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Abstract

A set of monomials z%, ..., 2% is called interpolating with respect to a subset S of
the finite field F,, if it has the property that given any pairwise different elements
Zg,..., 2, in S and any set of elements yg,...,y, in F, there are elements co,..., ¢,
in F, such that y, = 377 _ c;jzy’ for 0 < h < r. In this paper we address the question
of determining interpolating sets with respect to S = F, and S = FY. For ¢ a prime
and S = F, this is a problem of N. Reingold and D. Spielman posed by A. Odlyzko
in [10, p. 399]. We call the interpolating set {z®,... z%} trivial if its exponent set
coincides with {0,6,2b,...,7rb} mod (¢—1) for some b coprime to ¢ — 1. The question
is whether all interpolating sets with respect to F, are trivial.

We start by relating this to a problem on cyclic MDS codes. We then show that
for r = 2 and S = FY the problem is equivalent to whether or not for some m the
polynomial (2™ —1)/(z —1) is a permutation polynomial over F,. The latter problem
has been investigated by R. Matthews [9]. Using Bézout’s Theorem and results on
arcs in projective spaces, we show that in a certain range for r (depending on ¢ and the
maximum of the a;) the only interpolating sets with respect to F) are trivial. We then
proceed to sharpen this result for the special exponent set 0,1,2,...,r — 1, m where
m satisfies r < m < ¢—2. Finally, we exhibit an example of a nontrivial interpolating
set with respect to FY for even ¢ > 8. In the language of finite geometries this is an
example of a complete g-arc over F,, and in the language of coding theory this is an
example of a cyclic MDS-code which is not equivalent to a generalized Reed-Solomon
code.
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1 Introduction

A set of monomials z%,...,z% is called interpolating with respect to a subset S of the
finite field F,, if it has the property that given any pairwise different elements z,...,z,
in S and any set of elements yg,...,y, in F, there are elements cg,...,c, in F, such that
Yn = Z;IO cjzy’ for 0 < h < r. In the sequel an “interpolating exponent set” denotes
a set of pairwise different non-negative integers aq,...,a, smaller than ¢ such that the
corresponding set of monomials z%, ..., 2% is interpolating.

It is obvious that {ag,...,a,} is interpolating with respect to S if and only if every
(r4+1) x (r + 1) submatrix of

Gs = (P, | Pey| -+ P,) (1)

is nonsingular, where £;,..., &, are the elements of S and P := (£%,...,&% ). This is
equivalent to the statement that the polynomial

det( X7 ocn j<r € Fy[Xoy. ooy X,

has no zeros in S"**\ A, where A C F;‘H is the diagonal embedding of F,. It follows that
all exponent sets of the form {0,6,2b,...,76} mod (¢ — 1), for some b coprime to ¢ — 1, are
interpolating. Indeed, for these sets the above determinant is essentially Vandermonde. In
the sequel we call these sets “trivial.” A problem of Nick Reingold and Dan Spielman posed
by Andrew Odlyzko in [10, p. 399] asks whether for ¢ a prime all interpolating sets with
respect to F, are trivial. In this paper we investigate this problem for general prime powers
q.

We start our investigation in the next section by relating interpolating exponent sets
with respect to F, to such sets with respect to . For the rest of the paper we will then
solely concentrate on the latter. Such sets have a coding theoretic interpretation as they
give rise to cyclic MDS codes and vice versa.

In Section 3 we concentrate on exponent sets of size three. We show that these sets
are interpolating if the polynomial 2°~' + ... 4+ z 4+ 1 is a permutation polynomial over
F,, where b is an integer obtained from the exponent set in question. This problem has
been investigated by Matthews [9]. Using his results, we show that for odd ¢ interpolating
exponent sets of size three are trivial. In Section 4 we investigate exponent sets whose sizes
are “small” relative to ¢ , and use some algebraic geometry as well as results about arcs
in projective spaces to show that they are interpolating iff they are trivial. Section 5 deals
with the special exponent set {0,1,...,r — 1, m} for some m satisfying r < m < ¢ — 2. We
show that if r is not large compared to ¢, then these exponent sets are not interpolating.
For large r there are examples of nontrivial interpolating sets. This will be the topic of the
last section. These interpolating sets give rise to cyclic MDS-codes which are not equivalent
to Reed-Solomon codes, and to complete g-arcs.

2 Interpolating Sets and Cyclic MDS-Codes

An exponent set {aq,...,a,} is not interpolating with respect to F, if all the a; are positive.
(Otherwise the matrix Gy, would contain a zero column.) We may therefore assume that
g = 0.



The condition of being an exponent set with respect to Fy is related to the corresponding
condition with respect to F, in the following way:

Lemma 1. {0,a4,...,a,} is an interpolating exponent set with respect to ¥, if and only if
{0,ay,...,a.} and {ay,...,a,} are interpolating exponent sets with respect to Fx.
Proor. Suppose that {0,as,...,a,} is an interpolating exponent set with respect to F,.

Then this set is clearly also an interpolating exponent set with respect to Fy. Furthermore,
every (r+1)x(r+1)-submatrix of the matrix G, defined in (1) is nonsingular. In particular,
any submatrix of the form (P, | H) is nonsingular, where H is a (r 4+ 1) X r-submatrix of
GF;. The determinant of this matrix equals that of the matrix obtained by deleting the
first row of H. But the latter matrix is of the form (@,,| - - -|@,,), where @, := (n*'|---|n?")
and 7; are nonzero elements of F,. It follows that {a;,...,a,} is an interpolating exponent
with respect to Fy. The argument is reversible. O

One advantage of working with interpolating sets with respect to Fy is their connection
with cyclic MDS-codes. In what follows we assume familiarity with the theory of linear error
correcting codes, and in particular with the theory of linear cyclic codes. Good references
for these topics are Mac Williams and Sloane [8] and van Lint [7]. Recall that a cyclic code
of block-length ¢ — 1 over F, is specified by a set of “zeros” {w®,w,...,w" }, where the
a; are pairwise different non-negative integers less than ¢ — 1, and w is a generator of Fy.
The code C' is defined as the set of all polynomials f of degree less than ¢ — 1 such that
fwv) =0 forall j =0,...,7. We will usually identify elements of C' with their (¢ — 1)-
dimensional vectors of coefficients. C' is called MDS (Maximum Distance Separable) if its
minimum distance attains the greatest possible value r + 2. Note that the matrix Gpx is a
parity check matrix for C'. Hence, we have the following. ’

Proposition 2. {ay,...,a,} is interpolating with respect to ¥ if and only if the cyclic
code with the set of zeros {w®,...,w} is MDS.

It is easily seen that if {ao,...,a,} is interpolating with respect to FX, then so is {bao +
¢,...,ba, + ¢} for all b coprime to ¢ — 1 and all ¢. (All arithmetics is modulo ¢ — 1.)
In other words, if I' denotes the group of invertible upper triangular 2 X 2-matrices over
Z[/(q— 1)Z, then the property of being interpolating is preserved under the action of I' on
the elements of Z /(¢ — 1)Z, where the action of (§ 5) on a is given by (aa + 3)/v. We thus
call (interpolating) exponent sets in the I'-orbit of {0, 1, ..., 7} essentially trivial. Note that
trivial sets are essentially trivial, but not vice versa.

3 Small Exponent Sets

Exponent sets if size two are easy to handle: obviously, {0, a} is interpolating with respect to
F, iff ged(a,¢—1) = 1 and {a, b} is interpolating with respect to FY iff ged(a —b,¢—1) = 1.

Exponent sets of size three are more difficult to investigate. Let I := {0,a,b} be an
exponent set. We may without loss of generality assume that a divides ¢ — 1 and that
a < d:=ged(b,q — 1). I is interpolating with respect to Fy iff for every z,y € Fy \ {1},



z # y we have

1 1 1
det| 1 2% 9o [ =(@"-1)(y" —1)— (2" - 1)(y* - 1) £0.
1 $b yb

If @ > 3, then we may take for z and y two different ath roots of unity in Fy, both unequal
to one, to see that I is not interpolating. The same argument works if d > 3. If @ = 2, then
necessarily d = 2 and we may take z = —1 to see that I is not interpolating. Hence, we are
left with the case @ = 1. We may without loss of generality assume that b < ¢/2, since we
may replace {0,1,b} by {¢—0,¢—1,¢—b} = {1,0,¢—b}. Hence {0, 1,b} is interpolating if
and only if the polynomial (z° —1)/(z — 1) = 2*=" + ...+ 1 is injective on F, \ {0,1}. This
implies that the size of the image of this polynomial considered as a polynomial function
over I, is at least ¢ —2 which is larger than ¢ —(¢—1)/(b—1). Hence, we deduce by Wan’s
Theorem [15] that 2! + ...+ 1 is a permutation polynomial. A result of Matthews’ [9]
yields that & = 2 if ¢ is odd.

Proposition 3. For odd q exponent sets of size three with respect to F, (FX ) are trivial
(essentially trivial). Fquivalently, a cyclic code of block length ¢ — 1 and co-dimension three
over [, is MDS if and only if it is equivalent to a Reed-Solomon code.

The above assertion does not hold for even ¢. An easy example is the nontrivial expo-
nent set {0,1,4} which can be proved to be interpolating with respect to Fs. In general,
interpolating exponent sets of size three over finite fields of characteristic two correspond to
certain ovals in finite Desarguesian planes of even order, for which a complete description
has not yet appeared. (See [9, Section 4].)

In the next section we will derive similar assertions for other exponent sets of small size.
The method is different from the one used in this section, as it employs techniques from the
theory of finite geometries and some algebraic geometry.

4 Arcs and Normal Rational Curves

For the rest of this paper we denote the r-dimensional projective space over a field K by
P"(K). A point P with projective coordinates z,...,z, is denoted by P = (zo:---:2,).
We start by introducing some definitions and recalling some basic facts about projective
spaces over finite fields. A good reference for these subjects is Hirschfeld’s book [4].

A k-arc in ]P’r(]Fq) is a set S of £ > r + 1 points such that no r + 1 of them lie on a
hyperplane. For any point in 5 we consider a representative in IF‘Z‘H and form the (r+1)x k-
matrix G whose columns are these points. Obviously S is an arc if and only if any
(r 4+ 1) x (r + 1)-submatrix of G5 is invertible. (This condition is independent of the
choice of the representatives for the points.) Hence, for ¢ > r 4 2 the subset S(F)) of
P"(F,) consisting of the points (1 : a®:---:a%), a € FX, is a (¢ — 1)-arc if and only if
{0,a4,...,a,} is an interpolating exponent set with respect to Fy.

A standard example of arcs is given by the set of points of a so-called normal rational
curve. A rational curve C, of order n in P"(F,) is the set of points (go(to,%1): -1 ¢,(t0,t1))
where t;,t; € F, and each g; is a binary form of degree n and a highest common factor



of go,..., ¢, is 1. The curve C, may also be written as the set of points (fo(¢):---: fu(?)),
where fi(t) := g;(1,1),t € F} := F, U{oc}, and fi(o0) is by definition the coefficient of ¢* in
fi- As the g; have no nontrivial common factor, so at least one f; has degree n. The curve
C, is called normal if it is not a projection of rational curve C}, in P"+'(F,), where C,, is not
contained in any r-dimensional hyperplane of P**!(F,). A projective equivalence in P"(F,)
is a self-mapping of P"(F,) which associates to a point (zg:---:2,) the point (yg:---:y,)
where
(yoa'-'7yr)T = A'(foa---yﬂfr)T

for a nonsingular (r + 1) X (r 4+ 1)-matrix A. The basic facts about normal rational curves
can be summarized as follows, see [5, Chapter 21].

Theorem 4. Let C,, be a normal rational curve in P"(F,) not contained in a hyperplane.
Then

(iii) C, is projectively equivalent to

r ar—1 + .
{@, . ) [ teF};

(iv) C, consists of ¢ + 1 points no r + 1 of which lie on a hyperplane.

(v) If ¢ > r + 2 then there is a unique C, through any r + 3 points of P"(F,) no r+ 1 of
which lie on a hyperplane.

Much of the research on arcs has concentrated on the following three problems posed by
B. Segre in 1955 [11]: (1) For given r and ¢ what is the maximum value of k for which there
exists a k-arc in P"(F,)? (2) For what values of r and ¢, with ¢ > r+ 1, is every (¢ + 1)-arc
of P"(F,) the point set of a normal rational curve? (3) For given r and ¢ > r + 1, what are
the values of k£ for which every k-arc of P"(F,) is contained in a normal rational curve of
this space?

Theorem 5. (1) (Tuas [14]) For odd q every k-arc in P™(F,) with k > q—./q/4+r—7/16
is contained in a unique normal rational curve of this space.

(2) (BRUEN ET AL. [1], STORME AND THAS [12]) For even ¢ > 4 and r > 4 every k-arc
of P"(F,) with k > q+r—/q/2 — 3/4 is contained in a unique normal rational curve
of this space.

Except for the last section, we will in the following solely consider the case of odd ¢, as
that of even ¢ can be handled similarly. We remark that the the bound in Part (1) of the
above theorem can be improved considerably of ¢ is a prime, see [12].

Using the above results and the Bézout Inequality we will be able to prove that certain
interpolating exponent sets are essentially trivial. For the proof of the following lemma we
assume familiarity with the concept of degree of an algebraic variety, see, e.g., [3, Lecture 18].



Lemma 6. Let ay,...,a, be pairwise different positive integers, and K be an algebraically
closed field. The Zariski-closure X of the image of the map K — K", t — (t*,...,1%) is
a rational curve of degree A/d, where A := max;a; and d = ged(aq,. .., a,).

Proor.  Obviously X is a rational curve. Further, it is the closure of the image of the
map t — (¢4, ... 1%7/%) so we may suppose that d = 1. In addition, we may assume that
a; < @y < -+ < a,. The degree of X is the maximum of the numbers | X N H|, where H runs
over all hyperplanes of P"( K ) such that X N H is finite. (For this and other characterizations
of degree see, e.g., [3, Lecture 18].) Let zq,...,2, be the coordinates of P"(K'), and let H
be the zeroset of agzg + ...+ a,z,. Then

XNH= {(1:7"“:---:7’“) Qg —I—Zair‘“ = O}.
i=1

In particular, |X N H| < a,. We thus need to show that there is some H such that
|X N H| = a,. Suppose first that gcd(char K, a,) = 1, and let H be the zeroset of zy — z,.
Then X N H consists of the points (1:(**:---:(%"), where { runs over all the a,th roots
of unity. These points are all different, as gcd(ay,...,a,) = 1, s0 |X N H| = a,. Suppose
now that ged(char K, a,) # 1. Then there is some a; such that ged(char K,a;) = 1. The
polynomial X% 4+ X% + 1 has £ := a, different roots 7,..., 7, in K, as it is relatively prime
to its derivative. Since ged(aq,...,a,) = 1, each of these roots gives rise to a different point
(Lir:---i7)in X N H, where H is the zeroset of zo + z; + z,. O

The main theorem of this section is now as follows.

Theorem 7. Let [ := {0,a,...,a,} be interpolating with respect to ¥, where q is odd,

and suppose that a, divides ¢ — 1. If r(max;a;) < ¢ — 1 and v < \/q/4 + 23/16, then
1=10,1,2,...,r}.

Proor. We may suppose that r > 1. Let d := gcd(ay, ..., a,). Since [ is interpolating, the
cyclic code over F, with the zeroset {1,w,...,w?)is MDS, hence has minimum distance
r + 2. But this is not possible if d # 1, as this code contains the codeword z(?=1/d — 1
of weight 2 < r 4+ 2. So d = 1. Further, since [ is interpolating, S := {(1:a*:---:a%) |
a € FX}is a (¢ — 1)-arc. By Part (1) of Theorem 5 and the condition on r we deduce
that S is contained in a normal rational curve C, of P"(F,). On the other hand, S is
contained in the set of F,-rational points of the curve X := {(1:¢t%:---:t%) |t € KT}, K
being the algebraic closure of F,. By the Bézout Inequality and the last lemma we have
deg(X N C,) < r(max; a;) < ¢ — 1, hence X = C,, as C, is irreducible. We thus obtain
max; a; = r, which gives I = {0,1,...,r}. O

5 The Special Exponent Set {0,1,...,r — 1,m}

The result of Theorem 7 can be sharpened for the special exponent set {0,1,...,7r — 1,m}
in the following way.

Theorem 8. Let 7 be a positive integer less than \/q/4 + 7/16, and let r < m < q — 2.
Then {0,1,...,7 —1,m} is interpolating with respect to F, q odd, iff m =r or m = ¢ — 2.



The if-part being clear, we concentrate on the only-if-part.
Let
Srm i={(liaza® - 10" ™) | a € FY Y.

We need to show that under the above conditions on r the set S, ,, is an arc iff m = r or
m = q — 2. Obviously S, ,, is an arc iff K = K, ,, := S, ,, U{P} is, where P = (0:---:0:1).
Below we will show that K lies on a normal rational curve iff m = r or m = ¢ — 2. We
then use Theorem 5, Part (1), to deduce that if r < ,/q/4 4 7/16, then K lies on a normal
rational curve, i.e., m = r or m = q — 2.

For the rest of this section we thus concentrate on showing that K, ,, does not lie on a
normal rational curve if r < m < ¢ — 2. For this we need some notation and some auxiliary
results.

Let C, be a normal rational curve of P"(F,) given by

Cr = {(go(to,t1): -1 g:(t0, 1)) | to, 11 € Fy }

Let 0; denote the differential operator 0/97; of the bivariate polynomial ring F,[7y,T}].
The line £ through the points R := (go(to,t1): -+ -1 g-(t0,11)) and 9o(go(to,t1): - -2 g-(To, 1))
is called the tangent line to C, at R. Let z,...,z, be the coordinates of P"(F,) and
let P"=}(F,) = II be the hyperplane given by z, = 0. The projection of C, from P
onto II together with the point R* := {zr N1I is a normal rational curve C} of P"~!(F,),
see [6, Lemma 7]. Now let C,. be a normal rational curve containing K. Then C} =
{(1:tz--:771:0) | t € F}}, since the projection of K is clearly contained in C} and this
normal rational curve of II is uniquely determined by r 4+ 2 < ¢ of its point by Theorem 4,
Part (v).

Proposition 9. Let C' be a normal rational curve of P"(F,) containing P = (0:---:0:1).
Suppose that the projection of C' from P onto 11 is the curve C* = {(1:t:---:t"71:0) | t €
]F‘;’} Then C' is one of the following curves:

— (Type 0o) C = {(1:t: 4% --2t"" o p(t)) | t € FF} for some p € F,[X] with deg(u) = 7.

— (Type B, B € F,) C = {(t:4(t+ B+ H(t+ By n(1)) | t € B} for some 1 € F,[X]
with deg(n) < r and n(0) # 0.

Moreover, C' is of type v, v € ]F;, iff the tangent line to C' at P intersects C* at the point
corresponding to t = .

PrOOF. Suppose that the tangent line to C' at P intersects C* in the point (0:---:0:1:0).
For every t € F, there exists 7 € F, such that (1:¢:---:¢""':7) € C. Hence, C =
{(Letet®- o7 tp(t)) | t € F,} U{P}, where p is a polynomial of degree < ¢ — 1. As
C'is an arc, deg(p) > r. Hence, C' = {(1:#:#%:---:"" " p(t)) | t € FF}. Since C' is normal,
deg(p) = 7.

Suppose now that the tangent line intersects C* at (1: 3: 8% - --: §771:0), for some € F,.
Notice that

C*={(r""(A+Br)r 2+ )2 (14 pr)~10) | T € F;—}



The tangent line at P intersects C* in the point corresponding to 7 = oo. Hence,
C={(r""" (14 pr)r o (14 Br)~hp(r)) | 7 € F,} U{PY,

for some polynomial p € F,[X]. As before, we obtain deg(p) = r, and hence C' = {(7: (1 +
Br)rr=2ie--i (14 Br)hp(r)) | 7 € FF}. Thus

c = { 1.12;@”. :(1+ﬂ/t)’"‘1:,u(1/t))‘tE]E“;‘}U{P}U{(O:O:---:l:u(o))}
= {( @+ B (0 By (1)) ‘teIF‘X}U{P}U{(0:0:---:1:,u(0))}
= {0+ Bt (04 By (1) [t € R,

where n(X) = X"u(1/X) is the reversal of u. Note that 7(0) # 0 as deg(p) = r, and that
deg(n) < r. O

The last step in the proof of Theorem 8 is the following result.

Proposition 10. Suppose that r < m < ¢ — 2. Then the set K, ,, does not lie on a normal
rational curve.

Proor.  Suppose that K = K, ,,, lies on a normal rational curve C'. By Proposition 9, C'
is of type v for some v € Ff.

Suppose first that v = oc. Then there exists a polynomial y of degree r over F, such
that C' = {(1:¢:--:¢""":pu(t)) | t € Ff}. As K lies on C, we deduce that the polynomial
X™ — (X)) has ¢ — 1 different zeros over F,, hence is zero. But this implies that m =r, a
contradiction.

Suppose now that v = 3. Then there exists a polynomial n over F, of degree < r, and
for all 7 € F) there exists ¢ € F) such that

(Lireeeim™ ™) = (L (84 B):- - (L + B) " Hen(t) /).
Hence, 7 = t+ @ and (t+3)™ = n(t)/tfor all £ € FX. Thus, the polynomial X (X +3)™—n(X)

has ¢ — 1 zeros in F,. Since deg(n) < r < m, this polynomial is not zero, and is of degree
m + 1. Hence, m + 1 > ¢ — 1, which is a contradiction tom < ¢ — 2. O

6 Nontrivial Interpolating Exponent Sets for r;, ¢ Even

In this section we will prove that for even ¢ > 8 the exponent set {0,1,...,¢ — 5,¢ — 3}
is interpolating with respect to Fy. This also shows that the cyclic code with set of roots
{1l,w,...,w?™ 5 w3} w a generator of FY, is MDS even though it is not equivalent to a
Reed-Solomon code. More strongly, we will prove that the set

K,:={(l:ia:--:a"":a?) |a e FF \ {0}}

is a complete g-arc in P"*(F,), i.e., it is a g-arc which cannot be extended to a ¢+ 1-arc. We
remark that Storme and Thas [13] have determined all values for k for which there exists a
complete k-arc in P"(F,), ¢ —2>r>q—/q—11/4.



Theorem 11. For q > 8 a power of two the set K, is a complete q-arc in P7=*(F,).

Proor.  We first prove that K := K, is a ¢g-arc. Let P := (0:0:---:0:1). K is a ¢-
arc iff K’ := K \ {P} is. Suppose that there exist pairwise different ay,...,a,_5 € FY
such that the corresponding points in K’ lie on a hyperplane, i.e., such that the matrix
M = (045), ;5 == ol fori=1,...,q—3,j = 0,...,¢—5,and ay3; = a]q»_?’, is singular.
Let V denote the Vandermonde matrix V = (af),i=1,...,¢—-3,7=0,...,¢—4. Then

0=detM/detV =a;+---+ a,_3, which is a contradiction, as the sum of all the elements
of F, is zero. Hence, K’ and K are arcs.

Let us now show that K is complete. Suppose not, and assume that there is a point
I':= (70:71: -1 74-5:Yg—a) such that K" := KU{I'} is a (¢ + 1)-arc in P?"*F,). The dual
of K" is a (¢ + 1)-arc in P*(F,), which by a result of Casse and Glynn [2] is projectively
equivalent to {P; |t € F}}, where P, := (1:t:t%: t¢%), 6 being an Fy-automorphism of F,.
Hence, there exists j € {1,...,¢+ 1} such that

1 5 By BB

T S
(4 (4
oy Q5 aq_l Y1 0 1 ﬁj—l ji—1 ﬁj—lﬁj—l
. . .. : . . (1) g 06 ; 0 :O(Q_S)X4, (2)
af_z ag_z ag:z Yg-5 0 : :Hl :Hl :JH i+t
af ™ ay” asy Ygea 1 s s g
q q g

L g B BB

where F, = {a;1,...,a,-1,0} = {B4,...,5,}. Considering the (1, 1)-component of the prod-
uct in (2) we see that j # ¢. Suppose that j < ¢. Considering the (1,1)-component
we see that ¢ — 2 + vy = 0, hence 7o = 0. Considering the (1,2)-component we obtain
Yi<qizi P = 0, which is a contradiction, since this yields 8, + 8; = 0, i.e., 3, = ;. Sup-
pose now that j = ¢+ 1. Considering the (j,1)-component of (2), j = 1,...,q — 4, we
obtain Y77/ ol 4 vj—1 = 0, which yields v = 1, 74 = --- = 7,5 = 0. Considering the
(¢ — 3,1)-component gives S/ a!™® 4 7,_4, = 0, hence 7,4 = 0. So, T' = (1:0:---:0).
But the following argument shows that K U {I'} is not an arc, and this gives us the desired
contradiction: choose pairwise different a;,...,a,_4 € Fy which sum up to zero, and let V'
be the Vandermonde determinant of the «;. Then

1 1 cee 1 1
o oy e agg 0
det [ Do :<Zai)<Hai)V:0.
al™ al™ . ag:Z 0 i i
af™ o™ alZ] 0

This completes the proof. O
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