INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. • Suite 600 • Berkeley, California 94704-1198 • (510) 643-9153 • FAX (510) 643-7684

Structural Gröbner Basis Detection

Bernd Sturmfels and Markus Wiegelmann

TR-96-017

May 1996

Department of Mathematics, UC Berkeley Berkeley, California 94720, USA bernd@math.berkeley.edu

Fachbereich Mathematik, Universität Trier Universitätsring 15, D-54286 Trier, Germany wiegelm@uni-trier.de

Abstract

We determine the computational complexity of deciding whether m polynomials in n variables have relatively prime leading terms with respect to some term order. This problem is NP-complete in general, but solvable in polynomial time for m fixed and for n-m fixed. Our new algorithm for the latter case determines a candidate set of leading terms by solving a maximum matching problem. This reduces the problem to linear programming.

1 Introduction

Let $S = K[X_1, \ldots, X_n]$ be the polynomial ring in n variables over any field K. For $\alpha = (\alpha_1, \ldots, \alpha_n) \in I\!\!N^n$ we write X^{α} for the monomial $X_1^{\alpha_1} \cdots X_n^{\alpha_n}$. Given a finite set $F = \{f_1, \ldots, f_m\}$ of polynomials in S, any term order \prec on F can be represented by a positive weight vector $w \in I\!\!R_+^n$. This means that

$$X^{\alpha} \prec X^{\beta} \quad \Leftrightarrow \quad w^{T} \alpha < w^{T} \beta$$

for any two monomials X^{α} and X^{β} occurring in F.

The following *Gröbner Basis Detection* problem was proposed in [GS 93]:

(GBD) Given $F = \{f_1, \ldots, f_m\} \subset S$, decide if there exists – and if "Yes" find – a term order $w \in \mathbb{R}^n_+$ such that F is a Gröbner basis with respect to w.

In [GS 93] this problem is solved using Minkowski addition of Newton polytopes. The running time of that algorithm depends not just on n and m but also on the maximal number k of terms and the maximal degree R of the polynomials f_i . More precisely, for fixed n the problem (GBD) can be solved with a number of arithmetic operations which is polynomial in m, k and R. Note that only log(R) and not R itself is part of the input in the sparse encoding of F. The part of the algorithm where R is involved is the S-pair reduction.

In this note we study a related problem which can be solved without any reductions, namely, the following *Structural Gröbner Basis Detection* problem:

(SGBD) Given $F = \{f_1, \ldots, f_m\} \subset S$, decide if there exists – and if "Yes" find – a term order $w \in \mathbb{R}^n_+$ such that $LT_w(F)$ is a set of pairwise coprime monomials.

Here $LT_w(F)$ denotes the set of w-leading terms of the polynomials in F. Clearly, we can assume $m \leq n$. Our aim is to describe the complexity of (SGBD) in the binary model of computation and to give a polynomial time algorithm when one exists. Our new results are the following two theorems.

Theorem 1. Let $d \in \mathbb{N}_0$ be fixed. Then (SGBD) for m = n - d polynomials in n variables is solvable in polynomial time in the input size of the problem.

An algorithm for Theorem 1 will be given in Section 2. This is one of the first algorithms in Gröbner basis theory whose running time is polynomial in the number n of variables. The key ingredients are maximum bipartite matching and linear programming. Theorem 1 is contrasted by the following hardness result to be proved in Section 3.

Theorem 2. (SGBD) is NP-complete.

In order to present the complete picture of the complexity of (SGBD) we briefly discuss the case of fixed m. There are at most k^m ways of picking one term from each polynomial in $F = \{f_1, \ldots, f_m\}$, where k is the maximal number of terms occurring in any f_i . We can list all choices in polynomial time. Polyhedral techniques for doing this efficiently are described in [GS 93]. To decide whether a given choice is induced

by a term order, we must decide the feasibility of a linear program. This can be done in polynomial time in the binary size of the input, for example by Khachian's Ellipsoid Method [Sc 86].

Corollary 3. For fixed m, (SGBD) can be solved in polynomial time.

We do not know if (SGBD) for fixed m can be solved in polynomial time in the RAM model of computation, in which each integer in the input is assumed to occupy unit space. This question leads to the well-known open problem whether there exists a strongly polynomial time algorithm for linear programming. As the new algorithm for fixed d also involves solving a linear program, the same statement holds for (SGBD) in this case.

2 The polynomial time algorithm

The aim of this section is to prove Theorem 1. The most interesting special case is d = 0. It will be treated first in Subsection 2.1.

2.1 Square systems

The following class of examples explains the combinatorial structure of our problem. See also Example 3.9 and Exercise (1) on page 29 in [St 95].

Example 4. Consider a system of n polynomials in n variables of the form

$$f_i := X_1^{a_{i1}} + X_2^{a_{i2}} + \dots + X_n^{a_{in}} - 1$$
 $(i = 1, \dots, n).$

For any term order $w \in \mathbb{R}^n_+$ on $F = \{f_1, \ldots, f_n\}$ the leading terms $LT_w(f_i) = \{X_{\sigma(i)}^{a_{i\sigma(i)}}\}$ are indexed by some function $\sigma: \{1, \ldots, n\} \mapsto \{1, \ldots, n\}$. The set $LT_w(F) = \{LT_w(f_1), \ldots, LT_w(f_n)\}$ is pairwise coprime if and only if σ is a permutation. Structural Gröbner basis detection (SGBD) becomes the question which one of the n! possible permutations σ can be realized by a term order. There is at most one choice by Lemma 5 below.

Lemma 5. Let $F = \{f_1, \ldots, f_n\}$ be as in Example 4. A permutation σ cannot be realized by a term order if there is another permutation ρ such that

$$\prod_{i=1}^{n} a_{i\rho(i)} \geq \prod_{i=1}^{n} a_{i\sigma(i)}.$$

Proof: Suppose $w \in \mathbb{R}^n_+$ is a term order which picks the leading term $X^{a_{i\sigma(i)}}_{\sigma(i)}$ for f_i . Let ρ be any other permutation. Since w prefers $X^{a_{i\sigma(i)}}_{\sigma(i)}$, we have

$$w_{\sigma(i)}a_{i\sigma(i)} > w_{\rho(i)}a_{i\rho(i)}$$
 for $i = 1, 2, \dots, n$.

Multiplication of all n inequalities yields

$$\prod_{i=1}^n w_{\sigma(i)} a_{i\sigma(i)} > \prod_{i=1}^n w_{\rho(i)} a_{i\rho(i)}$$

and thus, by division through the common factor $\prod_{i=1}^n w_i > 0$, the assertion.

Lemma 5 is not restricted to the special case of Example 4 but it applies to any set of n polynomials in n variables. Disregarding terms which are not pure powers of variables, Lemma 5 tells us that the unique candidate for solving (SGBD) is a selection of pure powers $X_{\sigma(1)}^{a_{1}\sigma(1)}, \ldots, X_{\sigma(n)}^{a_{n}\sigma(n)}$ which maximizes the product $a_{1}\sigma(1)\cdots a_{n}\sigma(n)$. Finding this selection is a bipartite maximum matching problem. The remaining question is whether such a candidate selection is indeed induced by a term order. This amounts to solving a linear program:

Lemma 6. Let $F = \{f_1, \ldots, f_n\} \subset S$ and X^{α_i} a distinguished monomial in f_i for $i = 1, \ldots, n$. For any monomial $X^{\beta} \neq X^{\alpha_i}$ occurring in some f_i consider the difference vector $\alpha_i - \beta$ and let Γ be the matrix whose rows are all these vectors. There exists a term order w such that $LT_{\omega}(f_i) = X^{\alpha_i}$ for $i = 1, \ldots, n$ if and only if the linear system of inequalities $\Gamma w > 0$, w > 0 has a solution.

Proof: Since every term order can be represented by a positive weight vector, the "only if" direction is clear. For the "if" part refine any feasible solution w of the linear program to a term order \prec on F. The conditions $\Gamma w > 0$ exactly imply that the X^{α_i} become the leading terms with respect to \prec .

Algorithm 7 (solving (SGBD) for m = n).

INPUT: Polynomials $f_1, \ldots, f_n \in S$ in sparse encoding.

1 For $1 \leq i, j \leq n$ do:

Let a_{ij} be the maximal exponent of X_j in f_i .

(Set $a_{ij} = 0$ if no power of X_j appears in f_i) If there is a term $X_j^{a_{ij}} X^{\alpha}$ for $\alpha \neq 0$ in f_i , then set $a_{ij} = 0$.

- 2 Construct a bipartite graph G = (V, E) with 2n vertices as follows: Let $V = \{v_1, \ldots, v_n, w_1, \ldots, w_n\}$ and $(v_i, w_j) \in E$ if and only if $a_{ij} > 0$.
- 3 Compute a matching M of G which maximizes the product over all a_{ij} with $(v_i, w_j) \in M$.
- 4 If |M| < n then stop, OUTPUT: No; else write $M = \{(v_i, w_{\sigma(i)}) \mid i = 1, ..., n\}$ for a permutation σ .
- 5 Let Γ be the matrix with n columns whose row vectors are $\alpha_{i\sigma(i)} \beta$, where i = 1, ..., n and X^{β} runs over all terms of f_i with $\beta \neq \alpha_{i\sigma(i)}$
- 6 Decide the linear programming feasibility problem $\Gamma w > 0$, w > 0. If no feasible solution w exists, then OUTPUT: No; else OUTPUT: Yes, any feasible solution w solves (SGBD).

Discussion: The correctness of Algorithm 7 follows from Lemma 5 and Lemma 6. The main subroutines are steps 3 and 6. The calculation of a maximum bipartite matching can be done in polynomial time, for example by the Hungarian method

[LP 84]. The linear programming feasibility problem only involves binary data which are part of the input. It can be solved in polynomial time in the size of the input, for example by Khachian's Ellipsoid method [Sc 86]. It follows that Algorithm 7 runs in polynomial time in the binary model of computation.

We summarize a consequence which is specific to square systems.

Corollary 8. For m=n there is at most one term order w up to equivalence such that F is a structural Gröbner basis with respect to w. If $X_i^{a_{i\sigma(i)}}$ is the w-leading term of f_i for $i=1,\ldots,n$, then the system $f_1=\cdots f_n=0$ has exactly $\prod_{i=1}^n a_{i\sigma(i)}$ solutions in the algebraic closure of K counted with multiplicities.

2.2 Almost square systems

Suppose we have $m \leq n$ polynomials where d = n - m is fixed. The idea is to reduce (SGBD) to the case n = m. This can be done in the following way.

Lemma 9. Let $S_1 \cup \ldots \cup S_m$ be a partition of $\{X_1, \ldots, X_n\}$ and π the map from $k[X_1, \ldots, X_n]$ to $k[Y_1, \ldots, Y_m]$ defined by $\pi(X_i) = Y_j$ for $X_i \in S_j$. Let σ be a permutation of $\{1, \ldots, m\}$. There is a term order \prec_X on $k[X_1, \ldots, X_n]$ such that $LT_{\prec_X}(f_i)$ has support in $S_{\sigma(i)}$ if and only if there is a term order \prec_Y on $k[Y_1, \ldots, Y_m]$ such that $LT_{\prec_Y}(\pi(f_i))$ is a power of $Y_{\sigma(i)}$.

Proof: Given a term order \prec_X by a weight vector w_X , we define w_Y to have j-th entry $w_Y(j) = \sum_{i \in S_j} w_X(i)$. For the if-direction, given \prec_Y define \prec_X by any refinement of the partial order $X^{\alpha} \prec_X X^{\beta}$ if $\pi(X^{\alpha}) \prec_Y \pi(X^{\beta})$.

Lemma 9 implies that we can answer the following question in polynomial time using Algorithm 1.

 $(\mathbf{SGBD})_P$ Given a partition P of the variables $\{X_1, \ldots, X_n\}$ into m parts, does there exist a term order which picks as the leading terms of f_1, \ldots, f_m monomials whose supports are contained in distinct parts of P?

A term order w solves (SGBD) if and only if there is a partition P such that w solves (SGBD) $_P$ for this P. The question how many such subproblems have to be considered is answered by the following combinatorial lemma.

Lemma 10. For d = n - m fixed, the number of partitions of a set of n elements into m disjoint nonempty subsets is a polynomial of degree 2d in n.

Proof: This follows from the discussion in Section 1.4 of [St 86].

In order to prove Theorem 1, we now just have to put things together.

Proof of Theorem 1: Let d = n - m be fixed. By Lemma 10 there is a polynomial number of partitions P of $\{1, \ldots, n\}$ into m nonempty subsets. In order to decide (SGBD), it suffices to test (SGBD)P for all these P. By Lemma 9 this can be done in polynomial time using Algorithm 1.

3 Hardness for the general case

In this section, we turn to the general case of m polynomials in n variables. Our aim is to show the NP-completeness result stated in Theorem 2.

Proof of Theorem 2: First, we show, that (SGBD) is in NP. Suppose the given set $F = \{f_1, \ldots, f_m\}$ has pairwise coprime leading monomials $X^{\alpha_1}, \ldots, X^{\alpha_m}$ for f_1, \ldots, f_m with respect to some term order. Then the linear system $w^T(\alpha_i - \beta_i) > 0$ for all exponents $\beta_i \neq \alpha_i$ occurring in f_i and $i = 1, \ldots, m$ has a solution w in \mathbb{N}^n with binary size bounded by a polynomial in the size of F. Guess such a w and check that $\alpha_1, \ldots, \alpha_m$ have pairwise disjoint supports. This proves that (SGBD) is in NP.

In order to prove that (SGBD) is NP-hard, we reduce from the following known NP-complete problem, see for example [Pa 94], page 201.

(SET PACKING) Given a family $S = \{S_1, \ldots, S_k\}$ of subsets of $\{1, \ldots, \nu\}$, and a goal $m \in \mathbb{N}$. Are there m pairwise disjoint sets in S?

For a given instance (ν, S, m) of (SET PACKING) we construct an instance of (SGBD) as follows. We take the polynomial ring

$$k[X_1,\ldots,X_{\nu},Y_{11},\ldots,Y_{1k},\ldots,Y_{m1},\ldots,Y_{mk}]$$

in $\nu + mk$ variables, and we encode S_j by the monomial $M_j := \prod_{i \in S_j} X_i$. Then we define m polynomials

$$f_1 = \sum_{j=1}^k Y_{1j} M_j, \dots, f_m = \sum_{j=1}^k Y_{mj} M_j.$$

We claim that $F = \{f_1, \ldots, f_m\}$ is a structural Gröbner basis if and only if (ν, S, m) is a "Yes"-instance of (SET PACKING).

To prove the "only if"-direction, let $F = \{f_1, \ldots, f_m\}$ be a structural Gröbner basis with leading terms $Y_{1i_1}M_{i_1}, \ldots, Y_{mi_m}M_{i_m}$. Then M_{i_1}, \ldots, M_{i_m} must have disjoint support, and the m sets S_{i_1}, \ldots, S_{i_m} are disjoint. For the "if"-direction, let S_{i_1}, \ldots, S_{i_m} be m disjoint subsets of $\{1, \ldots, \nu\}$ in S. Define the coordinates of a weight vector $w \in N^{\nu+mk}$ as 1 for all variables except for $Y_{1i_1}, \ldots, Y_{mi_m}$, which get weight $\nu+1$. Then the leading terms of f_1, \ldots, f_m with respect to w are $Y_{1i_1}M_{i_1}, \ldots, Y_{mi_m}M_{i_m}$. Since they are pairwise coprime, F is a structural Gröbner basis with respect to w. The proof is complete.

As a consequence we obtain the following hardness result for the Gröbner basis detection problem (GBD) stated in the very beginning of the introduction.

Corollary 11. (GBD) is NP-hard.

Proof: It suffices to argue that the set F constructed in the hardness part of the proof of Theorem 2 is a Gröbner basis if and only if it is a structural Gröbner basis. The "if"-part being clear, we assume that F is a Gröbner basis with respect to

some term order w. We have to show that this implies that $LT(f_i)$ and $LT(f_j)$ are coprime for all i and j.

The S-polynomial $s = S(f_i, f_j)$ reduces to zero with respect to F. Since all polynomials f_k for $k \notin \{i, j\}$ involve a variable Y_{lk} in their leading term, they do not occur in any reduction of s. Thus s reduces to zero by $\{f_i, f_j\}$ only. But since f_i and f_j do not have a common factor, their minimal syzygy is $(f_j, -f_i)$. Thus their leading terms have to be coprime since every syzygy on $(LT(f_i), LT(f_j))$ has to come from a syzygy on (f_i, f_j) .

Acknowledgements

Bernd Sturmfels is supported in part by an NSF National Young Investigator Fellowship and a David and Lucile Packard Fellowship. Markus Wiegelmann is supported by the DFG through the graduate program "Mathematische Optimierung", Universität Trier. He also wishes to thank the International Computer Science Institute (ICSI) and its members for their great hospitality during his stay in Berkeley.

References

- [GS 93] P. Gritzmann and B. Sturmfels, Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Bases, SIAM J. Discrete Math. 6 (1993), 246 269.
- [LP 84] L. Lovasz and M.D. Plummer, *Matching Theory*, North-Holland Mathematics Studies 121, 1986.
- [Pa 94] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
- [Sc 86] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
- [St 86] R. Stanley, *Enumerative Combinatorics*, Wadsworth & Brooks, Monterey, CA, 1986.
- [St 95] B. Sturmfels, *Gröbner Bases and Convex Polytopes*, American Mathematical Society, Providence, 1995.