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Abstract

With that paper a new concept for learning from examples called Cyclical Local
Structural Risk Minimization (CLSRM) minimizing a global risk by cyclical mini-
mization of residual local risks is introduced. The idea is to increase the capacity
of the learning machine cyclically only in those regions where the effective loss is
high and to do a stepwise local risk minimization, restricted to those regions. An
example for the realization of the CLSRM principle is the TACOMA (TAsk Decom-
position, COrrelation Measures and local Attention neurons) learning architecture.
The algorithm generates a feed-forward network bottom up by cyclical insertion of
cascaded hidden layers. The Output of a hidden unit is locally restricted with re-
spect to the network input space using a new kind of activation function combining
the local characteristic of radial basis functions with sigmoid functions. The insertion
of such hidden units increases the capacity only locally and leads finally to a neural
network with a capacity well adapted to the distribution of the training data. The
performance of the algorithm is shown for classification and function approximation
benchmarks.
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1 Introduction

Information processing systems realize mappings from inputs to outputs. The computation
of the mapping rule using a set of exemplary pairs of input and output data is called
learning from examples. The goal of a learning machine is minimization of a risk resulting
from a faulty mapping. The definition of what faulty means as function of desired and
actually produced output depends on the application and is called loss function. The
expectation value of the loss is called risk and the empirical mean of the loss on an identically
distributed subset of observations of input and outputs is called empirical loss. The principle
to approximate the mapping rule minimizing the risk by a mapping rule minimizing the
empirical risk is called Empirical Risk Minimization (ERM) [Vap95]. The set of possible
mapping rules, quasi the search space for the ERM, is restricted by additional assumptions
called a priori knowledge.

There is a need for learning machines as well with high convergence speed needing only
a small number of training samples as with a small risk. These are two contradict claims.
As smaller the set of possible mapping rules is as greater is the convergence speed but as
greater is also the minimal possible risk. Vice versa as greater the set of possible mapping
rules is, as more training data are required, as lower is the convergence speed but as smaller
is the minimal possible risk.

Vapnik and Chervonenkis did an important contribution with their fundamental works
on the theory of statistical learning. They introduced the concept of the entropy of a set of
functions as a measure for the number of realizable mapping rules describing the capacity of
a learning machine. Based on that they formulated the conditions for the consistence of the
ERM principle and derived an equation describing an upper bound of the risk depending
on the capacity of the learning machine and the number of training samples. For each
learning problem there exist a capacity of the learning machine depending on the number
of training samples for which the upper bound of the risk is a minimum. The concept to
take that dependency into account while one constructs a learning machine and to control
the capacity by a priori knowledge on the problem to be solved so that the upper bound
resulting from the application of the ERM principle becomes minimal is called Structural
Risk Minimization (SRM).

The most frequently used method for the implementation of the SRM principle is to
minimize the empirical risk holding the capacity of the learning machine fixed. One applies
the ERM principle to a bounded set of mapping rules defined by all possible different
parametrizations of a function. For instance in case of neural networks these are all mapping
rules which one achieves by all possible weight values. The maximum capacity is controlled
by the choice of the topology and the node functions of the network.

Another method is to minimize the capacity and to hold the empirical risk. Realizations
are the Support Vector Machine of Vapnik [Vap95] and different pruning algorithms for
neural networks.

A new concept realizing the SRM principle is the Cyclical Structural Risk Minimization
(CSRM). The idea is to increase the set of possible mapping rules and to minimize the
residual empirical risk alternately over a number of cycles. The capacity is controlled by a
priori knowledge of how to increase the set of possible mapping rules. The goal with each
cycle is to reduce the residual empirical risk as much as possible by a minimum growth



of capacity. The learning stops if the capacity exceeds a threshold or if the empirical risk
is small enough. The Cascade Correlation Learning Architecture (CASCOR) [FL90] is an
example for the realization of that principle. The realization of that idea can be used
with advantage if it is more clear how to increase the capacity at a certain point as what
is a good maximum capacity a priori. In that case the engineering effort might decrease
significantly because it is not more necessary to do a number of time-consuming experiments
with different sets of mapping rules.

The upper bound of the risk, the worst case solution of the ERM principle, depends on
the number of training samples. If one would cut the input space in subspaces of same size
and there would be different numbers of samples in the subspaces, resulting from a non-
uniform density, one could outcome with different upper bounds for the risk. The upper
bound of the risk is a local measure and the capacity of the learning machine has to be
controlled locally. The concept dealing with such cases, called Local Risk Minimization
(LRM) principle, is a generalization of the SRM principle [Vap95], [BV92].

With that paper a new concept called Cyclical Local Structural Risk Minimization
(CLSRM) is introduced. By combination of LRM and CSRM it is possible to minimize
a global risk by cyclical minimization of residual local risks. From the general setting of
learning as risk minimization it is clear that the capacity has only to be increased in such
regions where the local empirical risk is still high because to increase the local capacity
where the local empirical risk is already small increases only the upper bound of the risk in
that region and does probably not reduce significantly the local risk. In generalization of
the CSRM principle the local capacity get increased and the local empirical risk becomes
minimized alternately until the global empirical risk is smaller than a threshold. The idea
is first to estimate regions with high residual empirical risk and than to extend the set
of possible mapping rules by a set of new rules producing a more complex mapping from
this regions and secondly to do a local empirical risk minimization procedure over this set.
The problem arising with that approach is to compute the regions automatically from the
training set. A technique called Error Mapping doing that task well is introduced.

The CLSRM principle is also plausible from the AI point of view. It realizes the
paradigm of task decomposition to divide a large problem in several subproblems and to
solve them separately by well adapted experts or modules. The concept to build the learn-
ing machine bottom up by cyclically local extension of the mapping rule leads to a global
controlled development of locally adapted experts.

An example for the realization of the CLSRM principle is the TACOMA (TAsk De-
composition, COrrelation Measures and local Attention neurons) learning Architecture
[LVW94b], [LVW94a]. The algorithm generates a feed-forward network bottom up by cycli-
cally inserting cascaded hidden layers. The OQutput of a hidden unit is locally restricted
with respect to the input space of the network using an activation function combining the
local characteristic of a radial basis function with a sigmoid unit. The insertion of such
hidden units increases the set of mapping rules and therefore the capacity only locally. The
number of hidden units inserted with a cycle depends on the number of regions with high
local empirical risk estimated by the error mapping procedure. They are trained to reduce
the empirical local residual risk.

The outline of the paper is as follows. First the general setting of learning from examples
as risk minimization and the concepts ERM, SRM and LRM are explained. The second



section introduces the new concept of CLSRM. It starts with a description of the CSRM
concept. Based on that the need for combination of LRM and CSRM is shown and the idea
of cyclical local extension of the set of mapping rules is explained. In the third section the
TACOMA learning architecture as realization of the CLSRM principle is explained and the
advantages are shown at hand of different examples. The fourth section gives a conclusion
and an outlook.

2 Learning from Examples as Risk Minimization

2.1 General Setting

Information processing systems realize mappings from inputs to outputs ¢ : x — y. To use
the classical engineering approach to build such a system one has to know the mapping rule
a priori. In that case the inductive inference leading from observation and experience to
the mapping rule is done by humans. The other approach, to compute the mapping rule
using a set of exemplary pairs of input and output data, is called learning from examples.
The learning machine has to do an inductive inference based on observations and a priori
knowledge restricting the set of possible mapping rules. The general setting in terms of
statistics is as follows.

Given is a generator producing independent random input vectors z € R"™ from an
unknown stationary! distribution F(z) and a meta model? producing for each = an output
vector y € R™ from an unknown stationary joint distribution F(y|z). The goal of learning
is to find a mapping rule g(z) based on a identically distributed subset D of observations of
input-outputs pairs{(z;,y;) : ¢ = 1.../} minimizing the expectation value of a loss L(y, g(z))
resulting from a faulty mapping.

The definition of what faulty means as function of desired and actually produced output
of the mapping depends on the application and is called loss function.

e pattern recognition, classification

swsen={ 5§ 150

e regression, function approximation
L(y,9(2)) = (y - g(2))*
The expectation value of the loss is called risk

R= [ HsteDir e

!The stationarity of the process is a necessary condition for the type of learning machines described in
that paper.

2A meta module can be a human or another model, for example in case of classifying different objects
from pictures the meta model has to give the class-descriptor y for each picture z.



and the empirical mean of the loss on D

1 {
Remp = TZL(%,!](%))
=1

is called empirical loss. The set G is a subset of all possible mapping rules restricted by a
priori knowledge.

G={g9:R"—=R"}c{f:R" = R™}
The principle to approximate the mapping rule g, minimizing the risk R(G) by a mapping

rule g minimizing the empirical risk Remp(G) is called Empirical Risk Minimization (ERM)
[Vap95].

2.2 Balancing the A Priori Knowledge

To get the right g by the ERM using an optimization procedure one has to take the condition
llim P{sup (R(g) — Remp(g)) >} =0 Ve >0 (1)

into account for which the ERM method is nontrivial consistent and to choose the right set
G fulfilling condition 1. With other words, the ERM is consistent if the probability of the
maximum difference between the risk and the empirical risk resulting from the mapping
rule g, chosen in worst case from G, converges to zero with increasing number of samples.
The problem of learning from examples is to get a small probability with small sample sizes,
that is to get high convergence speed.

From that point it is also clear that there exist no universal learning machine based on
the ERM principle. One would need the universal a priori knowledge which would result in
an unrestricted set of possible mapping rules not fulfilling condition 1. One can only build
learning machines for distinct classes of problems which are bounded by similar a priori
knowledge.

The problem of small sample sizes is described by the Bias Variance Dilemma [GBD92].
As smaller the set of possible mapping rules is as greater is the convergence speed but as
greater is also the minimal possible risk. That is the case of high bias and low variance.
The variance of the loss resulting from the multiple application of the ERM method to the
same problem, but with different sample sets, becomes small. But the expectation value of
the loss at each = which is sometimes called bias, and therefore the risk is high, if the small
set of mapping rules is not choosen with high amount of a priori knowledge. In terms of the
function approximation community that is called underfitting. Vice versa as greater the set
of possible mapping rules, as more training data are required, as lower is the convergence
speed but as smaller is the minimal possible risk. That is the case of low bias and high
variance also called overfitting. The learning machine can fit the samples at mean very well
resulting in low biases but the outcoming mapping rules are quite different leading to a high
variance of the loss.

There is a need for well generalizing® learning machines as well with high convergence
speed needing only a small number of training samples as with a small risk. But as shown

footnote The term generalization is borrowed by the neural network community from the psychology
and describes how well a learning machine can generalize from the training set to unseen samples



these are two contradict claims representing the fundamental question of statistical learning
pointed out by Vapnik [Vap95]: What must one know a priori about an unknown functional
dependency in order to estimate it on the basis of observations ¢

2.3 The Upper Bound of the Risk

Vapnik and Chervonenkis did an important contribution with their fundamental works on
the theory of statistical learning. They introduced the concept of the entropy of a set of
functions describing the capacity of a learning machine. Based on that they formulated the
conditions for the consistence of the ERM principle and derived an equation describing an
upper bound of the risk depending on the capacity of the learning machine, the number of
training samples and the empirical risk [Vap95]:

Let A < L(y,g(z)) < B, g € G be a set of totally bounded functions. Then
following inequalities hold with probability of at least 1 —n simultaneously for all
functions L(y, ¢(z)), g € G (including the function that minimizes the empirical
risk):

AV 2)

B-A

— Ve

R(g) < Remp(g) +

R(g) = Remp(yg) -
with
h(ln%l—l—l) —111%
l

and A the VC dimension of the set of lossfunctions.

e=4

2.4 Structural Risk Minimization

The curve of the upper bound of the risk over the capacity mirrors the Bias-Variance
Dilemma, see figure 1. For each learning problem there exist a capacity of the learning
machine depending on the number of training samples for which the upper bound of the
risk is a minimum.

When [/h is large, ¢ is small. Therefore, the second summand on the right-hand side of the
inequalities 2 becomes small, the upper bound depends mostly from the empirical risk. But
with small sample sizes [/h is small to and a small empirical risk does not guarantee a small
upper bound. The concept to take the second summand into account while one constructs
a learning machine and to control the capacity by a priori knowledge on the problem to
be solved so that the upper bound resulting from the application of the ERM principle
becomes minimal is called Structural Risk Minimization (SRM) [Vap95]. The concept of
the SRM is to structure a set of possible loss functions resulting from G in nested subsets
Sk and to choose the smallest S, which contains the lossfunction and so fare the mapping
rule minimizing the upper bound of the risk.

The SRM principle encompasses two parts. Choose a set of mapping rules by a priori
knowledge and apply of the ERM principle.
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Figure 1: The upper bound of the risk as sum of empirical risk and confidenc interval.

The most frequently used method for the implementation of the SRM principle is to
minimize the empirical risk holding the capacity of the learning machine fixed. One ap-
plies the ERM principle to a bounded set of mapping rules defined by all possible different
parametrizations of a function. For example in case of neural networks these are all mapping
rules which one achieves by all possible weight values. The maximum capacity is controlled
by the choice of the topology and the node functions of the network. An additional pos-
sibility for the control of the capacity is given by extension of the empirical risk function
by a regularizations term. The regularization term modifies the objective function for the
optimization process in order to prefer mappings better fitting a priori assumptions. In case
of feed forward nets with sigmoid activation functions often a so called weight decay term is
used for regularization*. The a priori knowledge based is to prefer smooth mappings. The
degree of regularization is controlled by a factor of the regularization term in the objective
function. To estimate this factor from data one can use the cross validation technique.

Another SRM method is to minimize the capacity and to hold the empirical risk fixed.
Realizations of that are the Support Vector Machine of Vapnik [Vap95] and pruning algo-
rithms for neural networks.

2.5 The Local Risk Minimization Principle

If it is impossible to find a mapping reducing the empirical risk clearly on the basis of a
given set of possible mapping rules then there are two chances to overcome this problem.
Extension of the set of possible mapping rules acording to the SRM principle or local
approximation of the desired function at any point of interest. The second one is called
Local Risk Minimization (LRM) principle [Vap95]. The idea is to use a non-negative window

*This type of regularization is in the statisics community called ridge regularization



function 0 < w(z,z0; ) < 1, w(zg, zo; F) = 1 with

w(xo, f) = /‘w(fC,iUO;ﬂ)dF(x)

to introduce the concept of locality. The window function depends on the point zq, the
mean of the window and (3, describing the range of the window. For example one can use
a gaussian window

_(z==0)”
w(z,zo;f) =€ 7~ . (3)
The goal is to minimize the local risk functional
lw('ra L0; ﬁ)

R(G.Biz0) = [ Ly, g(2.) dF(z,y) (4)

w(zo;3)

over both, the set of functions G and different vicinities of the point xzy defined by 3. The
upper bound of local risk which holds with  — 1 for all functions A < L(y,g(z)) < B and
all functions 0 < w(z,z0; ) < 1is given by Vapnik [Vap95] as

T2 Ly, g(i)w(wi, 20 ) + (B — A)e(l, hy)

R(G, B;m0) <
(G, 3 20) I, w(or a0 ) — elloba))s

(5)

with

l

[ is the number of training samples, hz is the VC dimension of the set of functions

o) = \/lh(ln(?l/h +1)—Inn/2

L(y,g(z))w(z,z0;8) and hg is the VC dimension of the set of window functions. The
global risk minimization problem is a special case of local risk minimization which occurs
for w(z,z0; 3) = 1.

Figure 2: The principle of local risk minimization



The LRM principle becomes more clearly at a function approximation example at figure
2, left side. Using a set containing only linear functions it is impossible to reduce the global
risk successfully but it is possible to give a good approximation in the vicinity of zq.

But there is a second property the LRM principle comes with. It is possible to use
different sets of mapping rules for different areas of the input space to adapt the capacity
locally to achieve lower upper bounds of the local risks. For example see figure 2 right side.
The set of mapping rules used for the LRM at zg4 leads to a good approximation of the
underlying function in the vicinity of zg4. There is a low upper bound of the local risk.
Using the same set of mapping rules in the vicinity of zgp, one would achieve a higher
upper bound of the local risk than using a set of linear mapping rules because the capacity
is not well controlled (to big) in that vicinity. That becomes clear from inequation 5. The
empirical risk in both cases would be nearly the same because the capacity of both sets
of functions is high enough to fit the trainig data well. But the VC dimension of the set
of linear functions is much smaller than from the high-capacity set. Because of that the
probability of comming out with an overfitted, bad generalizing solution using the high
capacity set locally at zop or globally is higher.

3 Cyclical Local Structural Risk Minimization

3.1 The concept of cyclical structural risk minimization

The basic concept of cyclical structural risk minimization (CSRM) is inspired by the SRM
principle to structure a set of possible mapping rules in nested subsets and to choose the
set that minimizes the upper bound of the risk. But instead of explicit structuring the set,
the structure is given by a growth rule how to build a set 5,41 from a set 5, fulfilling the
following conditions:

1. The VC dimension of the set of loss functions L; resulting from the set of mapping
rules 57 is one.

h({L1}) =1

2. The VC dimension of the set of loss functions L,41 resulting from the application of
the growth rule on the set of mapping rules 5, is h, + 1.

h({Lnt1}) = h({Ln}) +1

Or with other words, the rule increments the VC dimension of the set of loss functions
by one.

The multiple application of the growth rule leads to a structured set of loss functions similar
as needed for the SRM principle. The CSRM principle can be formulated as follows:

Starting with the set 57 the CSRM algorithm applies alternately the ERM
principle and the growth rule to 5, over a number of cycles until the empirical
risk is equal or smaller than a threshold t.



The CSRM principle chooses at the basic of the growth rule, the threshold and the initial
set automatically the set of loss functions with the smallest VC dimension that minimizes
the empirical risk. It minimizes so fare the upper bound of the risk.

There are some neural network based heuristics realizing the CSRM principle. The
algorithms differ in the growth rule and in the optimization procedure used for minimization
of the empirical risk. A good overview is given by Fiesler [I'ie94].

A common general approach used in feed forward networks, useful as well for function
approximation as for classification tasks, is the cyclical minimization of the residual risk.
The idea is to ask what additional input to the output layer is necessary to minimize
the residual risk. One useful answer, proposed by Fahlman with the Cascade Correlation
Architecture [FL90] is to let the new input be correlated with the residual loss and than
adapt the weights of output units again. The cyclical extension of the output layers input
leads to a minimization of the empirical risk. Whether it also leads to a low upper bound
depends strongly on the type of hidden units inserted and their input connections, that is
how the set of possible mapping rules is increased actually with each step.

3.2 Cyclical Local Risk Minimization — How to Control the Growth of
the Capacity Locally

Remember the risk functional
k= [ Ly, g(e)dF(,y) (6)
is defined as the expectation value of the loss L(y,g(z)). X and Y are random values with
F(z,y) = F(z)Fy|z).

Under assumption of a continuous density of X we can write

and

dF(z) = p(z)dz.

Now equation 6 can be written as follows

r= [ [ 1g.g@)pe)ar(yle)ds.

= [|[ o gnari| ped. @

With
[ L g(@)dF(sle) = ElL(y. 9(2))la]

the risk becomes

k= [ (L. g(e))lalple)da. (8



Equation 8 shows that the risk depends on the curve of F [L(y, g(z))|z]p(z) over the input
space. We will call this term effective loss

Leg(y,9(2)) = E[L(y, 9(z))|z]p(z).

If one considers the curve of the effective loss than it is obviously that the capacity of the
learning machine has only to be increased in those regions where the effective loss is high.
Because to increase the capacity and so far the VC dimension in regions with small effective
loss would not reduce the empirical risk significantly and only increase the upper bound of
the risk in those regions.

The principle to increase the capacity of the learning machine cyclically and
only in those regions where effective loss is high and to do a stepwise local risk

minimization, restricted to those regions, is called Cyclical Structural Local Risk
Minimization (CLSRM).

That principle can be used with advantage to construct neural network based learning
machines which recruit new hidden units step by step to minimize the residual risk. The
idea is to approximate at each grow step a number of maxima of the effective loss using
the concept of competitive reference vectors and to place non-overlapping window functions
implementing the concept of neighborhood at the biggest maxima, see figure 3.

The concept of competitive reference vectors means that the vectors try to force out each
other whereby the force increases with decreasing distance between vectors. That causes
that in the case of two or more very close maxima only one reference vector marks all these
maxima, the other vectors have been “forced out”.

The number of big maxima gives the number of new hidden units to be inserted. The
window functions, one unit per window, are used as gate for the new hidden units. That
restricts the influence of the units and therefore the increase of the VC dimension to the
regions described by the windows. If the insertion of a hidden unit does not reduce the
residual local empirical risk adequately then a second or more units are inserted with respect
to that region step by step. This heuristic leads to a very well adapted network complexity.

4 The TACOMA Learning Architecture as Realization of
the CLSRM Principle

The TACOMA (TAsk decomposition, COrrelation Measures and local Attention neurons)
algorithm [LVW94b], [LVW94a] generates a feed forward network bottom up by cyclical
insertion of cascaded hidden layers starting with only output units. The capacity of the
initial network is low and becomes increased locally with each growth step. The essential
elements of the algorithm are:

e hidden units locally restricted with respect to the input space using a new kind of
activation function combining the local character of radial basis functions with sigmoid
functions realizing the concept of local extension of the set of mapping rules

10



CLSRM Principle
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Figure 3: The CLSRM principle.

e an error mapping procedure for the approximation of the regions with high effective
loss

e a connection routing procedure connecting cooperative hidden units of different layers

e a compounded objective function of different correlation measures for the training of
hidden units featuring different goals

The main loop of the algorithm consists of three parts.

do loop {
training of output layer;
exit loop if error smaller than threshold;
approximation of the effective loss and growth step;
training of new inserted hidden layer;

The algorithm stops in case of function approximation if the mean square error at the output
units is smaller than a threshold or in case of classification if the training set is classified

correctly.

11
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Figure 4: A TACOMA example network.

4.1 Training of the Output Layer

The output units have a sigmoid or linear activation function. They are trained cyclically
after each insertion of a new hidden layer to minimize the mean square error at the output
of the network by gradient descent using the Quickprop [Fah88] algorithm. The output
units get the network input vector x and the outputs of all hidden units as input. At each
cycle the number of inputs of an output unit is incremented by the number of units in the
new inserted hidden layer, see figure 4.

4.2 Approximation of the Effective Loss and Growth Step

The approximation of a number of maxima of the effective loss is done using a mapping
procedure called error mapping. It works similar to a Kohonen net but there are no neigh-
borhood relations therefore there is no lattice structure. The error mapping net consists of
a number of randomly initialized reference vectors v with the same dimension as the input
space. The mapping works as follows.

For a number of epochs compute for each pattern z; the vg, for which ||vg.—z;|| <
|| — ;|| holds for all kx # k and update vg. by

Outdim

Vkeit1 = Vet +a(t) D |Ej(zi)] (20 — vkes)-

i=1

12



a decreases with time to guarantee convergence. The residual error F is given

by
(i) = (3 = ooy g2l

with o(s;(z;)) the output and s;(z) the weighted sum of the inputs of the j’th
output unit.

The error mapping procedure computes the nearest reference vector vy, to x; and shifts it
a small step in direction to z;. The step size is proportionally to the residual error. Doing
that for a number of epochs the reference vectors point approximately to the maxima of
the effective loss.

To restrict a hidden units influence and so fare also the increase of the networks capacity
locally a new kind of activation function for the hidden units is used combining the local
character of a radial basis function with a sigmoid function. The output of a sigmoid unit
is weighted by a Gaussian window function in the input space

o) = w(s) (1= - 5)

with s the weighted sum of the hidden units input and w(z) as window function
Indim ;o N2
w(z) = exp (— ; <T) ) .

After error mapping each reference vector is a center point of a voronoi region in the input
space, see figure 5.

new hidden units
to be inserted

Figure 5: Estimation of the window functions.

To achieve information about the local risk in the subspaces described by the voronoi
regions the local empirical risks Rempx have to be computed for each subspace. If the local
empirical risks Rempr exceeds a threshold, then a new hidden unit has to be inserted. The
number of units per layer can be different from layer to layer.

The window function of the new hidden unit is initialized to be centered at the reference
vector and to encompass all patterns of the training set falling in that region. To initialize

13



the radii r; of a window function the means d; = 1/Ny Zf;’“l |z; ; — m;| for each dimension
¢ of the network input space for all N, patterns z; falling in that region are computed.
The r; is initialized so that the value of the window function for d; is equal g (for example

8 = 0.55).

The next step is to insert the new hidden units into the existing network using the following
connection routing procedure.

1. The units in the output layer get their inputs from the outputs of all hidden units.
That means the output of new hidden unit has to be connected with all output units.

2. Every unit in the network as well hidden units as output units gets the network input.

3. It is only necessary to connect cooperative units of different layers. Units are cooper-
ative if their regions of interest overlap significantly. A new hidden unit to be inserted
gets input connections from all previously inserted hidden layer units if the overlap
computed as correlation coefficient between two window functions h; and h,, over the
training set exceeds a threshold ~

R = Sy (i) o ()]
TS h(2)? D ()2

4.3 Training of New Inserted Hidden Layers

> 7.

Parameters of a hidden unit which have to be optimized are the weight vector of the sigmoid
function and the mean and radii vector of the window function. There are two optimization
objectives: First to minimize the residual local empirical risk in the different regions and
secondly to fine tune the window functions and to avoid overlapping between the regions
of a layer. The units of a hidden layer have to solve different tasks represented by different
regions in the input space.

The weight vector of the sigmoid function of the k’th unit of a hidden layer is trained
to maximize the covariance S between the output hAr of the hidden unit and the residual
error by a gradient procedure using Quickprop. The covariance is given by

Outdim

Sk = E |Sk,0| — max

o=1

with

6 Ziahala) Bo(es) = NTE)
T L Eey?

and N the number of training patterns. That is the same as in the cascade correlation
algorithm. The gradients to change the [’th element of the k’th hidden units weight vector

wy, are given by
B % ask Ohy ()
8wk1 I\ Oh(zi) Owpy

14




For the training of the parameters of the window function the two optimization objectives
have to be compounded. We use the functional I which has to be maximized.

Z%:l Sk

= — max

11,
Kot Yfepr | Rijl+ 1

with

SN hi(wi) hi(z;) — Nhy b
\/25\41 (hk(fﬂi) - h_k) (h]‘(xi) — E)Q

and L the number of units inserted. The nominator maximizes the covariance like above
and the denominator minimizes the correlation between the outputs of the hidden layer
units. That avoids that the window functions become overlapping and guarantees that the
units of a hidden layer do a local risk minimization in different regions of the input space.
The maximization of F' is done by a simple gradient ascent with respect to the parameters

T, and my; of the window function.
B Z OF 0Oy p
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The update of weights and window function parameters is done simultaneously. The training
of a hidden layer stops if F’ is stagnant or after a maximal number of epochs.

Ry =

8mkl

4.4 Experimental Results and Discussion

The performance of the TACOMA algorithm has been evaluated for a number of difficult
benchmarks, as well classification as function approximation tasks.

4.4.1 The Two Spirals and Two Twin Spirals Classification Benchmark

These benchmarks are used because they are difficult tasks, they are simple to visualize and
the quality of different network solutions can be compared by visual inspection. The Two
Spirals Classification task [LW88] is to learn to discriminate between two sets of training
points which lie on two distinct spirals in the x-y plane. These spirals coil three times around
the origin and around one another. The Two Twin Spirals Classification task [LVW94b] has
been designed to show the performance of the CLSRM principle realized with TACOMA.
It is similar to the Two Spirals Classification task, see figure 6. For the evaluation of the
Cascade Correlation algorithm the original program of S. Fahlman and Christian Lebiere
was used. In figures 7 the decision regions are shown. In all cases the networks are trained to
classify the training set without errors. For the first example the much better generalization
of TACOMA in comparison to CASCOR is obviously. For the second example, see figure
8 it is shown that CASCOR can not solve the task because of the mutual disturbances of
the hidden units. The insertion of hidden units which increase the capacity of the network
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globally in the input space as done with the Cascade Correlation Algorithm leads to a
much higher network capacity which is not adapted to the regions with different sample
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Figure 6: Training set for the Two Spirals Problem (left) and the Two Twin Spirals Problem (right).

Figure 7: Solutions of the T'wo Spirals Problem: left CASCOR and right TACOMA.

The solution of the TACOMA algorithm distinguishes well between the two intertwined
spirals. The network structure reflects two domains of expertise, the upper and lower spirals
called taskl and task2, see figure 9. The grey marked hidden units have an intermediate
attention area between task 1 and task 2. Black and white marked hidden units are focused
exclusively on the corresponding task. As can be seen from the number of hidden units
the lower part of the Two-Twin-Spirals, i.e. task 2, is more difficult to solve because of the
non-symmetric pattern distribution.
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Figure 8: Solutions of the Two Twin Spirals Problem: left CASCOR and right TACOMA.

4.4.2 Function Approximation Tasks

The figures 10-12 show solutions of the TACOMA algorithm for different function approx-
imation tasks. The first task was been used as benchmark by Hwang [HYLJ93] for the
Projection Pursuit Learning algorithm and Back Propagation. The function to be approx-
imated is

2(z,y) = 1.9(1.35+ €” sin(13(z — 6)*)eY sin(7y)).

The training set contains the function values from 225 [0, 1]-uniform distributed z,y values.
The approximation achieved by TACOMA is very precise as shown at figure 10.

The next two benchmarks have been used by Frank Smieja [Smi95] for the evaluation
of the Pandemonium system. These task are hard to approximate because the function
is mostly very soft and only at some places are very strong chances. They are very well
suited to show the good performance of the TACOMA algorithm because the capacity of
the set of mapping rules has to be very different to achieve a low upper bound of the risk
and solutions with good generalization. The training set contains in both cases 400 pattern
lying at the nodes of a 20x20 lattice. Also in these examples the solutions of the TACOMA
algorithm are very precise showing the advantages of the CLSRM principle.

5 Conclusions

The upper bound of the risk is a probability measure describing the worst case realization
of a learning machine resulting from an ERM based learning process. It depends on the
number of examples, the problem to be solved itself and especially on the set of possible
mapping rules which can be realized by the learning machine. The curve of the upper bound
over the capacity has minimum and that minimum one is looking for if one constructs a
learning machine. The art of engineering is to restrict the set off possible mapping rules or
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Figure 9: Attention assignment of the hidden units to different tasks, task 1 white and task 2 black, light
and dark grey reflect intermediate attention areas, left hidden layer 1, right hidden layer 24
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Figure 10: Function approximation Hwang, left original function, right approximation by TACOMA

the capacity by a priori knowledge. If the sample distribution varies over the input space
then it is necessary to adapt the capacity locally. We proposed the CLSRM principle to build
a learning machine bottom up incrementing the capacity locally step by step with respect
to the residual error. We introduced the effective loss as a measure to identify regions where
the capacity has to be increased. The TACOMA algorithm for growing neural networks is
an implementation of the CLSRM principle. The local increase of capacity is controlled by
window functions restricting the influence of hidden units with respect to the input space.
The shape and center of the window functions is estimated from the approximation of the
effective loss, done by the error mapping procedure.

The results of the experiments show that the proposed algorithm is able to generate
complex neural networks with very good generalization abilities. It is well suited as well
for classification as for function approximation tasks. Another experiment we have still to
do is to estimate the bias and variance at hand of some benchmarks. We assume that both
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Figure 11: Function approximation, Smieja, example 1: left original function, right approximation by

TACOMA

is small and well balanced showing that the CLSRM principle is able to balance bias and
variance and to end with a solution where the upper bound of the risk is near the minimum.

The experiments show further that the TACOMA algorithms builds a network structure
reflecting the complexity of the problem. One can identify subnets consisting of substruc-
tures of hidden units with similar regions of interest. That feature is called task decom-
position. The whole task is decomposed in subtasks with respect to the input space. The
network consists of subnets and can be compared with a number of cooperating experts,
solving different sub problems.

The algorithm has been implemented on a MIMD parallel computer and will also be
part of the free available Stuttgart Neural Network Simulator supporting different UNIX
platforms.
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