


INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. @ Suite 600 o Berkeley, California 94704-1198 e (510) 643-9153 e FAX (510) 643-768

Ramification and Causality

Michael Thielscher
TR-96-003

January 1996

Abstract

The ramification problem in the context of commonsense reasoning about actions and
change names the challenge to accommodate actions whose execution causes indirect
effects. Not being part of the respective action specification, such effects are consequences
of general laws describing dependencies between components of the world description. We
present a general approach to this problem which incorporates causality, formalized by
directed relations between two single effects stating that, under specific circumstances,
the occurrence of the first causes the second. Moreover, necessity of exploiting causal
information in this way or a similar is argued by elaborating the limitations of common
paradigms employed to handle ramifications, namely, the principle of categorization and
the policy of minimal change. Our abstract solution is exemplarily integrated into a
specific calculus based on the logic programming paradigm.

* On leave from FG Intellektik, TH Darmstadt



i



1 Introduction

The ability to reason about causality, which involves predicting the effects of own actions and
explaining observed phenomena, serves humans as basis for understanding the world to an extent
sufficient to survive and for acting intelligently in their habitat. Formal approaches to model
this ability have therefore a long tradition in philosophy and, especially, AI, where this research
area was initiated by the paper [McCarthy, 1959], which claimed reasoning about actions play
a fundamental role in common sense.

Drawing conclusions about dynamically changing environments is grounded on formal speci-
fications of what effects are caused by the execution of a particular action. Since it is obviously
impossible to provide an exhaustive description, which defines the result of executing an action
in each possible state of the world, action specifications are to be restricted to the part of the
world which they possibly affect—while the rest of the world is subject to the law of persistence,
i.e., is assumed to remain stable. But, even this focusing on what effects an action may possibly
cause becomes intractable in complex domains if one tries to put all effects into a single, complete
specification. For actions often only at first glance appear to admit a most simple description
since their execution causes merely a small amount of direct changes, which, however, may in
turn initiate a long chain of indirect effects hard to entirely oversee. For instance, consider the
action of toggling a switch, which in the first place causes nothing but a change of the switch’s
position. However, the switch is probably part of an electric circuit so that, say, some light
bulb is turned off as side effect, which in turn may cause someone to hurt himself in a suddenly
darkened room by running against a chair that, as a consequence, falls into a television set whose
implosion activates the fire alarm and so on and so forth.!

The task of designing a framework to formalize action scenarios where action specifications are
not assumed to completely describe all possible effects, constitutes the ramification problem.?
A satisfactory solution to this problem requires successful treatment of two major issues:

First, an appropriately weakened version of the aforementioned law of persistence is needed
which applies only to those parts of the world description that are not affected as regards direct
effects nor regarding indirect effects. As a solution to this problem, in this article we suggest to
keep the law of persistence as it stands but to consider the world description obtained through
its application merely as intermediate result. Indirect effects are then accommodated by further
investigation until an overall satisfactory successor state obtains. This method perfectly accounts
for both rigorous persistence of unaffected parts on the one hand, which avoids uncaused changes,
and arbitrarily complex chains of indirect effects on the other hand.

Second, indirect effects typically are consequences of additional, general knowledge of domain-
specific dependencies between world description components—but not all effects suggested from
this perspective are desirable from the standpoint of causality. As an example, consider the

1 A crucial question in this context concerns the distinction between indirect effects occurring during a single
world’s state transition step and those which deserve separate state transitions (also called delayed effects).
E.g., the above may not only be described as “the fire alarm is activated in the successor state after having
toggled the switch,” but also as, say, “the chair is falling in the successor state (and presumably hits the
television set during the next state transition).” As a reasonable, albeit informal, guidance we suggest a
single state transition should summarize what happens until someone, e.g. the reasoning agent himself, has
the possibility to intervene by acting again (stopping the chair from falling, for instance).

2 The naming was suggested in [Ginsberg and Smith, 1988b] being inspired by [Finger, 1987]. The latter,
however, was not devoted to the ramification problem in exactly the above sense, contrary to what is of-
ten claimed; rather, this thesis describes how to exploit logical consequences (called ramifications) of goal
specifications in planning problems, with the aim to restrict search space.



Sw1 SwW2

< light

Figure 1: An electric circuit consisting of a battery, two switches and a light bulb, which is on if and
only if both switches are on. The respective state of each of the three dynamic components involved is
described by a unique propositional constant, where negation is denoted by a bar on top of the respective
symbol.

simple electric circuit depicted in Figure 1, which consists of a battery, two switches and a light
bulb. The obvious connection between these components may formally be described by the
logic expression swi A swqo = light , i.e., the light is on if and only if both switches are on. Now,
if we toggle the first switch in the particular state displayed, where both sw; and light are
false while swgy is true, then, aside from the direct effect of swy becoming true, we also expect
that the light bulb turns on. This indirect effect is inspired by the formula just mentioned,
which includes the implication swy A swq D light . However, despite this being the intuitively
expected result, the mere knowledge of the connection between the switches and the bulb is not
sufficient: Note that the above formula, swy A swq = light , logically also entails the implication
swy A light D 5w , which suggests that instead of the light being turned on, the indirect effect
of toggling the first switch is that the second one jumps its position—a result which contradicts
our intuition.

The reason for the inadequacy of merely taking into account formalizations of dependencies as
pure logical formulas—usually called domain constraints—is that these formulas do not include
causal information. More precisely, swy Alight D 5wy is clearly true in any state and, therefore,
contains evidential information, i.e., if one observes swy be true and light be false then it is safe
to conclude swy must be false. But, exploiting this implication for reasoning about causality is
misleading.?

As a solution to the second problem, we propose to incorporate causality in form of so-called
causal relationships, which formalize statements like

A change of 5wy to swy causes a change of light to light , provided swg is true.

We intend to, after having computed the direct effects of executing an action in a particular
state of the world, apply suitable causal relationships, one by one, to accommodate indirect
effects until a satisfactory result obtains. Employing a collection of single causal relationships,
each of which only relates two particular effects, accounts for both several indirect effects caused
by a direct one and also indirect effects in turn causing further indirect effects. To illustrate the
latter, consider the relationship

3 See [Pearl, 1988a] for a general discussion on the different nature of cansal compared to evidential implications.



A change of light to light causes a change of light-detector to light-detector ,
provided detector-activated is true.

in addition to the one above. Since we do not expect the designer of a formal domain specification
to create a complete set of suitable causal relationships, we will moreover present an automated
procedure to extract them from given domain constraints plus some general information on which
components of a state description—usually called fluents—may possibly influence other fluents.
Causal relationships and their automatic generation are formally introduced in Section 3.

Yet the purpose of this article is not only to suggest incorporating causal information by means
of our causal relationships but also to argue this, or employing similar concepts, be inevitable
when trying to cope with the ramification problem in general. To this end, an entire section, 5,
will be devoted to illustrating the limited expressiveness of existing paradigms aiming at handling
ramifications, namely, the principle of categorization and the policy of minimal change. Roughly,
categorization-based approaches distinguish fluents that are more likely to change than other
fluents (e.g., a change of light is considered more likely than a change of swy ). While this relies
on the existence of an appropriate categorization, we will illustrate that some fluents may strive
against falling into a single category (Subsection 5.1). Even more common is the assumption of
minimal change, which amounts to rejecting a resulting state if, informally spoken, it is obtained
by changing the values of strictly more fluents than necessary. While we will offer a formal proof
that our method captures all reasonable resulting states with minimal distance to the original
state (Section 4), in Subsection 5.2 we will illustrate that we are also able to find non-minimal
resulting states, which are perfectly well conceivable if only all changes are reasonable from the
standpoint of causality. We have intentionally omitted concrete references to approaches based
on either paradigm so far since a detailed comparison with related work can be found in the
discussion, Section 7.

In the second part of the paper, Section 6, we integrate the concept of causal relationships
into a particular action calculus which is based on reifying entire state descriptions and which
employs the logic programming paradigm [Ho6lldobler and Schneeberger, 1990; Holldobler and
Thielscher, 1995]. While for sake of simplicity states are described via a set of propositional
constants in the first part (see Section 2), the calculus itself employs more complex a notion of
fluent, which comes along with fluent formulas involving quantifications. The extended calculus
will be proved sound and complete wrt the formal semantics induced by causal relationships and
their application.

2 A Basic Theory of Actions

In the first part of the paper, we employ a most elementary theory of actions and change, which
enables us to stress solely on the problem of domain constraints and ramifications. The basic
entities of action scenarios are states, each of which is a snapshot of the underlying dynamic
system, i.e., the part of the world being modeled, at a particular instant of time. Formally, a
state shall be described by assigning truth-values to a fixed set of propositional constants.

Definition 1 Let F be a finite set of symbols called fluent names. A fluent literal is either
a fluent name f € F or its negation, denoted by f. A set of fluent literals is inconsistent iff it
contains some f € F along with f. A state is a maximal consistent set of fluent literals. =

Note that formally each combination of truth-values denotes a state, some of which, however,
might be considered impossible due to domain-specific dependencies between some fluents (see



below). Throughout the paper we assume the following notational conventions: If ¢ is a fluent
literal then by || we denote its affirmative component, i.e, |f| = |f| = f where f € F. This
notation extends to sets of fluent literals S as follows: |S|= {|{|: £ € S};e.g., for each state S
we have |S| = F. Furthermore, if ¢ is a negative fluent literal then ¢ should be interpreted as
|¢| (in other words, f = f). Finally, if S is a set of fluent literals then by S we denote the
set {€: €€ S};eg., F contains all negative fluent literals given a set F of fluent names.

Example 1 To model the Electric Circuit example depicted in Figure 1, we use these three
fluents: F = {swy, swq,light} to denote the state of the two switches and the light bulb,
respectively. The current state displayed in Figure 1 is then represented by {swr, sws, light} .
[

Given an underlying set of fluent names, these can be considered atoms for constructing
(propositional) formulas, using the standard logical connectives, to allow for statements about
states. Truth and falsity, respectively, of such formulas wrt a particular state S are based on
defining a literal £ to be true if and only if £ € 5.

Definition 2 Let F be a set of fluent names. The set of fluent formulas is inductively defined
as follows: Each fluent literal in FUF and T (true) and L (false) are fluent formulas, and
if ¥ and G are fluent formulas so are FAG, FVG, FOG,and F=G 4

Let S be a state and F a fluent formula, then the notion of F being true in 5§, written
S |= F, is inductively defined as follows:

1. SET and S £ L;

S |=Liff £ €85, for each fluent literal £;

SEFANGIiff SEF and S =G

SEFVGIiff SEF or SEG,;

SEFOGIf SEF or SE=G;

SEF=Giff SE=F and SEG,or SEF and S |EG.

S A

Fluent formulas provide means to distinguish states that cannot occur due to specific depen-
dencies between particular fluents. Formulas which have to be satisfied in all states that are
conceivable in a domain are also called domain constraints.

Example 1 (continued) Given the fluent names of Example 1, we can employ fluent formula
swi A swy = light as domain constraint in order to model the intended relation between the two
switches and the light bulb. This formula holds, for instance, in the state depicted in Figure 1,
{3wT, swo, light} , but is violated in, say, {swy,swy, light} . [

The second basic entity in frameworks to reason about dynamic environments are actions,
whose execution causes state transitions. Again, since stress shall lie on the ramification problem
rather than on sophisticated methods of specifying the direct effects of actions, we employ a fairly
simple, STRIPS-style [Fikes and Nilsson, 1971; Lifschitz, 1986] notion of action specification. Each
action description consists of

* As negation can be expressed through negative literals, we omit the basic connective “

- ”—this is just for
sake of readability as it avoids too many different forms of negation, especially in view of Section 6, where

logic programs including the principle of negation-as-failure are used.

4



o A condition C', which is a set of fluent literals, all of which must be contained in a state
in case the action description is intended to be applied.

o A (direct) effect E, also which is a set of fluent literals, all of which shall hold in the
resulting state after having applied the action description.

For simplicity, we assume |C| = |E| (i.e., condition and effect refer to the very same set of fluent
names), which enables us to obtain the state resulting from the direct effect by simply removing
set €' from the state at hand and adding set FE to it. This assumption does not impose
a severe restriction of expressiveness as several descriptions for a single action are supported
(e.g., specifying the action “toggle the first switch” in our Electric Circuit scenario requires a
description for both sw; being false and true in the current state—see below). Yet, we assume
at most one of the available action descriptions for a particular action be applicable wrt any
particular state, for we want to avoid non-deterministic behavior regarding direct effects.

Definition 3 Let F be a set of fluent names. An action description is a triple (C,a, F)
where C', called condition, and F, called effect, are consistent sets of fluent literals; and a,
called action name, is a symbol not occurring in F . It is assumed that |C| = |F].

If S is a state then an action description a = (C,a, E) is applicable in S iff C C S . The
application of a to S yields (S\C)U FE. Any set A of action descriptions is assumed to
contain at most one applicable description for each action name @ and state 5. ]

Note that S being a state, C' and E being consistent, and |C| = |E| guarantee (S\C)UFE to
be a state again—mnot necessarily, however, one which is possible according to domain constraints.

Example 1 (continued) Our Electric Circuit domain allows for two actions, namely, toggling
either switch, which is why we consider the action names toggle; and toggle, , respectively,
along with the four action descriptions

({sw1}, toggle, , {sw:}) ({sw3}, toggley , {sws})
({sw1}, toggle, , {5wi}) ({sws}, toggle, , {5wz})

(1)

When executing, say, toggle; in state S = {Swy, swq, light} , the first of these descriptions is
applicable due to {swy} C S; its application yields

(S\{FBT)) U {sw1} = {swy, sz, ight}

This example illustrates that the state obtained via applying an action description may violate
the underlying domain constraint(s) since only direct effects have been specified. In the next
section, we develop a method to further modify such a preliminarily resulting, impossible state
in order to account for additional, indirect effects of having executed an action.

3 Causal Relationships

The ramification problem arises as soon as it does not suffice to compute the direct effects of
actions only. The resulting collection of fluent literals may violate underlying domain con-
straints, which in turn give rise to additional, indirect effects. Theoretically, we could of



course compile all conceivable indirect effects into action descriptions by exploiting the fact
that an arbitrary number of different descriptions for a single action can be formulated. For
instance, replacing ({3wy}, toggle,, {swi}) by both ({3Wt, swoq, light}, toggle, , { sw1, swy, light})
and ({swy, 5wy, light}, toggle,, {sw;, 5wy, light}) helps to obtain the intended result when ap-
plying toggle; to state {swr, swoq, light}, viz {swy, sws, light} . However, this procedure bears
two major disadvantages demonstrating its inadequacy. First, generally an enormous number
of action descriptions is needed to account for every possible combination of indirect effects.
Consider, for example, a model of an electric circuit where a distinguished switch is involved
in » domain constraints each of which contains a switch-bulb pair in a similar fashion as in
Example 1. Defining the effect of toggling the separate switch solely by means of action de-
scriptions would then require 271 different descriptions, one for each possible combination of
truth-values assigned to the switch being operated and the other n switches. Second, adding a
new domain constraint may require, in the worst case, a re-definition of the entire set of action
descriptions used before.

3.1 Applying Causal Relationships

As a consequence of the above observation, we keep a given set of action descriptions which
concentrates on direct effects only and regard the resulting collection of fluent literals, obtained
after having applied such a description, merely as an intermediate state, which requires addi-
tional computation accounting for possible indirect effects. A single indirect effect is obtained
according to a directed causal relation between specific fluents. For instance, having as direct
effect a change of the first switch into its lower position in the state depicted in Figure 1, this is
regarded as additionally causing the light bulb to change its state also, for the second switch is
on. We will formalize such causal relationships by expressions like

swy causes light if swg (2)

Formally, such expressions operate on state-effect pairs (5, F') where S is the current collec-
tion of fluent literals and E contains all (direct or indirect) effects that have been considered
so far. E.g., let S = {swy, sws, light} be the state obtained after having computed the di-
rect effect of toggle, , as described in the preceding section, then F = {sw;}. The causal
relationship formalized in (2) gives rise to indirect effect light , which supersedes light in 5.
Moreover, this new effect is added to F; altogether, this results in the new state-effect pair
({sw1, swy, light }, {sw1, light}) .

The reason for employing and manipulating the second component, F, is that identical
intermediate states S can be reached by different effects F, each of which may require a
different, sometimes opposite treatment. Consider, as an example, two switches, swy and sws
being mechanically connected (say, through a spring) such that they cannot be simultaneously
on. The corresponding domain constraint, swy V 5wy , gives rise to two causal relationships, viz

swy causes Swy if T (3)

swy causes swy if T (4)

Now, toggling the first switch in state {wry,swy} yields, following action descriptions (1),
intermediate state {swq, swy}. But the very same intermediate state is also obtained by toggling
the second switch in state {swq,5wz}. Yet the intended outcomes differ considerably: In the



first case, the final result should be {swy,sw3}, while {swy,swy} is expected in the second.
This distinction can only be achieved by referring to the differing effects, Fy = {sw;} and
FEq = {swy}. The former enables application only of (3) to the intermediate result, {swq,sws},
the latter only of (4), which leads to the respective desired successor state.’

The formal definition of causal relationships and their application is as follows:

Definition 4 Let F be a set of fluent names. A causal relationship is an expression of the
form e causes r if ® where @ is a fluent formula based on F and e and r are fluent literals.
Let (5, F) be a pair consisting of a state S and a set of fluent literals F, then a causal
relationship e causes r if ® is applicable to (5, F) iff S |= ®AeAT and e € £ . Its application
yields the pair ((S\{7HU{r}, FU{r}).
Given a set R of causal relationships, by (5, F) ~x (5, E’) we denote the existence of a
causal relationship in R whose application to (5, F) yields (5, E’). [

In words, a causal relationship is applicable if the associated condition @ holds, the particular
indirect effect 7 is currently false, and its cause e has been observed and is currently true.®

Now, assume we are given a suitable set of causal relationships and have obtained a set of
fluent literals S after having computed the direct effects of an action via Definition 3. State S
might violate the underlying domain constraints. In order to obtain a satisfactory resulting state,
we then compute additional, indirect effects by (non-deterministically) selecting and (serially)
applying causal relationships. If this procedure eventually results in a state satisfying the domain
constraints then such a state is considered successor state:”

Definition 5 Let F be a set of fluent names, A a set of action descriptions, D a set
of domain constraints, and R a set of causal relationships. Furthermore, let S be a state
satisfying P and @ an action name. If there exists an applicable (wrt S5 ) action description
(C,a, E) e A then astate 5" is successor state iff

1. (S\CYUE,E) Sg (8, E') for some E' and
2. 5 satisfies D.

Example 1 (continued) An adequate set of causal relationships for our Electric Circuit
domain consists in the following four elements:

swy causes light if swy swy causes light if T (5)

swy causes light if swq swy causes light if T

In words, if either switch is switched on then this causes the light bulb to turn on provided
the other switch is already on. Conversely, switching either switch off results in a dark bulb
regardless of the other switch’s position.

5 Other examples that require taking into account how an intermediate state was obtained can be found in
Subsections 3.3 and 5.3.

® The reason for the very last stipulation, formally expressed by S |= e in addition to e € £, is that some other
indirect effect might occur that causes a withdrawal of the previously computed e! After having withdrawn
this effect, it is of course no longer available as cause for other effects. Such situations are perfectly reasonable,
as will be shown by Example 4 in Section 5.

" We adopt a standard notation in writing (S, E) N, (S', E') to indicate the existence of a (possibly empty)
sequence of causal relationships in R whose successive application to (S, F) yields (S’, E').



Applying the first action description in (1) to the state depicted in Figure 1, {5wy, swo, light} ,
yields the pair ({swy, swy, light}, {sw;}), to which the first of the given causal relationships is
applicable, resulting in ({sw1, swy, light}, {sw1, light}) . The first component of this pair satisfies
the underlying domain constraint, swy A swo = light ; hence, it is a successor state. Moreover,
it is the only successor state according to Definition 5 as no other causal relationship in (5) is
applicable. |

While the application ordering might be crucial in so far as a different ordering may allow
for more causal relationships be applied (or less, respectively; see Subsection 5.2 for a key
example), we can prove the following important result of order independence in case a unique
set of relationships is applied:

Proposition 6 Let F be a set of fluent names, S a state, and FE a set of fluent literals.
Furthermore, let py,...,p, be a sequence of causal relationships (n > 0 ) applicable to (S5, F)
yielding

(S,E) & (S1,E) & ... & (8,,E,) (6)

Then, for any permutation pry,...,Px(n) which is also applicable to (S, E), ie.,

(5, 8) X (85,8 TR (s, B)) (7)
we have S, = S! and E, = E/ .
Proof: Since the indirect effects , r;, of the applied causal relationships p; =

e; causes r; if ®; (1 < i < n) are monotonically added to the second compo-
nent, F , we obviously have F, = E! .

To show S, = 5/, let, for each f € F,
Ry = {ejcauses r; if &; : |ry|=f, 1 <i<n}

be the set of all relationships which change the truth-value of f in the course of (6)
or (7), respectively. Since applying a causal relationship requires the indirect effect,
r; , being explicitly false in the current state, the finally obtained truth-value of f
depends only on the number of relationships in Ry causing f compared to the
number of relationships causing f.® Since (6) and (7) do not differ in this respect,

we know fe€ S, iff f€S! and fe 5, iff fe S .

|

It is important to realize that neither uniqueness of a successor state nor even its existence

is guaranteed in general. The former characterizes actions with non-deterministic behavior—a

concept which will be discussed in detail later, in Subsection 5.2; the meaning of the latter will

be elucidated at the end of the current section, in Subsection 3.3. First of all, however, we raise

another crucial issue, namely, how to obtain an adequate set of causal relationships on the basis
of given domain constraints.

8 More precisely, if f € S then Ry contains either equally many elements causing f and 7,_respectively,
or one more causing f. In the former case, we have f € Sy (and f € S;,), in the latter f € S, (and
f €5, ). The analogue holds in case f € S.



3.2 Influence Information

Obtaining the intended result by applying causal relationships to compute indirect effects of
actions relies, of course, on a suitable set of these relationships. Such a set should be sound in
so far as each element represents an intuitively reasonable causal relation, and it should also be
complete in so far as it covers all conceivable indirect effects.” The four causal relationships (5)
used in the Electric Circuit domain constitute such a suitable set. There is obviously a close
correspondence between the elements of this set and the domain constraint underlying this exem-
plary scenario, which is why the following analysis is devoted to the problem of how an adequate
set of causal relationships can be automatically extracted from given domain constraints.
There is, however, a crucial, well-known obstacle to be considered towards this end: Despite
the observation that the causal relationships in (5) are inspired by domain constraint sw;Aswy =
light , this formula would also give rise to more, unintended causal relationships if evaluated from
a purely syntactical point of view. For instance, the fact that if sw; becomes true then it is
impossible to have both swy; and light , equally well suggests the following causal relationship:

swy causes Swy if light (8)

aside from swy causes light if swy . This additional causal relationship would, however, sanction
state {swy, 3wy, light} be possible successor state of turning on sw; in the state depicted in
Figure 1, i.e., the second switch would magically jump its position in order to satisfy the domain
constraint. Though this is an unintuitive outcome, the mere domain constraint does not provide
enough information to rule out (8). Hence, there must be some additional domain knowledge
one employs here for claiming a preference amongst the two possible changes.

More precisely, we appear to exploit general information of potential influence of some flu-
ents upon others. For instance, it is simply known that changing a switch’s position might
influence the state of a light bulb rather than directly causing other switches to move.'% It is
therefore inevitable to provide this kind of domain knowledge in addition to domain constraints
when seeking an adequate set of causal relationships. This information of possible influences is
formalized as follows:

Definition 7 Let F be a set of fluent names. A binary relation Z C F X F on these fluent
names is called influence information. |

If (f1,f2) € Z then this is intended to denote that a change of f;’s truth-value might possibly
influence the truth-value of f;. Hence, regarding the Electric Circuit domain we have 7 =
{(swn, light), (swa, light)} , i.e., both switches might influence the light but not vice versa nor do
they mutually interfere.

Domain constraints plus influence information constitute an amount of knowledge suitable for
automatically generating an adequate set of causal relationships. The basic idea is to investigate
all possible violations of a domain constraint and formalize various causal relationships each of
which helps to ‘correct’ such a violation while accommodating the influence information. More
precisely, if D is the set of underlying domain constraints then we construct the conjunctive
normal form (CNF, for short) of AD, i.e, of the conjunction of all constraints. Then D is

? Here, “conceivable” can—to state the obvious—refer only to what is potentially derivable given the domain
constraints. One cannot expect computation of an indirect effect desired in some scenario if the scenario’s
formalization does not include a piece of knowledge hinting at the possible existence of this effect.

19 The use of word “directly” is crucial since switches do have the ability to influence the position of other
switches indirectly, e.g., through activating a relay (see Example 3 below).



violated iff a conjunct 1 V...V{,, in this CNF is violated, which in turn is true iff ¢; A... A€,
holds. The reason for such a violation must be some (direct or indirect) effect ¢; , and this ‘flaw’
can be ‘corrected’ by changing some other f; to {; via a causal relationship—but only in case
fluent |¢;| can possibly influence fluent |{x| according to Z . All this is formalized as follows:

Definition 8 Let F be a set of fluent names and D a set of domain constraints. An influence
information Z then determines a set of causal relationships R following this procedure:

1. Let R :={}.

2. Let D1A...AD, (n>0)bethe CNFof AD. Foreach D;=0V.. Vb, (i=1,...,n)
do the following:

3. Foreach j=1,...,m; do the following:

4. For each k=1,...,m; such that (|¢;|,|¢x]) € T, add this causal relationship to R :

(; causes (; if A (9)

Note that the causal relationships e causes r if ® generated by this procedure do not exploit
the general expressiveness in so far as condition @ is, in any case, a conjunction of literals
(c.f. (9)) rather than an arbitrary fluent formula. On the one hand, this does not imply that
some causal information otherwise representable cannot be obtained by applying Definition 8,
because any causal relationship can be transformed into an equivalent set of in this way restricted
relationships. On the other hand, employing the general notion may lead to considerably more
compact, albeit equivalent, representations. More sophisticated means to extract causal rela-
tionships from domain constraints without constructing normal forms should be developed to
this end; yet, this goes beyond the scope of this paper.!! 12

Example 1 (continued) Given domain constraint D = swqAswy = light and influence infor-
mation 7 = {(swy, light), (sws, light)} , by applying Definition 8 we obtain causal relationships
as follows:

o The CNF of D is (5wy Vswy V light) A (swy V light) A (swq V light) .
e As regards the first disjunct, swy V swy V light , we obtain the following:
— While (swq,swy) € Z, we have (swy, light) € 7, which yields

swy causes light if swq

"' To be more precise, the task would be to construct, for any two literals e and r such that (le|,|r]) €T, a
causal relationship e causes r if ¥ where W is most simple in describing the circumstances under which
effect e gives rise to indirect effect r. This could be achieved by collecting all causal relationships obtained
via Definition 8 for e and r, i.e., e causes r if ®;, ..., e causes r if ®,,, and taking as ¥ a most
compact formula equivalent to ®; V...V ®,, .

12 A related challenge would be to find suitable deductive representations of the way domain constraints in
conjunction with influence information give rise to causal relationships. This may, roughly and without going
into details, look like VS [holds(®,S) A holds(e, S) D holds(r, S)] A Infl(|e],|r|) D causes(e,r, ®). A detailed

analysis of how to exploit such a characterization in particular action calculi is also left as future work.

10



— Analogously, while (swq,swy) € 7, we have (sws, light) € 7 , which yields

swy causes light if swq
— Both (light, swy) ¢ T and (light, swy) & T .
o As regards the second disjunct, sw; V light , we have
— Since (swy, light) € T, we obtain
swy causes W if T
— (light,sw,) ¢ T .
e Analogously, the third disjunct, swy V light , yields

Swy causes light if T

Altogether, we obtain exactly the four causal relationships listed in (5), which we have granted
in the previous subsection to obtain the desired solution. |

An important, general issue regarding the concept of causal relationships and their automatic
generation is of course its complexity. Note that in the worst case exponentially many causal
relationships have to be generated due to the potential explosion of the size of the domain con-
straints during the CNF construction and since up to quadratic many relationships exist for each
resulting conjunct. Despite these pathological cases, there is, however, a decisive characteristic
due to which especially in large domains the number of causal relationships is small compared
to the worst case: The domain constraints do not interfere during this process. Generally, large
domains tend to be locally structured in so far as each single domain constraint relates only a
small amount of fluents. If we assume the size of a domain constraint (i.e., the number of fluent
names involved) be fixed and small compared to their overall number then the number of causal
relationships being constructed is linear wrt the number of constraints. For instance, recall the
situation discussed at the beginning of this section, where a distinguished switch, swq, is as-
sumed to affect n different sub-circuits each containing another switch, sw;, and a bulb, light;
(1 <4 < n). The dependencies are described by n domain constraints swq A sw; = light, .
While compiling all indirect effects into action descriptions requires 27*! different descriptions,
as argued above, only 4n causal relationships have to be generated for this domain. Note that
it still pays regarding the computational effort when actually computing successor states since
in any case at most n causal relationships have to be applied when toggling swqg. Hence, we
have avoided the exponential factor of this example in any respect.

Moreover, the fact that domain constraints do not interfere in determining causal relationships
avoids the second crucial problem mentioned at the beginning: No existing causal relationship
has to be modified or removed when new domain constraints are added.

3.3 Indirect Effects vs. Implicit Qualification

Thus far we have seen that and how domain constraints give rise to additional, indirect effects
of actions. On the other hand, as observed e.g. in [Ginsberg and Smith, 1988b; Lin and Reiter,
1994], domain constraints might instead give rise to additional, implicit qualifications of actions.
In the following, we illustrate that the concept of causal relationships along with the notion of
potential influence perfectly accounts for this distinction.

11



shoot

{alive, walking} {alive, walking}

shoot {alive, walking} . {alive, walking}

{alive, walking}

Figure 2: The application of ({alive}, shoot, {alive}) to the first state depicted, where the turkey is
not walking, results directly in a state that satisfies domain constraint walking O alive . In case the
action description is applied to the second state, an additional ramification step based on (10) has to be
computed in order to ensure the turkey stops walking when shot dead.

Example 2  Consider the following adaption, which is due to [Baker, 1991], of the Yale
Shooting scenario [Hanks and McDermott, 1987]. We intend to hunt a turkey which is either alive
or not (described via fluent alive ) and which is walking around or not (fluent walking ). Domain
constraint walking D alive restricts walking turkeys to vivid ones. Given the information that
a change of alive might possibly influence the truth-value of walking but not vice versa, i.e.,
7 = {(alive, walking)} , this determines a single causal relationship, viz

alive causes walking if T (10)

Now, consider the action description ({alive}, shoot,{alive}). Figure 2 illustrates the re-
spective results of executing this action in the two states where its condition holds. While it
is sufficient to compute only the direct effect in case {alive, walking} , the underlying domain
constraint gives rise to an additional, indirect effect (via (10)) in case {alive, walking} —mnot
only does the turkey drop dead, it also stops walking.

On the contrary, consider action description ({walking}, entice, {walking}) , whose respective
results when executed in the two states satisfying its condition are depicted in Figure 3. Again,
in case {alive, walking} computing the direct effect suffices to obtain a state satisfying the
domain constraint. Case {alive, walking} is different: Applying the action description yields
{alive, walking} , which violates the domain constraint. Moreover, (10) is not applicable to the
corresponding state-effect pair ({alive, walking}, {walking}) since alive does not occur as effect.
Hence, no successor state can be obtained according to Definition 5. In other words, our domain

constraint gives rise to the additional, implicit qualification that a turkey must be alive in order
to successfully entice it—which is exactly the intended solution. |

In general, whenever no successor state exists according to Definition 5 then this hints at
implicit qualifications of the action under consideration (c.f. the remark at the end of Sub-
section 3.1). Hence, providing the adequate information regarding potential causal influences
between fluents automatically induces, by means of causal relationships, the distinction between
ramification and qualification.

12



entice

{alive, walking} {alive, walking}

entice

{alive, walking} {alive, walking} ~»

Figure 3: The application of ({walking}, entice, {walking}) to the first state depicted, where the turkey
is alive, results directly in a state that satisfies domain constraint walking D alive . In case the action
description is applied to the second state, the result violates our domain constraint, which, moreover,
cannot be ‘corrected’ by means of causal relationships. Hence, action entice cannot be successfully
executed in a state where the turkey is not alive.

4 A Fixpoint Characterization of Ramifications

Causal relationships and their successive application after having computed the direct effects of
an action constitute a mostly operational way to tackle the ramification problem. In this section,
we relate our approach to a more static, fixpoint oriented characterization of successor states,
which accounts for indirect effects, is based on the idea of minimizing change in conjunction
with causal information, and which has been introduced in [McCain and Turner, 1995]. The
aim is to prove that all successor states in the sense of the latter framework are also obtained
by applying causal relationships.

As we have argued, an adequate solution to the ramification problem requires more sophisti-
cated information of causal dependencies than provided by the mere domain constraints. This
is why it is insufficient to simply consider all states that are as close as possible to the original
one while satisfying both the direct effect of the action under consideration and the underlying
domain constraints. Neither does this allow for preventing unintended changes nor does it enable
us to distinguish between ramifications and qualifications (see Subsection 3.3). Based on this
observation, the authors of [McCain and Turner, 1995] suggest to replace domain constraints
by a suitable set of directed rules, called causal rules, which serve as deduction rules and are
therefore weaker than the corresponding implications:

Definition 9 [McCain and Turner, 1995] Let F be a set of fluent names. A causal rule
is an expression ® = ¥ where ® and ¥ are fluent formulas.

Let C be a finite set of causal rules. If O is a set of fluent formulas then by 7¢(©) we denote
the smallest set of fluent formulas containing ®@ and being deductively closed under C . i.e.,

1. ©C7:(0);
2. for any # such that 7¢(©) |= 60 we have § € 7¢(0); and
3.if =¥ eC and ® € 7¢(0) then ¥ € 7¢(0).

13



If € 7:(©) then this denoted by O ¢ 6. ]

Example 1 (continued) Consider causal rule C = {swq A swy = light} . If © = {swq, swy}
then 7¢(0) includes light since the given causal rule is applicable. In contrast, sw; ¢
Te({swy, light}) although sw; follows classically from swy A light A (swq A swz D light) . n

Causal rules serve as basis for a fixpoint characterization of successor states which accounts
for possible indirect effects. Informally, after having executed, in state 5, an action with direct
effect F, each possible successor state T° must satisfy £, must be consistent with the set of
causal rules, and each changing truth-value from S to 7 must be grounded on some causal
rule. Thereby, the last requirement encodes the notion of minimal change:

Definition 10 [McCain and Turner, 1995] Let F be a set of fluent names, A a set of
action descriptions, and C a set of causal rules. Furthermore, let 5 be a state and @ an action
name. If A contains an applicable (wrt S ) action description for a and with effect F, then
a state T is called minimal change successor iff

T =A{t: (SNT)UE k¢ (} (11)
i.e., T is fixpoint of the function AT.{{: (SNT)UE k¢ £} given S and E. ]

Example 1 (continued) An adequate set of causal rules for the Electric Circuit domain
consists of these three elements:
swi A swy = light

swy = light (12)
swy = light

Let S = {5wy, swo, light} as depicted in Figure 1 then the only minimal change successor of
applying ({swy, toggle,,{sw1}) is T = {swy, swq, light} : We have (SNT)UFE = {swy}U{suw},
and the given causal rules allow to additionally derive light . In contrast, the unintended state
T' = {swy,3wy, light} does not satisfy (11): (S NT')U E = {light} U {sw;}, which does not

allow for deriving the missing literal, swy .'3 |

9

The following observation justifies the term “minimal change successor;” each state T satis-

fying (11) is as close as possible to 5, i.e., there is no state with less (wrt set inclusion) changes
that also satisfies £ and C:'*

Observation 11  Fach minimal change successor is as close as possible to its predecessor.

Proof: Let C be a set of causal rules, S a state, £ a set of fluent literals, and
T,T" two minimal change successors. We have to show that if there exists some
£ € SNT such that £ € T’ then also S N 7T’ contains an element not in 7. Let
(€ SNT then (11)and T being consistent imply (SNT)UE b €. Given £ € 1",

131t is also interesting to see why T” = {sw1, swg,m} , where only the direct effect is computed, also does
not satisfy (11): (SNT"YU E = {sw2, light} U {sw1} allows to additionally derive light given (12), i.e.,
T" is not fixpoint. This illustrates that all formulas ® D ¥ induced by causal relationships ® = ¥ hold in
minimal change successors.

4 Observation 11 is a consequence of a theorem stated and proved in [McCain and Turner, 1995], which essen-
tially relates Definition 10 to the basic definition of the so-called possible models approach [Winslett, 1988].
Below, we provide a more direct proof.

14



this together with the fact that (S NT')U E k¢ £ proves SNT' ¢ SNT since
otherwise 7¢(SNT") C 7¢(SNT). Hence, SNT’ includes an element that does not
occur in T

[

In what follows, we restrict attention to non-disjunctive causal rules ® = ¥, where ¥ is a
conjunction of literals.!'® Since ® => ¢y A...AL, is equivalent to the n tules ® = {;,...,® =/, ,
we assume without loss of generality the consequent of a rule be a fluent literal. Moreover, when
employing Equation (11) we only consider 7¢(0Q) with O being a set of literals; hence, each
causal rule of the form @,V ®3 = { can equivalently be replaced by ®; = ¢ plus ®5 = ¢, which
allows us to assume each causal rule be of the form ¢4 A ... AL, = ¢ where £, {1,...,{, are
fluent literals. In what follows, for notational convenience we will formally treat the antecedent
of a causal rule, @, a set of literals and denote their conjunction by A & .

The main result of this section shall be a proof that each minimal change successor can be
obtained by applying the approach developed in Section 3. Not only does this verify that our
method covers all reasonable successor states with minimal distance from the original state,
it also provides a means to actually compute minimal successor states—mnote that, following
Equation (11), these states have to be guessed prior to testing whether they satisfy the condition
of Definition 10.

In view of the intended result, we first present a pseudo-iterative characterization of minimal
change successors and prove its adequacy:

Theorem 12 Let F be a set of fluent names, C a set of causal rules, S a state, and F «a
set of literals. For each state T we define

1. To(S,T):=(SNTYUFE
2. T8, T) :=T;_1(S,T)U {f: d=L € C and ® CT;(5,T)}, for i =1,2,...16
Then T is minimal change successor iff T = Ui2oI:(9,T).
Proof: = We have to show {{: (SNT)U E ¢ £} = U2, (5, T).

“LHSCRHS”:
Let £ € LHS . In case £ € (SNT)U E, we find that £ € I'g(5,7) C U2, 1i(9,T).

Otherwise, (SNT)U F ¢ £ implies the existence of a finite sequence of inference

rules ®;=41,...,9,={, in C (n >1)suchthat £ =1/, and,foreach 1 <i<n,
¢, C(SNT)UEU{Ll,...,l;_1}. Consequently, £ € I',(5,T) C U2y Li(5, 7).
“LHSDRHS”:

By induction on 7, we show I';(5,7) C{{: (SNT)UFE k¢ £} . The base case, 1 =0,
holds by definition since I'g(S5,7) = (SNT)U E. Now, let £ € I';41(5,7) such
that there exists some ® =/¢ € C where ® C I';(5,7). The induction hypothesis
for 1';(S,T) implies (SNT)U Ete A®; hence, (SNT)UE ¢ L.

[
This alternative characterization of minimal change successors forms the basis for proving
the formal relation between this concept and the notion of causal relationships. To this end,

!5 A brief discussion concerning the nature of disjunctive causal rules can be found at the end of this section.
16 Recall that ® is considered a set of literals.

15



each causal rule ® = ¢ induces corresponding causal relationships and also domain constraint
A ® D £, which has to be satisfied by each state resulting from a successful application of a series
of causal relationships. Aside from exploiting Theorem 12, the crucial point in the following
proof is to ensure that whenever a causal rule is actually applied to justify an indirect effect
then a corresponding causal relationship e causes r if @ is also applicable, which especially
requires e to occur in the respective set of already obtained (direct or indirect) effects E (recall
that causal relationships operate on state-effect pairs (5, F)):

Theorem 13 Let F be a set of fluent names, A a set of action descriptions, and C a set
of causal rules. Furthermore, let D = {A® DL : ®=( € C} be a set of domain constraints
and let R be a set of causal relationships containing for each {p1,...,0,} =€ € C and each
1 <1< n the element

w; causes [ if O A A@i_1A@ir1I A A @, (13)

Let S be a state which satisfies D, and let (C,a, E) € A be an applicable action description
then each minimal change successor I' (wrt C ) is successor state (wrt R and D ).

Proof: = We prove by induction that for each i € INy there exists a pair (.55, £;)
such that ((S\C)UE,E)~Sgr (S, E;) and 14(S,T) C S; and I;(S,T)\ S C E; .17
In what follows, for sake of readability we abbreviate I'(S,7) by T'.

In case i =0, Sp:=(S\C)UFE and FEy:= F satisfy the conditions: We have
I'o=(SNT)UE C(S\C)UFE since |C|=|F| and Ty is consistent; furthermore,
Fo\S=((SNT)UE)\SCE.

For the induction step let (5;, ;) satisfy the claim. Then, let
{l1,..., 0} == {€: €Tt and £ &1} (14)

be the set of all literals that are added to I'; to obtain I';y; . Hence, there exist
n causal rules &y ={;,...,®,={, € C such that, foreach 1 <j<n, ®&; CI;.
Let us consider the first rule, ®; = ¢;. From the induction hypothesis we conclude
I'; € 5; and, consequently, ®; C 5;. Moreover, we can find some ¢ € ®; such
that ¢ € E;: Assuming the contrary, i.e., F; N ®; = {}, the induction hypothesis
I\ S C E; implies (I';\ S)N &, = {}. But since ®; C I';, this implies &; C 5;
hence, ¢4 € S (since S satisfies D), ie., {1 € SNT C I'g, which contradicts
6 g T (see (14)).

Thus, causal relationship ¢ causes {1 if A(®1\{¢}) in R is applicable to (.5;, F;)
provided ¢, € §;. But S; is a state, i.e., if it does not contain ¢; it already con-
tains f; and the causal relationship need not be applied. Hence, either we can
obtain ((5;\ {{1})U {61}, E; U {1}), or else we keep (S;, F;) and know ¢ € S; .
To see that we can likewise successively proceed with all other literals, fo,...,¢,,
observe first that the component F; is grows monotonically. Thus, the only pos-
sible obstacle preventing us from applying the respective causal relationships for
Jj = 2,...,n, is the existence of some ¢ € ¢, (2 < k < n) such that ¢ € I}
but ¢ & (S;\ {€1,....0x_1})U {f1,...,0x_1} . In other words, causal relationship

17 The last condition is used to ensure the aforementioned applicability of all relevant causal relationships as
regards the set of currently obtained (direct or indirect) effects, E; .

16



¢ causes (; if A(®y \ {¢}) was applicable to (5;, F;) but is not after first hav-
ing computed £1,....0,_1. Yet o & (S;\ {l1,...,0x_1}) U {l1,...,0p_1} means
@ € {ly,...,0_1} since ¢ € I'; and, by induction hypothesis, T'; C S;; hence,
there exists some E el; (1<j<k<mn). Dueto {; € I''41, this contradicts
T O T;UTl;41 being consistent.

To summarize, having successfully applied all n causal relationships (whenever
necessary), we obtain the two sets ;11 = (5;\ {f1,...,0,}) U {ly,...,£,} and
FEig1 = E; U ({6,...,0,} \ ) —which satisfy the claim: I';y; C S;41 (due to
I''CS; and (14)) and TI';41 \ S C Eipq (due to I\ S C F; and (14)).

Now, since there exists only a finite number of changes from S to T, we have
Uz i =1, for some n € Ny. Since I', =T is a state, T C 5,, implies T = 5,
and, consequently, ((§\ C)UE, E)~~x (T, E,),i.e., T is successor state.

[

Interestingly, the converse of this theorem does not hold, i.e., successor states might exist
(in the sense of Definition 5) that cannot be obtained using the fixpoint-based approach. In
Subsection 5.3, we argue that such states are perfectly reasonable, and failing to detect them
with the approach discussed in this section is due to the policy of minimizing change, which
thus might be too restrictive.

Finally, recall that our result is restricted to non-disjunctive causal rules. In the remainder
of this section, we briefly discuss the nature of rules involving disjunctions in their consequent,
such as in

T=aVec (15)

Typically, disjunctive rules are used to express non-deterministic behavior. For instance, given
S = {a,¢}, there exist two different minimal change successors wrt (15) and Definition 10
(assume E = {}), viz Ty = {a,¢} and T, = {@,c}, respectively.'® Note that {a,c} is not a
possible successor since merely having a V ¢ does not allow for concluding @ nor ¢. The latter
observation suggests that (15) could equivalently be replaced by these two non-disjunctive rules:

a = ¢

(16)

al

= a

which indeed yield the identical result when applied to state S from above. While this indicates
that disjunctive rules can often be adequately represented by non-disjunctive ones, (15) and (16)
are not generally equivalent when additional causal rules are considered. For example, if we add
these two rules to (15):

aVec=a
(17)

aVe=c
then T = {a,c} is minimal change successor of S = {@,c} since {} F(us5)17) ¢ Ac. In
contrast, no minimal change successor of S wrt {(16),(17)} exists. Yet, this example lacks
significance because antecedent and consequent of the causal rules in (17) share fluent names,
which generally seems odd. Moreover, it is hard to imagine a more meaningful example since
adding, say, aVec = d instead of (17) does not cause a difference between (15) and (16). We tend

8 To see why, take SN Ty = {¢}, say, which, in conjunction with a V ¢ derived via (15), entails the missing
literal, a .

17



to consider the latter observation hinting at the fact that even in principal each set consisting of
arbitrary causal rules can easily be replaced by an equivalent set involving only non-disjunctive
rules (obviously, {(15),(17)} is equivalent to {T == aAc}). In any case, it should have become
obvious that requiring non-disjunctive causal rules means no severe restriction.

5 The Necessity of Causal Relationships

We have seen that considering mere domain constraints when dealing with the ramification
problem is generally not sufficient to avoid intuitively unexpected changes. As a solution, we
have proposed causal relationships, which directly reflect the intuitive notion of causality in the
domain being modeled. In this section, we contrast our proposal with other abstract concepts
that are most widely used (often in slightly different variants) to tackle the problem of undesired
indirect effects. Our aim is to illustrate the restrictive expressiveness of these concepts compared
to our method.

5.1 ... Compared to Categorization-Based Approaches

The standard approach to avoid syntactically reasonable yet intuitively unexpected indirect ef-
fects, is to introduce some sort of categorization amongst the underlying set of fluent names.
Such a distinction between different, typically two or three, kinds of fluents comes along with
some specific notion of preference as regards changes in one category compared to changes in
other ones when computing ramifications—or, less sophisticated, only a particular category is
subject to the law of persistence etc. While a variety of names for such fluent classes circulate
in literature,'® the following, from our viewpoint artificial and questionable, assumption is fun-
damental for all methods based on categorization: Fach fluent name can be uniquely assigned a
single category. With a simple extension of our Electric Circuit domain, we will illustrate that
the role of a fluent might be less obvious in this respect, which causes difficulties in finding a
single appropriate category it belongs to. To this end, we employ the following, prototypical
category-based definition:

Definition 14 Let F be a set of fluent names and 7, (primary fluents) and F, (secondary
fluents)?? be two disjoint subsets such that F,UF, = F. If S,T1, Ty are states (wrt F ) then T
is closer to S than T', written T <g T, iff

1. either |T'\ S|NF, & |T"\ S|NF,
2.0r |[T\S|INF, = [T'"\SINF, and [T\ S|INF, G |T"\ S| NFs.

Let D be a set of domain constraints and A a set of action descriptions. If S is a state and «
an action description then a state 7' is successor iff there exists some (C,a, £) € A such that
C' C 5 and the following holds:

1. FCT,

2. T satisfies D ; and

19 B.g., frame vs. non-frame fluents [Lifschitz, 1990]; relevant vs. dependent [Brewka and Hertzberg, 1993];
persistent vs. non-persistent [del Val and Shoham, 1993]; the latter augmented by mutable fluents [Zhang and
Foo, 1993]; or occluded, remanent, and dependent [Sandewall, 1995a].

20 The terms “primary” and “secondary,” respectively, were inspired by [Sandewall, 1995b].

18



relay < light

SWs

Figure 4: An extended electric circuit described by five fluents. The current state is denoted by swy (the
first switch is off), swq (the second switch is on), sws (the third switch is on), light (the light bulb is
off) and relay (the relay is deactivated).

3. thereis no T’ <g T such that £ C T’ and T’ satisfies D.
n

In words, state T is closer to S than T’ iff S and T differ in less (wrt set inclusion) primary
fluents than S and 7’ do, orelse 5,7 and 5,7’ differ in the same way on primary fluents but
S and T differ in less secondary fluents than S and 7’ do. For instance, to prefer a change
of the light bulb’s state compared to a switch magically jumping its position in Example 1, we
consider swy, swy primary and light secondary. Then the application of ({5w7}, toggle;, {sw1})
to state S = {3y, swo, light} admits, as intended, T = {swy, swy, light} as unique successor
since T <g {swy, 5wy, light } .
Consider, now, the following extension of our electric circuit (see also Figure 4):

Example 3 We augment Example 1 by introducing a third switch, named sws, plus a relay,
named relay. If activated, the relay is intended to force the second switch ( swz ) to jump
off. It is controlled by the first and third switch. Formally, the dependencies between all these
components are described by the following domain constraints:

swy A swy = light
swy A swg = relay (18)

relay D Sy

In order to find an adequate partition of all involved fluent names into primary and secondary
fluents, respectively, observe first that we should have swy,swy, € F, and light € F, as above
since whenever one of these two switches changes its position, we prefer a change of light instead
of a change of the other switch (as regards the first domain constraint). Analogously, we should
have swy,sws € F, and relay € F, since whenever one of these two switches changes its
position, we prefer a change of relay instead of a change of the other switch (as regards the
second domain constraint). Hence, we obtain F, = {sw1, swq, sw3} and F, = {light, relay} .
On this basis, let us investigate the particular state depicted in Figure 4. The expected
result of toggling the first switch, swy, is that the relay becomes activated, which in turn

19



causes the second switch, sw;, jumping its position; hence, the light bulb stays off.?! Indeed,
according to Definition 14, given state S = {5wy, swy, sws, relay, light} and action descrip-
tion ({3Wy}, toggle,, {sw}), the corresponding state, {sw, 3wy, sws, relay, light} , is successor:
Aside from direct effect {sw;}, the above domain constraints suggest that a second primary
fluent must change its state since any state with all switches on violates (18). However, the
observation that a second primary fluent has to be changed suggests another successor state
candidate, namely, where sws changes its truth-value instead of swy: The reader is invited
to verify that state {swy,swy,5Ws, relay, light} also satisfies the conditions of Definition 14 as
it does not violate the domain constraints and has minimal distance to 5. Hence, we obtain
a second successor state where the third switch magically opens, the relay remains deactivated
and the light bulb turns on. |

The reason for the unexpected second state to occur in this example is that we necessarily fail
to assign a unique, appropriate category to fluent swg, whose role is twofolded: On the one
hand, it should be considered primary (regarding the sub-circuit involving swy and light ), and
on the other hand, it behaves like a secondary fluent (as regards the sub-circuit containing the
relay). One might suggest that this particular example could be modeled by just introducing an
additional category of, say, tertiary fluents, F;, which have even lower priority than secondary
fluents. Then, assigning F, = {sw1, sws}, F, = {swq,relay}, F; = {light} and extending
Definition 14 appropriately yields the expected unique resulting state. However, aside from
the somehow strange categorization, where similar entities, namely switches, belong to different
categories, this particular classification requires a deeper analysis of possible direct and indirect
effects in the electric circuit and is far from being intuitively plausible. Moreover, it is not hard
to imagine more complex domains requiring more and more categories, which heavily increases
the difficulty of deciding to which class a particular fluent name should belong.

In contrast, since causal relationships in conjunction with influence information only describe
local phenomena, they can easily deal with fluents who behave differently regarding different
domain constraints:

Example 3 (continued) The possible influences in the electric circuit depicted in Figure 4
are represented by this relation:

T = {(swi, light), (sws, light), (swy, relay), (sws, relay), (relay, sw3)}

Most importantly, this information concentrates on direct influences only, which, as we shall see,
is sufficient; nothing has to be stated about the possibility that sw; might indirectly influence
swy (through the relay). Note also that swy occurs as first and second argument in 7 , which
encodes its twofolded nature in this example. Applying Definition 8 to domain constraints (18)

2! Tt might however happen that the light bulb turns on for a very short period of time, depending on the time
it takes to activate the relay and to affect the second switch. Nonetheless, the light is definitely off in the
resulting state.

20



and 7 yields the following nine causal relationships:

swy causes light if swg swy causes light if swy
swy causes light if T swy causes light if T
swy causes relay if sws swsy causes relay if swq
swy; causes relay if T sw3 causes relay if T

relay causes swy; if T

The topmost four relationships are obtained from domain constraint swq A swy = light as
described in Subsection 3.2; domain constraint sw; A sws = relay yields, in a similar way, the
next four relationships; and, finally, from relay O Sw; we obtain the last relationship due to
(relay, swy) € T .

Now, given the state depicted in Figure 4, § = {5wy, swq, sws, relay, light} , and action de-
scription ({swt, toggle,,{sw1}), the starting point for the application of causal relationships is
the state-effect pair

({sw1, swy, sws, relay, light} , {sw1}) (19)

There are two possible directions to proceed. First, we can apply sw; causes relay if sws
followed by relay causes swy if T, which results in

({sw1,5w3, sws, relay, Tight} , {swi, relay, 5wz} )

The first argument satisfies the underlying domain constraints and, consequently, denotes a
successor state (which represents exactly what we expect in this example). In addition, there
is a second, larger chain of applicable causal relationships, which, however, comes to the very
same conclusion as regards the resulting state, namely,

swy causes [light if swq

swy causes relay if sws (20)

relay causes swy if T

swy causes [light if T

In words, we first conclude the light bulb turns on due to the second switch being on. However,
since the activation of the relay causes swy to become false, we have to ‘turn off’ the light bulb
again via the finally applied causal relationship. Thus, we obtain the pair

({swy, 5wz, sws, relay, light} , {sw1, light, relay, 5wy, light} )

which also contains the intended resulting state. The two derivations correspond to the two
possible ways the circuit might behave shortly after having toggled the first switch (see also
Footnote 21). Both end in the same state, and there is no other way to apply causal relationships
to (19). In particular, the unintended solution where the third switch magically opens is not
producible. |

21



welay SO etect

SwWs

Figure 5: The extended electric circuit augmented by a device, represented by detect , which registers
an activation of the light bulb (such a device combines a phototransistor and flipflop). The current state
is described as in Figure 4 plus detect (no action of light has occurred).

5.2 ... Compared to the Minimal Change Policy

A widely accepted assumption concerning the ramification problem says that generating indirect
effects ought to satisfy the property of minimal change. Regardless of possible categorizations
as discussed in the previous section, whenever a ‘proper’ successor state is strictly closer to the
original state than another ‘proper’ successor state then the latter is rejected. While the result
proved in Section 4 shows that our method covers all states that confess to the minimal change
policy, it is not restricted in this respect. The following example shows the importance of this in
so far as requiring minimal changes might fail to obtain all intuitively expected possible successor
states. It is motivated by the observation that the circuit in Example 3 behaves, internally, non-
deterministically, though only a single successor state results. This aspect of indeterminism is
now made explicit.

Example 4 The extended electric circuit from Example 3 is further augmented by a light
detecting device (fluent name detect ) that becomes (and stays) activated as soon as the light
bulb turns on (c.f. Figure 5). This amounts to augmenting domain constraints (18) by

light D detect

Enhancing influence information Z by (light, detect) then results in this additional causal
relationship:
light causes detect if T (21)

When the first switch, swy , is toggled in the state depicted in Figure 5 then we would expect two
possible successor states due to the non-deterministic behavior of the circuit: In any case, we end
up with the relay activated and both the second switch and the light bulb off. Yet, the complete
outcome depends on whether or not the activation of the relay and its affecting the second
switch is faster than the intermediate activation of the light bulb and, triggered by this, the
activation of the photo-device. Since detect remains true once activated, it might happen that
this fluent additionally becomes true. The available causal relationships support this conclusion.
Let S = {swy, swq, sws, relay, light, detect} . Application of ({Swt}, toggle,,{sw1}) yields

({sw1, swq, sws, relay, light, detect} , {sw1})

22



As in the preceding subsection, we may obtain
({swy, 5wz, sws, relay, light, detect} , {sw1, relay, sw3} )

or
({swy, 5wz, sws, relay, light, detect} , {sw1, light, relay, 5wz, light } )

both corresponding to the first of the expected successor states. But we can also integrate Rela-
tionship (21) into derivation sequence (20)—somewhere in between the first and last element—
which results in the state-effect pair

({sw1, 5wy, sws, relay, light, detect} , {swn, light, relay, detect, 5wy, light} )

whose first component satisfies all domain constraints and corresponds to the second expected
successor state. Note that this state differs from 5 in strictly more fluent values than the first
one does.

To see why no minimal change-based formalism can possibly obtain this, consider these causal
rules C:

swy A swqg = light swy = light swy = light
swi A sws = relay swy; = relay sw3z = relay
relay = Sy light = detect

in conjunction with S as above and E = {swy}. While T = {swy, swy, sws, relay, light, detect}
satisfies Equation (11), 7' = {sw1, 5wy, sws, relay, light, detect} is not fixpoint since

(SNT'YU E = {sws,light} U {swi} tc detect
]

The last observation suggests that generally minimization might not be a concept adequate to
distinguish between possible indirect effect on the one hand, and unfounded changes on the
other hand. In fact, the aim of calculating ramifications is not to minimize change but to avoid
changes that are not caused, which, as we have seen, is not necessarily identical.

5.3 ... Compared to Causal Rules

Domain constraints, as argued in Subsection 3.3, may give rise to implicit qualifications rather
than indirect effects. Example 2 illustrated that sometimes even a single constraint acts in
both fashions, depending on which effect actually occurs. Both causal relationships and causal
rules allow for modeling this distinction.?? However, the expressiveness of the latter concept
in this respect is limited compared to the former one. The reason is that it is impossible to
restrict applicability of a causal rule like ¢; A€y = £, say, to situations where {; occurs as effect
(causing ¢ as ramification in case {3 being true), while {3 occurring as effect (with ¢; being
true and £ being false) shall indicate an implicit qualification. In contrast, causal relationships
support this sophistication,?® which is required in the following example.

22 Regarding Example 2 with domain constraint walking D alive , this is achieved by taking causal relationship
alive causes walking if T but not walking causes alive if T ; similarly, one would employ causal rule
alive = walking but not walking = alive .

2% This is why n different relationships are needed to represent a rule with n literals in its antecedent (c.f. (13)
in Theorem 13).

23



Example 5 Let us consider a more subtle, ancient method to hunt the turkey, namely, by
using a (manually activated) trapdoor. The state of this trapdoor is described via fluent name
trapdoor-open and, aside from being alive or not, the turkey is either in the dangerous zone
or not (fluent name at-trap ). The ground underneath the trapdoor is designed such that if
the turkey finds itself being at-trap and the trapdoor is open then it cannot be alive, which is
represented by the following domain constraint:

at-trap A trapdoor-open O alive (22)

We can open the trapdoor via ({trapdoor-open}, open,{trapdoor-open}) and entice the turkey
via ({at-trap, alive}, entice, { at-trap, alive}) . While the state of the trapdoor can possibly in-
fluence the victim’s state of being alive or not, the turkey is somehow alert in so far as it
would never kill itself by moving towards the open trapdoor, i.e., at-trap shall not possibly
influence alive . The latter is intended to give rise to implicit qualification trapdoor-open for
entice . Hence, the adequate influence information is Z = {(trapdoor-open, alive)} ,** which, in
conjunction with (22), determines a single causal relationship according to Definition 8, namely,

trapdoor-open causes alive if at-trap (23)

Given state S = {alive, at-trap, trapdoor-open} (say, after having enticed the turkey), exe-
cuting open yields {alive, at-trap, trapdoor-open} as intermediate state, which violates our
domain constraint; yet, trapdoor-open occurred as effect, which is why (23) is applicable, re-
sulting in the expected state {alive, at-trap, trapdoor-open} . In contrast, consider state § =
{alive, at-trap, trapdoor-open} and action entice, whose execution yields intermediate state
{alive, at-trap, trapdoor-open} also. But now (23) is not applicable since trapdoor-open did not
occur as effect, i.e., no successor state exists. In other words, trapdoor-open is an additional,
implicit qualification for entice , which is exactly the intended result. Note that we are only
able to distinguish these two cases by employing (23) but not the analogous causal relationship
at-trap causes alive if trapdoor-open . For both correspond to an identical causal rule, namely
at-trap A trapdoor-open = alive , this distinction goes beyond the expressiveness of causal rules.
[

6 A Calculus

Having presented, thoroughly discussed, and demonstrated the benefits of our general approach
to the ramification problem compared to others, the second part of the paper is devoted to
the development of a suitable, concrete calculus. This calculus will be based on the logic pro-
gramming paradigm. More precisely, we adapt and extend a method described in [Hélldobler
and Schneeberger, 1990; Holldobler and Thielscher, 1995], which applies the concept of reifi-
cation to entire states, i.e., each of which is formally represented as single term and, thus, is
manipulable by means of program clauses. The adequate treatment of these terms requires a
(domain-independent) equational theory, which, essentially, formalizes crucial properties of the
datastructure set. We assume the reader be familiar with basic concepts of logic programs and
the negation-as-failure principle, as can be found e.g. in the textbook [Lloyd, 1987].

2% Since the trapdoor does not work automatically, we do not consider (at-trap, trapdoor-open) € I, and
(trapdoor-open, at-trap) ¢ I is due to the assumption that the turkey has no time to escape during the
process of opening the door.

24



6.1 Reified States

While the atomic elements of state descriptions have been restricted to propositional constants in
the first part of the paper for sake of simplicity, we employ more complex a notion of fluents in the
second part. A fluent is now an n-place relation over given objects (see, e.g., [Sandewall, 1994;
Kartha and Lifschitz, 1994]), called entities here. This comes along with both a generalized
concept of action descriptions and fluent formulas involving quantifications. Yet, by requiring
underlying sets of entities be finite, we still guarantee decidability in any respect. The following
definition extends Definition 1:

Definition 15 Let O be a finite set of symbols called entities. Let F denote a finite set
of fluent names, each of which is associated with a natural number called arity. A fluent is an
expression f(o1,...,0,) where f € F of arity n and o01,...,0, € O. A fluent literal is a
fluent or its negation denoted by f(o1,...,04,).

Let V be a denumerable set of variables. An expression f(#1,...,%,) and its negation
f(t1,...,t,) are called fluent expressions iff f € F of arity n and t, e OUY (1<i<n). m

As before, a state is a maximal consistent set of fluent literals. For sake of readability, from now
on we implicitly assume an arbitrary but fixed underlying set O of entities, a set F of fluent
names, and a set V of variables, respectively.

We follow the PROLOG convention in denoting variables by uppercase letters, sometimes with
sub- or superscripts. The expression X (resp. 0 ) denotes a finite sequence of variables (resp.
entities) of arbitrary but fixed length. A substitution 6 : V — VUQO maps variables to variables
or entities. A substitution is often written {Xy — #,..., X, — ¢,} expressing that 8(X;) = t;
for X; € {X1,...,X,} and 6(X) = X otherwise. The application of a substitution 6 to
some expression 5 written £6, amounts to replacing all variables X occurring in £ by H(X ).

If X isa sequence of all variables occurring free in expression £ then this is written &[X].
Let X = X1,..., X, then a ground instance of such an expression is obtained by applying a
substitution 6 = {X1—~o1,...,X,, — 0,} to £ where o01,...,0, € O, and if 6 = 01,...,0,4

then £[X]0 is also denoted by 5[“]
Based on the extended notion of fluent, action descriptions may now contain variables and,
then, are considered representatives for all of their ground instances:

Definition 16 An action description is a triple (C[X],a(X), E[X]) where C[X] and E[X]
are sets of fluent expressions and action name « is a symbol. It is assumed that |C[o]| = |F[0]|
for any sequence o of entities.

If S is a state then a ground instance a[é] of action description o[X] = (C[X], a(X), E[X])
is applicable in S iff C[o] C 5. The application of afo] to S yields (5 \ C[o])U E[o]. Any
set A of action descriptions is assumed to contain at most one applicable description for each
ground instance a(0) and each state §. ]

Example 1 (continued) Let us exploit the extended expressiveness to model the Electric
Circuit domain using the two entities O = {sq, 32} representing the two switches, along with
the unary fluent on denoting the position of its argument plus the nullary fluent light denoting
the state of the light bulb as before. The current state displayed in Figure 1 is then encoded by
S = {on(s1), on(s2), light} .

On the basis of this representation, we define an action called toggle(X') by the following two
descriptions:

({on(X)}, toggle(X), {on(X)}) ({on(X)}, toggle(X), {on(X)}) (24)

25



When executing, say, foggle(s;) in S then the instance # = {X — s1} of the first action
description is applicable due to {on(X)}8 C 5 ; its application yields

(S\{on(s1)}) Ufon(s1)} = {on(s1), on(s2), light}

The approach defined in [Hélldobler and Schneeberger, 1990; Hélldobler and Thielscher, 1995]
is grounded on the formal representation of an entire state by a single term. To this end,
fluent expressions are reified and connected via a special binary function, which is illustratively
denoted by o and written in infix notation. As an example, the term representation of S =

{on(s1),on(sz), light} is

(on(s1) o on(sz)) o light

where the bar denoting negative fluent expressions should be taken formally a unary function.
Intuitively, the order in which the various fluent expressions are connected is irrelevant as regards
the state to be represented. Hence, our connection function obeys some special properties, which
are formalized using the following equational theory [Hélldobler and Schneeberger, 1990]:

VX,V,Z. (XoY)oZ = Xo(YolZ) (associativity)
VX,Y. XoY = YoX (commutativity)
VX. Xof) = X (unit element)

where the special constant () denotes a unit element for o. These three axioms (short: AC1)
are used as equational theory underlying our logic program. In what follows, we write =ac1

to illustrate that equality should always be related to the axioms above. Due to the law of
associativity, we are allowed to omit parenthesis on the level of o. Note that (AC1) models
essential properties of the datastructure “set.” For formal reasons, we introduce a function 7
which maps sets of fluent expressions F = {t;,...,t,} to their term representation, 7 =
tyo---ot, (including 7y =0).

The concept of reifying entire states allows for a most flexible way to manipulate them
via first-order formulas and, more specifically, via logic program clauses. To this end, ac-
tion descriptions are encoded as unary clauses based on a ternary predicate called action .
Let A = {(C1[X1], a1[X1], E1[X1]), . - o, (CulX4n], an[ X 0], En[Xn])} be a finite set of action de-

scriptions, then these are transformed into the following n program clauses:

action (7'01 ®] a1[5{1]7 5, [3{1]).
. (25)
action (TCn (%] n [Xo], 7'En[;(vn])

The application of action descriptions according to Definition 16 is then modeled by this clause,
where result(7g,a[0],7s/) shall be derivable iff executing a[o] in S yields S”:

result (5, A,S") — action(C, A, F),
S =ac1 CoV, (26)
S" =ac1 VoE.

In words, result(7s,a[o],7s/) is true if an action description for a[o] exists with condition C[0]
and effect E[0] such that

26



1. The unification problem 75 =ac1 Tg[p0 V', where V is a new variable, has a solution.
This models testing C[o] C 5.

2. Term 75 equals term V o 7g5 (wrt (ACL)). Since a side effect of solving the aforemen-
tioned unification problem is that, in case of success, V' becomes bound to all sub-terms
in S which are not amongst the condition, C[o], this models testing 5’ = (5\C[o])UF[d] .

Note that this formalization avoids additional axioms (so-called frame arioms [McCarthy and
Hayes, 1969; Green, 1969]) to express the law of persistence since all fluent literals unaffected
by the execution of an action automatically continue to be true in the resulting state.

The adequate computation mechanism for the equational logic program (25),(26); (AC1)?®
is SLDE-resolution [Plotkin, 1972; Jaffar et al., 1984; Gallier and Raatz, 1989; Holldobler, 1989]
where, in contrast to ordinary SLD-resolution, the standard unification procedure is replaced
by an algorithm that unifies wrt an underlying equational theory, i.e., in our case, wrt (AC1).25

In conjunction with this resolution principle, the program is sound and complete as regards
Definition 16 (see [Hélldobler and Thielscher, 1995]):

Theorem 17  Let A be a set of action description, S,S' two states, and a@ be ground
instance of an action. Then there exists an action description (C,a, E) € A such that C C S
and S'=(S\CO)U E0 iff

— result(7g,a,Tsr)
has an SLDFE-refutation wrt (25)4,(26); (AC1).

In view of extending the basic program for to model our approach to the ramification problem,
we first develop a suitable encoding of fluent formulas and the corresponding notion of validity
wrt states. To this end, the following definition extends the basic concepts of fluent formulas
used in the first part, allowing for more complex formulas involving quantifiers:

Definition 18 The set of fluent formulas is inductively defined as follows: Each fluent ex-
pression and T and 1 are fluent formulas, and if F° and G are fluent formulas so are FFAG,
FVG, FOG, F=G, 3X. F,and VX.F (where X € V).

A closed formula is a fluent formula without free variables, i.e., where each variable occurring
in the formula is bound by some quantifier. For sake of simplicity, it is assumed that within
a fluent formula different quantifiers always bind different variables. Let S be a state and F
a closed fluent formula then the notion of F being true in S, written S |= F', is inductively
defined as follows:

1. SET and S |£ L;

2. SELiff £ €S, for each fluent literal ¢;
3. SEFAG It SEF and S |EG;

4. SEFVG it SEF or S=G;

5. SEFOGIff SEF or §SEG;

2% To be precise, we always assume an additional program clause representing reflexivity, X =ac1 X , which is
employed to solve equality subgoals.

26 AC1-unification is known to be decidable and finitary, i.e., two terms always admit a finite complete set of
AC1-unifiers [Stickel, 1981]. For efficient unification algorithms see, e.g., [Biirckert et al., 1988; Lincoln and
Christian, 1990; GroBe et al., 1992].

27



6. SEF=Giff SEF and SEG,or S} F and S £ G,
7. S| 3X. F iff there exists some o € O such that S = F{X — o};
8. SEVX.Fiff S| F{X — o} forany o€ O.

Here, F{X — o} denotes the fluent formula resulting from replacing in F' all occurrences of X
by o. |

When trying to formulate program clauses to decide validity of fluent formulas wrt states, we
are facing the well-known problem of how to express universally quantified statements in bodies
of program clauses. Ordinary, i.e. definite, clauses do not allow for encoding rules like “p if, for
all X, 7(X).” To overcome this lack of expressiveness, we follow [Lloyd, 1987] in employing
the negation-as-failure principle [Clark, 1978] and re-formulate the above statement to “p if not

b

q” in conjunction with “¢ if exists X such that non-r(X).” More precisely, to encode that
p(7s) shall be true if formula VX. F holds in state S, these two clauses are introduced:

p(S) — —q(9).
q(S) — entity(X),
r(X,9).

where r(X,5) is assumed to be appropriately defined such that an instance r(o,7g) is derivable
iff F{X — o} does not hold in S . Generally, we first of all represent a given set of entities
O ={o1,...,0,} by these n facts:
entity(oy).
: (27)
entity(oy, ).

Then the following transformation 7 (along with its dual 7 ) maps a fluent formula F[X] plus
an atom p()~() to a set of program clauses C which has the following property: An instance
—p(0,7s) is refutable from C and (27) iff F[o] holds in S (resp. does not hold, in case the
dual transformation is used, i.e., if C = 7(F,p(X))).>"

=(T,p(X)) = {pX,8).} (28)
m(L,p(X) = {} (29)
(0, p(X)) = {p()(,S) S =ac1 LoV } (30)
T(FAG,p(X)) = {p( ,8) < q(X,5), (X S5). } (31)
~ ©(F,q(X)) U W(G (X X))
T(FVG,p(X)) = ( p(X)) U =(G,p(X)) (32)
r(3AX. F,p(X)) = {p(X,S) — entity(X), ¢(X,X,5). } (33)
U m(F,q(X,X))
T(VX. Fp(X)) = {p(X,$) — ﬂq( ,5). (34)
( ,S) — entity(X), (X, X,5). }
(F (X, X))

27 For brevity, we omit the translations of connectives “ 2> ”

remaining ones.

and “=7, both of which can be expressed by the

28



The above transformation is straightforward and involves the dual 7, to be defined next, in
case of universally quantified variables, (34), as discussed above.

A(TPX) = () (35)
ALp(X) = {p(X.9).) (36)
(£, p'(X)) {P(X,8) — S=arc1 foV. } (37)
(1. (X)) {P(X,9) — S=arc1 foV.} (38)
FEAGPX) = wEPEX) U RGEPX) (39)
FEVGEY(E) = { DX, — ¢(X,5),(X.9). ) (40)
U m(F,¢(X)) U 7(G, (X))
TAX.Fp(X) = {P(X,9) < =d(X,9) (41)
¢(X,5) — entity(X), r(X, X,5). }

U n(F,r(X,X))
T(VX. F,p(X)) = {p(X,S) — entity(X), ¢(X,X,5). } (42)

U m(F,¢(X,X))

As an example, consider domain constraint

(VX.on(X) A light) Vv (3X.on(X) A light) (43)

stating that the light bulb is on if and only if all switches are on. This formula should provably

hold, say, in the state represented by

on(s1) o on(sy) o light

(44)

To verify this, we take the translation 7((43),p1), augmented by the respective clauses (27) for
the two entities s; and s, which results in this set of clauses:

p1(S) = q(5), ri(5).

@1(S) = —q2(5).
72(5) — entity(X), ry(X,9).

rh(X,8) — S =ac1 on(X)oV.

7"1(5) — 8 = AC1 lz'ghtoV.
pi(S) — q3(9), r3(9).

q3(5) — entity(X), qu(X,9).

q1(X,S5) — S =ac1 on(X)o V.

7“3(5) — 8 = AC1 light oV.

entity(sy).
entity(sz).

29

: (VX on(X) A light, p1)

: m(VX.on(X),q)

: w(light,rq)

: m(3X. on(X) A light, py) (45)

7(3X.on(X), q3)

2 w(on(X), q4)

: w(light,rs)



— pi(st) — q2(st)

— q1(st), r1(st) — entity(X), r5(X, st)
— —g2(st), r1(st) — r4(s1,st) — r5(s2,5t)
— ri1(st) — st =ac1 on(s1)oV — st =ac1 on(s2) oV
| * *

— st =ac1 lightoV

[}

Figure 6: Let st abbreviate term on(s1) o on(s2) o light then the leftmost derivation wrt the pro-
gram listed in (45) verifies (43) be true in the state corresponding to st. In particular, success of
subgoal «— —¢a(st) (third step) is justified by the finitely failed SLDENF-tree on the right hand side.
Its two branches fail because st is not ACl-unifiable with on(s1) oV nor with on(sz)o V.

This equational logic program contains negative literals in clause bodies, which requires an ex-
tended resolution principle, namely SLDENF-resolution [Shepherdson, 1992; Thielscher, 1996],
i.e., SLDE-resolution augmented by negation-as-failure. As usual, a negative literal as subgoal
is solved by verifying that every derivation of the respective affirmative part fails, which in turn
is shown by constructing a corresponding finitely failed derivation tree. Given the above clauses,
Figure 6 depicts an SLDENF-derivation which shows that Formula (43) indeed holds in the state
represented by (44).

In general, our encoding of fluent formulas and the associated notion of validity wrt states is
correct in the sense of Definition 18:

Theorem 19 Let S be a state, I a fluent formula with free variables )Z', and 0 a sequence
of entities. Then,

1. S| Flo] iff —p(o,7s) has an SLDENF-refutation wrt =(F,p(X)),(27);(AC1).
2. S F[8] iff —p/(6,7s) finitely fails wrt T(F,p/(X)),(27); (AC1).
Proof:  The proof is by simultaneous induction on the structure of F.

e In case T,
1. SE T and < p(o,7s) is refutable using Clause (28).
2. Analogously, following (35) there is no clause whose head unifies with
p'(0,7s), i.e., —p'(0,7s) finitely fails.
e In case L,

1. 5§ £ L and, following (29), there is no clause whose head unifies with
p(0,7s) .
2. Analogously, < p'(0,7g) is refutable using Clause (36).
e In case £,
1. S [= ([o] iff £[o] € S. Correspondingly, < p(0,7s) can only be resolved
using Clause (30) and only if 7¢ and {[o] o V' are ACl-unifiable, which is
equivalent to £[o] € § .

30



2. S| flo] (resp. S |= f[o] ) iff f[o] € S (vesp. f[o] € S ). Correspondingly,
following (37) and (38), — p'(0,7s) finitely fails iff 7¢ and f[6]oV (resp.
f[o] o V') are not AC1-unifiable.

e In case FAG,

1. S | Flo] AG[o] iff S | F[o] and S = G[o]. Correspondingly, following
Clause (31), < p(0,7s) has an SLDENF-refutation iff — ¢(o,7s), r(0,7s)
succeeds, which is equivalent to S |= F[o] and S = G[0] according to the
induction hypothesis.

2. Analogously, following (39), < p'(0,7s) finitely fails iff both S |= F[o]
and S = G[o], according to the induction hypothesis.

o In case VG,

1. S | Flo]vGlo] iff S |= F[o] or S |= G[o]. Correspondingly, following (32),
—p(0,75) has an SLDENF-refutation iff S |= F[06] or S | G[o], accord-
ing to the induction hypothesis.

2. Analogously, < p'(0,7s) finitely fails iff — ¢'(0,7s), 7'(0,7s) finitely fails,
according to Clause (40), which is equivalent to S = F[0] or S E G]d]
according to the induction hypothesis.

e In case 1X.F,

1. S = 3X.Flo] iff § | F[o][{X — o} for some o € O. Correspondingly,
following (33) and (27), < p(0,7s) has an SLDENF-refutation iff there is
some o € O such that « ¢(0,0,7s) is refutable, which is equivalent to
S |= F[ol{X — o} according to the induction hypothesis.

2. Analogously, following (41) and (27), < p'(0,7s) finitely fails iff — ¢/(0, 75)
succeeds iff there is some o € O such that —r(0,0,7s) succeeds, which
is equivalent to S = F[o]{X — o} according to the induction hypothesis
for m.

o In case VX.F',

1. S =VX. Flo] iff S |= F[o][{X — o} for any o € O. Correspondingly, fol-
lowing (34) and (27), < p(0,7s) has an SLDENF-refutation iff «— ¢(o, rs)
finitely fails, i.e., iff < r(0,0,7s) fails for each 0o € O. The latter is equiv-
alent to S |= F[o]{X ~ o} according to the induction hypothesis for 7.

2. Analogously, following (42) and (27), < p/(0,7s) finitely fails iff, for each
0€ O, —q(0,0,7g) fails. The latter is equivalent to S = F[o]{X — o}
according to the induction hypothesis.

6.2 Executing Causal Relationships

Having integrated the concept of fluent formulas into the basic program in order to be able
to represent domain constraints, we now formalize the notion of causal relationships and their
application to account for indirect effects of actions. Due to the extended notion of fluents
employed in this part of the paper, we lift Definition 4 and 5 to exploit this gain of expressiveness
on the analogy of supporting a more general concept of action description (c.f. Definition 16):

31



Definition 20 A causal relationship is an expression of the form e causes r if ® where ¢
is a fluent formula and e and r are (possibly negated) fluent expressions.

Let (5, F) be a pair consisting of a state S and a set of fluent literals E . Furthermore, let
p = ecauses r if ¢ be a causal relationship, and let X denote a complete sequence of variables
occurring in e, 7, or ®. Then an instance p[d] is applicable to (S, E) iff S |= ®[3]A €[] Ar[d]
and e[d] € E . Tts application yields the pair ((S\ {r[0]}) U {r[3]}, EU {r[3]}).

Let A be a set of action descriptions, D a set of domain constraints, and R a set of causal
relationships. Furthermore, let S be a state satisfying D and «[6] an instantiated action. If
there exists an action description a[X] = (C[X],a[X], E[X]) € A such that o[d] is applicable

in S then a state S’ is successor state iff
1. (S\C[8))uU E[d], E[d]) ~r (5, E") for some E’ and
2. 5" satisfies D.

Example 1 (continued) Based on the formalization of our Electric Circuit domain introduced
in this section, we employ the following two causal relationships:

on(X) causes light if VY.on(Y) on(X) causes light if T (46)

Then the instance {X ~ s;} of the former is applicable to ({on(s1),on(sy), light},{on(s1)})
since both VY. on(Y) and also on(s1) and light are true in the state at hand. The application
results in the pair ({on(s1), on(sz2), light},{on(s1), light}); its first component now satisfies the
underlying domain constraint, (43). ]

Similar to action descriptions, each given causal relationship is encoded by a program clause
defining predicate causes(ts, Ty, Ts/, Tp/), which is intended to be true if (5, F) ~xr (5, E’).
Let R be a finite set of causal relationships, then each e causes r if ® € R is represented by

causes(VoeoTF, Woe,Voeor,Woeor) — ps(VoeoT) (47)

This involves the respective clauses obtained by constructing w(®,pg) to encode fluent for-
mula @ (including (27)o ).

The successive application of causal relationships to state-effect pairs is represented by the
predicate ramify(ts,TE,Ts/), which is intended to be true if (S, E)~>r (87, E') for some B’
such that S’ satisfies the underlying domain constraints. The latter notion is encoded by
defining a unary predicate called consistent :

ramify(S, E,S) — consistent(S).
ramify(S, E,T) — causes(S,E,S' E'), (48)
ramify(S’, E',T).

Let {Dy,...,D,} be the underlying set of domain constraints then

consistent(S) — pi(9),

pn(‘S).

plus all clauses obtained by constructing 7(D1,p1),...,7(Dn,pn) -

32



Finally, the post-processing step that accommodates possible indirect effects has to be added
to the core clause in the basic approach, (26), yielding

result(S,A,S") — action(C, A, E),
S =ac1 CoV, (50)
ramify(V o E, E,S5").

Example 1 (continued) The two causal relationships in (46) are represented by these two

clauses:

causes(V o on(X) o light, W o on(X),V o on(X)o light, W o on(X) o light)
— ¢1(Voon(X)o light). (51)

causes(V o on(X) o light, W o on(X),V o on(X)o light, W o on(X) o light).

where ¢; encodes formula VY. on(Y) asin (45). These clauses along with (50) and the definition
of consistency based on domain constraint (43), viz

consistent(S) — p1(9). (52)

are used in Figure 7, where an SLDENF-derivation is shown that verifies {on(s1), on(sz), light}
be successor of {on(s1),on(sz),light} wrt action toggle(sy) . ]

As the main result of the second part of this paper we prove that our encoding by means of
equational logic programs is correct. The proof consists of two steps, the first of which concerns
the application of a single causal relationship:

Theorem 21  Let D be a set of domain constraints and R a set of causal relationships.
Furthermore, let S, 5" be two states and E, E' two sets of fluent literals then (S, E)~x (5, E')

if

— causes(Ts, TE, T, TE') (53)

has an SLDENF-refutation wrt (47)g; (AC1).

Proof: = We have (S5, F)~>g (5, E’) iff there exists some instance p[o] of some
causal relationship p = e causes r if ® € R such that

1. S |= ®[o] A e[o] A r[0]

2. efole E

3.8 = ($\ {r[el}) u {rfe]}
4. E'= EU{r[o]}

Correspondingly, (53) has an SLDENF-refutation iff (47)z contains a clause
causes(VoeoTF,Woe,Voeor,Woeor) — ps(VoeoT).
such that there exists an ACl-unifier ¢ for these four equations:
Ts =ac1 VoeoT, T =ac1 Woe, 79 =ac1 Voeor, T =ac1 Woeor

and «— pg(V oeoT)o is SLDENF-refutable. According to axioms (AC1) and The-
orem 19, this is true iff there exist entities 6 such that

33



— result(st’,[toggle(s1)], Z)

result(5, A, 8') — action(C, A, E), § = ac1 C oV, ramify(V o E, E, §').
— action(C, toggle(s1), E), st' =ac1 CoV, ramify(V o E, E, 7Z)

action(on(X), toggle(X), on(X)).

— st' =pc1 Wo V, ramify(V o on(s1), on(s1), Z)

X =ac1 X

— ramify(on(sz2) o light o on (s1), on(s1), Z)

ramify(S, B, T) — causes(S, E, 8", E'), ramify(5', E',T).

— causes(on(s2) o light o on(s1), on(s1),S’, E'), ramify(S’, E', Z)

causes(V o on(X) o light, W o on(X),
Voon(X)o light, Wo on(X)o light) — ¢1(V 0 on(X) o light).

— q1(on(sz2) o on(s1) o light), ramify(on(sz2) o on(s1) o light, on(s1) o light, Z)
|
i
— ramify(on(sz) o on(s1) o light, on(s1) o light, Z)

ramify(S, E,S) «— consistent(S).

— consistent(on(sz2) o on(s1) o light)
|
|
a

Figure 7. An SLDENF-derivation based on clauses (25)(24),(45),(48),(50)~(52) . Let st' abbreviate

on(s1)oon(sz)olight then the derivation shows that executing toggle(s;) in the state represented by st/
admits {on(s1), on(sa2), light} as successor state. For sake of readability, the respective applied program
clause is attached to each derivation step. The sub-derivation of « q1(on (s2)o0 on(s1)olight) is omitted
as it is similar to how <« ¢i(st) is solved in Figure 6, which also shows why <« consistent(on (s3) o

on(s1) o light) can be refuted via (52) and (45).

e[o] € S and r[o] € 5;

elo] € E;

§" = (8 \ {e[@, 7T U {elal, r[al}
B’ = (B {e[al}) U {e[d], o[} ; and
S | ®[0] .

orE RN

Altogether these conditions are equivalent to the ones enumerated above.

On the basis of this theorem, we can prove correctness of the entire program:

Theorem 22 Let D be a set of domain constraints, R a set of causal relationships, and A
a set of action descriptions. Furthermore, let S, 5" be two states and afl ground instance of an

34



action then S’ is successor state of S wrt af iff
— result(ts,ab, Tg) (54)

has an SLDENF-refutation wrt (25)4,(47)r,(48),(49)p, (50); (AC1).

Proof: From Theorem 17 and Clause (50) we conclude that there exists some
action description (C,a, F) € A such that C'8 C S iff Query (54) can be resolved
to

— Tamify(T(s\Ce)uE67 TEG, Ts!)

From Theorem 21 and the clauses depicted in (48) it follows this query is refutable
iff there exists some £’ such that (9, E) g (87, E') and

— consistent(Tg)

has an SLDENF-refutation. According to Theorem 19 and Clause (49)p , this is true
iff 7 satisfies the domain constraints in D . To summarize, (54) has an SLDENF-
refutation iff S’ is successor of S wrt @ according to Definition 20.

7 Discussion

We have presented a method to accommodate indirect effects of actions which involves the no-
tion of causality to distinguish intuitively conceivable from unmotivated changes. To this end,
we have developed the concept of causal relationships connecting two effects with the intended
meaning that, under specific circumstances, the occurrence of the former might cause the occur-
rence of the latter as indirect effect. Causal relationships are serially applied to the intermediate
state resulting from computing the direct effects of an action until a state obtains that sat-
isfies all underlying domain constraints. Moreover, we have argued that causal relationships
can be generated automatically given additional domain-specific knowledge—called influence
information—of how fluents may generally affect each other.

We have illustrated the expressiveness of our approach regarding the problem of implicit
qualifications vs. indirect effects (Subsection 3.3), fluents which strive against being categorized
(Subsection 5.1), domains involving non-minimal yet still intuitive changes (Subsection 5.2), and
regarding domain constraints that require a sophisticated distinction between qualification and
ramification (Subsection 5.3). These results form the basis for comparing the method presented
in this paper with existing approaches to the ramification problem.

The necessity of additional information to prevent changes that are suggested syntactically
by the mere domain constraints but contradict the intuition was first observed in [Ginsberg
and Smith, 1988b] in the context of the possible worlds approach [Ginsberg and Smith, 1988a).
There, indirect effects of actions are implicitly obtained by searching for successor worlds (i.e.,
state descriptions) staying as close as possible to the original world and satisfying both the direct
effects of the action under consideration and all domain constraints. While the authors argued
that this might yield unintended changes (such as a switch magically jumping its position in the
circuit depicted in Figure 1), no solution was offered.

35



In [Lifschitz, 1990], the first and most elementary categorization-based solution to this problem
was formally developed by distinguishing between so-called frame and non-frame fluents.?® Only
the former are subject to the persistence assumption, and their respective values completely
determine the states of the latter. Similar ideas have been used in e.g. [del Val and Shoham, 1993]
and (in the second part of) [Brewka and Hertzberg, 1993]. More sophisticated categorization
methods do not simply restrict persistence to one category by allowing arbitrary changes in the
other—rather they exploit different categories to define a partial preference ordering amongst all
possible changes (as in our Definition 14), e.g. [Zhang and Foo, 1993; Kartha and Lifschitz, 1994;
Sandewall, 1995a). In [Sandewall, 1995b], a systematic framework based on this concept is
introduced with the aim of assessing the range of applicability of different approaches that
follow the same principles. However, we have already argued in Subsection 5.1 that even if it
is possible to assign an appropriate category to each fluent in a particular domain if only the
categorization is suitably fine-grained, the more complex a domain is the more difficult this task
becomes as it requires a deep analysis of possible interactions. Besides, despite being the only
suitable one, a particular categorization may appear very unnatural even in simple domains, as
we have illustrated in the context of Example 3.

Recently, some approaches have been established that take into account specific notions of
causality, as does our method, to tackle the problem of unintended changes. The monotonic
first-order formalism developed in [Elkan, 1992] supports specifications of indirect effects by
means of complete descriptions of how the truth-value of a particular fluent might be caused to
change, e.g. (c.f. Example 1)

VA,S [ causes(A, S, light) = (causes(A,S,sw1) A holds(swy,5))

V (causes(A, S, swy) A holds(swy,5)) ] (55)

VA,S [ cancels(A, S, light) = cancels(A, S, swy) V cancels(A, S, sws) ]

where causes(a, s, f) should be read as “executing action @ in state s causes fluent f to
become true,” cancels(a,s, f) as “executing action a in state s causes fluent f to become
false,” and holds(f,s) as “fluent f is true in state s.” Given the specification of how sw;
can possibly become true (resp. false), viz

VA,S [ causes(A,S,sw1) = A= toggle; N —holds(sw,s) ]
VA,S [ cancels(A, S, sw1) = A = toggle; A holds(swq,s) ]

plus this axiom of persistence:
VA,S, F [ holds(F,do(A,S)) = causes(A, S, F)V (holds(F,S) A —cancels(A, S, F)) ]

one obtains —holds (swy, sg)Aholds(swq, so)A—holds(light, sg) implies causes(toggley, so, light) ,
say, and, hence, holds(light, do(toggle,, so)) . No effort has to be made to suppress an unwanted
change of swy since no causal relation similar to (55) exists that may support this. On the
other hand, the use of if-and-only-if descriptions of causal dependencies, as in (55), is severely
restricted to domains where these dependencies are hierarchical. Otherwise, i.e., if fluents depend
mutually, unmotivated changes cannot be precluded. To see why, consider the specification

VA,S [ causes(A, S, f1) = causes(A, S, f2) ] (56)

28 Farlier, the author of [Winslett, 1988] raised the idea of introducing some notion of preference as regards
changes of specific fluents to changes of other fluents; yet, her discussion was only informal and took place in
the context of an example.

36



If @ is an action whose execution in s does not influence f; nor f;, Formula (56)in conjunction
with the above axiom of persistence is too weak to conclude both f; and f; keep their truth-
values since -causes(a,s, fi) (resp. —causes(a,s, f2)) is not entailed. The two mechanically
connected switches discussed in Subsection 3.1, for instance, constitute a simple example which
falls into this category. A second limitation compared to our approach stems from the fact that
the formula in the right hand side of a definition like (55) either refers to the original state
(in case of holds(f,5)) or to the finally resulting successor state (in case of causes(A,S, f)
or cancels(A, S, f), respectively, in conjunction with the persistence axiom). Consequently, no
intermediately occurring fact can possibly trigger an indirect effect; hence, this formalization
does not allow for deriving the successor state where a flash of the light bulb is recorded by the
light detector in our Example 4.

In [Brewka and Hertzberg, 1993] and [McCain and Turner, 1995], the notion of causality
is introduced by defining so-called causal rules (c.f. Definition 9), which are formally treated
as directed deduction rules in order to avoid using them in a non-causal way (e.g., swq A
swq = light has a different meaning than swq A light = w3 ). Aside from a far more simple
formalization employed in [McCain and Turner, 1995] compared to [Brewka and Hertzberg,
1993], the latter does not allow for concluding implicit qualifications from domain constraints
rather than ramifications (c.f. Subsection 3.3). The reason is that [Brewka and Hertzberg, 1993]
always strive for a successor state no matter how many changes are necessary to this end, while
[McCain and Turner, 1995] additionally require all changes be explicitly grounded on some
causal rule. On the other hand, the two approaches appear closely related; e.g., we strongly
presume their equivalence in case of deterministic actions and domain constraints not giving rise
to qualifications.?? In particular, both methods are grounded on the policy of minimal change,
which amounts to rejecting any potential successor state whose distance to the original state is
strictly larger than the distance of another proper successor state. As argued in Subsection 5.2,
however, this paradigm might not always capture the intuition in so far as successor states
may exist which have non-minimal distance but are equally plausible. A second difference
between these two approaches on the one hand and our concept of causal relationships on the
other hand has been elaborated in Subsection 5.3, where a lack of expressiveness of causal rules
regarding sophisticated distinctions between qualifications and ramifications triggered by the
same domain constraint has been illustrated. Finally, we should also stress both [Brewka and
Hertzberg, 1993; McCain and Turner, 1995] assume that causal rules be given as part of a
domain specification, which requires more design effort than necessary—as can be seen by our
suggestion to generate causal relationships automatically by employing more general information
on potential influences.

Similar remarks apply to a recently developed integration of causality into the situation
calculus-based framework [Lin and Reiter, 1994], also with the aim of handling indirect ef-
fects [Lin, 1995]. There, first-order formulas resembling causal relationships are used to define
dependencies between effects and their indirect consequences. These formulas are of the form

VS [ ®(5) A caused(fr,v1,5) A ... A caused(f,,v,,S) D caused(f,v,s) ] (57)

where caused(f,v,s) should be read as “fluent f is caused to take truth-value v in state s”

2° Moreover, a third approach, [Geffner, 1990; Geffner, 1992], which is based on a nonmonotonic theory of
“conditional entailment,” appears similar to [Brewka and Hertzberg, 1993; McCain and Turner, 1995] in using
expressions which resemble causal rules. A thorough and formal comparison between these three frameworks,
however, has not yet been accomplished.

37



and ®(s) describes properties of state s, e.g. (c.f. Example 1):
VS [ holds(swq, S) A caused(swn, true,S) D caused(light, true, ) |
along with the action definition3®
VS [ mholds(swq,S5) D caused(swn, true, do(toggle,,S)) ] (58)
The general axiom of persistence employed in this context is
VA, S, F [ ~3V. caused(F,V,do(A,S)) D (holds(F,do(A,S)) = holds(F,S5)) ]

This axiom is of course useless unless the extension of predicate caused is minimized given
the direct effects of actions (like in (58)) and the laws of causality (each of which is of the
form (57)). This is formally achieved by applying circumscription [McCarthy, 1980]. Hence,
aside from also devoting the effort of constructing the various causal relations to the designer,
this method is grounded on the paradigm of minimal change as well. In fact, this work too
appears closely related to [Brewka and Hertzberg, 1993; McCain and Turner, 1995]. On the
other hand, since predicate caused might occur in the left hand side of (57), this type of formula
is expressive enough, in contrast to causal rules, to allow for modeling our Example 5, namely,
by employing V.S [ holds(at-trap,S) A caused(trapdoor-open, true, S) D caused(alive, false, S)]
but not VS [ holds(trapdoor-open, S) A caused(at-trap, true, S) O caused(alive, false, S)].

Generally, in order to account for reasonable yet non-minimal changes, more sophisticated
means than minimization have to be developed for the approaches discussed above. This re-
quires an elaborated way to carefully distinguish between conceivable changes triggered by ac-
tually occurred (direct or indirect) effects and unfounded changes. The approach developed
in [Lukaszewicz and Madaliiska-Bugaj, 1995], which uses Dijkstra’s semantics of programming
languages to reason about actions, fails to handle this challenge appropriately: There, the rami-
fication problem is tackled by allowing actions to (temporarily) release fluents from being subject
to the assumption of persistence; but in case the domain constraints do not completely deter-
mine the new values of all in this way released fluents, unexpected effects may be produced (e.g.,
a turkey magically starts walking if being shot at with an unloaded gun).?! Causal relationships
account for this problem since they are only applicable if the respective triggering effect either
is amongst the direct effects of the action under consideration or has previously been generated
as indirect effect.

An approach which is considerably different from all methods discussed so far yet still related,
is based on networks representing probabilistic causal theories [Pearl, 1988b]. Such networks
describe, in the first place, static dependencies between its components. As argued in [Pearl,
1993; Pearl, 1994], it is however feasible to re-set the truth-value of one or more nodes and,
then, to adjust the values of all depending nodes according to standard (Bayesian) rules of
probability—which can be interpreted as generating indirect effects. If probability values are
restricted to the 0/1-case then such a network of fluents resembles our concept of influence
information. For instance, Figure 8(a) depicts a network suitable for Example 4. Although the
relation between this approach and the other methods discussed in this section is far from being
formally established today, let us point out some restrictions of causal networks compared to our
causal relationships. First, recall Figure 8(a). Since the resulting value of a node, after having

30 For sake of simplicity we neglect the concept of action preconditions.
3! This was observed by V. Lifschitz during the presentation of [Lukaszewicz and Madalifiska-Bugaj, 1995].

38



= =
~. . . e
=
Com )

(b)

/

(a) ()

Figure 8: Causal networks representing the structural dependencies between fluents regarding (a) Exam-
ple 4, (b) Example 5, and (c) domain constraint swy V swz (inducing a cycle), respectively.

fixed the direct effects, must not be computed until all new values of its predecessors have been
determined, the proposition detect necessarily remains false regarding Example 4 since light
stays false, i.e., the non-minimal successor state where a light flash has been detected cannot be
obtained. Second, consider Example 5. Since a change of trapdoor-open might cause a change
of alive depending on at-trap , the adequate network is the one depicted in Figure 8(b). This,
however, does not allow to distinguish between the two situations where either trapdoor-open
becomes true with at-trap being true, or it happens to be the other way round. Hence, the
sophisticated distinction whose necessity has been claimed in Subsection 5.3 is not supported
by causal networks (similar to causal rules). Finally, networks representing causal theories are
based on acyclic graphs, which means that simple examples like the mechanically connected
switches (c.f. Subsection 3.1; relationships (3) and (4)), i.e., domain constraint sw7 V 5@; in
conjunction with influence information Z = {(sw1, swsy), (swz, sw1)}, cannot be represented (c.f.
Figure 8(c)). Aside from these rather specific observations, we would consider it most interesting
to have a formal result regarding the range of applicability of approaches based on probabilistic
networks. The calculus presented in [Pearl, 1994], for instance, considers only actions without
preconditions, and it merely refers to the temporal projection problem, which names the task to
predict effects of actions. This raises the question whether and how this approach can also be
applied in other modes of reasoning like planning or postdiction (also called chronicle completion
in [Sandewall, 1994]); the latter of which deals with finding explanations for observations made
during the execution of action sequences.

This discussion leads us to the question of how to exploit the insights gained in this article.
Our formalization in the first part of this paper has been embedded in a high-level, abstract
description language and semantics for action scenarios, where we have concentrated on aspects
of ramifications only and, to this end, employed a most simple form of action specifications

39



as regards direct effects. Three recent, similarly high-level action semantics focus on sophis-
ticated ways to formalize this aspect, namely, the Action Description Language A [Gelfond
and Lifschitz, 1993], the Ego- World-Semantics [Sandewall, 1994], and the framework presented
in [Thielscher, 1995]. These approaches are considered prime candidates for being enhanced
by the concept of causal relationships. In case of A, this should be based on the dialect
called Ayp [Thielscher, 1994b], which includes the notion of non-determinism, here needed
if more than a single successor state exists. The resulting extension of the Action Descrip-
tion Language would constitute an alternate to the variant presented in [Kartha and Lifschitz,
1994], which handles ramifications on the basis of categorization and minimization, as does the
extension of the Ego-World-Semantics presented in [Sandewall, 1995b).

The main purpose of these three formal frameworks is to provide a uniform semantics for
calculi designed to reason about actions and change. Given our formal proposal to handle in-
direct effects, existing approaches can be extended in such a way that their solution to the
ramification problem is provably correct wrt our semantics. As an exemplary formalism, in the
second part of this paper we have adapted a method which is based on reification of entire
state descriptions and uses equational logic programming [Hélldobler and Schneeberger, 1990;
Hélldobler and Thielscher, 1995]. Our Theorem 22 demonstrates that the extension of this ap-
proach developed here is sound and complete wrt the formal semantics described in the first part.
While the work reported in this article has been concentrated solely on the ramification problem,
the particular approach—aside from being closely related, in its basic form, to the Linear Con-
nection Method [Bibel, 1986] and reasoning about actions based on Linear Logic [Girard, 1987;
Masseron et al., 1993]—has shown a wide range of applicability, e.g. regarding postdiction prob-
lems and non-deterministic actions [Thielscher, 1994b], reasoning about counterfactual action
sequences [Thielscher, 1994a], or concurrent actions in conjunction with (locally) inconsistent
specifications [Bornscheuer and Thielscher, 1994]. Thus, a main goal of future research consists
in combining all these results, each of which focuses on a single ontological aspect, into a uniform
and expressive calculus.

Acknowledgments. The author wants to thank Wolfgang Bibel, Jirgen Giesl, Christoph
Herrmann, Jana Kd&hler and Stuart Russell for helpful comments and suggestions.

References

[Baker, 1991] Andrew B. Baker. Nonmonotonic reasoning in the framework of situation calculus. Artificial
Intelligence Journal, 49:5-23, 1991.

[Blbel, 1986] Wolfgang Bibel. A deductive solution for plan eneration. New Generation Computmg, 4115*132,

[Bornscheuer and Thielscher, 1994] Sven-Erik Bornscheuer and Michael Thielscher. Representing concurrent ac-
tions and solving conflicts. In B. Nebel and L. Dreschler-Fischer, editors, Proceedings of the German Annual
Conference on Artificial Intelligence (K1), volume 861 of LNAI, pages 16-27, Saarbriicken, Germany, September
1994. Springer.

[Brewka and Hertzberg, 1993] Gerhard Brewka and Joachim Hertzberg. How to do things with worlds: on for-
malizing actions and plans. Journal of Logic and Computation, 3(5):517-532, 1993.

[Biirckert et al., 1988] Hans-Jiirgen Biirckert, Alexander Herold, Deepak Kapur, Jérg H. Siekmann, Mark E.

Stickel, M. Tepp, and H. Zhang. Opening the AC-unification race. Journal of Automated Reasoning, 4:465—
474, 1988.

40



[Clark, 1978] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Workshop Logic and
Data Bases, pages 293-322. Plenum Press, 1978.

[del Val and Shoham, 1993] Alvaro del Val and Yoav Shoham. Deriving properties of belief update from theories
of action (II). In R. Bajcsy, editor, Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 732737, Chambéry, France, August 1993. Morgan Kaufmann.

[Elkan, 1992] Charles Elkan. Reasoning about action in first-order logic. In Proceedings of the Conference of the
Canadian Society for Computational Studies of Intelligence, Vancouver, Canada, May 1992.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence Journal, 2:189-208, 1971.

[Finger, 1987] Joseph J. Finger. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford University,
CA, 1987.

[Gallier and Raatz, 1989] Jean H. Gallier and Stan Raatz. Extending SLD-resolution to equational horn clauses
using E-unification. Journal of Logic Programming, 6:3—44, 1989.

[Geffner, 1990] Hector Geffner. Causal theories for nonmonotonic reasoning. In Proceedings of the AAAT National
Conference on Artificial Intelligence, pages 524-530, Boston, MA, 1990.

[Geffner, 1992] Hector Geffner. Default Reasoning: Causal and Conditional Theories. MIT Press, 1992.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representing Action and Change by Logic
Programs. Journal of Logic Programming, 17:301-321, 1993.

[Ginsberg and Smith, 1988a] Matthew L. Ginsberg and David E. Smith. Reasoning about action I: A possible
worlds approach. Artificial Intelligence Journal, 35:165-195, 1988.

[Ginsberg and Smith, 1988b] Matthew L. Ginsberg and David E. Smith. Reasoning about action II: The quali-
fication problem. Artificial Intelligence Journal, 35:311-342, 1988.

[Girard, 1987] Jean-Yves Girard. Linear Logic. Journal of Theoretical Computer Science, 50(1):1-102, 1987.

[Green, 1969] Cordell Green. Application of theorem proving to problem solving. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 219-239, Los Altos, CA, 1969. Morgan
Kaufmann.

[GroBe et al., 1992] Gerd GroBe, Steffen Hélldobler, Josef Schneeberger, Ute Sigmund, and Michael Thielscher.
Equational logic programming, actions, and change. In K. Apt, editor, Proceedings of the International Joint
Conference and Symposium on Logic Programming (IJCSLP), pages 177-191, Washington, 1992. MIT Press.

[Hanks and McDermott, 1987] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence Journal, 33(3):379-412, 1987.

[Holldobler and Schneeberger, 1990] Steffen Hélldobler and Josef Schneeberger. A new deductive approach to
planning. New Generation Computing, 8:225-244, 1990.

[Holldobler and Thielscher, 1995] Steffen Hélldobler and Michael Thielscher. Computing change and specificity
with equational logic programs. Annals of Mathematics and Artificial Intelligence, 14(1):99-133, 1995.

[Hélldobler, 1989] Steffen Hélldobler.  Foundations of Equational Logic Programming, volume 353 of LNAL
Springer, 1989.

[Jaffar et al., 1984] Joxan Jaffar, Jean-Louis Lassez, and Michael J. Maher. A theory of complete logic programs
with equality. Journal of Logic Programming, 1(3):211-223, 1984.

[Kartha and Lifschitz, 1994] G. Neelakantan Kartha and Vladimir Lifschitz. Actions with indirect effects. In
J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 341-350, Bonn, Germany, May 1994. Morgan Kaufmann.

41



[Lifschitz, 1986] Vladimir Lifschitz. On the semantics of STRIPS. In M. P. Georgeff and A. L. Lansky, editors,
Proceedings of the Workshop on Reasoning about Actions & Plans. Morgan Kaufmann, 1986.

[Lifschitz, 1990] Vladimir Lifschitz. Frames in the space of situations. Artificial Intelligence Journal, 46:365-376,
1990.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of Logic and
Computation, 4(5):655-678, 1994.

[Lin, 1995] Fangzhen Lin. Embracing causality in specifying the indirect effects of actions. In C. S. Mellish,
editor, Proceedings of the International Joint Conference on Artificial Intelligence (1JCAI), pages 1985-1991,
Montreal, Canada, August 1995. Morgan Kaufmann.

[Lincoln and Christian, 1990] Patrick D. Lincoln and J. Christian. Adventures in associative-commutative unifi-
cation. In C. Kirchner, editor, Unification, pages 393-416. Academic Press Limited, 1990.

[Lloyd, 1987] John W. Lloyd. Foundations of Logic Programming. Series Symbolic Computation. Springer,
second, extended edition, 1987.

[Lukaszewicz and Madalifiska-Bugaj, 1995] Witold Lukaszewicz and Ewa Madalifiska-Bugaj. Reasoning about
action and change using Dijkstra’s semantics for programming languages: Preliminary report. In C. S. Mellish,
editor, Proceedings of the International Joint Conference on Artificial Intelligence (1JCAI), pages 1950-1955,
Montreal, Canada, August 1995. Morgan Kaufmann.

[Masseron ef al., 1993] M. Masseron, Christophe Tollu, and Jacqueline Vauzielles. Generating plans in linear
logic 1. Actions as proofs. Journal of Theoretical Computer Science, 113:349-370, 1993.

[McCain and Turner, 1995] Norman McCain and Hudson Turner. A causal theory of ramifications and qalifi-
cations. In C. S. Mellish, editor, Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), pages 1978-1984, Montreal, Canada, August 1995. Morgan Kaufmann.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. Machine Intelligence, 4:463-502, 1969.

[McCarthy, 1959] John McCarthy. Programs with Common Sense. In Proceedings of the Teddington Conference
on the Mechanization of Thought Processes, London, 1959. (Reprinted in: J. McCarthy, Formalizing Common
Sense, Ablex, Norwood, New Jersey, 1990).

[McCarthy, 1980] John McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial Intelligence
Journal, 13:27-39, 1980.

[Pearl, 1988a] Judea Pearl. Embracing causality in default reasoning. Artificial Intelligence Journal, 35(2):259-
271, 1988.

[Pearl, 1988b] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988.

[Pearl, 1993] Judea Pearl. Graphical models, causality, and intervention. Statistical Science, 8(3):266-273, 1993.

[Pearl, 1994] Judea Pearl. A probabilistic calculus of actions. In R. Lopez de Mantaras and D. Poole, editors,
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pages 454—462, San Mateo, CA,
1994. Morgan Kaufmann.

[Plotkin, 1972] Gordon D. Plotkin. Building in equational theories. Machine Intelligence, 7:73-90, 1972.

[Sandewall, 1994] Erik Sandewall. Features and Fluents. Oxford University Press, 1994.

[Sandewall, 1995a] Erik Sandewall. Reasoning about actions and change with ramification. In Computer Science
Today, volume 1000 of LNCS. Springer, 1995.

42



[Sandewall, 1995b] Erik Sandewall. Systematic comparison of approaches to ramification using restricted min-
imzation of change. Technical Report LiTH-IDA-R-95-15, Department of Computer Science, Linkoping Uni-
versity, Sweden, 1995.

[Shepherdson, 1992] John C. Shepherdson. SLDNF-resolution with equality. Journal of Automated Reasoning,
8:297-306, 1992.

[Stickel, 1981] Mark E. Stickel. A unification algorithm for associative commutative functions. Journal of the
ACM, 28(3):207-274, 1981.

[Thielscher, 1994a] Michael Thielscher. An analysis of systematic approaches to reasoning about actions and
change. In P. Jorrand and V. Sgurev, editors, International Conference on Artificial Intelligence: Methodology,
Systems, Applications (AIMSA), pages 195-204, Sofia, Bulgaria, September 1994. World Scientific.

[Thielscher, 1994b] Michael Thielscher. Representing actions in equational logic programming. In P. Van Hen-
tenryck, editor, Proceedings of the International Conference on Logic Programming (ICLP), pages 207-224,
Santa Margherita Ligure, Italy, June 1994. MIT Press.

[Thielscher, 1995] Michael Thielscher. The logic of dynamic systems. In C. S. Mellish, editor, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pages 1956-1962, Montreal, Canada, August
1995. Morgan Kaufmann.

[Thielscher, 1996] Michael Thielscher. On the completeness of SLDENF-resolution. Journal of Automated Rea-
soning, 1996. (To appear Fall ’96).

[Winslett, 1988] Marianne Winslett. Reasoning about action using a possible models approach. In Proceedings
of the AAAI National Conference on Artificial Intelligence, pages 89-93, Saint Paul, MN, August 1988.

[Zhang and Foo, 1993] Yan Zhang and Norman Y. Foo. Reasoning about persistence: A theory of actions. In

R. Bajcsy, editor, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
718-723, Chambéry, France, August 1993. Morgan Kaufmann.

43



