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Abstract
We determine the computational complexity of deciding whether m polyno-
mials in n variables have relatively prime leading terms with respect to some
term order. This problem is NP-complete in general, but solvable in polyno-
mial time for m fixed and for n —m fixed. Our new algorithm for the latter case
determines a candidate set of leading terms by solving a maximum matching
problem. This reduces the problem to linear programming.
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1 Introduction

Let S = K[Xy,...,X,] be the polynomial ring in n variables over any field K. For
a=(ay,...,a,) € IN" we write X for the monomial X" ---X2». Given a finite
set F'={f1,..., fm} of polynomials in §, any term order < on F' can be represented
by a positive weight vector w € IR . This means that

X< X o wla<wlp

for any two monomials X® and X? occurring in F.
The following Grébner Basis Detection problem was proposed in [GS 93]:

(GBD) Given F = {fi,..., fm} C S, decide if there exists — and if ”Yes” find — a

term order w € IRY such that F’is a Grobner basis with respect to w.

In [GS 93] this problem is solved using Minkowski addition of Newton polytopes.
The running time of that algorithm depends not just on n and m but also on the
maximal number k of terms and the maximal degree R of the polynomials f;. More
precisely, for fixed n the problem (GBD) can be solved with a number of arithmetic
operations which is polynomial in m, k£ and R. Note that only log(R) and not R
itself is part of the input in the sparse encoding of F. The part of the algorithm
where R is involved is the §-pair reduction.

In this note we study a related problem which can be solved without any reduc-
tions, namely, the following Structural Grébner Basis Detection problem:

(SGBD) Given F = {fi,..., fm} C 9, decide if there exists — and if ”Yes” find — a

term order w € IR’y such that LT,,(F) is a set of pairwise coprime monomials.

Here LT,,(F') denotes the set of w-leading terms of the polynomials in #'. Clearly,
we can assume m < n. Qur aim is to describe the complexity of (SGBD) in the
binary model of computation and to give a polynomial time algorithm when one
exists. Our new results are the following two theorems.

Theorem 1. Let d € INg be fixed. Then (SGBD) for m = n — d polynomials in n
variables is solvable in polynomial time in the input size of the problem.

An algorithm for Theorem 1 will be given in Section 2. This is one of the
first algorithms in Grobner basis theory whose running time is polynomial in the
number n of variables. The key ingredients are maximum bipartite matching and
linear programming. Theorem 1 is contrasted by the following hardness result to be
proved in Section 3.

Theorem 2. (SGBD) is NP-complete.

In order to present the complete picture of the complexity of (SGBD) we briefly
discuss the case of fixed m. There are at most £ ways of picking one term from each
polynomial in F' = {fy,..., f}, where k is the maximal number of terms occurring
in any f;. We can list all choices in polynomial time. Polyhedral techniques for doing
this efficiently are described in [GS 93]. To decide whether a given choice is induced



by a term order, we must decide the feasibility of a linear program. This can be
done in polynomial time in the binary size of the input, for example by Khachian’s

Ellipsoid Method [Sc 86].
Corollary 3. For fixed m, (SGBD) can be solved in polynomial time.

We do not know if (SGBD) for fixed m can be solved in polynomial time in
the RAM model of computation, in which each integer in the input is assumed to
occupy unit space. This question leads to the well-known open problem whether
there exists a strongly polynomial time algorithm for linear programming. As the
new algorithm for fixed d also involves solving a linear program, the same statement

holds for (SGBD) in this case.

2 The polynomial time algorithm

The aim of this section is to prove Theorem 1. The most interesting special case is
d = 0. It will be treated first in Subsection 2.1.

2.1 Square systems

The following class of examples explains the combinatorial structure of our problem.
See also Example 3.9 and Exercise (1) on page 29 in [St 95].

Example 4. Consider a system of n polynomials in n variables of the form
fi = X9+ X2 4+ Xn -1 (i=1,...,n).

For any term order w € IR} on F' = {fi,..., f,} the leading terms LT, (f;) =
{X;E;.’)(i)} are indexed by some function ¢ : {1,...,n} — {1,...,n}. The set
LTy(F) = {LTw(f1),...,LTyw(fn)} is pairwise coprime if and only if o is a per-
mutation. Structural Grébner basis detection (SGBD) becomes the question which
one of the n! possible permutations o can be realized by a term order. There is at
most one choice by Lemma 5 below.

Lemma 5. Let F' = {fi,..., f,} be as in Example 4. A permutation ¢ cannot be
realized by a term order if there is another permutation p such that

n n

Proof: Suppose w € IRYy is a term order which picks the leading term X;E;.’)(i) for f;.

Let p be any other permutation. Since w prefers X:E;’)(i), we have

Wo (i) i (i) > Wp(i)@ip(i) fori =1,2,...,n.

Multiplication of all » inequalities yields
n n

[[woiyaioy > TIwoiaine



and thus, by division through the common factor [[;—; w; > 0, the assertion. O

Lemma 5 is not restricted to the special case of Example 4 but it applies
to any set of m polynomials in n variables. Disregarding terms which are not
pure powers of variables, Lemma 5 tells us that the unique candidate for solv-
ing (SGBD) is a selection of pure powers X;l(lf)(l), .. .,X;El;)(") which maximizes the
product @y,(1)"**@ps(n). Finding this selection is a bipartite maximum matching
problem. The remaining question is whether such a candidate selection is indeed

induced by a term order. This amounts to solving a linear program:

Lemma 6. Let F' = {f1,...,f,} C S and X a distinguished monomial in f;
for i = 1,...,n. For any monomial X? # X occurring in some f; consider the
difference vector a; —  and let I' be the matrix whose rows are all these vectors.
There exists a term order w such that LT,(f;) = X% for i =1,...,n if and only if
the linear system of inequalities 'w > 0, w > 0 has a solution.

Proof: Since every term order can be represented by a positive weight vector, the
“only if” direction is clear. For the ”if” part refine any feasible solution w of the
linear program to a term order < on F. The conditions I'w > 0 exactly imply that
the X become the leading terms with respect to <. 0

Algorithm 7 (solving (SGBD) for m = n).
INPUT: Polynomials fi,..., f, € 5 in sparse encoding.

1 For1<14,5 <mn do:
Let @;; be the maximal exponent of X; in f;.
(Set a;; = 0 if no power of X; appears in f;)
If there is a term X]%XCY for a # 0 in f;, then set a;; = 0.

2 Construct a bipartite graph G = (V, F') with 2n vertices as follows:
Let V. ={v,...,0,w1,...,w,} and (v;, w;) € E if and only if a;; > 0.

3 Compute a matching M of G which maximizes the product over all a;; with
(v, w;) € M.

4 If |[M| < n then stop, OUTPUT: No;
else write M = {(vi,w,(;)) | i = 1,...,n} for a permutation o.

5 Let I' be the matrix with n columns whose row vectors are a;,(;y — 0,
where i = 1,...,n and X? runs over all terms of f; with 3 # Qo (i)

6 Decide the linear programming feasibility problem I'w > 0, w > 0.
If no feasible solution w exists, then OUTPUT: No;
else OUTPUT: Yes, any feasible solution w solves (SGBD).

Discussion: The correctness of Algorithm 7 follows from Lemma 5 and Lemma 6.
The main subroutines are steps 3 and 6. The calculation of a maximum bipartite
matching can be done in polynomial time, for example by the Hungarian method



[LP 84]. The linear programming feasibility problem only involves binary data which
are part of the input. It can be solved in polynomial time in the size of the input,
for example by Khachian’s Ellipsoid method [Sc 86]. It follows that Algorithm 7
runs in polynomial time in the binary model of computation. O

We summarize a consequence which is specific to square systems.

Corollary 8. For m = n there is at most one term order w up to equivalence such
that F is a structural Groébner basis with respect to w. If X?i“(i) is the w-leading
term of f; for i = 1,...,n, then the system f; = --- f, = 0 has exactly [[/—, Uio(s)
solutions in the algebraic closure of K counted with multiplicities.

2.2 Almost square systems

Suppose we have m < n polynomials where d = n—m is fixed. The idea is to reduce
(SGBD) to the case n = m. This can be done in the following way.

Lemma 9. Let S;U...U S, be a partition of {Xy,...,X,} and 7 the map from
kE[Xq,...,X,] to k[Y1,...,Y,,] defined by n(X;) = Y; for X; € S;. Let ¢ be a
permutation of {1,...,m}. There is a term order <x on k[Xy,..., X,] such that
LT, (f:) has support in S, ;) if and only if there is a term order <y on k[Y1,...,Y,]
such that LT, (7(f;))is a power of Y, ;.

Proof: Given a term order <x by a weight vector wx, we define wy to have j-
th entry wy(j) = > ies, wx (7). For the if-direction, given <y define <x by any
refinement of the partial order X <x X7 if 7(X?) <y 7(X7). 0

Lemma 9 implies that we can answer the following question in polynomial time
using Algorithm 1.

(SGBD)p Given a partition P of the variables {Xy,..., X,,} into m parts, does
there exist a term order which picks as the leading terms of fi,..., f,, monomials
whose supports are contained in distinct parts of P ?

A term order w solves (SGBD) if and only if there is a partition P such that w
solves (SGBD)p for this P. The question how many such subproblems have to be
considered is answered by the following combinatorial lemma.

Lemma 10. For d = n — m fixed, the number of partitions of a set of n elements
into m disjoint nonempty subsets is a polynomial of degree 2d in n.

Proof: This follows from the discussion in Section 1.4 of [St 86]. 0
In order to prove Theorem 1, we now just have to put things together.

Proof of Theorem 1: Let d = n — m be fixed. By Lemma 10 there is a polynomial

number of partitions P of {1,...,n} into m nonempty subsets. In order to decide
(SGBD), it suffices to test (SGBD)p for all these P. By Lemma 9 this can be done
in polynomial time using Algorithm 1. 0



3 Hardness for the general case

In this section, we turn to the general case of m polynomials in n variables. Our
aim is to show the NP-completeness result stated in Theorem 2.

Proof of Theorem 2: First, we show, that (SGBD) is in NP. Suppose the given
set F' = {f1,..., fm} has pairwise coprime leading monomials X*1, ..., X% for
fis- -+, fm With respect to some term order. Then the linear system w’ (a; — ;) > 0
for all exponents 3; # a; occurring in f; and ¢ = 1,...,m has a solution w in IN"
with binary size bounded by a polynomial in the size of F'. Guess such a w and
check that aq, ..., a,, have pairwise disjoint supports. This proves that (SGBD) is
in NP.

In order to prove that (SGBD) is NP-hard, we reduce from the following known
NP-complete problem, see for example [Pa 94], page 201.

(SET PACKING) Given a family S = {S1,..., 5%} of subsets of {1,...,v}, and

a goal m € IN. Are there m pairwise disjoint sets in S7

For a given instance (v,5,m) of (SET PACKING) we construct an instance of
(SGBD) as follows. We take the polynomial ring

EXy, .., X, Y1, Yig oo Yor, oo Yok

in v + mk variables, and we encode 5; by the monomial M; := [[;cs, Xi. Then we
define m polynomials

k
A=Y YMy, o f =) Yo M.
i=1

We claim that /' ={fi,..., f} is a structural Grébner basis if and only if (v, 5, m)
is a ”Yes”-instance of (SET PACKING).

To prove the "only if”-direction, let F' = {fi,..., fn} be a structural Grébner
basis with leading terms Yy;, M;,,..., Y, M, . Then M; ..., M; must have dis-
joint support, and the m sets 5;,,...,.5;, are disjoint. For the ”if”-direction, let
Siyy .-y, be m disjoint subsets of {1,...,v} in 5. Define the coordinates of a
weight vector w € N¥*™F as 1 for all variables except for Yi;,,..., Y, , which
get weight v + 1. Then the leading terms of fi,..., f,, with respect to w are
Yii, M, ..., Y5, M; . Since they are pairwise coprime, F’ is a structural Grobner
basis with respect to w. The proof is complete. O

As a consequence we obtain the following hardness result for the Grobner basis
detection problem (GBD) stated in the very beginning of the introduction.

Corollary 11. (GBD) is NP-hard.

Proof: Tt suffices to argue that the set F’ constructed in the hardness part of the
proof of Theorem 2 is a Grobner basis if and only if it is a structural Grébner basis.
The 7if”-part being clear, we assume that F is a Grobner basis with respect to



some term order w. We have to show that this implies that LT(f;) and LT(f;) are
coprime for all ¢ and 7.

The S-polynomial s = S(f;, f;) reduces to zero with respect to F. Since all
polynomials fi for k& & {i,j} involve a variable Yj; in their leading term, they do
not occur in any reduction of s. Thus s reduces to zero by {f;, f;} only. But since
fi and f; do not have a common factor, their minimal syzygy is (f;, —f;). Thus
their leading terms have to be coprime since every syzygy on (LT'(f;), LT(f;)) has
to come from a syzygy on (fi, f;). 0
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