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Abstract

Any intelligent system, whether human or robotic, must be capable of dealing with
patterns over time. Temporal pattern processing can be achieved if the system has
a short-term memory capacity (STM) so that different representations can be main-
tained for some time. In this work we propose a neural model wherein STM 1is
realized by leaky integrators in a self-organizing system. The model exhibits compo-
sitionality, that is, it has the ability to extract and construct progressively complex
and structured associations in an hierarchical manner, starting with basic and prim-
itive (temporal) elements. An important feature of the proposed model is the use of
temporal correlations to express dynamic bindings.
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1 Introduction

Many cognitive processes must be compositional, that is, they must be capable of extracting
and constructing progressively complex and structured representations in a hierarchical
manner, starting with simple primitive elements [4], [3], [26].

For example, visual recognition of complex objects and events requires the rapid assem-
bly of diverse information about the subcomponents of the object or event. In this case,
primitive elements are combined into more complex associations until a complete meaning-
ful representation of the visual input is achieved [5], [8], [14]. Another phenomena where
compositionality plays an ubiquitous and critical role is language where a sequence of acous-
tic input is mapped into a complex and high dimensional description of events and states,
and motor control where abstract representation of motor programs are decomposed during
movement generation into more primitive motor schemas [2], [9].

A central requirement of compositionality and hierarchical processing is the maintenance
and propagation of dynamic bindings between appropriate components of a multi-level and
distributed representation [6], [26], [27]. Recent neurological data highlights the poten-
tial role of the temporal structure of neural activity in the expression and propagation of
dynamic bindings [28], [27]. A particularly promising hypothesis is that all information
pertaining to a single entity is bound together as a result of the synchronous firing of the
various nodes encoding information about this entity [30], [26]. Thus compositionality,
binding, and temporal pattern processing are interrelated and seem to play an essential role
in cognition [3].

In this work, compositionality is achieved by a hierarchical model of Self-Organizing
Maps (SOM) and the temporal processing ability is achieved by exploiting neurons capable
of supporting short-term memory (STM). Each map in the hierarchy (which we refer to
as Dynamic SOM — DSOM) represents a specific abstraction of information expressed in
maps that are lower in the hierarchy. The unification among different maps is realized by
the synchronization of activity of appropriate nodes across these maps.

Figure 1 shows a generalization of this mechanism. In this case, all the neuronal areas
involved in the current execution are represented by means of specific and distinct zones
on the map surface: the general idea is to appropriately set an initial sequence (in term of
phase difference and frequency) of dynamic activity in the lowest levels of the hierarchy and
to propagate this activity up to the top map and thereby achieving a complex description
of what is occurring in the input scene. The temporal activity is represented by a sequence
of impulses, where each impulse corresponds to the firing of a particular bunch of neurons
in the map.

The relationship between an output impulse at level L; and constituent input impulses
from level L;_q is bi-univocal in the sense that, the analysis of impulsive activity at the
upper level provides the necessary cue to deterministically identify the constituent impulses
in the lower map.

Section 2 presents an overview of the neural paradigm used in the model and section 3
defines the dynamic extension of this paradigm. Section 4 discusses an example of input
scene analysis and presents some experimental results. Finally section 5 discusses additional
properties of the model.
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Figure 1: Three different levels of maps representing a sort of hierarchical knowledge repre-
sentation: the lower level represents primitive instances whereas the higher levels represent
combinations of these instances. Binding is represented by time occurrence between the
input and the output sequence of impulses. This is a bidirectional relationship.



2 Self-organizing Mapping

From a formal point of view, a Self-Organizing feature Map (SOM) is a systematic parallel
assemblage with a fixed topology of processing elements (or neurons), each of which is
characterized by a prototype vector m; € R* representing the center of a receptive field.

Every element of the map reads a common input vector € € ®* and consequently
determines its own activation level by means of its activation function u;(€) .

The activation function can also embody a competition among the elements in order
to enhance the selectivity of the map (a classical example of this competitiveness is the
well-known winner_take_all technique wherein, only the most resonant element represents
the output of the map).

The weight vector defining each element is automatically learned by the following well-
known Hebbian learning rule:

Ami(€) = nle - m;)ui(e) (1)

where € represents one of the input examples, 7 is the learning rate and u;(€) is the activation
function.

The parameter 5 and the activation function u;(€) together define many key properties of
the map: for example, in a traditional Kohonen model ([10], [11]), u;(€) is a simple window
function centered on the most resonant element so that each weight vector of the map is
updated during each step of the learning phase on the basis of its proximity to the winner
element: in this way the map preserves the topology of the input data manifold in the sense
that, neighboring elements in the lattice store neighboring patterns in the input space. The
inverse topological property (neighboring patterns to neighboring elements) cannot hold
unless the dimensionality of the lattice is the same of the input space; moreover, is very
difficult to accurately approximate non-convex input data manifold.

Some of the drawbacks mentioned above can be overcome by representing the input
topology with a connection net evolved during learning: in this case, the function w;(€) is
not evaluated in the map but in the input vector space so that finally, the neighborhood
between two elements is highlighted by the presence of a connection between them and not
by their proximity in the lattice (see [13] and [12]).

An interesting generalization of the self-organizing process is to associate with each
element of the map a second output vector Y; € R? (see Figure 2) so that the map can finally
be seen as a system with two layers of weights defining a generic mapping f: ®X — R<,
where usually K > @ ([25], [24]). In this case, the input feature vector making up the
training set is a pair (€,Y) and the training of the network is achieved with the following
learning equation used in parallel with equation (1):

AYi(e, ) = (Y — Yi)ui(e) (2)

In general, at the end of the training, each element of the map represents a specific
part (often called tile referring to the well known Voronoi tessellation) of the input training

IThe value of the activation function ui(e) is classically called the resonance level of the element because
it reflects the similarity between the weight vector associated to a element and the current input vector (for
instance, the activation function can be defined by the distance || 7; — ¢ ||). In this sense, an input vector fed
to the map involves an internal place-coded probability resonance distribution having the maximum peak
just located on the most similar element (see for instance [29]).



Figure 2: The input-output structure of the weights vector of a neuron.

manifold: this tile is centered around the weight vector «;. The corresponding vector Y;
represents the output label of the element so that, if 7 is the most resonant element related
to an input € (u;(€) = maz; u;j(€)))), then Y; represents the output mapping f(e) = Y;
for that input vector.

Both biological plausibility and statistical properties of self-organizing process can be
enhanced by using as the activation function the following normalized Gaussian or softmax
function:
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where, G/(+) is a gaussian with fixed variance o [1].

ui(€) = Us(e) (3)

In this case, the optimal estimation of a continuous smooth function f: ®X — R
can be achieved by means of the following population coding:

f(e) % 3 Pilife) )

where both the vectors r; and Y; are learned using the classical parallel Hebbian rule above
introduced.

It is worth highlighting that, the previous equation is a sum of radial basis function [18]
and it can be also proved that Eq. (4) is a solution of the regularization problem [16], [17].

The self-organized map represents a distributed model where a parallel assembly of pre-
set processors can operate concurrently on a common afferent signal handling large amounts
of information rapidly and efficiently: moreover, the modality of information representation
and processing, makes additional interactions with other modules remarkably easier.

3 Dynamic Self-Organizing computational Maps

Temporal processing requires a STM capacity in order to represent different temporal com-
ponents over a window of time. We use an extended form of SOM that exhibits the neces-
sary STM property. Unlike SOM, the extended model, D-SOM, uses a dynamic version of
a classical neuron model.

In the D-SOM model, the activation of an element in the map is represented by a mem-
brane potential P;(¢) which in turn is a function of the input activation function wu;(e(?)))
which measures the degree of match between the element’s weights vector and the temporal
input vector €(t) (for example, u;(€(t)) could be the softmax function). P;(¢) also takes into



account the dynamic properties of the biological membrane of a cell which are approximated
by a generic RC' circuit:

dP; _ PZ(t) '
P B0 ) 5

T

where 7; is the time constant of the RC'.

Note that the input activation function wu;(-) of a map element is a function of time
u;(€(t))). Thus the membrane potential of an element is correlated with the temporal
evolution of its input and the element can not only analyze a static input vector e, it
can also perform a temporal integration of the function u;(e(t)) (hence the name, Leaky
Integrator element (see for example [23])). If this temporal integration depends on the
occurrence of certain spatio-temporal features/sub-events in the evolving temporal input,
then the activation of the element indicates the occurrence of an external event composed
of these sub-events. Thus one can view each element as a recognizer of a complex event.

In view of the above, each element is composed of a set of sub-elements — classically
called taps [19] — each of which represents different critical points in the temporal evolution
of the input vector. Specifically, if an element recognizes an event composed of m temporal
features, it consists of m distinct taps. If the input vector is k-dimensional, €(t) € R
then, each tap is characterized by a weight vector # € RX. At each time instance, the
input vector €(t) is processed by all the taps and the membrane potential of the element is
evaluated on the basis of the tap outputs:

dP; Pt
o,

dt T;

> uij(e(t)) (6)

JEAct;(t)

where, u;;((€(t)) is the activation function of the j — th taps of the i — th neuron and 7; is
the time-constant of the neuron.

The term Act;(t) represents the set of active taps of the i — th neuron at a generic
time instant. As soon as the activation function of a tap exceeds a pre-fixed threshold it is
inhibited and excluded from the set of active taps. Different elements may have different
activation strategies for taps. In some cases, all taps may be active initially. In other cases,
taps may become active one at a time, and hence, respond to temporal features occurring
in a specific order. This is achieved by connecting the taps in a sequence as shown in
Figure 3. Notice that taps are represented by neurons, tapy,...tap,,, that read a common
input vector. A tap can either be in an enabled state, wherein it actively processes its input,
or it can be in a disabled state. Initially only the first tap is enabled. When an enabled
tap receives a matching input signal, it crosses its threshold and fires, enables its successor
tap, and at the same time inhibits itself thereby entering a disabled state.

The neuron n; (see Figure 3) integrates the tap outputs and maintains a continuous
potential according to Eq. (7). This neuron eventually fires if all the taps have been
activated by the temporal input. The time constant 7; limits the delay between successive
temporal features and the STM of the integrating neuron.

In other words, the resonance of each element of the map not only represents a planar
projection of a general point belonging to a multi-dimensional input manifold but it also
represents the evolution of this point such that the input space acquires another coordinate
namely, time. The final resonance of an element highlights that the input vector has followed



Figure 3: The general structure of partitioned leaky integrator neuron. The taps can be organized
by an input layer of neurons connected each other in a way representing the activation policy of the
model: once a generic tap match the input, it inhibited itself and sequentially enables the next. The

integrating neuron 7; keeps memory of all the sequence of matching.

a specific trajectory in the input space defined by the sequence of the taps of the element.
The dynamic property of the element enables it to preserve memory during the occurrence of
two consecutive input temporal features; if the input trajectory has excessive delay between
two consecutive sub-events, (the delay sensitivity is of course a function of the time constant
of the element) the resonance approaches the zero value (the RC is discharged). In this
case everything is reset to the initial values and finally the element starts to analyze the
input stream again taking into account all the taps (or starting from the first one again,
depending on the activation strategy of that element).

The learning of tap weights can be done in a traditional Hebbian manner exploiting a
unique vector ® € REX™ for each iteration. In [19] an alternative learning method has been
presented where the taps are learned in real time using a sequence of input vectors. In [31]
another method is proposed where taps are pre-determinated and the learning process only
effects the connections between taps and neuron.

Figure 4 illustrates the behavior of D-SOM. The Figure shows an input manifold at
three distinct time instants and the arrows on the left side of the Figure indicate three
input temporal features of the map for each of the three instants: the exact sequence of
these input features represents a specific event that has been learned during the learning
phase. In particular, with the occurrence of the first temporal feature, the map responds
with a resonance distribution located around the element with a tap that matches the most
with that feature (see Figure 4, right side: in this example the map also preserves the
topology so that the resonance distribution corresponds to a compact resonance bowl in the
map surface). With the evolution of the input motion, the resonance not only maintains a
significant value but it also increases as soon as the input trajectory exhibits all the temporal
features represented by the taps of that element 2.

This temporal property of D-SOM can be exploited in the context of motor control,
time series analysis, temporal sequence representation and recognition (see [15], [19], [20],

2Some basic simplification has been assumed in this case for the sake of exposition. The simplification is
that the first reference point of the event in progress, is specific to that event. Usually, during the first part
of an input temporal stream, the resonance distribution observed is located in zones that could be far away
from the final localization: this is because some different temporal events can share initial segments.
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Figure 4: The evolution of an input manifold in the time: the arrows indicates three dif-
ferent inputs of the map in three different non consequent time instants. On the right, the
corresponding resonance distribution on the map is displayed.



22, [21]).

We have exploited the D-SOM paradigm to analyze an input train of impulses where
each impulse represents information about an input scenario: the occurrence of a specific
series of impulse has to be interpreted and transformed into an output impulse finally
achieving a hierarchical structure where the binding between the incoming and outgoing
impulses of the map is represented by their time occurrence.

4 Firing process

As discussed in the introductory section, synchronous activation seems to be the mechanism
that binds different cortical instantiations of information pertaining to an event; in this
section, we review this property in the light of Dynamic SOM computation.

In the previous section we have analyzed the dynamic behavior of an Leaky Integrator
element and studied the correlation between the membrane potential P;(¢) and a generic
external phenomenon that can be viewed as a temporal function. The membrane potential
represents the activation level of a neuron and can be evaluated on the basis of a pre-fixed
threshold which consequently defines the firing time of that neuron.

The firing of an element in the map will be referred to as an output impulse. Each
impulse is characterized by a label that corresponds to the output weight vector of the
firing element. In this sense, we will often use the term weighted impulse.

Many elements can fire in different time instants so that the temporal output function of
a generic map corresponds to a train of weighted impulses that is fed to the upper map. At
each level, the input train is translated into an output train keeping appropriate bindings
between input/output impulses based on their time of occurrence.

The threshold of each element plays a key role in this process and certain negative side
effects on the global map activity depend on this threshold. For example, let us consider
two generic elements 7 and j each composed of two taps and representing two different input
events Ky and Fy. Assume that F4 is composed of subevents e; and e3 and Fy is composed
of subevents ey and e3. Now, if we consider the input impulse train ey, es, e3 which occurs
at time ¢y, 19, t3 respectively then, the two elements receive the initial matching impulse in
two different instant ¢; and ¢, (see Figure 5) but receive the final impulse at the same time
instant ¢;. Consequently, the two elements will fire simultaneously at time ¢ 3.

This possibility, referred to as spike-overlapping, can obviously lead to an ambiguous
output train of impulses wherein any distinction between the input events £ and F5 cannot
be detected.

In order to achieve the opposite behavior (referred to as spike-non-overlapping) so that,
different spikes corresponding to different input events are separated in time, we define a
global mutual-exclusion between all the elements of the map using a common threshold

®In this case, the input function u;(t) has a threshold mechanism built in so that equation 6) becomes:

L= P S sgn(ui(e) - ) (7)

JEAct(t)

where, A is the internal tap threshold of the element which tunes the desidered matching level between the
tap and the input impulse.
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Figure 5: The Figure shows the membrane potential of two different neurons receiving the
first impulse in different instants and the last common impulse at the same time: at this
moment the two neurons (representing different features composition) will spike together.
The difference A of the membrane potential can be exploited in order to appropriately dis-
criminate the spikes of the two neurons.

function A(?). Figure 6 shows this function where the time period ARP represents the
global absolute refractory period of the map and the 0 time instant represents the firing of
a generic element of the map.

Figure 5 shows the time course of the membrane potential of the two elements ¢ and j
(the dotted and the squared line): the difference A between the membrane potentials of the
two elements at time 7y can be exploited for separating the spiking of the two elements. In
fact, only the element identified by the minimum membrane potential is allowed to fire, and
the firing of the second element is delayed by an amount of time depending on the global
refractory period *. This is done by using the common threshold function A(#). The second
element that does not fire, is required to maintain a significant potential value during the
global refractory period ARP: this is the reason why, the minimum membrane potential
element is allowed to fire first.

The impulse output function €(?) of the map can be finally represented by the following

*In order to detect the minimum membrane potential in the map we can assume that the sign of the
membrane potentials is inverted and then the maximum of the inverted values is evaluated.
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Figure 6: The time course of function A(t) representing the global threshold function of the
map after a spike occurred at the 0 time instant.

population code computed over all the elements of the map:

G(t) - Yy, if Az(t) =1 and Pl'(t) = minj D Aj(H)=1, Pj(t)>A(t) P]‘(t) (8)
Y0 iV At)=0

where, A;(t) represents the total inhibition of the element that equals 1 only if all the
taps of the element have been matched during the analysis of the input impulse train
(and consequently inhibited) and 0 otherwise, and Y; is the output weight vector of the
element. In this way, each output impulse is synchronized with the time instant when
at least one element has been completely matched by the impulse input function. The
comparing of the membrane potential of the involved elements with the common threshold
function A(?) implicitly achieves the mutual-exclusion process and avoids spike-overlapping
between elements representing different events.

5 A vision task example

The general behavior of the model can be tested in a visual context where, for example, the
system is asked to analyze the motion of multiple points in a two dimensional input space
and eventually recognize the occurrence of certain coordinated patterns of motion. This
task involves three levels of representation: the trajectory of the points in the visual scene,
the relationship between different points and the evolution of this relationship over time.
Those, three D-SOM levels are defined below.

5.1 Level I: trajectory analysis

In the first level, simple information about line tilting and direction of a specific point motion
is detected and classified. All the elements of the map share the same visual field and the
input activation function of these elements can be directly derived from some neurological
hypothesis: for example [7] suggests the existence of motion detectors with elongated spatio-
temporal receptive field tilted in a preferred direction. A temporal summation determinates
the energy level of the neuron.

10
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Figure 7: An example of the trajectory detector filter exploited in the first level: the center
of the receptive field ® and the center of the bi-dimensional gaussian are translated each
other in order to detect the direction of the input movement.

With some simplifications, we model the input anatomic conformation of the motion
detector neuron with the following non-symmetric and bi-dimensional gaussian filter:

[_[('r - $0)2 + (y - yO)Q] 1+ —(mcosH B ySine)Q] (9)

203 202
where o1 and oy are variances with o7 >> o3, ¢ and yg are the centers of the gaussian
and @ represents the tilt of the filter. The center (¢, yo) of the non-symmetric gaussian is
translated by a specific radius from the center ® = (®,, ®,) of the neuron receptive field so
that, if the tilt # is oriented along the segment connecting the two centers, tan() = ﬁ,
we end up into a filter capable of representing the trajectory as well as the direction. An
example of such a filter conformation is displayed in Figure 7.

Consequently, each element of the map corresponds to a specific filter characterized by
a common receptive field dimension but with its own conformation in terms of tilt 6.

The input visual field is assumed to be a bi-dimensional white space where a black dot
is moving. When the motion starts, the receptive field centers ®; of all the elements in the
map are placed on the starting point. Consequently, the input function activation wu;(¢) of
every element can be expressed by the following equation:

duz(t)

S = G (1), (1), iy i) (10)

where (z(t), y(t)) represents the current coordinate of the moving point.

Any clue concerning the velocity magnitude is obviously neglected because the input
visual field area is always the same and we assume that the velocity is constant among
different observations. At the end of the observation, the most active neuron classifies the
input trajectory and direction and is allowed to fire.

The training of the above structure can be performed simply by feeding the map with
a uniform distribution of pairs < zg, yo > which define the characteristic of the filters; each

element is finally labeled with the corresponding angle value 8 = arctg(ﬁ).

gf(‘rvva()vyO) = erp

5.2 Level II: basic relationship between pair of trajectories and dynamic
coupling

Consider the problem of analyzing the trajectories of two moving points and determining if
the pair of points are diverging or converging or, if they are moving in parallel, the direction

11
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Figure 8: An example of an input trajectory (top left) sampled in different time instants and
the corresponding activity distribution on the first map surface (on the right, in sequence);
just below each activity distribution snapshot, the filter conformation of the most active
neuron is displayed.

in which they are directed. The ability to carry out such an analysis would be of obvious
significance.

The input visual field can be sampled at regular time intervals ¢ referred to as a phase.
During each sampling, the receptive fields of the first level map are calibrated on a specific
moving point and at the end of the sampling period, the most active neuron represents
the corresponding direction and fires. After the impulse, the attention of the map shifts to
another moving dot and the same process is repeated.

The elements of the second level are consequently composed of two input taps corre-
sponding to all possible input pairs of directions. The output vector ) € R? is simply
set equal to the difference and the average values of the two input taps. In the following
simulation, the first level is a grid of 18 x 20 elements and the second level of 100 x 100
elements. Both of the maps have been trained by the softmax rule so that, any topological
information is detectable from the map activation.

Figure 8 shows an example of input motion. The motion corresponds to the mouse
movement in a graphic window of a workstation screen: the arrow shows the direction
of the movement whereas the sequence of bracketed windows shows the sequence and the
magnitude of the sampling periods. For each sampling, the corresponding initial time
instant is specified at the top of the window. The corresponding global activity of the map
at the end of the first three sampling (Figure 8 on top right, (¢)-(7i7)) is displayed with the
filter of the most active element (just below each global activity snapshot).

The general behavior of the model is analyzed with three different motions evolving at
the same time in the input scene. The sampling frequency is kept constant for all the input
motions so that each impulse is simply identified by a phase.

Figure 9 shows the experiment: the three different motions are analyzed by means of a
sequence of sampling (highlighted by small arrows along the trajectories on the left side of
the Figure) which are synchronized in three distinguished phases ¢1, @2, ¢3. The graph on

12
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Figure 9: Analysis of three simultaneous trajectories. Left: the arrows highlighted the sam-
pling points. Right: the sequence of output impulses in the two level of maps; the numbers
associated with the upper sequence represent the difference of the two input angles (in par-
ticular the gaussian of the difference).

the right shows the output impulse trains in levels 1 and 2: in particular, for each impulse
on the second level, the output value of the firing neuron is specified in the graph. This
value is the difference of the two input angles (corresponding to the two different taps) and
represents the degree of parallelism of the two composing motions. In particular, in Figure
9, the gaussian of the difference is exploited instead of the difference.

The binding between upper and lower impulses is simply achieved by keeping track of
the time instant when each tap of the firing element in the upper level is matched by an
input impulse. This key mechanism has been studied as a function of the time constant
of each element and the refractory period ARP of the map. As we expected, the overall
behavior of the model deteriorates outside of a specific range of phase values. In fact, if
the input impulses are too close to each other, then the output activation of the involved
elements is almost the same even if they represent different events so that at the end, the
spike-non-overlapping capability no longer holds. On the other hand, it is reasonable to
expect some retroactive effects if the time delay between two consecutive impulses exceeds
the memory capabilities of the neurons.

All the phase values between these two extremes, (called working area) should generate
correct synchronization between the two levels of the map and the magnitude of the working
area can be modified by tuning the time constant of the elements and the ARP value of
the global threshold function.

Figure 10 shows the lower and the upper bound of the working area as a function of
ARP and for two different values of the time constant during a computer simulation of the
model. The two bounds represent the cut off values of the phase, that is, bounds below
and above which the model loses its binding capabilities. Figure 10 shows that, if the ARP
value increases, the working area shrinks. The magnitude of the working area can also be
tuned by modifying the time constant of the RC (see Eq. 6).

5.3 Level ITI: complex movement detecting

The third last level of the hierarchy analyzes and recognizes global coordination of a pair
of trajectories evolving at the same time in the input space.

13
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Figure 10: The lower and upper bound (defining the working area of the model) of the phase
delay between two consecutive impulses in function of ARP and the time constant o of the
neurons.
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Figure 11: The conformation of the third level map at the end of the training phase: for
each input pattern, the most resonant neuron is corresponding labeled.



In the following simulation, six different input patterns (shown in figure 11) have been
taken into consideration. The map consists of a 10 x 10 grid of elements each of which is
composed of four taps. Thus each element can represent a four-stroke component coordina-
tion. For example, two moving points following a zig-zag pattern can be characterized by
a set of taps that respond maximally if the angular mean remains constant and the sign of
the angular difference alternates.

During the training of the map, a series of synthesized movements are fed to the first level
and then propagated up to the third level. Figure 11 shows the result of the learning process
where, for each input example, the most resonant neuron in the third level is highlighted.

The network is tested using a natural movement acquired by recording the motion of a
mouse in a graphics window. The movement represents a zig-zag coordination that should
be recognized by the two right extreme elements of the map (refer to Figure 11).

Figures 12 to 14 display six different snapshots of the model behavior. Each snapshot
shows the activation of the first level at the end of each input sampling pair (the current
sampling positions in the input trajectory are shown at the top of each snapshot) and the
corresponding activation of the third level. The maps are represented by a grid of z’s each
of which identifies an element of the map. The membrane potential is represented by a grey
bowl around the z (the wider the bowl, the higher the activity of corresponding element).
A black bowl represents the firing instant. The filter associated with each firing element
of the first level is shown on the right. The sampling is delayed of a time interval ¢ = 2.0.
Figure 15 shows the full sequence of impulses and for each impulse at the second level,
the activation state of the third level. The pair of impulses outlined by segmented ovals
underline the snapshot displayed in Figures 12 to 14.

At the third level observe that, the two elements corresponding to the zig-zag patterns
fire at two different time instants: ¢ = 182.0 and ¢ = 240.0.

6 Phase filtering by temporal neuron locking

One of the main characteristics of the proposed model is its ability to transform a sequence
of impulses encoding some basis patterns into a sequence of impulses encoding a more
complex pattern and at the same time, maintaining a bi-univocal correspondence between
the inducing and induced impulses.

The temporal properties of the map elements enable the system to maintain correct
bindings between the input and output impulses: in fact, even though each element detects
an input temporal pattern at the end of its occurrence, the firing of each tap in the element
is synchronized with the occurrence of the appropriate sub-event that make up the input
temporal pattern.

In some cases, it could be important to implement phase filtering on the input impulses.
For example, in the simulation described in the previous section, as soon as one of the taps
of an element in the third level matches one of the input impulse corresponding to the initial
component of an input coordination pattern, the element should restrict its attention only
to that pattern and events that are continuations of that pattern. Other events (for example
a new moving point sampled with a new phase) should not interfere with its computation.
In this way, the firing of the element highlights that the element matched a complex event
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whose initial component matched the first tap and subsequent components matched the
remaining taps.

This neuron locking mechanism can be achieved by taking advantage of the nature of
the input function. In fact, since each input event is identified by a specific phase (in the
simulation the two phases were ¢1 = 0.0 and @2 = 2.0), all the induced impulses in the
upper levels are regularly displaced in time. For example, the two input trajectories in the
first level are combined into unique output impulse in the second level that always occurs
at some multiple of the first time instant ¢ = 2.0. The involved elements in the third level
can consequently restrict their attention around the multiples of ¢ = 2.0 and disregard all
other incoming impulses.

This selective mechanism can be implemented simply by introducing a third general
element in the map (see Figure 16) called time unit: it corresponds to a generic RC' element
which is connected to the input of the system and to all the elements of the third level. If
the very first input impulse in the first level activates the time unit then, the consequent
RC decaying activation represents an internal relative clock of the map which can be used
to provide a reference time to select specific time instants. In this way, each element in the
third level can memorize (for example using an internal unit memory 5;) the time-unit value
when the first tap matched, subsequently, an input impulse will be taken into consideration
only if the value of the internal memory 5; equals the time-unit activation.
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Figure 15: Sequences of impulses in the three different levels: for each of the second level
impulses, the corresponding activity in the third level is displayed. The dotted ovals in the
first level outline the time instants already taken into consideration in the previous figures.
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7 Conclusions

The ability of DSOM to process temporal patterns has been used to implement a com-
positional processing model where primitive descriptions of time varying situations can be
processed in a hierarchical manner to produce progressively abstract and structured de-
scriptions. The model represents information as a sequence of impulses. It can analyze an
input consisting of time varying sequence of impulses and generate an output sequence of
impulses, wherein each impulse represents the occurrence of certain patterns in the input
sequence.

Enlarging the hierarchy simply involves the training of a new map with the output
impulsive function of the corresponding lower map so that finally, knowledge is built up by
a hierarchical bottom-up strategy.

The proposed paradigm has been tested in general situations where multiple moving dots
in an input visual image generate different classes of events at each level in the hierarchy.
In future work, we plan to investigate the use of DSOM structures to address additional
problems involving compositionality that arise in language, handwriting recognition, and
rapid reasoning.
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