INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Computation of Irregular Primes
up to Eight Million (Preliminary
Report)

M.A. Shokrollahi
TR-96-002
January 1996

Abstract
We report on a joint project with Joe Buhler, Richard Crandall, Reijo Ernvall,
and Tauno Metsankyla dealing with the computation of irregular primes and cyclo-
tomic invariants for primes between four and eight million. This extends previous
computations of Buhler et al. [4]. Our computation of the irregular primes is based
on a new approach which has originated in the study of Stickelberger codes [13].
It reduces the problem to that of finding zeros of a polynomial over F, of degree
< (p—1)/2 among the quadratic residues. Use of fast polynomial ged-algorithms gives
an O(plog” ploglog p)-algorithm for this task. By employing the Schénhage-Strassen
algorithm for fast integer multiplication combined with a version of fast multiple eval-
uation of polynomials we design an algorithm with running time O(plog ploglog p).
This algorithm is particularly efficient when run on primes p for which p—1 has small
prime factors. We also give some improvements on the previous implementations for

computing the cyclotomic invariants of a prime.

i

1 The Problem

In what follows p always denotes an odd prime.
The Bernoulli numbers B; are rational numbers defined by the identity

oo t
T T
e — 1 :;Btﬁ'

The odd Bernoulli numbers are zero except for B;. A pair (p,2t),0 <t < (p—1)/2is
called irregular, iff p divides By;. The number of irregular pairs for p is called the index of
irregularity of p, and is denoted by i(p); p is called regular if i(p) = 0, and is called irregular
otherwise. In this article, we will develop new methods for computing all the irregular pairs
for given p.

The irregular pairs for p can be used to compute several other interesting number the-

oretic data, as described in Section 3.

The irregular pairs were computed for primes less than 125000 by Wagstaff [17]. This
paper also contains a nice account on the history of these computations prior to its appear-
ance. Wagstaff’s tables were extended by Tanner and Wagstaff [15] to primes below 150000.
Both these approaches were quadratic, i.e., their running time was proportional to p?. Buh-
ler, Crandall, and Sompolski [3] were the first to invent an O(p'**)-algorithm for this task
and used their method to extend the computations of irregular pairs to one million. Their
elegant approach is based on the inversion of the power series (e” — 1)/ = Y2, z*~1/k!
modulo 27~! over F,. This method, combined with further memory saving strategies, was
taken up again by Buhler, Crandall, Ernvall, and Metsdnkyld [4] to extend previous com-
putations to four million.

In this article, we report on a new approach to compute irregular pairs for primes
below eight million. The resulting method is asymptotically comparable to Buhler et al.’s
approach, but allows for great memory and running time savings if p — 1 has only “small”
prime divisors. This will be explained in detail in the next section.

2 An Algorithm

In the following p denotes an odd prime, w is a primitive root mod p regarded as a positive
integer less than p, and ¢ is an integer satisfying 1 < ¢ < p— 1. Q is the field of rational
numbers, Z, denotes the ring of p-adic integers, and F, is the finite field with p elements.
Let

2 {c(w—j mod p)

he(z):= Z p

j=0

J 2! € F,[z].

This polynomial arises as a generator polynomial for the Stickelberger code, see [13]. Our
first aim is to prove the following.

Theorem 1. For all 1 < k < p— 2 we have

B,_
he(w®) = (e — ck)p—z mod p.

Proor. Our proof is a slight modification of the argument given in [13]. The elements of
the galois group G of the pth cyclotomic field over Q are the o,:(— (°, where (= &?7i/7,
The group ring F,[G] is isomorphic to F,[z]/(z?~! — 1) via the morphism ¢ of F,-algebras
sending o,, to z mod (zF~! —1).

Let 6 := ;—)Ed do;' € Q[G] be the Stickelberger element. Then

(c—0.)8 = 5 <ﬁ _ M) o7

=1 \P p
p—1
S
d=1 p
_ =2 lc(w jmodp)J i
i=0 p "

We thus deduce that (¢ — 0.)f mod p is a well-defined element of F,[G] and
¢((c — 0.)0 mod p) = h, mod (2"~ — 1).

Let w be the Teichmiiller character of G, i.e, w(o.) = ¢ mod p, and consider the central
primitive idempotents e,» := 5 LSl wk(0,)o; ! of Z,[G] corresponding to w for 0 < k <
p — 2. Note that

er0. = W (.)en. (1)
We deduce that

ewr(c—0.)0 = (c — W (0,)) By w-rur,

where By - i= 1 Ep L cw™*(0.) is the generalized Bernoulli number corresponding to w=*.
We remark that B1 w- € L, for i # 1, and B, ,-+» = 0 if k is nonzero and even. (Cf. [18,
p. 31]). We further deduce from (1) that for all v € Z,[G] and all k£ # 1 we have

@(ewxy mod p) = (7 mod p)(w*)p(e,» mod p) mod p,

Where ©(y mod p)(w*) € Z, is the value of ©(y mod p) (regarded as a polynomial over Z,)
at w*. (We have to exclude k = 1since By 4-1 € Z,.) Altogether this gives

ho(w*) = (e — ") By -+

for 0 <k <p-2,k+#1. Now we use the congruence

By
By .= 2t d
b n—l—lmo P

holding for all odd n satisfying n Z —1 mod p — 1, see [18, Corollary 5.15]. This gives
the assertion of the theorem for odd k£ with 1 < £ < p — 2. For even £ in this range the
congruence is trivially valid since both sides vanish mod p. O

The theorem says that (p,2t) is a irregular pair iff A, (w?=%) = 0. For computing the
irregular pairs we thus need to compute the zeros of h,, among the quadratic nonresidues
of F,. As all the quadratic residues except possibly 1 are zeros of k., we may as well work

with the polynomial i defined by 5(z) = (z — 1)k, (z)/(z?~1/2 — 1). The problem we are
concerned with is thus that of finding the zeros of the polynomial 7 of degree < (p —1)/2
among the quadratic nonresidues of F,.

The first idea to solve this problem would probably be to perform a polynomial ged,
followed by a factorization. Even neglecting the cost of the factorization step, this algorithm
would be of order O(p log® plog log p). We are interested in a faster algorithm, i.e., one of
order O(plogploglog p).

Following a suggestion of Schénhage [11], we will first transform this problem to an
instance of integer multiplication. For reasons to become clear later, we will consider a
more general setup:

Problem 2. Given a factor d of p—1 such that (p —1)/d is even, a polynomial f over F,
of degree less than d, and a coset C' of the cyclic subgroup of FX of order d, find all zeros
of f inC.

Let f(z) = Y4 fiz', and let u be a generator of the subgroup of order d of F. Further, let
a be a representative of the coset C, i.e., C = {au’ | 0 <7 < d}. In a first step we multiply
the f; with o' to obtain g(z) = Y, ., fie'z’ =: Y, ,¢:z". We thus need to compute zeros
of g among the elements 4/, 0 < j < d. The standard procedure to solve this problem is
to employ a technique known as Bluestein’s trick: as (p — 1)/d is even, there exists v € F,
such that v? = u. As g(v’) = g(v¥), we obtain for all 0 < j < d

g(') = 3 g0 = 0 Y (g0 @)

Let h; := g;v' , and v; := v~ . If d is odd, then v* = —1, hence the above is a negacyclic
convolution of the vectors (h;), and (v;). If d is even, this is a cyclic convolution of these
vectors. In any event, one can obtain v~/ 2g(uj) by multiplying the polynomials h(z) :=
S hizt and v(z) := 3, v;x', and performing a wrap-around (with negative or positive
sign, according to whether d is even or odd). We have thus reduced the problem to that
of multiplying two polynomials of degree less than d over F,. We now use Schonhage’s
technique as presented in [9] to reduce this problem to that of multiplying integers. Let
m := [log(dp?)]. (Here and in the sequel log denotes log,.) Further, let

-1 -1 2d—2
i=0 i=0 i=0
As 3014 - vy < 2™ for all 4, we obtain ¢; = 37, ._; hyv;, hence h(z)v(z) = S22 (¢; mod
p)z’. The running time of this algorithm is clearly dominated by the time needed to
multiply two integers of bit-length dm, which, using the Schonhage-Strassen algorithm [12],
is O(dmlogdmloglogdm).
The first version of our algorithm was the implementation of this idea, with d = (p—1)/2,
C' the coset consisting of the quadratic nonresidues, and f = 7. (Timings for this and the
following more sophisticated versions on some specific primes are provided by the table at
the end of this section.)
A major improvement can be gained by employing an idea related to the multiple
evaluation algorithm of Borodin and Moenck [2]. First, note that by multiplying the ith

coefficient of 1 with w’, we are left with the problem of finding the zeros of the resulting
polynomial among the quadratic residues of FY. By abuse of notation, we denote the
resulting polynomial by the same letter n. Let ¢; < g5 < --- < ¢; be the prime factors of
N :=(p—1)/2in ascending order. For any divisor d of N let C; denote the subgroup of order
d of FX. If we can quickly compute f := 7 mod (2% —wi) for j =1,3,...,(p—1)/q: — 1,
then we can apply the technique for solving Problem 2 to compute the zeros of f in the
coset w?C,,. To compute f we apply recursion: start with f, ; := 1. Suppose that we have
computed f; ; = p mod (z% —w’®), where d; = ¢; - - - ¢;. From this we compute for { with ¢ <
J+(p—1)/d;y1 and £ = j mod (p—1)/d; the ¢; polynomials fiy1,:= fi; mod (z%+ —wtd+1).
The computation time for all the f;;,, from all the f;; is linear in N, and can be done
efficiently, as we are computing modulo binomials. Roughly, the whole running time for
this version is dominated by the maximum of ¢ N (the time to compute all the polynomials
nmod (z% — wi?)) and N/g; times the time required to multiply two ¢;m-bit integers,
where, as above, m = [log(p?¢;)]. For all primes p for which p — 1 consists of many prime
factors, this version improves significantly over the last one, see the table at the end of this
section. One reason for this is that the Schonhage-Strassen algorithm for multiplication of
integers is not a linear time algorithm, and that we can efficiently break down the problem
into many smaller pieces.

Further savings can be achieved by noting that whenever we apply the solution of
Problem 2 to compute the zeros of the polynomial f in a certain coset of the subgroup of
order ¢; of X, we are actually computing the polynomial product of h(z) and v(z). The
main point is now that v is fixed for all the cosets. So we are actually dealing with the
problem of multiplying one integer with several other integers. This problem can be solved
efficiently in the following way: we use the Schénhage-Strassen algorithm for multiplying
integers. In a first step we generate v, and its Fourier transform and store it. Then, for
each h encountered, we compute its transform, multiply it with the transform of », and
transform the product back. This reduces the number of Fourier transforms per polynomial
multiplication from three to two. Another improvement can be gained using an idea of
D. Reischert [8]: If p is not a Fermat prime, then the largest prime factor ¢; of p — 1 is odd,
hence we have to perform a negacyclic convolution of A(z) and v(z). Translated into integer
multiplication, this means that we are performing multiplication modulo 2™ + 1 for some
m. If m is such that 32m = 2%/ < (2k —1)2?%, then one can perform the Schonhage-Strassen
multiplication algorithm to compute this integer product. (See [10, p. 32].) The advantage
over the method which multiplies & and v as integers and reduces the product mod z?% + 1
is that the length of the numbers to be multiplied is smaller. (We do not need zero-padding
in this version.) However, since 32m might contain a small power of 2 (usually 2°), the
new method maybe slower than the old one for some values of m. In our implementation
the new method computes the smallest I’ such that ¢,(p — 1)?/2 < 232" and performs a
Schoénhage-Strassen multiplication modulo 232" + 1, while the old method computes the
smallest [such that ¢,(p — 1)*/2 < 2' and performs multiplication modulo 2™ + 1, where
m = [2lg;/32]. The final decision whether to use the old or the new method was made
according to whether [1/32]¢q;, was larger than [2l¢,/32] or not.

We have implemented all the three versions of our algorithm described above. The

lion’s share of the implementations has been done in TP-code. TP which is an invention of
A. Schonhage, simulates a multi tape Turing machine. It is a software implementation of

a Turing Processor, which can be programmed via TPAL, the Turing Processor Assembly
Language. Currently, there exists a substantial collection of algorithms written in TPAL,
including the classical routines for computing with integers and many of the asymptotically
fast algorithms for this domain. These clean and efficient implementations made TP the
natural choice to implement our algorithm in. For more information on this software and
how to obtain it via ftp, the reader is referred to the TP-book [10].

We finish this section by providing some timings for the three versions of our algorithm
run on different primes. The computations were done on a SPARC-10 with 40 MHZ. The
TP-code was compiled with E. Vetter’s tpc, which is a portable TPA L-compiler based on
the GNU C-compiler. (See [10, Chapter 3].) All the timings are in seconds. They were
measured with the UNIX time-command.

p | Factors of (p—1)/2 Version 1 | Version 2 | Version 3

8731 | (3,3,5,97) 1.43 0.44 0.42
17467 | (3,41,71) 2.82 1.47 1.39
29917 | (2,3,3,3,277) 5.2 2.07 1.85
34939 | (3,3,3,647) 6.23 3.51 9.58
59863 | (3,11,907) 11.88 6.67 4.68
119737 | (2,2,3,3,1663) 97.59 14.01 13.99
139801 | (2,2,3,5,5,233) 31.47 13.86 8.35
230489 | (2,2,2,2,2,2,1871) 62.67 32.12 98.15
279607 | (3,46601) 67.35 64.16 83.94
478991 | (5,19,2521) 130.75 62.49 55.30
559217 | (2,2,2,7,4993) 171.45 | 100.20 69.41
957991 | (3,5,11,2903) 285.38 155.06 102.44
1118437 | (2,3,11,37,229) 410.57 | 106.10 78.93
3238481 | (2,2,2,5,7,5783) | 646.03| 366.40
3088961 | (2,2,2,2,5,107,233) | 47964 | 382.56
6000149 | (2,7,7,11,11,11,23) | 1357.05 | 42257
6000191 | (5,7,85717) - - 1350.58
12000097 | (2,2,2,2,3,3,3,17,19,43) - | 1152.30
16000129 | (2,2,2,2,2,2,3,3,17,19,43) - | 1560.22
20001301 | (2,3,5,5,11,11,19,29) - | 1481.49

3 Applications

Once the irregular pairs for a prime p are computed, one can use this to compute other
arithmetic data of the cyclotomic field K, generated over Q by a primitive pth root of

unity. In this section we will report on two such applications, which, up to now have always
accompanied the computations of the irregular pairs, see [4, 6, 7, 15, 17].

For n > 1 let K, denote the cyclotomic field of p"*+'st roots of unity, and let A, and A,
be the class number and p-class group of K, respectively. It is well known that

h,=hth , A,=Atq A,

where AT and A} are the class number and the p-class group of the maximal real subfield
of K,. A conjecture of Vandiver states that p does not divide At. Using the irregular pairs,
we can verify this conjecture for p in the following way: let (p,) be an irregular pair, L be
the smallest prime congruent to 1 modulo p, m := (L —1)/p, and

(r—1)/2 i
q= H (s" = s mod L,

b=1

where s is a square root of a pth root of 1 modulo L. If ¢ # 1 mod L for all ¢ for a given
p, then Vandiver’s conjecture is true for p. (See Washington’s book [18] for details.)

The next application is concerned with the problem of computing the so-called cyclo-
tomic invariants. By Iwasawa’s general result and the theorem of Ferrero and Washington
we have

ord,(hn) = Apn 4+ v, ordy(h,) = A n+vy,,

for all n large enough, say n > n,, where A,,v,, A, v~ are integers ()\,, A, nonnegative)
independent of n. Here and in the following ord,(a) stands for the exponent of p in the

canonical decomposition of a. Suppose that

12

A7 (Z)p"'Z) P, (n=0,1,...), (3)
ord,(hy) = ord,(ByBs---B,_3). (4)

Then, if Vandiver’s conjecture is true for p, we obtain
Ap = A =v, =y, =i(p), minimal n, = 0.

(We refer to [6] and the references therein.) Ernvall and Metsidnkyld develop in [6] a com-
putational method to decide whether (3) and (4) are true: for an integer a prime to p let
¢, denote the Fermat quotient of a, i.e.,

aP~1 —1

qa:TmOdp7 0<q. <p.

Let (p,t) be an irregular pair, N = (p — 1)/2, and put

N
S, = Zat_lqa, S5 = Zat_l.
a=1

If 51 # 0mod p, S5 # (1 —t)pS; mod p?, and S3 # 0 mod p?, then (3) and (4) hold for p.
Ernvall and Metsankyld have suggested the following procedure for computing these sums:
note first that we have the following congruences:

Ga=@+gmodp, G2=¢+q¢+ (20 modp if (p—1)/2<2a< p.

We can thus compute the sums $5; and S5 in the following way. The ¢y, are computed in
cycles, passing from ¢, to ¢s, or to ¢,_», according to whether 2a < N or not. They are
stored in an array consisting of N 32-bit integers, where the ath entry corresponds to ¢,.
(We are in the range p < 232.) When a new ¢, is computed, it is first checked whether
the corresponding entry is zero. If not, this means that the computation over the current
cycle is finished and one can go on to the next a for which the corresponding entry is zero.
Along the way, the computed values of ¢, are multiplied by a'~! for all ¢ such that (p,1)
is irregular. All the computations are carried out modulo p?. (Although S; is only needed
modulo p, we need to perform computations modulo p? for computing the ¢, and hence 5.)
At the end of these computations, one eventually obtains the desired values for 5; and 55.
The same implementation has been used to compute the cyclotomic invariants up to four
million [4].

It is clear that this method requires at least 4 N bytes of memory for storing the quotients
¢a. Our slightly modified method reduces the memory requirement by a factor of 1/32, at the
expense of some overhead in the computation. The idea is as follows: ignoring diophantine
constraints, we allocate an array of integers of length N /32, call it £q, and regard it as an
array of N bits. This array is initialized with zeros at the beginning. Whenever we compute
some ¢,, we check whether the ath bit of £q is set to one. If not, we set this bit to one, and
add a'~'q, mod p to the previous value of S;, and @'~ mod p? to the previous value of S;.
If the ath bit of £q is one, we know that the computation over one orbit is finished, and we
can scan in 32-bit steps over the array f£q for an @ whose orbit has not been involved in the
computation yet. The computational overhead we encounter here is the reading and the
setting of bit-values in f£q for each a. Both these operations can be performed efficiently
by ORing or ANDing with appropriate powers of two (2° — 23!), which are computed in
advance.

4 Computations

Our computations were carried out on spare cycles of a cluster of 42 SPARC-10 and SPARC-
20 machines with altogether 56 processors. These machines were kindly provided by the de-
partment of computer science, Universitat Bonn, Abteilung IT and III, and the Gesellschaft
fiir Mathematik und Datenverarbeitung. They varied quite a lot with respect to their RAM,
their virtual memory, and their number of processors. No machine was equipped with less
than 40 MB of RAM. In order to keep the load of the machines used at a minimum, on all
but one machine with two processors we only ran our program on primes which consumed
no more than 40 MB of memory during the course of computations. For each prime we
estimated in advance the amount of memory used via the empirical formula

Amount of memory used ~ (650 * Largest prime factor of p — 1)bytes.

A secondary program generated all primes between four and eight million, estimated the
amount of memory used, and passed the data to a resource management program (RMP)
written by E. Vetter [16]. The RMP passed the prime to the first machine available which
had the amount of RAM necessary to compute the irregular pairs corresponding to the
prime in question. Furthermore, the RMP also allowed the use of specific time windows

for computations on different machines (usually during the night and at weekends). All
information regarding the profile of the machines were kept in a file, which the RMP always
consulted before passing a prime to an available machine. In that way, we could quickly
react to possible changes of the computing environment.

The computations started in April 1995, and stopped in December 1995. During this
period, we could compute the indices of 157,049 primes in the range between four and eight
million. (There are 256,631 primes in this range.) The remaining primes will be computed
via a different implementation by Joe Buhler and Richaed Crandall using the computing
facilities of the NeXT-corporation in California. We will use the two implementations to
randomly cross-check the results obtained by us and by Buhler-Crandall’s implementation.
Large-scale computations are vulnerable to all sorts of errors, so besides the cross-check
facility, it is good to have some sort of checksum identity to check the results. Buhler
et al. [3, 4] use the identity S7232%(n 4+ 1)B, = —4mod p. In our case we used the
following identity: if f is a polynomial over F, of degree less than N = (p — 1)/2, then
>, f(t) = N f(0), where ¢ runs over the quadratic residues of F,.

Among the primes investigated by our program, we found two of index seven: 5,216,111
and 5,620,861. Previously the only prime of index seven known was 3,238,481 [4]. As is
noted by Buhler et al. [4], conjectures regarding the distribution of indices leads one to
guess that the smallest prime of index seven should be about 16,500,000, so the fact that
there are at least three primes below this number is surprising.

5 An Open Problem

It is well-known that there are infinitely many irregular primes. It is not known whether
there are infinitely many regular primes. Nevertheless, if the numerators of the Bernoulli
numbers are uniformly random modulo odd primes, then the index of irregularity should
satisfy a Poisson distribution with mean 1/2. As a result, the density of the irregular primes
should be 1 —e~'/2, which is roughly 39.3%. In other words, about 60% of the primes should
be regular. For our computations this means that in almost 60% of the cases we perform a
very complicated computation to obtain one bit of information.

The question now is the following: Is there a possibility to quickly decide whether a
given prime is regular or not? Here, we mean by a “quick” algorithm one that runs in
time O(p), preferably with small constants. According to our description of the indices
of irregularity of a prime in terms of the zeros of the polynomial 7, we may as well ask
whether there is a possibility to quickly decide for a given polynomial over F, whether it
has a zero among the quadratic nonresidues (or quadratic residues). We can also state this
problem in a randomized setting: design an algorithm which on input f € F,[z] outputs
YES or NO according to whether f has a zero among the quadratic residues of F,, with
error probability 0 if the answer is NO.

One possible strategy to solve the above problem would be to compute the product
[1, f(¢) in time O(p), where t ranges over the quadratic residues. Below we shall derive an
O(plogp) lower bound for this problem in the model of straight-line programs. This result
may suggest that it is difficult to find a linear time algorithm for computing the above
product. (For a thorough discussion of the model of straight-line programs and the lower
bound techniques used in the sequel we refer the reader to the forthcoming book [5].)

Let f be a polynomial of degree n with indeterminate coefficients over a field k£ and
denote the field generated over k by the coefficients of f by K. Let zq,...,z,_1 be indeter-
minates over K, and F := f(zo)f(z1)--- f(2,-1). We are interested in a lower bound for
the non scalar complexity L(F') of I over K. Let 0; denote the derivation morphism 9/dz;
of K(zg,...,2,_1). By the Baur-Strassen derivative inequality [1] we have

3L(F) > L(F,0,F,...,0,_.F).

Note that 0;F = Ff'(z;)/f(z;). Hence, the right-hand side of the above inequality is
at least L(f'(z0)/f(%0),..., f'(®n_1)/f(2n_1)), which itself is greater than or equal to
L(f'(%0)y..., f'(zn_1)) — 2n. A simple application of Strassen’s Degree Bound [14] gives a
lower bound of nlog(n — 1) — 2n for the latter.

6 Acknowledegements

The use of fast integer multiplication to find the zeros of a polynomial over a finite prime
field has been a suggestion of Prof. A. Schonhage whose help is hereby greatly acknowledged.
Furthermore, it is a pleasure to thank him for introducing to me the world of TP, for the
many fruitful discussions on TP and other topics, and for his support to get computing
time on the machines of Abteilung II, Department of Computer Science, Universitit Bonn.

I also have used machines of Abteilung III of the Department of Computer Science of
Universitdt Bonn, and of the Gesellschaft fiir Mathematik und Datenverarbeitung (GMD).
I would like to thank Prof. A.B. Cremers (Department of Computer Science, Bonn), and
Prof. Th. Lengauer (GMD) for providing me with the necessary hardware and for their
interest in this work.

A small part of the computations were done on a machine of the University of Turku.
I would like to thank T. Metsinkyld and the University of Turku for providing me with
computation time on this machine.

Special thanks go to J. Buhler, R. Crandall, and T. Metsinkyla for sharing with me their
experience with Bernoulli computations and for providing me with their earlier programs,
and to J. Buhler for comments on an earlier draft of this report.

Whenever I needed any TP- or Unix-specific suggestion, E. Vetter was there to help,
and he didn’t stop until the problem was solved. The Resource Management Program was
entirely written by him. Without his continuous support, this project would have probably
failed.

Almost all the sophisticated parts of the TP-code have been written by D. Reischert. It
is a pleasure to thank him for providing me with his excellent software.

Finally, many thanks go to several system administrators of the machines I worked on
for their patience with my project and for their support.

References

[1] W. BAUR AND V. STRASSEN: The complexity of partial derivatives. Theoret. Comp.
Seci., 22, 317-330, 1983.

[2] A. BoroDpIN AND R. MoENCK: Fast modular transforms. J. Comp. Syst. Sci., 8,
366386, 1974.

[3] J. P. BuHLER, R. E. CRANDALL, AND R. W. SoMmPOLSKI: Irregular primes to one
million. Math. Comp., 59, 717-722, (1992).

[4] J. P. BunLer, R. E. CrRaNDALL, R. ERNVALL, AND T. METSANKYLA: Irregular
primes and cyclotomic invariants to four million. Math. Comp., 61, 151-153, (1993).

[5] P. BUrGISSER, M. CLAUSEN, AND M. A. SHOKROLLAHI: Algebraic Complexity The-
ory. To appear in Springer Verlag, Heidelberg.

[6] R. ERNVALL AND T. METSANKYLA: Cyclotomic invariants for primes between 125000
and 150000. Math. Comp., 56, 851-858, 1991.

[7] R. ERNVALL AND T. METSANKYLA: Cyclotomic invariants for primes to one million.
Math. Comp., 59, 249-250, 1992.

[8] D. REISCHERT: Private Communication.

[9] A. SCHONHAGE: Asymptotically fast algorithms for the numerical multiplication and
division of polynomials with complex coefficients. In Computer Algebra FUROCAM
82 (Marseille 1982), ed. J. Calmet. Lect. Notes Comp. Sci., 144, 3-15.

[10] A. SCcHONHAGE, A. F. W. GROTEFELD, AND E. VETTER: Fast Algorithms. A Mul-
titape Turing Machine Implementation. B.I. Wissenschaftsverlag, Mannheim, 1994.

[11] A. SCHONHAGE: Private communication.
[12] A. SCHONHAGE: Schnelle Multiplikation grofier Zahlen. Computing, 7, 281-292, 1971.

[13] M. A. SHOKROLLAHI: Stickelberger Codes. To appear in Designs, Codes, and Cryp-
tography.

[14] V. STRrASSEN: Die Berechnungskomplexitit von elementarsymmetrischen Funktionen
und von Interpolationskoeffizienten. Numer. Math., 20, 238-251, 1973.

[15] J. W. TANNER AND S. S. WAGSTAFF: New congruences for the Bernoulli numbers.
Math. Comp., 48, 341-350, (1987).

[16] E. VETTER: Private communication.
[17] S. S. WaGsTAFF: The irregular primes to 125000. Math. Comp., 32, 583-591, (1978).

[18] L. WASHINGTON: Introduction to Cyclotomic Fields. Springer Verlag, New York, 1982.

10

