INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Deterministic Generalized
Automata *

Dora Giammarresi®
Dipartimento di Matematica Pura ed Applicata, Universita di L’Aquila
via Vetoio, loc. Coppito, 67100 L’Aquila, ITALY (dora@univagq.it)

Rosa Montalbano?

Dipartimento di Matematica e Applicaziont, Universita di Palermo

via Archirafi 34, 90128 Palermo, ITALY (rosalba@altair.math.unipa.it)
TR-96-016

Abstract
A generalized automaton (GA) is a finite automaton where the single transitions are
defined on words rather than on single letters. Generalized automata were considered
by K. Hashiguchi who proved that the problem of calculating the size of a minimal
GA is decidable.

We define the model of deterministic generalized automaton (DGA) and study the
problem of its minimization. A DGA has the restriction that, for each state, the sets
of words corresponding to the transitions of that state are prefix sets. We solve the
problem of calculating the number of states of a minimal DGA for a given language,
by giving a procedure that effectively constructs a minimal DGA starting from the
minimal equivalent (conventional) deterministic automaton.

*Work partially supported by the ESPRIT II Basic Research Actions Program of the EC under
Project ASMICS 2 (contract No. 6317) and in part by MURST under project 40% Algoritmi, Modelli
di Calcolo, Strutture Informative.

"Work partially done while visiting the International Computer Science Institute (ICSI) Berkeley,
CA.

{Partially supported by a research fellowship by Consiglio Nazionale delle Ricerche (CNR), Grant
n.201.01.121.

i

1 Introduction

Generalized automata (GA) were introduced by Eilenberg as a model of representation
for regular languages that extends the notion of finite automata by allowing the
single transitions to be defined on words rather than on single letters. Intuitively,
a generalized automaton can be obtained from a conventional one by shrinking long
paths of the graph in a unique edge with a “long” label. Therefore, generalized
automata are usually more concise than conventional ones representing the same
event.

In the past decades, several efforts have been devoted to compute the complex-
ity of representation of a given language inside different models of representation
(deterministic, non-deterministic, unambiguous, two-way, alternating, probabilistic,
pebbles automata, regular expressions, logical formalisms and so on). The complex-
ity of a language in a given model is generally understood as the size of the minimal
representation of the language in that model. For example, a classical measure of
the complexity of a finite automaton is its number of states and the complexity of
a language in this model is the number of states of a minimal (with respect to the
number of states) automaton recognizing it.

In this context, Hashiguchi in 1991 investigated the problem of computing the size
of the minimal representation of a given regular language in the model of generalized
automata (see [H91]). In particular, he proved that the problem of calculating the
number of states of a minimal GA is actually decidable.

A strictly related problem consists of effectively computing a minimal representa-
tion of a given language in a model. In the case of conventional deterministic finite
automata, it can be proved that the minimal automaton is unique and an algorithm
to calculate it starting from any equivalent deterministic automaton can be obtained
using the Myhill-Nerode’s theorem (see, for example, [HUT9]). For non-deterministic
automata there are only partial results stating that there is no unique minimal au-
tomaton but there are no constructive procedures for computing it, excepting the one
that lists all possible automata. In [JR91] the computational complexity of different
problems concerning minimization is studied in a general setting for non-deterministic
automata and it is proved that all these problems are computationally hard.

In this paper we introduce the model of deterministic generalized automata (DGA)
and deal with the minimization problem for this model. In order to preserve all
properties implied by the notion of determinism in the case of conventional automata,
DGA have the restriction that the sets of words corresponding to the transitions of
each state are prefix sets. We solve the problem of computing the number of states
of a minimal DGA by giving a procedure to construct a minimal DGA for a given
language starting from the minimal (conventional) deterministic one. We introduce
two operations that allow one to reduce the number of states of a DGA: the first, called
T -reduction, contracts states that are “indistinguishable” and the second, called §-
reduction, suppresses states that are “superfluous”. Then we give the conditions under

which such operations can be performed. We show that there can be deterministic
GA that are irreducible (with respect to the above operations) but not minimal and
give necessary and sufficient conditions to reduce a deterministic GA to get a minimal
one. Moreover, we show that, differently from the case of conventional deterministic
automata, the minimal deterministic GA is not unique.

The size of the minimal representation of a language in a given model (which
measures the complexity of the language) plays a primary role also in comparing dif-
ferent models according to their intrinsic succinctness. Much work has been devoted
to studying succinctness of representation when transducers are considered (see, for
example [WK94, M94]). In the case of finite automata, very recently, Harel et al. stud-
ied exponential discrepancies in the succinctness of finite automata when augmented
by combinations of various additional mechanisms like alternation (i.e. both univer-
sal and existential branching), concurrency, “two-wayness” and pebbles (see [GH94]).
We conclude the paper by discussing problems of discrepancy in succinctness between
non-deterministic and deterministic versions of generalized automata and give some
open problems.

Part of the results of this paper appeared already in [GM95].

2 Preliminaries

In this section we give first some terminology on languages and automata. Then we
recall some definitions, properties and problems related to the minimization of finite
automata. The notations we use are mainly borrowed from [P90].

2.1 Basic notations

We denote by ¥ a finite alphabet and by ¥* the free monoid generated by Y. The
elements of ¥ are called letters, those of ¥* are called words. A language over ¥ is a
subset of ¥* (i.e. a set of words).

Given two words v and w, we say that v is a prefiz of w if there exists a word
u such that w = vu. Given a set of words X, we say that X is a prefiz set if no
word in X is prefix of some other word in X. Given two sets of words X and Y, the
concatenation of X and Y, indicated as X - Y, contains all words zy with z € X and
y € Y. The length of a word w is denoted by |w|.

A finite (non deterministic) automaton is a quintuple A = (X, Q, I, F, E) where Q)
is a finite set of states, I, F' C () are the sets of initial and of final states respectively
and £ C Q x ¥ x @ is a set of labeled edges. We denote an edge of A by e = (r,a,s),
where r,s €) and a € ¥ is the label of e. A path of length n in A is a sequence
of edges e; = (ri,a;,ri41) € E, for ¢ = 1,...n, that we denote by [ri,ay...a,,r41].
The word w = ay...a, is the label of the path ey,...,e,. If 4 € I and r,1; € F
then ey, ..., e, is called accepting path and word w is said accepted by (or recognized

by) A.

The set of all words accepted by an automaton A is called the language accepted
(or recognized) by A and it will be referred to as £L(A). A language L is recognizable
if L is the language accepted by some finite automaton.

Two finite automata are equivalent if they accept the same language. An automa-
ton A = (X,Q,1,F,E) is deterministic if |[I| = 1, and for any state ¢ € @) and any
letter a € X, there exists at most one state p € @) such that edge (¢,a,p) € E. De-
terministic and non-deterministic automata recognize the same family of languages:
that is, given any non-deterministic automaton it can be constructed an equivalent
deterministic automaton (see, for example, [HUT79]).

For the sequel we will assume to deal with trim automata (see [E74], p.23 for the
formal definition) that is automata whose states are all accessible and co-accessible
(i.e. all the states are in some path from an initial to a final state). This is without loss
of generality, since automata are considered because of the languages they recognize
and, given any automaton, we can delete all not accesssible states without changing
the recognized language. Notice that this has the consequence that the automata
could be not complete (that is, that the labels of the edges leaving a given state could
not cover all the letters of the alphabet ¥) and therefore that not all possible words
of X* are labels of paths starting from an initial state. When a word w € ¥* is not a
label of any path starting from an initial state, we will assume that w 1s not accepted
by the automaton.

We conclude this section by giving some further notations on graphs that will be
useful in the sequel. Given an edge e = (p,a,q), we call p and ¢ as the beginning
and the end of e, respectively. An edge e is said incident to a state ¢ if it begins or
ends in g. An edge e = (p,a,q) is a self-loop if p = q. A path e, eq,...,€,, where
e; = (ri,a;,7i41), is a cycle if 1y = r,11. Notice that, a self-loop is a cycle of length
one. A graph is acyclic if it does not contain any cycles.

Let G = (@,) be a directed graph where @) is the set of vertices and E is the
set of edges and let S C Q: the subgraph of G induced by S is the graph Gs = (S, F')
such that £’ C F is the set of all edges whose beginnings and ends are in S. We say
that S induces a mazimal acyclic subgraph if Gg is an acyclic subgraph of GG that is
not a subgraph of any other acyclic subgraph of G.

2.2 Minimal automata

We now consider the problem of minimizing a given automaton, that is the problem
of finding a “minimum size” automaton equivalent to a given one. The size of an
automaton is usually measured by counting the number of its states (notice that
the number of edges is linearly related to the number of states). Then, formally, a
mintmal automaton for a language [is an automaton with the minimum number of
states among all equivalent automata accepting L.

Remark that, in general, given language L,there is not a unique minimal non-
deterministic automaton recognizing L. This is shown by the following example.

Example 2.1 Let L = (ab)b* a language over ¥ = {a,b}. Then L is recognized by
the two different finite automata given below, that are minimal for L:

V b b
N N

B0 OO0

There are no known (efficient) algorithms to compute a minimal non deterministic

automaton that recognizes a given language. The best we can do is to compute all pos-
sible non-deterministic automata in an incremental fashion (starting with a one-state
automaton and adding states) until we find one that recognizes the given language.
In [JRI1] many problems regarding minimization of non-deterministic automata are
investigated, and it is proved that they are all computationally hard. Moreover, in
last years, there have been many attemps to define particular “normal forms” for
non-deterministic automata which solve the problems of unicity and calculability of
the minimal automaton (for more details see, for example, [C86, JMR]).

When we restrict the minimization problem to deterministic automata, everything
becames easier to handle. A minimal deterministic automaton for a given language
L is an automaton with minimal number of states among all equivalent deterministic
automata accepting L. Notice that, in general, a minimal deterministic automaton
has many more states than the corresponding non-deterministic one. Given a de-
terministic automaton A4 = (¥,Q,t, F, F), there is a unique minimal deterministic
automaton equivalent to a A and it can be to obtained as follows (see [HU79] or
[P90] for more details). We define an equivalence relation in the set of states @) called
indistinguishability: two states p,q € () are indistinguishable if for any word w € ¥*,
there exists a path [p,w, f] with f € F if and only if there exists a path [q, w, f'] with
f" € F. The minimal deterministic automaton equivalent to A can be obtained by
contracting the classes of indistinguishable states of A.

3 Generalized automata

In this section we consider a generalization of the model of automata described above:
we will allow the labels of the edges to be words of any finite length instead of single
letters only. For the sequel we will refer to the model of automaton described in
previous sections as “conventional automaton” while this more general model will be
referred as “generalized automaton”.

Generalized automata were introduced by FEilenberg in [E74] and they can be
formally defined as follows.

Definition 3.1 A generalized (non-deterministic) automaton (GA) is a quintuple
A= (2,Q,1,F,E) where Q) is a finite set of states, [, F C @Q are the sets of initial
and final states and E C () x ¥* x @) is a finite set of labeled edges.

4

Notice that the finiteness condition for the set of edges E is now necessary to get
a finite device: without this restriction we could have as many edges as the words in
¥,

The notion of recognizability for generalized automata is the same as for con-
ventional automata. More precisely, a word w € X* is recognized by a generalized
automaton A if there exist words wq,ws,...,w, € X* and edges e1,€3,...,¢, € £
such that w; is the label of ¢;, for «+ = 1,...,n, the sequence eq,e9,...,¢, 1s an
accepting path and wyw;...w, = w.

Observe that, in this case, the fact that a word w is accepted by a generalized
automaton does not imply that all factors of w are labels of some path in the au-
tomaton. Consider, for example, the generalized automaton below recognizing the
language L = (ab+a*)*ba® over ¥ = {a, b}. Notice that the prefix ab® of the accepted
word ab*a® does not correspond to any path in the graph.

y
ab, a® C @ ba

In general, by allowing the labels of the edges to be words of any length, a gen-
eralized automaton gives a representation of a language by means of a graph that
is possibly much smaller (at least in the number of vertices) than the corresponding

representation by conventional automaton. For example, if S is a finite language,
then it can be described (recognized) by a GA with only two states, despite of the
length of its words. Moreover, the language S* can be recognized by a GA with one
state only.

Generalized automata were considered by Hashiguchi in [H91]. He studied the
problem of calculating the number of states of a minimal generalized automaton for
a given language and proved that this problem is decidable.

If Aisa GA, denote by D(A) the maximal length of the labels of the edges in A.

The decidability is a consequence of the following theorem.

Theorem 3.1 [K. Hashiguchi 1991] Let L be a recognizable language and m the car-
dinality of the syntactic monoid for L. There exists a minimal generalized automaton

A recognizing L such that D(A) < 2m(m + 2)(4m(m + 2) + 3).

We observe that the number D(A) in the statement of the theorem is actually a
very huge number. This because the cardinality of the syntactic monoid of a language
is of the order of n™ where n is the number of states of the minimal deterministic
(conventional) automaton for L (see [P90]).

4 Deterministic generalized automata

We now define and study the model of generalized automaton in the deterministic
case. We remark that, in the case of conventional automata, the “local” condition

that, given any state g, for any letter a there is at most one edge beginning in ¢ with
label a implies the “global” condition that also for any word w there is at most one
path beginning in ¢ with label w. In some sense we can say that a “local determinism”
implies also a “global determinism”. The same does not hold in the case of generalized
automata as shown by the following example.

Example 4.1 Consider the following GA.

>@ ab @
a62¢ \L ba
O—

This automaton is deterministic in the “classical” sense: in fact the labels of the
edges beginning in any given state ¢ are all different. Nevertheless there exist two
paths with label ab® connecting state 1 to state 3.

In order to capture the “global” properties of the classical notion of determinism
we need stronger conditions on the set of edges incident any given state. We give first
a definition.

Definition 4.1 Let A= (X,Q, 1, F, F) be a generalized automaton and let ¢ € Q be
a state of A. The set of words of ¢ is W(q) = {w € ¥*|(¢q,w,r) € F}.

That is, set W{(q) contains the labels of all edges beginning in q.

Definition 4.2 Let A= (X,Q,1,F, E) be a generalized automaton. We say that A
is deterministic if I = {¢} and for any state ¢ € Q, the set W(q) is a prefix sel.

Notice that the condition that W (q) is a prefix set effectively guarantees that for
any state ¢ and for any word w there is at most one path beginning in ¢ with label w.
Moreover conventional deterministic automata satisfy the above definition because
the W (q)’s are subsets of the alphabet that is a prefix set.

In this paper we focus on the problem of minimizing (as reducing the number
of states) a given DGA. We will define two operations that transform a DGA into a
smaller equivalent one. The first operation contracts indistinguishable states similarly
to the minimization operation for conventional deterministic automata. The second
operation exploits the definition of generalized automaton that allows labels of any
length: the number of states can be reduced by shrinking long paths in a unique edge
with a “long” label. This two operations will be called Z-reduction and S-reduction,
respectively.

4.1 Z-reductions
Given a DGA A = (¥,Q,4, F, E), for any ¢ € @), we denote by L,z the set of words

corresponding to paths from state ¢ to a final state. We give the following definition.

Definition 4.3 Let A= (X,Q,1, F,E) be a DGA. Two states p,q €) are indistin-
guishable (write p ~ q) if Lyp = Lyp.

Notice that the above definition of indistinguishability among states is an ex-
tension to generalized automata of the corresponding definition for conventional au-
tomata (cf. Section 2.2 or [HUTY]).

The indistinguishability ~ is an equivalence relation over the set of states ().
Therefore we can define an operation, that we call Z-reduction, that, given a DGA
A, defines a new DGA A" = Z(A) by contracting all the states belonging to the same
equivalence class in one state. Then, the set of states of the Z-reduced DGA A’ is
the quotient of) by ~. The edges of A’ are defined as follows. If [¢] denotes the
equivalence class of state ¢, W ([q]) is defined as the maximal prefix set of the shortest
words in U,., W(p). Observe that, for any w € W([q]) there exists at least a state
p ~ q such that w € W(p). Then, for any (p,w,p’) in A there is edge ([¢q],w, [p]) in
A’

We now give a formal definition for the Z-reduction.

Definition 4.4 Given a DGA A = (X,Q,1, F, F), the corresponding T-reduced au-
tomaton I(A) = A" = (X,Q",7', F', E') is defined as follows.

- Q' =Q/~={dd = [9] = Upuyipr} };

Fr=AUl S e F};

W([q]) is the mazimal prefiz subset of U,., W(p) such that
if w1, wy € Upnyg W(p), w2 = wiv = wy & W([q]);

- E'={([pl,w,[q]) [w € W([p]) and 3p" ~ p,¢' ~q: (p',w,q') € E}.

We now prove that the DGA A" as in the definition above, is equivalent to A.

Lemma 4.1 Let A = (X,Q,4, F,E) be a DGA and let A" = I(A). Then A’ is a
DGA equivalent to A.

Proof: Let A" = (X,Q’,, F', E') as in the Definition 4.4. The fact that A" is a DGA
holds by construction since it has a unique initial state and for any state ¢’ € Q' the
set W(q') is a prefix set.

We now prove that A and A’ recognize the same language. Let us first show that

L(A") C L(A). Let w € L(A'): there exists a final state f such that [[¢],w,[f]]is an

7

accepting path in A’. Then, in A there exist two states p, ¢ indistinguishable from
and [, respectively, such that [p,w,¢] is a path in A. Since ¢ ~ f, then ¢ € F and
w € Lyp = Lip = L(A).

Similar arguments can be used to prove the reverse inclusion £(A) C L(A"). O

Notice that Z(.A) does not contain any pair of indistinguishable states. We give
the following definition.

Definition 4.5 A generalized automaton is Z-irreducible if it has no indistinguish-
able states.

4.2 S-reductions

We now define another transformation, that we call S-reduction, to reduce the number
of states of a generalized automaton. Let A be a DGA and ¢ be a state of A: the
S-reduced automaton S(A,¢q) is obtained from A by suppressing the state ¢ and
redefining all the edges that were incident in ¢. More precisely, we suppress state ¢
together with all its incident edges and, for any pair of edges (r, u, q) and (¢, v, s) that
were in A, we define a new edge (r,uv, s).

Given two states r, s of A, we denote by L, the set of words corresponding to the
labels of all paths from r to s in A. The S-reduction suppress states in A preserving
sets L, for any pair of states r, s not suppressed. Observe that, in order to preserve
sets L,s without compromising the finiteness of automaton S(A, ¢), state ¢ must not
have self-loops. Moreover, since our final goal is to minimize a DGA, we are actually
interested in transformations that reduce a DGA preserving the recognized language
(i.e. preserving all sets L;; where f € F): therefore we do not apply S-reduction
both to ¢ and to any final state. We give the following definition.

Definition 4.6 Let A = (X,Q,:,F,F) be a DGA. A state ¢ € Q is a superfluous

state for A if q is neither an initial nor a final state and it has no self-loops.

The set of all superfluous states for A will be denoted by Superf(Q)). We now
formally define the S-reductions.

Definition 4.7 Let A= (X,Q,¢, F, E) be a DGA and q € Q) be a superfluous state.
Then S(A,q) = (X,Qy,1, F, E,) is a (generalized) automaton where Q, = Q — {q}
and (r,u, s) € B, if either (r,u,s) € E or there exist (r,uy,q),(q,uz,s) € £ such that
U1Ug = U.

For each r € @, the set W, (r) of words associated to r in the transformed automa-
ton can be calculated starting from the sets W(r) and W(q) as follows. We split the
set W(r) in two disjoint subsets W (r) = X(r,q) U X(r, ¢) such that X(r,q) contains
the words that are labels of edges ending in state ¢ and X (r,q) is its complement in

W (r). Then, we have: W,(r) = X(r,q) - W(q)U X(r,q).

SOnd O -
= . = .
\ . \ .

u Q vlum,...,vnumO

Lemma 4.2 Let A be a DGA and let q be a superfluous state for A. The transformed
automaton S(A,q) is a DGA equivalent to A.

m

Proof: Let A, = S(A,q) = (X,Q,,t, F, E,) be as in the Definition 4.7. First, we
prove that S(A,¢q) is a DGA by showing that the set W,(r) is a prefix set for any
r € Q,. If, in the original automaton A, the state r has not outgoing edges entering

q then the set X(r,q) = . Therefore W,(r) = X(r,q) = W(r) is a prefix set since A
is a DGA. Otherwise, W,(r) = X(r,q) - W(q) U X(r,q), and, since (X(r,q), X(r,q))
is a partition of a prefix set and W (q) is prefix then W,(r) is prefix (see Proposition
4.1 in [BPS5)).

It remains to prove that A and A, recognize the same language. Notice that, by
construction, each edge (r,u, s) in A, corresponds in A either to the same edge or to
the path {(r,u1,q), (q,uz,s) } where uquy = u. Then, it is easy to verify that, for any
word v € ¥*, v is the label of an accepting path in A, if and only if v is label of an
accepting path in A. O

We give the following definition.

Definition 4.8 A generalized automaton is S-irreducible if it has not superfluous
states.

5 Irreducible DGA

In the previous section we have defined two ways of reducing the number of states of
a given generalized automaton to get an equivalent smaller one: contracting indistin-
guishable states (Z-reductions) or suppressing superfluous states (S-reductions).

We give the following definition.

Definition 5.1 A DGA s irreducible if it is both Z-irreducible and S-irreducible.

We now consider the problem of calculating irreducible DGA that are equivalent
to a given DGA. First observe that, if we apply S-reductions to an Z-irreducible
DGA, this remains Z-irreducible: this is because S-reductions preserve, in particular,
all sets L, s where f is a final state. Then, a procedure that makes a given DGA first
Z-irreducible and then S-irreducible leads surely to an irreducible automaton. The
converse holds too, that is Z-reductions preserve S-irreducibility of a DGA, since they

transform initial (final) state into initial (final) state and states with no self-loops into
states with no self-loops again. Therefore, in the rest of the section, we concentrate
our attention to find conditions to apply S-reduction to a given DGA in order to
“suppress” as many as possible superfluous states to make it S-irreducible.

Notice that, if p and ¢ are both superfluous states of a given DGA A, then p
is not necessarily still a superfluous state for the transformed automaton S(A,q).
In general, the set of superfluous states of a DGA changes when it is reduced by
transformation §. We now establish conditions under which two superfluous states p
and ¢ can be both suppressed.

Lemma 5.1 Let A= (X,Q,1,F, F) be a DGA and p,q be two superfluous states for
A such that there is no cycle of length two between p and q. Then p and q are super-
fluous states for S(A,q) and S(A,p) respectively and S(S(A, q),p) = S(S(A,p),q).

Proof: Let A, = S(A,q) = (Q,.1, F. E,), A, = S(A,p) = (Q,,1, F, E,). We first
prove that p is a superfluous state for A,. Obviously p is not either an initial or a
final state of A,; we have to show that p has not self-loops in A,. By contradiction:
if edge (p,u,p) € E, then, by construction, there exist edges (p,u1,q), (¢, uqs,p) € E
with u = ujuy. But these edges constitute a cycle of length two that contradict the
hypothesis. The same argument proves that ¢ is a superfluous state for A,. Therefore
S(A,,p) and S(A,,q) are defined. We denote them with A,, = (Qyp,¢, F, Fyp),
Ay = (Qpq, 1, Fy E,y) respectively.

We now prove that A,, = A,,. By definition Q,, = @ — {q,p} = Qp,, then we
only have to show that £,, = F,,. From the hypothesis we can assume without loss
of generality that there are no edges from p to ¢. We show that F,, C E,,. If edge
(r,u,s) € E,, then there exists a path [r,u, s] in A. There are four cases:

i) (ryu,s) € K,

it) (ryu1,p), (p,usz,s) € F and ujuy = u;

itt) (ryv1,q),(q,v9,8) € K and vivg = u;

i) (r,w1,q), (g, w2, p), (p,ws, s) € K and wywyws = u.

If one of the first three cases occurs then it is easy to see that (r,u,s) € FE,,.
If 7v) holds then (r,wi,q), (¢, wows,s) € E, and this implies, by definition, that
(rywiwaws, s) = (r,u,s) € F,. In a similar way we prove the converse inclusion
Epg € Egp- U

Lemma 5.1 allows us to adopt the notation

S(S(A,q),p) = S(S(A,p),q) = S(A,{p,q})-

We now want to investigate the conditions under which this notation can be
extended to any set S = {s1,82,...,8,} C Q.

We indicate by A; the DGA obtained from A by suppressing in order states
S1,82,...,8; for e =1,..., h. Notice that the transformation

S((...S(S(A,51),5)...), 1) (1)

10

can be realized only if, for any z = 1,...,h — 1, state s;11 is an superfluous state for
A;. We use the notation S(A, {s1,...,s,}) = S(A,S5) to refer to expression (1).

We recall that Superf(QQ) denotes the set of all superfluous states of A. The
following lemma characterizes those sets S C @ for which S(A,S) can be calculated.

Lemma 5.2 Let A = (X,Q,1,F,F) be a DGA and S C). Then S(A,S) can be
calculated if and only if S C Superfl(QQ) and it induces an acyclic subgraph in A.

Proof: First, observe that, given automata A4 and S(A, ¢), there is a cycle contain-
ing two states r,s # ¢ in A if and only if there is a cycle containing r and s in
S(A, q). Then we prove by induction on the cardinality of S, that if S C Superf{Q)
and it induces an acyclic subgraph in A then S(A,S) is defined. As base of the
induction, we take the case when |S| = 2 that is true by Lemma 5.1. Assume that
the statement is true for |S| < h — 1: we show that this implies the case |S| = h.
Let S = {s1,52,...,8,}: since S C Superf(Q)) then S(A,s1) is defined. As con-
sequence of the observation at the beginning of the proof, the set {ss,...,s,} still
induces an acyclic subgraph in §(A, s1). Then by inductive hypothesis we have that
S(S(A,s1),{s2,...,sn}) is defined.

Conversely, we suppose that S(A, S) is defined and prove that S induces an acyclic
subgraph in A. Consider the case |S| = 2, say S = {p, q}. Suppose, by contradiction,
that there exists a cycle between p and ¢ in A: then there is a self-loop in ¢ (resp. in
p) in S(A,p) (resp. S(A,q)). Therefore the automaton S(A,S) cannot be defined.
Using this case and applying techniques similar to the ones in the first part, the proof
can be completed by induction. O

Lemma 5.1 guaranties that the computation of DGA S§(A,S) is independent of
the order in which the states s;’s are suppressed from A and justifies the notation
S(A, S) to refer to expression (1).

Remark 5.1 It is easy to verify that the fact that set S induces an acyclic subgraph
in A has the consequence that the length of labels in S(A, S) can increase at most of
|51

We recall that a DGA A = (¥,Q,¢, F, F) is S-irreducible if the set of its su-
perfluous states Superf{Q) = . We refer to the subgraph induced by Superf(Q) as

'ASuperf(Q)‘
As immediate consequence of Lemma 5.2 we get the following theorem that gives
necessary and sufficient conditions on the set S in order S(A, S5) to be irreducible.

Theorem 5.1 Let A = (X,Q,:,F,F) be a DGA and S C Superf(Q)). The DGA
S(A,S) is S-irreducible if and only if S induces a mazimal acyclic subgraph in

ASuperf(Q)'

11

Remark 5.2 Given a graph GG with set of vertices V', we can find different subsets
of V' that induce a maximal acyclic subgraph in . In particular, we can find some
of such different subsets that have also different size. Then, if we want to find the
“minimal” S-reduced automaton, when applying Theorem 5.1, we have to choose set
S as a maximum size set among all possible sets that induce an acyclic subgraph in

ASuperf(Q)'

We conclude this section by remarking that, given an automaton A, the problem
of finding a maximum set of states S as required by Theorem 5.1 is NP-complete. In
fact, it is strictly related to the following NP-complete problem (see [LY80]): “Given
a direct graph, find the minimum number of states to be deleted so that resulting
subgraph is acyclic”.

6 Minimal DGA

In this section we consider the minimization problem: given a DGA A, find a minimal
DGA equivalent to A. Since a minimal DGA must be irreducible, we surely should
apply to A both Z-reductions and S-reductions.

We first remark that irreducibility does not necessarely imply minimality. And
this is true even if, when applying S-reductions, we choose a set with the maximum
number of states among all sets of superfluous states that induce a maximal acyclic
subgraph in A (see Remark 5.2). The reason for this derives from the fact that the
procedure consisting of taking the DGA and appling an S-reduction followed by an
Z-reduction is not equivalent to the procedure that inverts these two operations. This
is evident from the following example.

Example 6.1 Consider the DGA A over the alphabet ¥ = {a, b} given below.

y

CO Q==

a
b a
b
b
a

4
@ ®

We make A first S-irreducible and then Z-irreducible. Observe that the subset
S = {3,5} induces in A a maximal acyclic subgraph so that A4; = S(A4,5) is an
S-irreducible DGA. A, is represented below.

12

e a @ Dab

b2
A ba

Since in A; there are no indistinguishable states we conclude that Z(A;) = A; is
both an S-irreducible and an Z-irreducible DGA equivalent to A.

Now we invert the procedure and we make A first Z-irreducible and then S-
irreducible. Observe, that, in A, states 3 and 5 are indistinguishable: thus we can
contract them in a unique state, that we call again 3. We obtain the Z-irreducible
automaton A; = Z(A) given below on the left. Then the set of states 5" = {2,4}
induces a maximal acyclic graph in A so that A, = S(A,,5") is an S-irreducible
DGA. A is represented by the graph given below on the right.

y
O ety
a b/T \La a’, ba

b

O— ®

Notice that the two resulting DGA, Ay and A}, are both S- and Z-irreducible but

they have a different number of states.
We now state the following theorem.

Theorem 6.1 Lel L be a reqular language and let N be a minimal DGA recognizing
L. If M s the equivalent minimal conventional deterministic automaton then there

exists a set S of states of M such that N' = §(M, S).

Proof: Let N = (Qu,in, Fiv, Ex) and M = (Qa,im, Fat, Eamt). The proof consists
in defining a mapping ¢ : Qx — Qa such that all the states in Q. that have no
counterimage by ¢ in (Qu are superfluous states for M. More precisely, the proof is
given in three steps:

1. Define mapping ¢ : Qx — Qa and show that it is a well defined function.

2. Define set S C Qs by means of mapping ¢ and show that it satisfy conditions
of Lemma 5.2.

3. Prove that the two automata N and S(M, S) coincide.

13

To accomplish step 1. we define mapping ¢ as follows: @(ix) = tam and ©(qy) =
gm if and only if there exists a word w € L;,.q, N L;,q,, Where gy € Qu and
qm € Qm.

We now show that ¢ is a well-defined function over Q. Since automata N and
M are equivalent then, given gy € Q there exists g € Qaq such that o(qa) = qum.
Such state gaq is unique. In fact, suppose that there exists also pas € Qaq such that
©(qn) = pam: then, by the definition of ¢, there exist two words u, v such that paths
lin,u, gn] and [in, v, qn] are in N and paths [ia, u, gum] and [iag, v, pas] are in M.
But the equivalence of N/ and M implies that ¢ and pag are indistinguishable and
this contradicts the hypothesis that M is minimal.

We now turn to step 2. and define set S = Qum — ¢(Qar). Notice that S contains
all states of M that do not correspond to any state of /. We now prove that
M' = 8(M,S5) is defined, that is S satisfies the conditions of Lemma 5.2, and that
N = M. Let us first observe that Fis C ©(Qu): therefore the set S does not
contains both the initial state za4 and the set of final states of M. We now show that
S induces an acyclic subgraph in M.

Suppose that in M there is a cycle [s, u, s| whose states are all in S. Let v, w be
two words such that the paths [ia, v, 8], [s,w, fag] are in M where faq € Fa. The
words vu"w € L for all integers n > 0: therefore in N for any n there exists a path
[iar, vu"w, far], where far € Fyr. Since Qu is a finite set, there exist infinite values
of n for which path [ix, uv™w, far] in N contains a cycle and it can be split as paths
lin,z, 7], [ryy,r), [r oy,], .. [y,], [, 2, fa] that is vu"™w = zy*z for a suitable value
of k.

Therefore we can choose k,h in a way that k& > h, |zy"| > |v| and|y*~"2] > |w|
while zy*z = vu"w. We observe that |zy"| < |vu™| otherwise |zy*z| = |zy"| +
ly*="2| > |vu"w| contradicting the hypothesis. Since the word xy” is a prefix of vu™w
(that belongs to L) then there exists a state s’ in M such that the path [i, zy", 5]
is in M. jFrom the definition of ¢ we have: s’ = ¢(r) that is & € p(Qx) (and
therefore s’ does not belongs to S). Moreover, notice that since |v| < |zy"| < |vu®|,
then the state s’ is a state in the cycle [s,u, s] in M. But this implies that s’ € S
contradicting what we stated before.

It remains to prove step 3. that is to show that A' = M’. We already know that
N and M’ are equivalent, iy = ip = @(in) and that map ¢ is defined onto the
set of states Qap of M’ that is Qur = Qum — S = ©(Qn). Mapping ¢ is actually
a bijection from Qu in Qar. In fact if there exist two states p,g € Qa such that
©o(p) = ¢(q) then |Qu| < |Qu| and this contradicts the hypothesis of A minimal
DGA. O

Using Theorem 6.1 together with Remark 5.2, we get a procedure to compute the
size n of a minimal DGA A recognizing a given language L. This is described by the
following algorithm.

Algorithm:

14

1. Calculate the minimal conventional deterministic automaton M for L.

2. Calculate a maximal set of states S that induces a maximal acyclic subgraph

in ./M .
3. Then, n = |Qm| — |5].

This algorithm solves, in the deterministic setting, the corresponding problem
studied by Hashiguchi in [H91]. In fact, let m be the number of states of the minimal
automaton M and let N/ be the minimal DGA calculated by the above algorithm.
Then, the maximal length of the labels in the edges of N (called D(N) in [H91]) is
at most equal to the number of states suppressed in M plus 1 (see Remark 5.1), that
1s D(N) <m.

Differently from the case of conventional deterministic automata, the following
theorem holds.

Theorem 6.2 Given a language L, there is not a unique minimal DGA that recog-
nizes L.

Proof: The proof is given by the following example. Consider the minimal determi-
nistic automaton A represented below.

- a,b@ a © b © a @

In A there are two maximal sets of superfluous states, 57 = {2,3,4} and S, =
{2,4,5}. By suppressing S; in A we obtain the minimal equivalent DGA given below
on the left. In the same way, by suppressing Sy in A we obtain another minimal
equivalent DGA that is given below on the right.

@ a® @ 9@ a?, ba @ a @

ba®, aba a“b, aba

a3, ba®

i,

O

As immediate consequence of Theorems 5.1 and 6.1, we obtain a procedure to
find all minimal DGA equivalent to a given deterministic automaton A. We take the
minimal (conventional) deterministic automaton M equivalent to A and compute all
maximal sets among all superfluous sets that induce maximal acyclic subgraphs in

15

“MSuperf(QM)' All minimal DGA equivalent to A can be computed by applying an
S-reduction to M with respect to such sets.

We finish the section by remarking that the inverse of the S-reduction (that is
breaking edges with “long” labels and create a sequence of edges with “shorter” labels)
is easy to define. Given the edge (p, wiws ... w,, q) we can insert states ry,ra, ..., 71
and edges (p,wi,r1),(r1,we,72), ..., (Tn_1,Wn, q). Therefore, to minimize a given
DGA A, we apply this inverse operation to A until we obtain a conventional deter-
ministic automaton A’; then we minimize A’. Finally we apply Theorem 6.1.

7 Final discussions and open problems

In this paper we have defined the model of deterministic generalized automaton and
studied the problem of its minimization (with respect to the number of states). In
particular we have given a procedure that effectively constructs a minimal DGA
starting from the minimal equivalent (conventional) deterministic automaton. This
gives a solution, in the deterministic setting, for the corresponding problem studied
by Hashiguchi in [H91].

The size of a minimal representation of a language in a given model is related to the
comparisons of different models according to their intrinsic succinctness. The primary
terms of comparisons are always the deterministic and the non-deterministic versions.
In the case of conventional automata, it is well known that there is an exponential gap
in the complexity of representation between the non-deterministic and deterministic
versions. In fact, consider the languages L, = (a+b)*a(a+b)""', for any integer n: the
minimal deterministic automaton for L, has exactly 2" states while the corresponding
non-deterministic one has n+1 states. We notice that such discrepancy in succinctness
between non-deterministic and deterministic versions still holds inside the model of
GA. In fact, the minimal (conventional) deterministic automaton for L, has exactly
271 final states (therefore not superfluous) that will be necessarily also in any minimal
DGA. On the other hand the minimal (non-deterministic) GA has only two states
for any n. This example suggests that, if the minimal conventional deterministic
automaton has “too many” final states, then the corresponding GA cannot be reduced
too much.

Consider now a slight modification of the language L, above in order to get a
“similar” language with one only final state. Let L! = (a + b)*a(a + b)""'c: the
minimal (conventional) non-deterministic automaton for L! has n + 2 states while
the corresponding deterministic one has 2" + 1 states among which there is only one
final state. Then, this time, when we define the minimal DGA we can suppress many
more states and in fact, the minimal DGA for L! has n 4 2 states!

A further direction for this work is then to investigate about the succinctness in
the case of automata with only one final state. This is related with the decomposition
of a regular language in unitary components ([E74]).

16

As final observation, notice that the S-reductions can be defined as well for non-
deterministic GA. They still give equivalent GA but in general we do not know
whether there exists a procedure that compute a minimal non-deterministic (gen-
eralized) automaton.

We conclude the paper by mentioning another measure of “descriptional complex-
ity” of a minimal DG A with respect to the equivalent minimal DF A: the sum of the
lenght of all labels of the edges that we call label-size of the automaton.

In fact, while the label-size of a conventional automaton is linearly related to
the number of states, in the case of generalized automata, it is probabily the most
effective measure of the size.

Let A={%,Q, I, F,E} be a minimal conventional automaton and let us denote
by {(A) the label-size of A, s = ¥, n = |@Q], m = |F|. Suppose that, in order to get
an equivalent minimal DGA Ay, we have to suppress N states. By construction, Ay
is a deterministic generalized automaton with n — N states on an alphabet with s
symbols, having labels of lenght at most NV + 1 (see Remark 5.1); then for any state
in Ay there is at most one edge for any word in ¥V*!, If M is the number of edges
in Ay, it holds:

M <(n-— N)3N+1

and then
U(AN) < (N +1)(n — N)8N+1.

It is not difficult to find automata for which such bounds are reached. For example
consider the minimal automaton recognizing the language of all words over ¥ whose
length is a multiple of three. If ¥ has two letters, then the label-size of such automaton
is equal to 6 while the label-size of the corresponding minimal DGA is equal to 24.

Let us denote total-size of an automaton the sum of number of states, edges and
label length. It would be interesting to characterize languages (automata) for which
minimal DGA are more concise with respect to the total-size than the equivalent
minimal conventional automata or to find a procedure to minimize a DGA with
respect to this total-size.

Acknoledgements

We are deeply grateful to Antonio Restivo for several discussions that inspired this
paper and for his helpful comments and hearty encouragements. We also thank Pino
[taliano and Sergio Salemi for some useful suggestions.

References

[AHU] A. Aho, J. E. Hopcroft and J. D. Ullman, The Design and the Analysis of Computer Algorithm
(Addison-Wesley, Reading, MA 1974).

[BP85] I. Berstel and D. Perrin, Theory of Codes (Academic Press, 1985).

17

[C86] M.Chrobak, Finite automata and unary languages, Theoret. Comp. Science 47 (1986) 149-158.
[E74] S. Eilenberg, Automata, Languages and Machines, Vol. A (Academic Press, 1974).

[GH94] N. Globerman and D. Harel, Complexity results for multi-pebble automata and their logics, in: Proc.
ICALP’94), Lecture Notes in Computer Science, Vol. 820 (Springer-Verlag, Berlin, 1994) 73-82.

[H91] K. Hashigushi, Algorithms for determining the smallest number of nonterminals (states) sufficient for
generating (accepting) a regular language, in: Proc. (ICALP’91), Lecture Notes in Computer Science,
Vol. 510 (Springer-Verlag, Berlin, 1991) 641-648.

[HU79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation
(Addison-Wesley, Reading, MA 1979).

[GM95] D. Giammarresi and R. Montalbano, Deterministic Generalized Automata, in: Proc. XII Sympo-
sium on Theoretical Aspects of Computer Science (STACS ’95). Lecture Notes in Computer Science,
Vol. 900 (Springer-Verlag, Berlin, 1995) 325-336.

[JMR] Tao Jang, E. McDowell and B. Ravikumar, The structure and complexity of minimal NFA’s over a
unary alphabet, Tech.Report, University of Rhode Island (TR-200-90).

[JR91] Tao Jiang and B. Ravikumar, Minimal NFA problems are hard, STAM Journal on Computing 22
(1995) 1117-1141.

[LY80] J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete,
Journal of Comp. and System Science 20 (1980) 219-230.

[M94] M. Mohri, Minimization of sequential trasducers, in: Proc. Combinatorial Pattern Matching
(CPM’94), Lecture Notes in Computer Science, Vol. 807 (Springer-Verlag, Berlin, 1994) 151-163.

[P90] D. Perrin, Finite Automata. in: J. Van Leeuwen, ed., Handbook of Theoretical Computer Science,
Vol.B (Elsevier, Amsterdam, 1990) 1-57.

[WK94] A. Weber and R. Klemm, Economy of description for single-valued transducers, Information and
Computation 118, 2 (1995) 327 — 340.

18

