ease of their use/tivdl be presented
here in more detail. The use of these concepts for the modeling and enactiorkftdvwwv
processes and for the specification of the interaction of agtmodules will be illustrated by
the examples gren in Sectiory.

6.1 Task modules

In the contgt of adwvanced wrkflow management conceptasks form the frames in which the
various kinds of coopera® human actity are embedded. A task is set to anwviatiial or to a
group for processing. Here, thae of the person to whom a task is set must be compatible with
the role which is an attrilte of the considered task.

In the WAM workflow management system [Adam95] which modular process nets were
originally developed foy tasks are set either directly by an authorized person (including the
performer him/herself) or by a running process net. In the latter case, the task is associated to a
task module (see belw) of the process net.

The processing of a task can either be either done “by hand” (includinggdéten to another

person) or supported by starting one or more process nets. Once started, a task cannot be
declared as complete until the interpretation of all nets started within the task has been
completed. Note that the call concept is remgrsi.e. process nets can be nested yodapth

through the use of calls.

Task modules are special net modules which sefer the representation of tasks as components

of process nets. Theaare characterized by the numbers and types of their ports: A task module
has just one input port which is a trigger transition and a finite number of output ports which are
sensor transitions. Moreer, it is required that thevents associated with thgent transitions

must all be diferent. The semantics of all these ports is theviofig: At the moment when a

task is actiated - i.e. when the input port transition fires - the input trigger transition generates
an &ent which signals to the corresponding activat s/he is being set this task.vitha

1. Therole of a person is the authorization allowing hinvher to process a certain number of tasks.
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completed the task - which can be specified by a compf@mement of the task module - the
actor has to generate areat which corresponds to one of tivemts associated with the sensor
output transitions of the task module.

An elementary task module is a task module characterized by a certain type of refinement and
given the namectivity. The refinement of an acitly always consists of a trigger transition
which forms the only input port, a finite set of sensor transitions which form the output ports
and a single place which is connected by an incoming arc to the trigger transition and by one
outgoing arc to each of the sensor transitions (cf. Fig. 11).

TaskA.O TaskA

Fig. 11: Refinement of axample actiity TaskAl

Given an enacted process net, Wen¢ assigned to the trigger transition (heeskR.0) triggers

the setting of the corresponding task to an actor whose role must be compatible with the role
associated to the task. Gemnsely the working ervironment of the personavking on the task
ensures that precisely one of theerts which can trigger one of the sensor transitions (here:
TaskA.1 or BskA.2) is selected by this person, generally after a non-zero timeainigtivin

which the place of the net module is meak

If the place is markd, then the adtity is referred to aactive, otherwise it ipassive. The type

of an actvity is determined by the number of output ports and is therefore equal to a natural
number Activities of type 1 are calledrdinary activities, those of types 2,3,... are called
decision activities.

The refinement of an aetly as shavn in Fig.11 using thexample of a type 2 aeity will not

be shavn on the lgel of process net visualization for user interaction. Instead, the symbols
shawvn in Fig. 12 and Fig. 13 are used according to this special type of module refinement. In
addition, ordinary actities can be characterized by graphical symbols referring to a certain
application class of the task in question (e.g. Similial processing of a document” or “video
conference”). In the case of decision dtgs, the dravn-in switch symbol can be treated as
such a symbol (“decision acify”).

2. Thisactor may be a person or a piece of software.

1. In correspondence to the naming conventions given below, this activity is of type 2.
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In the same way as the single input port is omitted, the output port of ordinarnyitéediis not
represented eithdn the case of decision adties, the output ports are sk in addition to the
dravn-in switch symbol (which mads clear the “either/or” relation between the ports) in order
to visualize the “and” relationships between thewasroonnected with one port.

TaskName
[Symbol]

Fig. 12: Type 1 actrity (ordinary activity)

TaskName

<

Fig. 13: ype 2 actyity (decision activity with two alter natives)

Naming conventions

To enable compactub precise process descriptions which are as complete as possible, the
names associated with the nodes of modular process nets are intended to play a useful role for
the semantics of these netse \db not require the folng naming cowentions to be part of

the modular process net syntauf they will be used in thexamples in Sectioid. Morewer,

most of these caentions hae proved \ery useful in gperimental implementations and in the

use of modular process nets.

First, consider the names takk modules. Here, both for elementary task modules (@tois)
as well as for completask modules we allo (and recommend where possible) the syntax rule

TaskName:= Activity (Actor)
with the refinement
Actor:= Role| Person

The meaning of this rule is that the &it}i Activity which has to be done in order to perform
the task is assigned to a concrete pePgsgon or to a person with the rokole.

For an ordinary transition representing aotion to be performed by a hardwe or software
device (lut not by a person), a similar naming eention as for task modules can be applied, i.e.

TransitionName:= Action (Device)
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Remember that it is recommended to use squareshiox elementary actions to be performed
by hardvare or softvare units and rectangular kes<for actiities (elementary tasks) which are
set to persons (with the &8 refinement as\gn in Fig. 11). Both notions can be used together
in one process net as seen in thangple “session management” belo

For a decision activity it is useful thatTaskName is the question to be answered when
processing the task (e.g. “Repair completed?”). The names of the postplaces of a decision
activity should contain the possible answers to this question (e.g. “yes” and “no”). If there is just
one postplace for a port, the name of the corresponding postplace shodedtigal to this

answer Thus, the corresponding syntax rule is

PlaceName: = “answer to the questioraskName”

In the general case, the names for places should represent nasoeditodns which may be

true or flse: If a condition is true at a certain moment in time, the place iethavkereas it
is not marled in the opposite case. Usually the condition statevéi@laility of a certain piece
or type of information. This information is “consumed” by firing of its posttranditias stated

above, the conditions corresponding to postplaces of decisionti&stishould contain the
answers to the questions associated with the decisiwitiasti

A usual case for the application of process nets is the representation of combined control and
data flav in one net. In addition to the notification of the progress status of the coniraifflo
a process, places may also represent

- data which isrequired for an action or for an agity and which will be consumed by them
(this interpretation applies to the preplaces of a transition) and

- data produced by an action or an awtty (this interpretation applies to the postplaces of a
transition).

Note that gery place of a process net arises in both roles - as preplace of a transition and also
as one of the postplaces of a transition.

Marking of actions and activities

In the deelopment and use of graphical tools for process nets it hasduseful to enable a
graphical monitor indicating the current state of an enacte@iflow to provide not only the

current marking of a process net - i.e. the local states and dititgvto be processed utalso

the currently actie actions and aeities and, moreeer, information about completed
processing. The latter information consists of the set of all actions awtiestivhich hae

been actie in the past and the conditions whichvédndeen true including the data whose
processing has been completed. This “tracing information” can be - and has been - made
available to the user by coloring the symbols representing the nodes of an enacted process net.

1. Dueto the syntactical restrictions on process nets there can only be one posttransition
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0.2 Process modules

Process modulesre re-usable modular process nets which can be started (“enacted”) as
administratve procedues1L from within tasks by using their name and \pdang their
parameters. Their use is supported by a process net library

Unlike the elementary process nets defined in Sebtiprocess modules can also contain task
modules in addition to transitions, as can be seen from the definition of modular process nets.
On the other hand, the net structure of a process module - i.e. the underlying net - must conform
to the fiwe restrictions listed andkpelained belav.

(1) A process module contains one and only one PN-start transition.

Explanation:

By triggering a PN-startvent, the emronment of a process net interpreter generates a
new instance of the corresponding process net and at the same time its PN-start transition
is fired by the interpreteBecause the case oWeeal PN-start transitions - corresponding
necessarily to the same PN-starém - in one net could be simulated by one PN-start
transition with seeral output arcs, this case will beckided for clarity of representation.

On the other hand, without PN-start transitions in a net, the generatiorwohete
instances wuld be impossible.

There is a certain similarity between sensor transitions and PN-start transitions: In both
cases the net progress depends on the occurrengtenfat eents. But, in contrast to
PN-start transitions, the firing of sensor transitions is not connected with the generation
of newv net instances.

(2) A process module must contain at least one PN-end transition.

Explanation:

The firing of this transition causes the net instance to terminate and triggeveiihe e
associated with this transition in the surrounding net. In the casevefas&N-end
transitions, the information about the PN-end transition actually firing can be used to
obtain information about the history of the finished process.

(3) No transition of a process net may be concurrently enabled with a PN-end transition.

Explanation:

This restriction is required tovaid ambiguities concerning the last aities taking place
in a process net. Note that this consisgetendition has to beevified by net analysis
before storing the net in a process net library

1. In German: “\érfahren”
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(4)

(5)

No two transitions of a process module (including thevaies) havre a common preplace.

Explanation:

This restriction ensures that no conflicts can occur on the coarse geiofla process
module. Note that on the refinedséé of a process net conflicts between the sensor
transitions (corresponding to one task module on the coarser geielee possible. (cf.
Fig. 11).

The elementary process net resulting from the refinement gftiastiin a process net
should alvays be safe, i.e. there isviee more than one tek on aw of the places when
using the normal enabling rules.

Explanation:

This property ensures that process modules describe “reasonablgbhéhaarticulay

the state of a process described by a process module is uniquely characterized by the set
of valid conditions, i.e. by the set of matkplaces. Analysis techniquevd®ped in the
literature (e.g. [Star90]) and implemented in corresponding tools (e.g. [Star94]) can be
used to obtain the safety property for 2egi net.

An elementary process module is defined as a process module which does not contgin an
comple task module, i.e. each of its task modules is amipctlhe adantage of this notion is
completeness of description: Not only the refinement to an elementary process net is unique -
due to the unigueness of the refinement of amigctibut also the status information, sincgan
activity has one and only one place, implying onlyptpossible markings of the subnet.

For better comprehension let us finally illustrate the relationships between the notions
introduced in the preéous chapters in the follang diagram:

process modules

modular process nets

task modules

net modules | elementary process nefs

Petri nets with fusion placgshannels, eents

Fig. 14: Relationships between the introduced concepts
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[/ Examples

This chapter presents some simple typical &kamples of process nets &kfrom the areas of
workflow modeling and softare architecture procedure description.

The example in Sectio7.1 is a typical part of ausiness process arising in enterprises which
have to prepare &érs at the request of clients. Moveq this process is designed to be enacted
by a workflow management system, so that the model has to be understood as a peesnapti

The other rample, outlined in Section2, describes that part of thegoé@ation process for
guality of service (QoS) which is realized by a saitevarchitecture called CMA currently
being deeloped by the netwrk group of the International Computer Science Institute at
Berkeley. This model is intended as descrptand aims at a better understanding and possible
correction of processes to be programmed andlatation and erification of this softwre.

The xamples were edited using the graphical tool MoR#EaidularProcess neEditor) which
in turn generates a data structure which can be used as a basis for ctwagedenterpretation,
storage and transformation of modular process nets.

7.1 Workflow model: Prepare offer

The process modules st in Fig. 15 (“Prepare®@#r”) and Fig. 16 (AppointmentMaking”)
are enactable parts of typicaldiness processes where the refinements of the task modules
(actvities) are assumed to be kmofrom Fig. 11 to Fig. 13.

The aim of the process to be controlled by the process module “PrefeaidSde Fig. 15) is

the preparation of anfefr for an eternal client by a group of specialists. The process is initiated
and supervised by a person with the role “group leader” (for short GrL) and carried out in
parallel by at least tavspecialists M1 and M2 (“members of $taivho process thelsiness

and technical parts of this task more or less independéxttypical part of the technical
processing is an optional meeting to be held with other specialists. Therefore, the decision
whether to hold the meeting or not is modeled as a particulartyadf the technician M2.
Having receved the results from M1 and M2, the group leader completes fie thiereby
completing the process prescribed by the process module “Prefeaitel@dbte that this process
module vas started by the group leader for better structuring and control ovhisark, but

several tasks are dajated to his colleagues M1 and M2 to whom he is entitled to set tasks. As
can easily be seen, the process module contains “and” branches and confluences of the control
flow! as well as “or” branches and confluerfces

1. The “and” branch bagins after the task “Delgate partial tasks (GrL)” andejoins with the task
“Complete ofer (GrL)". The start of this last activity usuallyvalves waiting for syrronization
of both theads of conbil

2. These a connected with the decision taskedinical meeting necessary?” and itid date for
meeting” (“or” br anches) and the place “partialesult tetinical” (“or” confluence)
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PrepareOffer

folder prepared

Q Delegate partial tasks (GrL)

partial task business partial task technical

Process business part (M1) Process technical part (M2)

Technical meeting necessary? (M2)

meeting necessary

O meeting not necessary

Find date for meeting (M2) —‘—

date found meeting impossible

Hold meeting (M2)

partial result business ? partial result technical

Complete offer (GrL)
offer completed

KE PrepareOffer completed

Fig. 15: Process module “Preparé&f
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The process modul@ppointmentMaking” (see Fig. 16) can be used as technical support for
M1’s task “Find date for meeting” in the process module “Preptee€0h Fig. 15. It can be

started by M1 if s/he finds it useful to do sat ban also - with a slight modification of the

process module “Prepard®’ - be started automatically by this process module. Note that no

roles or persons are assigned to its tasks because it is assumed that all tasks are set to the starter
of the process module.

After the completion of the first task by M1, i.e. after sending the date proposals to all parties
who are to participate in the meeting, the process net resides in a state where the conditions
“waiting for deadline” and “ait” are true. Remember that the delay-free set-alarm transition
initiates an eent of the type EentName with a specified delay after wgndfiring. During this

time, responses can aeiat the channel “meresponse to date proposal” and be included in the
database by the awity “Include nev responses”, resultingzery time in the marking of the

place “nev responses included” which is folled immediately by the setting of the task
corresponding to the decision adiy “All parties responded?”. This adgty is performed each

time a n&v set of responses has been included and mvayt@ally result in the condition “all

parties responded”.

If this condition is reached before the occurrence of vieate'deadline” (and thus before the
firing of the corresponding sensor transition), tieng will be cancelled by the clealarm
transition and therefore, the placediing for deadline” will remain ma#dd until the end of the
interpretation of the net. The xteactvity will be the decision “Do ideal datesist?” which
checks for thexastence of a “perfect set of dates”, i.e. such sets of dates wheratal iparties
are able to participate. If such a sasts, one of the dates will be chosen by thevagtiChoose
date” and the last awity of the net ensures that all parties are informed.

If, in contrast, thewent “deadline” occurs before all partiesseaesponded, the corresponding
sensor transition will fire and consume theetak from the places ‘ait” and “waiting for
deadline”. Thus,en in the case that all parties respondedt-dfter the occurrence of the
deadline gent - the cleaalarm transition will not fire and a tek will remain on the place “all
parties responded” until the end of the interpretation of thé fiaen, the task “Ealuate
incomplete set of responses” will be set.

After this actvity or if there was no date suitable foverybody (as a result of the decision
actvity “Do ideal dates xst?”), the process module will enter (and pass) the condition
“imperfect set of dates”. This condition is folled by the setting of the task “Set date or cancel
meeting” which in turn is follwed by the actity ensuring the notification of all parties.

1. If not all parties esponded, a t@h will remain on the place “incomplete set e§ponses” until the
end of the ne$ interpetation.
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AppointmentMaking new response to date proposal

folder prepared Include new responses

Send date proposals for meeting new responses included

O

deadline for responses set incomplete set of responses

deadline All parties responded?

waiting for deadline wait all parties responded

deadline deadline

deadline reached, not all parties responded

complete response information

Evaluate incomplete set of responses Do ideal dates exist?

\

imperfect set of dates perfect set of dates

O - O-—"_4-——0-—"x—"0O~-_1--0-—K

Set date or cancel meeting Choose date

N

\|:I-—0<~\-—O-—E-—O<J/_=

/III

final meeting information

<_O\

Inform all parties

folder completed

AppointmentMaking completed

K=—O-—_]

Fig. 16: (AppointmentMaking”)
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7.2 Processesin a software architecture:
Negotiation for quality of service

A topical area of research of the netwgroup of the International Computer Science Institute
at Berleley is the deelopment of methods and so#ive architectures which enable (partly
statistical) guaranties for the quality of service (QoS)iped by broadband end-to-end
communication services on the hosvele To this end, a so-called CMA (Coopevati
Multimedia Application) architecture is being védoped as part of a host'software
architecture.

An important part of the functionality of this architecture is thgotiation process for the
quality of service. This process is realized by interaction of the sub-components of the host’
major component Session Manger called user exterfQoS mappeservice managgresource
monitor/controller and connection manager

Usual graphical representations in the design of soétvarchitectures reflect only the basic
functionality and the (names of) servicesyided by the softare components,ub not the
comple processes which are realized by their interaction (see Fig. 17).

C s )

Host TN

Cooperative Multimedia Application (CMA)
Session Manager

user interface | Network
QoS resource service connection | | "7
mapper monitor manager manager

N

Fig. 17: CMA softvare architecture

Modular process nets are well suited for a detailed and formally correct graphical representation
of such processes. Thean simultaneously sexvifor easier understanding, documentation,
verification and alidation of the corresponding sofive design and implementation. A further
(potential) use is the design of a user irdeet

In our following (hopefully) self-gplanatory &ample gven by Figures 18 to 20, modular
process nets are used for desorgptmodeling - there is no intention to enact the specified
processes. But, in contrast to theriflow example, the refinement possibilities of modular
process nets aretensiely used. Note that most of the transitionsargons, i.e. thg take
time to be completed and thean be imagined to be “ma#’. But, in contrast to aefties, for
actions no predefined refinement igegi.

1. The only xceptions a& the user activities “Specify sessioaquirements” and “Decide on
acceptance of gmtiated QoS”
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Specify session requirements (user)

media services with QoS requirements

Contact other hosts (connection manager)

QoS data ?
Contact QoS mapper (service manager) |:|
actual media services with QoS requirements

Translate QoS requirements (QoS mapper)

media service parameters

Negotiate actual parameters (session manager)

N

actual QoS parameters allocated resources

[1—O
AN

Start media services (service manager) |:|

session partners

session_cancel information

Cancel session (user interface)

host and network QoS requirements

QoS cannot be delivered

Cancel required media services
(service manager)

Fig. 18: MPN model “Session management”
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session partners media services with QoS requirements

Contact other hosts (connection manager)

information of contacted session partners/hosts

~—O—1

Decide whether to agree (connection manager)

— &

|:| Apply to QoS manager (connection manager) |:| Inform other hosts (connection manager)

QoS data session_cancel information

Fig. 19: Refinement of “Contact other hosts (connection manager)”
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host and network QoS requirements media service parameters

Negotiate host and network resources (resource controller)

<7:|

N

negotiated host resources negotiated network resources

\

Translate resources to offerable QoS parameters (QoS mapper)

QoS parameters in user terms

~—(O-—"1—"70

Decide on acceptance of negotiated QoS (user)

N

Ot

Inform service manager (user interface) D Inform service manager (user interface)

allocated resources actual QoS parameters QoS cannot be delivered

Fig. 20: Refinement of “Ngotiate actual parameters (session manager)”
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8 Concluding remarks

This report preides an introduction to a weclass of Petri net models which is particularly well
suited as a graphical and formal notation fasibess process and sadine process models.

The main and most inmative points of this class of models are its hierarchical module concept,
the constructs for synchronous and asynchronous communication between interpreted nets and
their ervironment and the use of these concepts as a basis for a canonicaidriafoe flexible

workflow modeling and enactment.

The module concept is part of a more general (“object-based”) approach to Petri nets which not
only allovs a compact representation of comppgocessesui also preides solutions for
problems in the application and use of Petri nets which result from the applicatiofedif

firing rules and the introduction of time into nets.

In principle, the definition of constructs for synchronous and asynchronous communication can
be done independently of the module concept f@ryeclass of Petri nets. The necessary
underlying concepts for these constructs are thoseasfte (memoryless “flashes”) and of
token passing (comparable to messages).

One \ery useful application of the module anet concepts is the construction of a net-based
task concept which has been successfully applied to the design and useodiflamw
management systenutowhich is also xpected to be applicable in other areas of computer
supported cooperat work (CSCW).

One of the main aims of the proposed class of models is that it should be simple, easily learnable
and comprehensible in order to be used as a widesprgatbrimally precise means of
communication. br this reason in particulaonly “black” tokens (instead of the often used
class-based or inddual tokens) are alived in our modular process nets.

The other design objewts - to allav compact representation of compl@ocesses, automated
computer interpretation, distabed and safe interpretation and enactment, changes of the net
structure during interpretatidrand intgration with oganization models - va been achied

by minimal syntacticxensions of elementaryvelevel Petri nets.

Within the contgt of the WAM?2 project at the Fraunhofer ISST Berlin [Adam95], a set of
several softvare components has beeweleped or enhanced which allgrototypical use of
modular process nets for the modeling and enactment xabléeworkflow processes. In
addition to the graphical editor MOPEd - used for the construction of all process metsirsho
this report - these are a process net interpreter and a process net monitor wiibkeem
integrated in a CORR-based wrkflow management @ronment. Using a formal translation,
the process net models can be analyzed using the Petri net analyf8tdN4].

As shavn in the secondxample of this report, modular process nets are well suited for use
outside vorkflow modeling and management. It ispected that applications in manther
areas will follav. The main aim of this report is to encourage and promote such further use.

1. This can be realized using the task concept and embedding of process modules.
2. Wide Area Multimedia group interaction
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