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Abstract

We empirically investigate the potential of a novel, greatly simplified classifier de-
sign for binarized data. The generic model allocates a sparse, “digital” hidden layer
comprised of interaction nodes that compute Parity of selected submasks of input
bits, followed by a sigmoidal output node with adjustable weights. Model identifica-
tion incorporates user-assigned complexity preferences. We discuss the situations: a)
when the input space obeys a metrics, and b) when the inputs are discrete attributes.
We propose a family of respective model priors that make search through the combi-
natorial space of multi-input interactions feasible. Model capacity and smoothness of
the approximation are controlled by two complexity parameters. Model comparison
over the parameter plane discovers models with excellent performance. In some cases
interpretable structures are achieved. We point out the significance of our novel data
mining tool for overcoming scaling problems, impacts on real-time systems, and possi-
ble contributions to the development of non-standard computing devices for inductive
inference.



1 Introduction

In traditional Exploratory Data Analysis, model identification is often performed manu-
ally, by including a modest number of candidate variables and reasonable functions therof.
Screening for interactions between variables is often required to enrich the model with rea-
sonable interaction terms. Parameters are then estimated from the data within a fixed
model structure. Eventually, the process is iterated with a modified or augmented model
which takes into account additional interactions. Besides the principal difficulty of discov-
ering unexpected dependencies during this biased way of modelling, huge databases with
many variables that interact in complex, unpredictable ways can render the manual design
cycle unmanageable (Elder and Pregibon 1996).

Vapnik emphasizes a complementary approach to data modelling, which is largely followed
by the Neural Network community: “Real-life problems are such that there exist a large
number of “weak features” whose “smart” linear combination approximates the unknown
dependency well. Therefore, it is not very important what kind of “weak feature” one uses,
it is more important to form “smart” linear combinations.” (Vapnik 1995). Data mining
tools operating accordingly must support automatic identification of the relevant interac-
tions. The present paper focuses on three issues of model selection:

e Sparseness: how many interaction terms should a reasonable model include?
e Preference: which interaction terms are likely candidates for the problem at hand?
e Simplicity: can the computation of interactions be greatly simplified?

The first question is answered by an application of “Structural Risk Minimization” (Vapnik
1992). For the sparse multinomial model family discussed in this paper, a nested set of
models of increasing size is searched and the optimum compromise between low training
error and tight worst case bound for the test error is determined.

A good answer to the second question assigns a priori preferences to individual interactions
in order to speed up the search process dramatically and to improve model performance over
the worst case bounds. In the spirit of Bayesian inference, interactions that seem natural
are added to the model with higher probability. Bayesian networks are special examples of
this kind of reasoning. Of course, less obvious interactions should still be explored such that
unexpected dependencies can also be identified. If no domain knowledge is available at all,
“uninformed” priors may be assigned, e.g. by punishing high order or rapidly oscillating
interactions.

The issue of computational complexity is often neglected in statistics but gains importance
for mining huge amounts of data. It is also of much interest for the development of novel
computing technology such as optical or biomolecular devices. Here, we focus on the valu-
able goal to simplify the computation of interaction terms greatly.

In the following, we discuss heuristic methods for the identification of sparse multinomial
logistic models for binary data. Such data arise from a variety of circumstances, such as
indicating presence or absence of certain attributes, the logical values of relational expres-
sions, indicating if some real number exceeds a certain threshold, or representing numbers
by their binary codes. In order to discover knowledge we may estimate joint probabilities



or perform soft classification of binary vectors z € {—1,1}V 1.

2 A Multinomial Logistic Model for Binary Data

We want to model a stochastic dependency between z and a two-valued outcome variable
y € {0,1}. The regression p(y = 1|z) is estimated from a training database 7 of labeled
examples (z; y’)fi{ For approximation of the regression, we use the logistic model

1
1+ exp{—f(z,0)}
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is a sparse parameter vector with an a priori fized number (not set!) of non-vanishing
components.
A fixed-size model is fitted to the data by maximizing the objective function

#T
log likelihood = 3 y* log j(2',6) + (1 —y') log (1 — (2", 6)) .

=1

Notice that maximization is over all models of given size and thus poses a hard combinato-
rial problem that can in general only be solved approximately.

The unconstrained expression (2) is known since a long time as “Walsh expansion” (Walsh
1923; Ahmed and Rao 1975). The additive and interaction terms together form the or-
thogonal Walsh base in function space. The expansion is universal: any function from the
bipolar strings to the reals can be approximated arbitrarily close. Correspondingly, model

!For technical convenience, we make use of the bipolar (—1,1) notation rather than the (0,1) notation.
The linear transformation &; = (1 + zi)/2 switches between both representations.



(1) can represent arbitrary regression functions.

Unlike the full Walsh expansion, the sparse version is not capable of univeral function
approximation, but by enlarging the number of interactions sufficiently, any probability
distribution and thus any dichotomy over the input space can be approximated. This
compares to corresponding theorems about universal function approximation by multilayer
perceptrons including an unbounded number of hidden neurons. For both model classes,
determination of a reasonable size becomes important if the model is fitted from limited,
noisy data.

The second and higher order interaction terms can be considered also as hidden nodes in a
sparse network. Each node basically evaluates the Parity predicate (in the (0, 1) represen-
tation) over some selected sub-mask of input bits, which can be done in parallel. Heuristic
supervised learning algorithms for such models were proposed for classification problems of
unknown order (Fahner and Eckmiller 1994), and applied for complicated robot navigation
problems (Fahner 1995).

3 Searching Sparse Multinomials

Model identification requires determination of model size and set of interactions, while
parameter estimation yields the respective weights ;. The algorithm presented in the
box below is applied for simultaneous identification and estimation. The interplay between
the basic modules “interaction sampling” and “model identification” is depicted in Fig.1.

1) chose model size within interval [%,#T]
2) chose prior distribution p(complezity) for individual interactions

4) maximize log likelihood (8|7) and obtain weight vector 6~

5) prune brittle interactions from the model

6) chose novel tentative interactions to replace the pruned ones
7) back to 4) until stopping criterium is met; output final model

3) initialize model with tentative interactions drawn according to p(complezity)
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Figure 1 : Heuristic search for a sparse multinomial classifier. The left module gener-

ates randomly chosen interaction terms according to user-specified prior preferences. Also,
error information is used in a greedy way to accelerate the learning process: individual in-
teractions are tested separately; those that exhibit a significant correlation with the residual
error are more likely to be installed in the model.
The right module keeps the current model, which is repeatedly modified by iterative applica-
tion of parameter estimation followed by parameter inspection and structure modification.
In the simplest case an interaction is pruned if its coefficient falls below some threshold.
More advanced pruning mechanisms include prior preferences or statistical significance tests
to reveal “brittle” interactions. For each pruned interaction, a request for novel interaction
generation is sent to the sampling module.

The maximization required in step 4) of the above algorithm is over a fixed set of parameters.
The likelihood function possesses a single maximum. In our implementation, we use a second
order gradient method for its determination.

The stopping criterion of the algorithm varies with applications. For any preselected model
size and prior distribution, the algorithm outputs a sparse multinomial expansion that
approximates the training data. Search for the best model (minimum test error) is over
the two-dimensional parameter plane spanned by model size and the single parameter p
which regulates the form of the prior distribution of interaction complexities (see Iig.2).



An ensemble of networks is drawn from the size-p plane and trained; the best model is
chosen by crossvalidation. In our implementation, we distribute several models of varying

complexity over a network of workstations. No communication is required between the

individual learning processes.
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Figure 2 : Capacity control plane: with increasing size, reduction of training error
is possible at the expense of overfitting. With increasing p, the effective model space is

enlarged, and an increasing number of complex interactions is likely to be present in the

sparse multinomial.



4 Complexity Measures for Interaction Terms

For two types of input space semantics: a) binary representation of metrical input data, b)
binary encodings of discrete attribute values, we propose respective complexity measures
for individual interactions:

e zero crossings: maximum number of sign flips along straight line through input
space (a).

e order: number of multiplicative factors included in the interaction (b)

Iig.3 illustrates case a) for a two-dimensional rectangular input space. Both continuous &
and b axes are uniformly discretized into 4 intervals. For each dimension, the intervals are
encoded by increasing binary numbers (— stands for 0, 4+ for 1), preserving the order relation
of the alligned intervals. The given example generalizes to higher dimensions, to arbitrary
binary resolutions which are individually assigned to each dimension and to nonuniform par-
cellings.

Figure 3 : Behavior of the interaction
term z12x2%4 in two dimensions. Each

a b box in the rectangular region is encoded
X, X, X, X, as a 4-tuple zixox3r4 formed by the
o concatenation of the discretized and bi-

narized coordinate values of the boxes.
The interaction term oscillates between
—1’s and 1’s, undergoing zero crossings
at some box borders. Along the two
dashed arrows, the number of zero cross-
ings z, and zp is counted separately for
both coordinate axes. The maximum

X %X, achievable number of zero crossings for
an arbitrary direction line-sweep is given
by z, + 2z, = 5.

5 Simulation Results

We illustrate the working of the sparse multinomial classifier for the 2-spirals problem.
In the original formulation (Lang and Witbrok 1988), the classifier has to find a decision
surface to separate two continuous point sets in IR? that belong to one or the other of
intertwined spirals. The problem is formulated for binarized inputs as follows: each point
in the plane is represented by some bitstring B, B, which is the concatenation of the trun-
cated binary expansions for the points z- and y-coordinates. We chose 7 bit resolution for
each coordinate, which is much more than required to distinguish between any two training
examples.

A particular choice of coordinate axes breaks isotropy as well as shift-invariance of the origi-
nal problem, since the Walsh functions are not invariant under the translation operator. To



restore the effect of broken symmetries, we apply the binarization for a transformation set of
300 randomly shifted and rotated (around coordinate center (0, 0), not around center of the
spirals, since we assume no a priori knowledge) versions of the original input vectors. For
each coordinate system, a separate model is trained. Size and prior complexity are constant
over all members of a transformation set. Generalization over the whole square [0,1)? is
computed by averaging over the outputs of all members. Training is stopped as soon as all
training examples are correctly classified or no further improvement can be achieved within
a reasonable number of iterations.

Fig.4 shows different generalizations achieved for models of size = 50 but with prior distri-
butions favouring increasingly complex models.

Figure 4 : Classification result on the two-spirals problem: generalization behaviour
of three models of same size but with varying complexity of interactions. Model a): in-
teractions with moderate and large numbers of zero crossings are strongly penalized. The
model does not learn the oscillating spiral pattern effectively. Model b): has the right prior
to learn the desired dependency quickly. Model c): is dominated by rapidly oscillating
interactions that ,,memorize” the training examples rather than learning the concept of a
spiral.

Model b) in the above figure uses only the 4 most significant bits for each dimension and
doesn’t contain interactions with more than 15 zerocrossings. Model c¢) contains significant
contributions of rapidly oscillating interaction terms due to rich connectivity to the least
significant bits.

The second task is the Gene benchmark (Nordewier, Towell and Shavlik 1991) for predicting
splice-junctions. From a window of 60 DNA sequence elements it is to be inferred whether
the middle is an Intron-Exon (I-E) boundary, and Exon-Intron (E-I) boundary, or neither
of both. The dataset contains 3175 labeled gene strings made of nucleotides C, A, G, T
(for Cytosin, Adenin, Guanin and Thymin). The elements are encoded as binary tuples
(=1,-1),(=1,1),(1,-1),(1,1), respectively, yielding 120 inputs. Three models are trained




separately to discriminate each class against the rest classes. 900 patterns are used for
training and 100 for crossvalidation, the rest for testing. Training is stopped when no
further improvement can be achieved on the crossvalidation set within a reasonable number
of iterations. The performance of any model evaluated during search is monitored and
the best model ever produced along the search trajectory is finally used. Model sizes are
20,40, 60 terms for the E-I, the I-E, and the NONE-classifier, respectively, Best complexity
priors are in the linear regimen. The best models contain only a few second and no significant
higher order interaction. The test error is around 7%, comparable to results from literature
with MLP’s, and superior to experiments with /D3 and Nearest Neighbor (Murphy and
Aha 1992).

I-E model Figure 5 : Structure
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6 Discussion

The paper adresses several topics of interest for data mining and contributes original re-
search to the topics: integrated data and knowledge representation for numeric and cate-
gorical data, algorithmic complexity and scalability issues, and distributed search for the
best model.

A computationally feasible automatic exploration method is presented that identifies the
relevant interactions between binary variables. The foremost relevance of our novel mining
tool for KDD lies in the fact that automatic exploration of possible interactions results in
a much faster, less biased, and wider applicable modelling process than traditional style
Explorative Data Analysis. This makes our data mining tool a good candidate for real-time
and high dimensional data analysis.

A serious challenge for any automatic procedure that searches wide model classes is the
problem of overfitting. We overcome these difficulties by incorporating powerful novel reg-
ularization techniques for binary data formats.

Challenged by the ongoing explosive growth of amounts of data and by shrinking time spans
for real-time data analysis and decision making, we speculate that a quantum jump in de-
vice technology for KDD systems will be needed to overcome the severe scaling problems.
Our findings show that expensive floating point multiplications can be entirely avoided for a
large class of inductive inference problems. The bit-interactions which make up the “atom-
ic” knowledge entities of our model seem well suited for parallel distributed manipulation
and processing by quantum devices. Models similar in spirit could simplify the development
of a quantum computer for large scale, high-speed inductive inference.
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