A Geometric Proof of a Formula
for the Number of Young
Tableaux
of a Given Shape

Michael Luby
International Computer Science Institute, Berkeley, CA
and University of California at Berkeley *

TR-96-008

Abstract

This paper contains a short proof of a formula by Frame, Robinson, and Thrall
[1] which counts the number of Young tableaux of a given shape. The proof is based
on a simple but novel geometric way of expressing the area of a Ferrers diagram.
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1 Introduction

Let A = {Ay > Ay--- > A, } be a partition of n. The Ferrers diagram of X is an array
of cells indexed by pairs (¢,7) with 1 <7 < m, 1 < j < A;.. A Young tableau of shape A
(sometimes called a standard tableau) is an arrangement of the integers 1,2,...,n in the
cells of the Ferrers diagram of A such that all rows and columns form increasing sequences.
The total number of Young tableaux of shape A will be denoted f(\).

For each cell (i, ) define the hook H; ; to be the collection of cells (a,b) such that @ =1
and b > jor a > 1 and b = j. Define the hook length h; ; to be the number of cells in H; ;.
(See Figure 1.)
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Figure 1: A Ferrers diagram with the hook lengths filled in

Theorem 1 (Frame-Robinson-Thrall [1]). If X is a partition of n, then

n!
[Thi;’

where the product is over all cells in the Ferrers diagram of A.

fA) =

The first steps are the same as those found in [7] and [3] (see [5].) Define a function

2 i AN > A > > A,
F(/\):{th A= drs e (1)

0 otherwise.

In any standard tableau, the integer n must appear at a “corner”, i.e., a cell which is
at the end of some row and, simultaneously, at the end of a column. Removing this cell
leaves a Young tableau of smaller shape. Thus the Frame-Robinson-Thrall formula follows
by induction if it can be shown that

PA) =Y F(A, A2 Aact, Ao — L A, - A). (2)



(Note that the summation is, in effect, over all corners, since terms for which A\y41 > Ay —1
are zero.)

For each corner a in the diagram, let I, be the set of cells in the Ferrers diagram
directly above ¢ and directly to the left of @, and define

hy

Gu(\) = 11

bel,

From equations (1), (2), and (3), the formula follows if it can be shown that
n=2> Gu(N), (4)

where the sum is over all corners a. Note that this can be interpreted as showing that
the area n of the Ferrers diagram is equal to the sum over all corners a of G,(\). This is
exactly what is proved in the next section.

2 A Geometric Proof of the Formula

Let ¢ be a positive integer and let a = {ay,a,...,a,} and 3 = {f1,B2,...,8,} be sets
of ¢ positive reals each. The g¢-step staircase of shape (a,3) is an area A(a, ) in the
plane consisting of (qgl) adjacent non-overlapping rectangles indexed by pairs (7, ) with
1 <i<qgand 1 < j<qg—-1+4+1. Rectangle R;; has height a;, width 3;, and area
i = a; - ;. The area of A(e,f)is a(a, 3) =3, ;7 ;. (See Figure 2.)
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Figure 2: A staircase with 4 steps



Let 21, 29, ..., 22441 be the locations of the “turning points” along the boundary of the
staircase, indexed consecutively from the upper right-hand point to the bottom left-hand
point. For all : = 1,2,...,q, define

[11]z2i — z2j-1]|
Gi(a,pB) = J 5
0D = gt = 2] )
where ||-|| is the L.,-norm, and where the sum in the numeratoris overall j = 1,2,...,¢+1
and the sum in the denominator is over all j = 1,2,...,7— 1,7+ 1,...,q. In words, the

numerator of G;(a, 3) is the product of the Manhattan distances from point z3; to all odd
indexed turning points, and the denominator of G;(a, ) is the product of the Manhattan
distances from zg; to all other even indexed turning points.
When we have an indexed set rq,... of values, we use the shorthand r[; ; to indicate
i:i k. Similarly, when we have an indexed set Ry, ... of sets, we use the shorthand R|;

to indicate Uj_.Rg. The main theorem of this section is the following.

Theorem 2 If (a,f) are positive reals that define a q-step staircase with area a(a, [3),

then a(a,ﬁ) = G[l,q](avﬁ)'

PROOVF: We first make the following simple but crucial observation, referring to Figure 3.
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Figure 3: The basic geometric idea

Note that u = zy’, v = z'y, and w = zy. We can express w in two equivalent ways as
follows.




Let #1,...,%, be a set of ¢ indeterminates. We associate a polynomial p;;(?) as
follows with each rectangle R; ; of the staircase. For all 1 =1,2,...,¢, let

Pig—i+1(V) = @i * By—ig1 - V. (8)

For all (7,7) such that 2 <i+4j < ¢+ 1, let

a;
ps(¥) = — 0
(%) Uit1,9—j+1] + Blj+1,9—i41] i+1a-5+115(9) ®)

B

Afig1,g—j+1] T ﬁ[y’+1,q—z’+1]

+

: Pi,[j+1,q—i+1](¢)-

From these definitions and the equivalence of equations (6) and (7) it is not hard to see
that for all (7, 7),

pi;(L1,....1)=a;-3; =1 ;.

Let

P = (). (10)

Then

a(a,ﬁ):Zrm =p(1,1,...,1). (11)

Let C; be the coefficient of ; in p(10). We show that C; = G;(a, §), concluding the proof.



For all (k,¢) such that 1 <k <iand 1 <{<qg—1i+1,let

Z9i — Z94_
Gf,f: H“ 21 27 1||7 (12)
[T1lz2i = 22l
where the sum in the numerator is over all j = k,...,¢ — £ + 1 and the sum in the

denominator is over all j = k,...,2— 1,7+ 1,...,g — £+ 1. Note that this is similar to
the definition of G;(«, ) in equation (5), except it is restricted to the substaircase that
lies below and to the right of rectangle Rj,. For all other (k,{) where either £ > i or
L>qg—1+1,let Gf’é = 0. Define C’ZM to be the coefficient of #; in py ¢(70). It is clear for

all (k,¢) such that either £ >4 or £ > ¢— i+ 1 that Cf’g = Gf’g = 0. Furthermore, for all

1=1,...,q, C;’q_”l = Gz:’q_H'l = o; * f4—i+1. We prove by induction on the number of
rectangles in the staircase that

and from this it immediately follows that C; = cltiba=itt] _ o1t Gi(a, ). Consider

7 7

(k. 0) # (i,q— 1+ 1) such that £ <7 and £ < ¢ — i+ 1. From equation (9),

Cf’g _ Qe . Cl[kﬁ—l,i],f (14)
||Z2(q—£+1) — Zok||

+ o Lcfttam (15)
||Z2(q—£+1) — 2k |

If £ = 7 then, because ittt 0,

7

Cilba=i1] _ (1 n B ) LG — it (16)

’ ||22(q—£+1) — 24| ! !

Similarly, if £ = ¢ — ¢ + 1 then, because Cf’[q_iH’q_iH] =0,

C[k,i],q—i-}—l — <1 + L) . Gk+1’q_i+1 = Gf,q—i%-l‘ (17)

' |22 — zok]| '

When k <vand £ < q¢—1+1,

Cz[k+1,i],£ _ Cl[k+17i]7[£7q_i+1] _ Cl[k“’i]’[”l’q"”l]
LR e Be e st (18)
‘ ‘ ||Z2(q—£+1) — 224 ‘
Similarly,
okl a=i+1] _ Ok Neiastasy (19)
' 220 — 22l



Then, since ||2a(g—r41) — 22kl| = [|22(g—t41) — 22:|| + |[22: — 22¢|[, equations (14), (15),
(18), and (19) show that

Cl[k,i],[ﬁ,q—i-l—l] _ Cjc,ﬁ_}_Cl[k-}-l,i],ﬁ_I_C;'c,[ﬁ-}—l,q—i-l—l] _I_Cl[k+1,i],[£+1,q—i+1]
. Be ag k1,041
= |1+ N+ ) - G
|[22(g—t41) — 22| ||22s — zaz||
= G¥. (20)
Finally, equations (16), (17), and (20) prove the theorem. |

We observe that Theorem 2 can be used to directly prove the Frame-Thrall-Robinson
formula. Let A be a partition of n as before. The Ferrers diagram of A gives rise to a
staircase (a, ) with area n in an obvious way. Furthermore, it is not hard to verify that if
corner cell a in the Ferrer diagram is the i** corner point numbering from the upper right-
hand corner to the bottom left-hand corner, then G,(\) = Gj(e,3). Thus, Theorem 2
directly proves equation (4), and in turn this proves the formula.

3 A Probabilistic Viewpoint

We can use the results in the previous section to justify the “parachuting” algorithm
of Greene-Nijenhuis-Wilf [3] for choosing a random Young tableau of a given shape. We
explain the process with respect to a staircase of shape («, 3) with area a(a, 3), and retain
the notation of the previous section. Consider the following random process:

Choose an initial random point ¢ in the staircase uniformly at random.
Repeat until ¢ is in a corner rectangle R; ,_;4; for some 1.
Suppose that the current point ¢ is in rectangle R;;.
Choose t uniformly from R; ;11 o—iy1)U Big1,g— 4115
Starting at some point ¢ in R; ;, the random choice of a point in the area directly to the
right or below R;; corresponds to expressing the area of R;; according to equation (6).
From the other equivalent way of expressing the area described in equation (7), and from
(8),(9), (10), (11), and from the proof of Theorem 2 that shows that the coefficient of ¥;

in the polynomial p(v) is Gi(a, ) it follows that this random process ends in rectangle

R; ,—i+1 with probability G;(a, 8)/a(a, 3).



4 Historical Notes

The geometric proof of the formula described in Section 2 is based on [6], an unpublished
manuscript written over 20 years ago by the author while still an undergraduate at M.I.T.
as a research paper for a graduate level Combinatorics course taught by Richard Stanley.
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