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Abstract
The rigidity of a matrix is defined to be the number of entries in the matrix that
have to be changed in order to reduce its rank below a certain value. Using a sim-
ple combinatorial lemma, we show that one must alter at least C”T—2 log  entries of
an n X n-Cauchy matrix to reduce its rank below r, for some constant ¢. In the
second part of the paper we apply our combinatorial lemma to matrices obtained
from asymptotically good algebraic geometric codes to obtain a similar result for r

satisfying 2n/(\/q — 1) <r < n/4.
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1 Introduction

Valiant [11] defined the rigidity R (r) of a matrix M over a field K to be the number of
entries of M that have to be changed to reduce its rank below r:

RE(r) := min{wt(P) | tk(M + P) < r}.

Here wt(P) denotes the number of nonzero entries of P. He proposed the fundamental
problem of finding matrices with high rigidity. If ¢ and é are constants and (M,,) is a
sequence of n X n-matrices, where each M, has entries in a field K,,, such that Rf\‘ﬂ(en) >
n'*® then multiplication of vectors by the matrices M, cannot be performed by linear
circuits of linear size and logarithmic depth. For references to other applications see the
paper by Lokam [6].

Lickteig [5] has shown that multiplication of vectors by n X m-matrices in which the
entries are square roots of distinct primes cannot be performed by a linear circuit of size
O(n?/logn). This implies that these matrices are highly rigid. Similar results can be
obtained for n X n-matrices defined over the rationals in which the entries are very large
integers, see [2, Chapters 9 and 13].

Researchers have had less success in finding explicit highly rigid matrices with entries
from a fixed finite set or even a field of size polynomial in n (which we shall refer to as a
small field). The best known lower bounds for the rigidity of explicit n X n matrices are
Q (”7,—2 log %) over a fixed finite field due to Friedman [3] and (”7,—2) for various matrices
with entries from a fixed finite set due to several authors [4, 7, 8, 9].

We start with a combinatorial lemma: if one changes fewer than cn?/rlog(n/r) entries
of an n X n-matrix M, where ¢ is an absolute constant, then there will be an r X r-submatrix
of M which has not been altered (Corollary 2). By a k X k-submatrix of an n X n-matrix M
we mean a matrix obtained from M by deleting some set of n — k rows and n — k& columns
of M.

To apply our combinatorial lemma we need to find n X n-matrices for which any r x r-
submatrix has high rank. Over small fields, Cauchy matrices provide explicit examples of
matrices of rigidity Q (7;—210g %) To obtain examples over a fixed finite field F,, we use

asymptotically good algebraic-geometric codes to construct a sequence of n X m-matrices

A, with Ri‘fm(r) > glog 5 for all 7 satisfying 2/(,/g —1) <r/n < 1/4.

2 A Simple Combinatorial Lemma

Lemma 1. If fewer than

N(n,r)zn(n—7«+1)(1_ <7‘;1)%)

entries of an n X n matriz are marked, then that matriz contains an r X r submatriz that

contains no marks.

Proor. Let V; and V5 be the set of rows and the columns of the matrix respectively,
and consider the bipartite graph G = (V3 U V;, F') which has an edge (z,y) if and only if



the entry corresponding to column z and row y of the matrix has not been marked. Let R
be the number of marks in the matrix. Obviously |E| = n? — R, and matrix contains an
unmarked square submatrix of size r if and only if G' contains a complete bipartite subgraph
K(r,r) with 2r nodes. It is well known that if G' has more than

(r— 1)%(71 -r+4 l)nl_% +(r—=1)n

edges, then G contains a K(r,r) subgraph (see, e.g., [1, p. 310]). It is straightforward to
check that this condition is satisfied for R < p(n,r). O

In the sequel we will use the above lemma in the following form.

Corollary 2. Letlog?n < r < 5 and let n be sufficiently large. If in an n X n malriz fewer
than

entries are marked, then there exists an r X r submatriz that has not been marked.

PrOOF. Asn(n—r+1)>n?/2for r < n/2, it suffices to prove that

r—1 T 1 n
1—( ) > —log
n 2r r—1

for r > log? n. A simple manipulation shows that the latter inequality is equivalent to

12 \E <r— 1)10&31 1
R > S
r/log "5 n 2

This inequality is true for large n since for r > logn the left-hand side converges to

1//e>1/2. O

3 Rigidity over Small Fields

In this section, we construct » X n matrices over any field K, that contains at least 2n
elements. Let z1,...,%,, ¥1,...,¥, be elements of a field K, with the property that

H#j(ﬂfi —z;) £ 0, H#j(yi —y;) # 0, and Hi,j($i +y;) # 0. It is easy to find such

sets in any field with at least 2n elements. It is well known that the Cauchy matriz

1
Tt Y ) 1gijen

is generic, in the sense that for every 1 < r < n each of its r X r-subdeterminants is nonzero.
Corollary 2 implies:

Theorem 3. Let K,, be a sequence of fields and let (C,,) be a sequence of Cauchy matrices
where C, € K'*™. Then
y 2
REn(r) = Q("—log ﬁ) ,
n r T

provided log® n < r < n/2.



4 Rigidity over Fixed Finite Fields

In this section we examine an infinite family of matrices with entries from a fixed finite
field. These matrices are obtained from asymptotically good algebraic-geometric codes.

A linear [n, k, d]-code over F, is a k-dimensional subspace of Fj in which each nonzero
element has at least d nonzero entries.

Theorem 4. Let q be a square prime power. There exists an explicit sequence of matrices
Ay € Fym X" where n,, goes to infinity with m, such that for any r with max{2n,,/(\/q —
1),log? ny,} < 7 < myp /4 we have

om
2r —1°

2
F n
R > -n]
Am(r)— 3 og

ProoFr. From the theory of algebraic-geometric codes [10] we know that there is an explicit
sequence (I'y,) of linear [2n,,, Ny, dpy]-codes over F, satisfying d,, > (1 — 2/(/q — 1))nm.
Without loss of generality we may suppose that I',, has a generator matrix of the form
(I | A,), where [ is the n,, X n,,-identity matrix. (A generator matrix of a code is a matrix
whose rows form a basis of the code.) A 2r X 2r-submatrix of A, of rank < r, would give
rise to a nonzero codeword of weight at most n, —r < (1 —2/(\/q — 1))ny, < dp,, which
would be a contradiction. Thus, every 2r X 2r-submatrix of A,, has rank at least r. The
theorem now follows from Corollary 2. O
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