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Abstract
Psychoacoustic studies show that human listeners are sensitive to speaking rate variations

[32]. Automatic speech recognition (ASR) systems are even more affected by the changes
in rate, as double to quadruple word recognition error rates of average speakers have been
observed for fast speakers on many ASR systems [24]. In this work, we have studied the
causes of higher error and concluded that both the acoustic-phonetic and the phonological
differences are sources of higher word error rates. We have also studied various measures
for quantifying rate of speech (ROS), and used simple methods for estimating the speaking
rate of a novel utterance using ASR technology. We have implemented mechanisms that
make our ASR system more robust to fast speech. Using our ROS estimator to identify
fast sentences in the test set, our rate-dependent system has 24.5% fewer errors on the
fastest sentences and 6.2% fewer errors on all sentences of the WSJ93 evaluation set
relative to the baseline HMM/MLP system. These results were achieved using some gross
approximations: adjustment for one rate over an entire utterance, hand-tweaked rather than
optimal transition parameters, and quantization of rate effects to two levels (fast and not
fast).



1 Motivation

Anyone who has attended a public auction knows that there are differences in speaking
rate between speakers. Miller et al. [16] have shown that the articulation rate varies quite
considerably within and across speakers. These rate alterations modify the acoustic fine
structure of individual syllables and affect properties that convey segmental information for
both consonants and vowels [27]. Furthermore, listeners are extremely sensitive to these
variations and they treat the segmentally relevant acoustic properties in a rate-dependent
manner [32]. Fast speaking rates can make speech hard to understand for people (especially
for the elderly). There have even been attempts to make engineering products that slow
down fast speech [29].

ASR systems, even more than people, are sensitive to rate of speech (ROS) differences.
For example, in a recent National Institute of Standards and Technology’s (NIST) evaluation
of the Wall Street Journal (WSJ) task in November 1993, all the participating systems had
about 2-3 time higher word error rates on the two fastest speakers than on the normal
speakers (see figures in [24] and Figure 1).
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Figure 1: Rate of speech vs. word error rate for WSJ0-93 5K evaluation set. Each point represents one of the
ten test speakers.

In an earlier NIST evaluation of the Resource Management task (RM) in September of
1992, this strong ROS effect was also observed. The participating systems in that evaluation
had 2-4 times more error on the fastest (and one of the slowest1) speakers [25]. This
observation naturally raises the following two questions: why do ASR systems perform
significantly worse on fast speakers? And what can we do to alleviate these problems?
Although fast speech has caused problems for ASR systems for some time, this issue has
not been received much attention in the ASR literature. This work attempts to provide some
preliminary answers to these questions.

1Although very slow speakers can also have high error rates, in this work we have limited our investigation
to fast speakers.
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In Section 2, we discuss work by others in this area. In Section 3, we briefly describe
ICSI’s basic ASR technology and the databases we use for this study. In Section 4, we
discuss different criteria for calculating ROS, and in Section 5 we report on the experiments
we have performed to decide which method most consistently characterizes ROS. In Section
6 we report our analysis of fast speech, and in Section 7 we discuss the mechanisms we
have implemented for making our ASR system more robust to fast speech. In Section 9
we provide a brief summary of our work, and conclude the paper by suggesting future
directions in Section 10.

2 Related Work

Although speaking rate has been a problem for ASR systems for some years, there has
been very little attention devoted to this topic. The only other previously published work
on this issue that we know of is that of Siegler and Stern [31]. In their work, they proposed
measuring ROS based on phones/second using a mean of rates formula2. They used
forced alignment on the correct word transcription to determine the phone segmentation
and durations, and implemented three methods for compensating for fast speech errors in
the WSJ1 corpus:

1. Modification of the acoustic models. Siegler and Stern developed a rate-specific
codebook by performing Baum-Welch codebook re-estimation for fast speech. The
performance with this adapted codebook did not improve for fast speech compared
to the baseline.

2. Modification of HMM state transition probabilities. They observed that vowel dura-
tion, for example, is different for normal and fast speech. The transition probabilities
of the word models were adapted to the fastest 1000 sentences in WSJ1; improvement
for the fast test sentences was about 4-6%.

3. Modification of the pronunciation dictionary: intra- and inter-word transformations.
Since the deletion of unstressed vowels are common in fast speech, the recognition
dictionary was changed to eliminate the schwa between two consonants, as well
as all the non-initial and non-final schwas. Neither of these changes significantly
changed the overall word error rate. They also observed that function words such
as THE, AND, TO, A, OF, IN, THAT, WERE, ARE and I represented 55% of all
word deletions errors, even though they only represented 20% of the words in the
transcripts. Since 33% of the merges were of the form “X Y” -> “X” and “X Y” ->
“Z”, they added compound words such as “IN THE” to the dictionary with a different
pronunciation than each word separately. The recognition accuracy did not improve
with this modification, either.

2This method is discussed in Section 4.4.
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To estimate the ROS of a novel utterance without knowing the transcript a priori,
they proposed using the recognition system’s hypothesis containing alignment information.
Their estimate of the ROS was monotonically related to the ROS calculated with the correct
sentence transcription, although it was negatively biased. All their reported improvements
were with the ROS calculated given the correct sentence transcriptions, however.

The ideas discussed in this report were developed independently in the same time frame
as the work of Siegler and Stern [31].

3 System and Databases

For our study, we use the HMM/MLP Hybrid System and the TIMIT and the Wall Street
Journal (WSJ) databases.

3.1 HMM/MLP Hybrid System

We use ICSI’s hybrid HMM/MLP speech recognition system (explained in [2]). The main
idea of the HMM/MLP method is to train a multi-layer perceptron (MLP) (typically using
a relative entropy error criterion) for phonemic classification; such a net can be used as an
estimator of posterior class probabilities and, when divided by class priors, can estimate
scaled likelihoods. For recognition, we use a decoder called Y0 (described in [28]), which
uses a single density per phone HMM with repeated states for a simple durational model.
ICSI used this system to participate in the WSJ 93 and RM 92 NIST evaluations, and the
behavior of the system on the fastest speakers was similar to that of the other systems
(Figure 1).

Since similar rate of speech effects have been observed for recognizers incorporating
mixtures of Gaussians [24, 25, 31], we think it likely that the conclusions of our work will
be useful in those systems as well.

3.2 The TIMIT Database

The TIMIT [4, 13, 21] read-speech database was collected by Texas Instruments (TI)
and was automatically phonetically labeled, and later hand-checked by the students at the
Massachusetts Institute of Technology (MIT). It is available on CD-ROM from NIST, and
comprises two subsets: the TRAIN and the TEST set. There are a total of 630 speakers (462
TRAIN, and 168 TEST), each uttering 10 sentences. There are three sentence types: SA
sentences (2 per speaker), SX (5 per speaker) and SI (3 per speaker). The two SA sentences
are the same for all speakers and are often used for calibration but not for training; the SX
sentences are specifically designed to provide a good coverage of pairs of phones, and the
SI sentences are selected from existing written sources to add diversity to the corpus. Each
of the SX sentences is spoken by seven speakers but each SI sentence occurs only once.
There are almost twice as many male as females in the TIMIT database.
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TIMIT is a particularly good test-bed for our experiments because it is hand-labeled.
If a database is not hand-labeled (in case of WSJ, for instance) we must generate phonetic
labels through a forced alignment procedure. However, this may introduce a bias into
the experiments: if the “normal” word (or phone) models do not match fast speech (due
to phone omission, for example), the phonetic labels will not be 100% accurate. With
hand-labeled TIMIT, this is not as much of a concern. Even though hand-labels may differ
from one expert to another, they still provide the best approximation to the “ground truth”.

Finally we must note that TIMIT is generally considered a phone recognition task as
opposed to a word recognition task. Not only is the training set too small to reliably estimate
a grammar for the test set, but there are also many out of vocabulary words in the test set
that do not appear in the training set.

3.3 The Wall Street Journal/North American Business News Database

This database was recorded by various sites, and is available on CD-ROM from NIST
[26]. In our study, we use WSJ0, which is a subset of the training data. There are 84
training speakers in the WSJ0 short-term training set (a.k.a. SI-84), each uttering 50 or 100
sentences. The average length of each sentence is about 7.4 seconds, and there are 15.3
hours of training data in SI-84. The training set is relatively gender-balanced, and each
speaker reads a different set of sentences from the Wall Street Journal daily newspaper.

An advantage of the WSJ database for our experiments is that it is a continuous word
recognition task, as opposed to TIMIT which is generally regarded as a phone recognition
task. Also, the size and the phonetic variability of WSJ corpus allows us to experiment with
duration as well as pronunciation modeling for fast speech.

4 Issues in Measuring Rate of Speech (ROS)

To improve robustness to speaking rate, we first need a consistent measure for quantifying
speaking rate. In the course of our study, we noticed a lack of consensus in the literature
on how to quantify speaking rate. It has been our experience that choosing one ROS metric
over others can lead to significant differences in experimental results.

Various measures of ROS have been used by different researchers. Crystal and House
[3] use the total reading time of the text to distinguish fast and slow talkers. Similarly, Ohno
and Fujisaki [23] calculate a local speech rate with respect to a given target utterance. These
measures are only useful if the talkers are reading identical texts, and are useless outside
the laboratory environment. Clearly, one important requirement of our ROS measure is the
ability to calculate it for a novel utterance.

In the next few subsections, we will discuss the following issues for calculating ROS:

� Treatment of mid-sentence silences

� Granularity of calculating ROS

4



� Units of ROS

� Formula for calculating ROS

� Using ASR technology to estimate ROS

In the next section, we will report on our experiments to determine the most reliable
method of ROS estimation.

4.1 Treatment of Mid-Sentence Silences

Speaking rate is composed of two elements: the rate at which the speech itself is produced,
or articulation rate, and the number and duration of pauses in the utterance, known as
pause rate [16]. The psychoacoustic studies have established that for human listeners, the
perceived changes in speaking rate that occur both within and across speakers are largely
due to changes in pause rate, with the articulation rate varying relatively less [5, 6]. The
articulation rate nevertheless varies quite considerably within and across speakers [16].

Although both pause rate and articulation rate are important components of speech rate,
we are concerned that the duration of the silence periods may be dependent on factors other
than speech rate. We argue for defining the rate of speech (ROS) as the articulation rate
alone. To justify this, in Section 5 we will compare the reliability of a measure which
preserves mid-sentence silences with one that excludes them.

4.2 The Granularity of Calculating ROS

Should ROS be calculated per speaker or per sentence? The advantage of the former is that it
allows the grouping of speakers into “fast” and “slow” speakers, which is intuitive. That is,
it is consistent with the human notion of categorizing speakers as fast (e.g., auctioneers) and
slow (e.g., one’s grandmother). The disadvantage is that for a given speaker, the ROS varies
considerably across and within sentences [16]. Imagine a speaker who, at the beginning of
the recording session, succeeds in sustaining a normal speed, but by the end of the session,
speeds up his/her speaking rate due to impatience or fatigue. Labeling all the sentences
of this speaker as “medium fast” may cause anomalies in the observations. This problem
is more of an issue for a corpus such as WSJ0, where each speaker utters about 50-100
sentences, than for TIMIT, where each speaker utters 10 sentences. In Section 5.2.1 we
will measure the intra-speaker ROS variabilities for TIMIT.

Miller et. al. [16] have shown that there are ROS variations even within an utterance.
There is some evidence that commonly used words, or function words are pronounced
the most carelessly [12]. Having listened to many sentences, we have also noticed many
rate changes in the middle of the sentence, particularly for the common expressions. One
may argue that perhaps a sentence is too coarse of a unit for the ROS calculation, and
ROS should be calculated either per phone, per syllable, or per 1 second segments. One
problem with per phone measures is the following: the average duration of phones varies
greatly, for example for TIMIT the average duration of /ow/ is 128 msec while the average
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duration of /k/ is 50 msec. Calculating an instantaneous rate for each of these phones may
be misleading. However, since the phone rate averaged over an entire utterance provides a
smoothed, though coarse, measure, we decided this was a good choice for a first attempt.
In any case, for applications which require phone rate determination, we suggest a way to
calculate this rate more reliably in Section 10. For this work, we have chosen a sentence
level granularity, because not only is it a well defined unit providing a good approximation
to the overall speed of the sentence, but it may well be sufficient for many ASR applications,
particularly those with short utterances.

4.3 Units of ROS

In some studies [24, 34] the ROS has been measured based on words/minute (or per second).
Although words/second is a simpler unit to calculate, it is coarser than phones/second
and may cause inaccuracies. Consider the two perennial favorite examples of speech
researchers: “How to wreck a nice beach” and “How to recognize speech”. If we use
words/second as unit, these two sentences which have nearly identical phonetic structure,
spoken at the same speaking rate, will be labeled with widely varying ROSs.

Choosing words/second as ROS units is particularly problematic if ROS is measured on
a per sentence basis. Siegler and Stern [31] show a correlation of 0.50 between ROS based
on words/second and phones/second for WSJ1 training sentences. The correlation between
words/second and phones/second measure increases when more than one sentence is used
for ROS calculation; in other words, when we calculate an average over a larger number
of words, according to the law of large numbers, we get an estimate that is closer to the
real mean. We have observed a correlation of 0.75 between these two metrics when ROS
is measured for eight sentences of TIMIT (per speaker). The correlation between these
two metrics improves to 0.99 when we used 40 sentences (per speaker) of WSJ0 for ROS
measurement.

In many psycho-acoustic experiments, syllables/second has been used as the ROS unit
[5, 15, 7]. Since automatic labeling in ASR systems is often based on phones and not
syllables, and since phones are of even finer granularity than syllables, phones seem to be
the most logical choice for ROS calculation unit for common ASR systems at this time.

4.4 Formula for Calculating ROS

There are (at least) two ways to calculate the rate of speech of an utterance. One measure
is the inverse of mean duration (IMD), where the total number of phones is divided by the
total duration of the utterance [19] as in:

����������	�
 �
����������������

�
� (1)

where n is the total number of phones, and
�������������

�
�

is the duration of each phone
�

in the
sentence. The second measure is the mean of rates (MR) formulation, where first an ROS
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for each phone in the sentence is calculated, and then these phone rates are averaged to get
the ROS for the utterance [31], that is:

����� �
� 


 � � ����� �

�
(2)

where
��� ��� �

is defined as 1��������	
�

��� for each phone.

As we noted in Section 4.2, the average duration of phones vary widely. The MR measure
accentuates the differences between the average phone duration and, in case of very short
phones, drastically boosts the ROS. In other words, the MR measure is dominated by the
high instantaneous rate of short phones, while the IMD measure is relatively unaffected.
We discuss the merits of these two methods in Section 5.

4.5 Using ASR Technology to Estimate the ROS

In Section 4.3 we discussed the merits of calculating ROS based on words/second unit vs.
phones/second unit. Since we have chosen phones/second as units, we need to know the
number of phones and their duration for each sentence. Unlike TIMIT, most ASR corpora
are not phonetically hand-labeled, so we need another method to determine the phonetic
labeling. Forced alignment is the method most commonly used for this purpose. Given the
correct word level transcription of the sentence, we can use the forced alignment method
to estimate the number and the duration of phones in the sentence. If we have multiple
pronunciations for a particular word, or if there is a mismatch between the word model
and actually what was said (due to phone omission, for example) the phonetic duration
estimation may not be accurate. Since we are calculating ROS over the whole utterance,
minor inaccuracies will not have a strong effect.

How can we estimate the ROS of sentences for which we do not have the correct word
level transcription? There are (at least) two possible options. One is to perform word
recognition on the novel utterance and use the hypothesized word transcription for forced
alignment (also suggested by [31]). The advantage of this method is that we can rely on
higher level knowledge (i.e., language model) to get a more accurate phonetic segmentation.
One drawback may be that we enforce a particular pronunciation of a word, even if the
“fast” pronunciation is different from the normal word-model due to phone omission, for
example. Another drawback is that incorrect word recognition can lead to the incorrect
phonetic segmentation. The second option is to perform phone recognition for the novel
utterance and use the state transition information (or if a particular decoder does not provide
state transition information, forced alignment on the phone string hypothesis may be used).
The advantage of this method is that we can estimate the ROS for any novel utterance, even
if we do not have a word model to represent it. Another advantage is that substitution errors
in the phone classification do not affect the ROS measure. The drawback of both of the
above methods is that their accuracy depends on the accuracy of the ASR system, which
may be poorer for rapid speech. We will report our study of these methods in Section 5.
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5 Experiments in Choosing an ROS Measure

5.1 Measurements

As we have discussed so far, there are many criteria for choosing an ROS measure, and
we need to determine the measure with the most consistency and reliability. Since TIMIT
is the only corpus that we have available that is both phonetically hand transcribed and
phonetically rich3, we use it for determining the ROS measure of choice. In the next
subsections we discuss the method we used to measure ROS based on discussions in
Section 4.5.

5.1.1 Calculating ROS from Phonetic Hand Transcription

For all 5040 TIMIT training and testing sentences, we used the phone transcription (*.phn)
files to calculate the ROS. These files mark the beginning and ending sample number of
each phone, as well as the phonetic assignment. Note that TIMIT has been sampled at
16KHz, so �

� ����� ��� ��� 
 � �
	��� ��	���������
16000 . For example, the phonetic hand transcription for

sentence mtcs08-si1972, with the word transcription “Perfect he thought,” is:

0 2180 h#
2180 3120 p
3120 4678 er
4678 6070 f
6070 7160 ix
7160 8710 kcl
8710 9360 t
9360 10360 pau
10360 11540 hh
11540 12440 iy
12440 14230 th
14230 17080 ao
17080 21420 tcl
21420 25760 h#

Table 18 in the Appendix explains the phonetic transcription symbols. Note that h#
is the phonetic label for the beginning and ending silence and pau is the phonetic label
for middle silence or pause. Since the beginning and ending silence duration contain no
inherent information about the speech, we always exclude them for ROS calculation. Based
on this convention, the above sentence has 12 total phones, and 11 non-mid-silence phones.
We calculated the ROS for the entire TIMIT train and test sets with and without the mid-
silences, using both the IMD and MR formulas discussed in Section 4.4. These values for
our sample sentence are shown in Table 1.

3By phonetically rich we mean that there are many instances of a phone appearing in different phonetic
contexts, as opposed to, say, a digits task, where phone /m/ does not appear at all.
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The ROS Info for Phonetic Hand Transcription Method

With Mid-silences Without Mid-silences

Num. Phones 12 11
Duration (secs) 1.20 1.14
���������
	

9.98 9.65
�������
�

12.83 12.54

Table 1: The ROS for sentence mtcs08-si1972 from the TIMIT training set, using the phonetic hand segmen-
tation.

5.1.2 Calculating ROS from Correct Word Transcription

In order to determine the phonetic segmentation using word transcriptions, we used a forced
Viterbi alignment. The forced Viterbi alignment is a dynamic programming algorithm that
calculates a phonetic segmentation of the utterance given a particular word transcription.
The phonetic likelihoods needed for the alignment procedure were generated by running
a feed-forward pass for the TIMIT extracted features (PLP12 [8] and energy feature as
well as their deltas) through a multi-layer perceptron (MLP), which was previously trained
and cross-validated on similar features extracted from the TIMIT hand segmented data.
The MLP had 1000 hidden units, 61 outputs (one for each phone), and 234 inputs (26
inputs * 9 frame window); it was trained using a relative entropy error criterion to estimate
the phonetic posterior probabilities. The phonetic posterior probabilities were divided by
the phonetic priors to obtain the phonetic likelihoods that were used in the forced Viterbi
alignment.

The forced Viterbi alignment finds a phonetic segmentation for each utterance. For our
example sentence, mtcs08-si1972, this alignment is:

10 59 perfect p p p p p er er er er er er er er er er
f f f f f f f f f ix ix ix ix ix kcl kcl kcl kcl kcl
kcl kcl kcl kcl kcl kcl t h# h# h# h# h# h# h# h# h#

60 74 he hh hh hh hh hh hh hh hh iy iy iy iy iy iy iy

75 152 thought th th th th th th th th ao ao ao ao ao
ao ao ao ao ao ao ao ao ao ao ao ao ao ao ao ao tcl
ch h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h#

The first two numbers for each word represent the beginning and ending frame, and the
repeated values are the phonetic labels for each 20 msec (overlapping by 10 msecs) frame.
Note that for this particular example, the middle sentence pause is recognized as /h#/

9



The ROS Info for Correct Word Transcription Method

With Mid-silences Without Mid-silences

Num. Phones 12 12
Duration (secs) 0.87 0.87
���������
	

13.79 13.79
�������
�

34.52 34.52

Table 2: The ROS for sentence mtcs08-si1972 from the TIMIT training set, using the correct word transcrip-
tion.

and not /pau/, therefore they will be excluded when calculating the ROS, explaining why
the values in the columns “With Mid-silences” and “Without Mid-silences” are identical.
The ROS values for our example sentence are reported in Table 2. We notice that for this
sentence the

����� �
� is over twice as large as the

����� ����	
. Upon closer inspection, we

see some phone labels with duration of one frame (in the word “thought”, /tcl/ for example)
which have a high instantaneous phone ROS, and will boost the overall ROS of the sentence.
Also, comparing the results in Tables 1 and 2, we note that the

����� ����	
measured using

both methods are similar, while the
����� �

� calculated using the correct word method is
over twice as large as the

�������
� measured using the phonetic hand-labeling.

Using the alignment data, we calculated the ROS for all TIMIT sentences.

5.1.3 Calculating ROS from Hypothesized Word Transcription

The method of calculating ROS using hypothesized word transcriptions is very similar to
the one discussed in Section 5.1.2, except that we need to perform a word recognition in
order to obtain the hypothesized word sequence. Our example sentence was recognized as
“perfect results” by our system, and the phonetic alignment we get from the forced Viterbi
alignment follows:

10 66 perfect p p p p p er er er er er er er er er er
f f f f f f f f f ix ix ix ix ix kcl kcl kcl kcl kcl
kcl kcl kcl kcl kcl kcl t h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h#

67 152 results r r iy iy iy iy iy iy z z z z z z z z
z ah ah ah ah ah ah ah ah ah ah l l l l l l l l l tcl
tcl tcl tcl tcl tcl tcl tcl tcl tcl tcl tcl s h# h#
h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#

One caveat of this method is that the quality of the results depends on the word recog-
nition accuracy and the complexity of the task. This is a problem particularly for TIMIT
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ROS Info for Hypothesized Word Transcription Method

With Mid-silences Without Mid-silences

Num. Phones 13 13
Duration (secs) 0.90 0.90
���������
	

14.44 14.44
�������
�

29.03 29.03

Table 3: The ROS for sentence mtcs08-si1972 from the TIMIT training set, using the hypothesized word
transcription.

because it is a difficult word recognition task and the results are generally poor. For exam-
ple, using a simple word-pair grammar that only includes the training set words, our word
recognizer has about 80% error4. If we instead use a word-pair grammar derived from the
TIMIT training and test set (a.k.a. cheating grammar), the word recognition error for the
1344 test sentences is about 26%. A more sophisticated grammar, with probabilities derived
from a much larger database would probably improve the word recognition accuracy and
thereby the accuracy of the measured ROS.

Note that for our example sentence in Table 3, the
����� ����	

measure varied about 45%,
while the

�������
� varied about 126% compared to the ROSs calculated using the phonetic

hand transcriptions.

5.1.4 Calculating ROS from Hypothesized Phonetic Transcription

Since our decoder did not explicitly provide state path information, we performed a phone
recognition on TIMIT and used the hypothesized phone transcriptions for forced alignment.
For phone recognition, we used single state models, and the transition probabilities were
calculated to match the average phone durations.

The phonetic hand transcription of our example sentence is
h# p er f ix kcl t pau hh iy th ao tcl h#
and it is recognized as
h# p er f axr kcl t pau hh iy s ao tcl h#.
The phonetic alignment resulting from the forced Viterbi procedure is as follows:

0 8 h# h# h# h# h# h# h# h# h# h# h#
9 14 p p p p p p p p
15 24 er er er er er er er er er er er er
25 33 f f f f f f f f f f f
34 38 axr axr axr axr axr axr axr
39 48 kcl kcl kcl kcl kcl kcl kcl kcl kcl kcl

kcl kcl
49 55 t t t t t t t t t
56 65 pau pau pau pau pau pau pau pau pau pau

4This grammar was used for recognizing our example sentence mtcs08-si1972.
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ROS Info for Hypothesized Phone Transcription Method

With Mid-silences Without Mid-silences

Num. Phones 12 11
Duration (secs) 1.06 0.96
���������
	

11.32 15.09
�������
�

11.46 15.55

Table 4: The ROS for sentence mtcs08-si1972 from the TIMIT training set, using the hypothesized phone
transcription.

pau pau
66 67 hh hh hh hh
68 74 iy iy iy iy iy iy iy iy iy
75 83 s s s s s s s s s s s
84 102 ao ao ao ao ao ao ao ao ao ao ao ao ao

ao ao ao ao ao ao ao ao
103 114 tcl tcl tcl tcl tcl tcl tcl tcl tcl tcl

tcl tcl tcl tcl
115 152 h# h# h# h# h# h# h# h# h# h# h# h# h#

h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h#

Table 4 shows the ROS for each condition. Note that since the mid-sentence pause
was identified correctly as /pau/ and not as /h#/, the ROSs for “with mid-silence” and
“without mid-silence” condition are different. At least for this example,

����� � � is very
different than the one calculated using the correct word transcription.

The phone recognition error on all 5040 sentences of TIMIT is 28.7%, and the error for
the 1344 test sentences is 31.8%, and for the core NIST test set (last 200) is 34.0%.

5.2 Observations

As we mentioned earlier, we are looking for an ROS measure that can be reliably and
accurately estimated. First, we calculated the ROS using the phonetic hand segmentation,
and defined it as the “correct” ROS. Then, we calculated the ROS using the methods
discussed above and estimate the “goodness” of the ROS measure by its correlation with
the “correct” measure.

5.2.1 Distributions

We plotted the histograms of the distributions of the hand-transcribed ROS measure. Our
first observation is that the distribution represents a Gaussian distribution very well. For����� ��� ����� 
 ��� � ����	 68.3% and 95.6%, and for

����� ��� ����� 
 ��� � � � 70.2% and 95.0% of the
data lies between one and two standard deviations from the mean, respectively. As we see
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in Figure 2, the ROS distribution resulting from the MR formula has a larger mean and
standard deviation compared to the one calculated using the IMD formula. The reason
for this difference, as we discussed in Section 5.1.2, is that very short phones have a high
instantaneous phone rate, which boosts the overall ROS of the sentence using MR.
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Figure 2: Histogram of rate of speech for TIMIT sentences. The values in the curve on the left have been
measured using the IMD formula and the ones on the right using the MR formula.

We also plotted the distribution of the ROS for the male and female sentences separately
(see Figures 3 and 4). We see that the mean ROS for male sentences is 2.76% higher than
the mean ROS for female sentences. This difference is significant on the ��� 0 � 001 level5.
This rate difference has been previously observed in a study of American vowels duration
by Hillenbrand et al. [9]:

"The pattern of durational differences among the vowels is very similar to that
observed in connected speech. Our vowel durations from /hVd/ syllables are
two-thirds longer than those measured in connected speech by Black (1949), but
correlate strongly (r=0.91) with the connected speech data. There were signifi-
cant differences in vowel duration across the three talker groups (F[2,33]=9.04,
p<0.001). Neuman-Kewls post-hoc analyses showed significantly shorter dura-
tions for the men when compared to either the women or the children. Longer
durations for the children were expected based on numerous developmental

5Although it seems that on average males speak faster than females, it is debatable whether the amount of
information content transferred per second is any higher.
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studies (e.g., Smith, 1978; Kent and Forner, 1980) but the differences between
the men and the women were not expected. We do not have an explanation for
this finding and do not know if these male-female duration differences would
also be seen in conversational speech samples."

We also looked at the intra-speaker ROS variability. Based on the phonetic hand tran-
scriptions and the IMD formula, we have measured the mean ROS for the 630 TIMIT speak-
ers to range between [9.56, 17.73] phones/sec, standard deviation [0.44, 3.17] phones/sec,
and the coefficient of variation (where coefficient of variation is the standard deviation
divided by the mean) ranges between [3.29%, 22.87%].

6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

ROS in phones/second based on phonetic hand labels

N
um

be
r 

of
 s

en
te

nc
es
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Figure 3: Histogram of rate of speech for TIMIT female sentences, based on the phonetic hand transcriptions
and the IMD formula.

For completeness, we include similar plots from the WSJ database (see Figures 5, 6,
and 7). The average

����� ����	
for the male speakers in WSJ0 is 4.02% higher than the

average for the female speakers.

5.2.2 Correlation of the ROS Measures

We generated correlation coefficients between each of the ROS measurement methods
and the ROS hand-labeled values. The relevant values are shown in Table 5. We have
only included the comparisons with the change of a single experimental variable; for
example, it is justified to compare

����� ��� ��� � � � � ����	 with
����� ��� ����� 
 ��� � ����	 , and not with����� ��� ����� 
 ��� � � � . Even for the phonetically hand-transcribed data, the correlation between
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Figure 4: Histogram of rate of speech for TIMIT male sentences, based on the phonetic hand transcriptions
and the IMD formula.
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Figure 5: Histogram of rate of speech for WSJ0 training sentences. The values in the curve on the left have
been measured using the IMD formula and the ones on the right using the MR formula.
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Figure 6: Histogram of rate of speech for WSJ0 training female sentences, based on the correct word
transcriptions and the IMD formula.
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Figure 7: Histogram of rate of speech for WSJ0 training male sentences, based on the correct word transcrip-
tions and the IMD formula.
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the ROSs calculated using the IMD and MR formulas is not very high, for example, for
TIMIT � � ����� ��� ����� 
 ��� � ����	�� ����� � � ����� 
 � � � � � � 
 0 � 77.

Corr. Coeff. of Different ROS Measures with the Phonetically Hand Transcribed ROS

IMD formula MR Formula
ROS Method W/O Mid-sil W Mid-sil W/O Mid-sil W Mid-sil

Wrd Correct 0.88 0.87 0.40 0.40
Phn hypothesized 0.84 0.83 0.61 0.60

Table 5: Correlation coefficients for the 1344 TIMIT test sentences between various methods of calculating
the ROS with the phonetically hand transcribed calculated ROS.

As we see in Table 5, the ROSs measured using the MR formula are consistently less
correlated with the phonetically hand transcribed ROS. The IMD formula seems to be
a more reliable way of estimating the ROS of a sentence. Also, taking out the middle
silence seems to make the ROS estimation slightly more consistent. Using the correct word
transcription method seems to be superior to using hypothesized phone transcriptions for
the IMD formula, and the inverse is true for the MR formula. Perhaps using lexical models
derived from the data results in a phonetic segmentation with some short phones, which
strongly affect the MR and not the IMD measure. We will come back to this point in Section
8.

Note that we have not used the hypothesized word transcription method for ROS cal-
culation, because we think that this method is particularly unsuitable for TIMIT. TIMIT is
primarily a phone recognition task since the test sentences tend to have many previously
unseen word pairs, for which we have no language model information. We will revisit these
methods for WSJ0 in Section 7.1.

5.3 A Final Note on ROS Measurement

As discussed in the sections above, ROS is not an absolute measure and depends on the
calculation method. Furthermore, the size of the phone-set and the alignment procedure can
cause differences in the measured ROS. As an illustration of this point, consider sentence
011c0201 from the WSJ0 training set, with the word transcription “The sale of the hotels
is part of holiday’s strategy to sell off assets and concentrate on property management.”
Table 6 shows the segmentation and labeling for this sentence using ICSI’s HMM/MLP
hybrid system and CMU’s SPHINX-II recognition system [10]6. If we employ the IMD
formula for calculating ROS, using ICSI’s segmentation we get 16.94 phones/second and
using CMU’s segmentation we get 14.21 phones/sec. One main reason for this difference
is that there are more phonetic labels used in the ICSI alignment. Specifically, for each
stop consonant, the ICSI alignment is based on two labels: one for the closure and one
for the stop phone (see column 11 of Table 6, for example), resulting in 10 more closure
phone-labels for the ICSI alignment.

6Thanks to Matt Siegler for the raw CMU data.
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Order ICSI’s Alignment CMU’s Alignment
Phone Frames Phone Frames

0 DH 2 DH 6
1 IH 7 AX 6
2 S 11 S 12
3 EY 7 EY 8
4 L 10 L 10
5 EL 6 AX 4
6 V 4 V 6
7 DH 2 DH 3
8 AX 10 AX 8
9 HH 3 HH 4

10 OW 9 OW 9
11 TCL 5 T 11
12 T 8 EH 8
13 EH 6 L 20
14 L 22 Z 14
15 Z 11 IX 6
16 H# 5 Z 9
17 IX 5 P 9
18 Z 6 AA 6
19 PCL 5 R 3
20 P 5 TD 3
21 AA 6 AX 4
22 R 3 V 6
23 TCL 3 HH 8
24 AXR 4 AA 4
25 V 7 L 9
26 HH 6 AX 3
27 AA 6 D 5
28 L 5 EY 7
29 AX 6 Z 6
30 DCL 3 S 6
31 D 1 T 6
32 EY 10 R 3
33 Z 5 AE 10
34 S 5 DX 3
35 TCL 3 AX 5
36 T 3 JH 9
37 R 6 IY 13
38 AE 8 T 6
39 DX 1 AX 5
40 IH 4 S 11
41 DCL 4 EH 5
42 JH 8 L 5
43 IY 11 AO 10
44 TCL 5 F 6
45 T 2 AE 19
46 IX 5 S 12

Order ICSI’s Alignment CMU’s Alignment
Phone Frames Phone Frames

47 S 11 EH 4
48 EH 6 TS 17
49 L 8 AX 4
50 AO 8 N 5
51 F 6 DD 4
52 H# 6 K 7
53 AE 13 AA 9
54 S 11 N 3
55 AX 4 S 7
56 TCL 8 AX 3
57 S 6 N 3
58 HH 4 T 10
59 IX 3 R 4
60 N 5 EY 8
61 KCL 4 TD 4
62 K 8 AO 8
63 AA 9 N 4
64 N 2 P 11
65 S 7 R 3
66 AX 4 AA 6
67 N 2 P 6
68 TCL 2 AXR 7
69 T 9 DX 4
70 R 4 IY 9
71 EY 6 M 6
72 TCL 6 AE 8
73 AH 7 N 3
74 N 3 IX 9
75 PCL 5 JH 9
76 P 7 M 6
77 R 2 AX 8
78 AA 7 N 5
79 PCL 5 TD 8
80 P 1 SILE 34
81 AXR 6
82 DCL 3
83 D 1
84 IY 9
85 M 6
86 AE 9
87 N 3
88 IX 7
89 JH 12
90 M 6
91 IX 3
92 N 5
93 TCL 7
94 H# 33

Table 6: The automatic alignment for sentence 011c0201 from the WSJ0 training set for ICSI’s HMM/MLP
hybrid system and CMU’s SPHINX-II recognition system.
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Note that neither alignment is “more correct” for ROS calculation; we simply wish to
demonstrate that ROS is a phone-set dependent measure.

6 Analysis of Fast Speech

From psycho-acoustic experiments [22] we know that when the speaking rate becomes
too fast, the production of speech sounds changes, the duration of sounds and syllables
generally becomes very short, or phones get omitted altogether. We have considered two
reasons for the higher error rate of faster speakers. First, due to increased coarticulation
effects, the spectral features of fast speech may be inherently different from normal speech,
and if so, these differences must be reflected in the extracted features (acoustic-phonetic
causes). Phonological causes are the second potential culprit: the normal word models
may be unsuitable for fast speech because of phonemic durational mismatches (durational
errors) or phone omission (deletion errors). In the following sections, we describe our
investigation of these two hypotheses using the TIMIT and the WSJ corpora.
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Figure 8: Potential causes of error in fast speech.

6.1 Are the Spectral Features Different?

If shorter phoneme durations increase coarticulation effects, the spectral characteristics
must be different for each sound, and the difference should be reflected in the extracted
features. Therefore, we should be able to train a classifier to distinguish between fast and
slow phones based on the extracted features. This form of non-parametric hypothesis testing
can be useful for such multi-dimensional investigations.

In order to eliminate any word model effects (due to automatic labeling and alignment),
we used the hand-labeled TIMIT database and chose 400 sentences from the SI & SX training
sentences, 100 for each combination of

��� � � ��� � � � ��� ��� � � ���
	 � � � � � � � � � � � ��� . Then we
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calculated the PLP12 & energy features and their deltas [8] (a total of 26 features) for
each 20 msec window of speech, overlapped every 10 msec. We trained a two-layer neural
network (26 input, 50 hidden, and 2 output units) using the back-propagation algorithm and
softmax error criterion for each phone on fast and slow speakers’ extracted features. To
eliminate gender variabilities, we trained one classifier on female and one on male speakers
for each phone. We exploited our limited data using a jack-knifing approach, by training
on 90% of the data and testing on the remaining 10% for each of the ten possible splits. For
each split we reported the average classification accuracy on all the the holdout test frames.

We calculated the mean classification accuracy for each phone, averaged over both
genders and the 10 jack-knifed test scores (see Table 7). The overall mean classification
accuracy, averaged over all phones, was 73% (significantly higher than chance) for a total
of 120K frames of data. For some phones, such as /uw/, /uh/, /en/, /oy/, /aw/, /ux/, /y/, /ao/,
/ow/, /hh/, and /ay/ (mostly diphthongs and glides) the classification score was between
80-90%. This difference makes sense especially in the light of psycho-acoustical studies
that suggest diphthongs and glides are most affected by ROS variations [14]. The most
difficult phones for speed discrimination were, unsurprisingly, the silence phones, closures,
stops, and some fricatives. The training criteria and the architecture of the net could have
probably been changed to optimize the discrimination accuracy, but since our objective was
only to see that such discrimination was possible, such tunings were not performed.

We then conducted another two sets of net trainings: one only using PLP and energy
features (without deltas) to see whether the speed discrimination was possible without use
of any dynamic information, and another one only with delta PLP and energy features,
to see if the discrimination was possible from the dynamic information alone. Again, we
trained two-layer neural networks with 13 input, 93 hidden7, and 2 output units on each
phone to discriminate between fast and slow sentences. The mean classification accuracy
averaged over all phones for the features only condition was about 72% and for the deltas
only experiment was about 67% (for details see Tables 8 and 9). From these experiments
we conclude that delta information is not necessary for discrimination between individual
frames of fast and slow speech for particular phones, and furthermore, the discrimination
is more difficult when using only delta (dynamic) information. Perhaps the differences
between fast and slow speech frames primarily lie in the differences in the steady state
information.

It is evident that features for fast and slow sounds are different. The next question is
whether this difference is causing the higher recognition error rate for fast speakers. We
tested this hypothesis by examining the error of the MLP phonetic probability estimator
for each frame. In order to see this general trend between ROS and the errors of the MLP
better, we grouped the sentences in ROS bins with size � ����� , and boundaries

���
�����	�

� � ����� � � �����	� � � � 1 �
� ������� , and calculated the average frame error for each bin (see
Figure 9). We see that for sentences which lie outside

�
������ � ����� , the frame error is at

least 2 absolute percentage points, or 6 relative percentage points higher.

7To keep the number of parameters roughly the same, we increased the number of hidden units from 50 to
93 to compensate for the decrease of input units from 26 to 13.
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PHONE BROAD CAT. Percent Corr. Discr. Number Of Frames

h# sil 55.9 7451
tcl sil 61.5 1577
kcl sil 62.3 1316
dcl sil 62.9 1093
pcl sil 63.0 932
s fric 63.2 3427
k stop 63.3 1055
z fric 63.4 1534

bcl sil 65.2 707
d stop 65.3 319
t stop 65.3 973
ix vowel 65.5 1879
f fric 66.0 1120
g stop 66.3 210
p stop 67.1 567
th fric 67.4 439
dh fric 67.6 517
l liq 67.7 1616

gcl sil 68.0 425
n nasal 68.5 1816
sh fric 70.2 838
b stop 70.6 209
r liq 70.8 1376

ax vowel 70.8 864
iy vowel 70.8 2296
ih vowel 71.1 1787
w liq 71.8 737
q sil 72.9 894

dx stop 73.4 232
v fric 74.4 619

eng nasal 75.0 9 *
m nasal 75.7 1202
ch fric 75.8 337
ae vowel 76.3 1789
ah vowel 76.4 1166
eh vowel 76.5 1637
aa vowel 76.9 1652
epi sil 77.0 205
jh fric 77.2 351
ey vowel 77.2 1470
pau sil 77.2 1075
ng nasal 77.5 356
er vowel 77.9 1103
hv fric 78.6 277
axr vowel 78.7 1015
ay vowel 79.2 1508
el liq 80.1 416
hh fric 80.7 292
ow vowel 81.3 1243
ao vowel 81.7 1300
y liq 83.2 309

ux vowel 84.5 677
aw vowel 84.9 665
oy vowel 85.4 305
en nasal 88.2 210
uh vowel 88.4 224

ax-h vowel 89.6 48 *
zh fric 90.0 87 *
uw vowel 90.1 213
nx nasal 91.6 94 *
em nasal 100.0 31 *

Table 7: Discrimination scores for fast vs. slow phones of TIMIT training set using both PLP and energy and
their deltas as features. Each discrimination score is an average of the 10 jack-knifing experiments for males
and females. The * next to some columns means there were less than 100 frames of data for these phones and
the results are deemed unreliable.
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PHONE BROAD CAT. Percent Corr. Discr. Number Of Frames

h# sil 55.4 7451
dcl sil 59.7 1093
t stop 60.4 973

kcl sil 60.5 1316
k stop 60.6 1055

tcl sil 60.6 1577
pcl sil 61.3 932
d stop 61.4 319
z fric 61.6 1534
f fric 61.8 1120
s fric 62.0 3427

bcl sil 62.7 707
ix vowel 62.9 1879
p stop 63.2 567
g stop 63.8 210

gcl sil 64.4 425
l liq 65.8 1616

sh fric 66.0 838
q sil 66.0 894
th fric 66.2 439
dh fric 66.2 517
n nasal 67.2 1816
r liq 67.3 1376

ax vowel 68.1 864
dx stop 68.5 232
v fric 68.7 619
ih vowel 68.9 1787
iy vowel 69.7 2296
b stop 69.8 209
w liq 70.9 737
epi sil 70.9 205
ch fric 71.5 337
jh fric 72.4 351
ng nasal 72.8 356
ey vowel 73.2 1470
pau sil 73.6 1075
axr vowel 73.6 1015
er vowel 73.9 1103
ah vowel 73.9 1166
hv fric 74.5 277
m nasal 74.9 1202

eng nasal 75.0 9 *
hh fric 75.6 292
eh vowel 76.1 1637
el liq 77.1 416
aa vowel 77.4 1652
ae vowel 78.3 1789
ay vowel 78.8 1508
ao vowel 79.2 1300
y liq 79.8 309

ow vowel 80.0 1243
oy vowel 83.4 305
en nasal 83.8 210
ux vowel 83.8 677
aw vowel 84.4 665
zh fric 85.4 87 *

ax-h vowel 85.6 48 *
nx nasal 87.0 94 *
uh vowel 88.0 224
uw vowel 88.8 213
em nasal 100.0 31 *

Table 8: Discrimination scores for fast vs. slow phones of TIMIT training set using only PLP and energy
(without delta) features. Each discrimination score is an average of the 10 jack-knifing experiments for males
and females. The * next to some columns means there were less than 100 frames of data for these phones and
the results are deemed unreliable.
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PHONE BROAD CAT. Percent Corr. Discr. Number Of Frames

h# sil 54.6 7451
ix vowel 58.6 1879
s fric 59.5 3427
ih vowel 59.7 1787
r liq 60.4 1376
z fric 60.7 1534
ao vowel 60.8 1300
l liq 61.0 1616
w liq 61.1 737
ax vowel 61.1 864
ae vowel 61.2 1789
iy vowel 61.3 2296
dcl sil 61.5 1093
tcl sil 61.6 1577
aa vowel 61.6 1652
k stop 61.9 1055
g stop 62.1 210

pcl sil 62.4 932
n nasal 62.5 1816
er vowel 62.6 1103
sh fric 62.9 838
kcl sil 63.2 1316
m nasal 63.3 1202
t stop 63.5 973

ey vowel 64.0 1470
gcl sil 64.2 425
eh vowel 64.3 1637
ay vowel 64.7 1508
ah vowel 64.8 1166
bcl sil 65.0 707
f fric 65.0 1120
q sil 65.3 894

axr vowel 65.4 1015
th fric 65.4 439
epi sil 65.7 205
d stop 65.9 319
oy vowel 66.1 305
dh fric 66.1 517
v fric 66.5 619

ng nasal 67.5 356
b stop 68.0 209

pau sil 68.6 1075
ow vowel 68.8 1243
jh fric 68.8 351
aw vowel 69.0 665
p stop 69.1 567
el liq 70.3 416
en nasal 70.6 210
dx stop 71.0 232
ux vowel 71.3 677
hv fric 71.5 277
ch fric 72.8 337
zh fric 73.3 87 *
hh fric 73.6 292
y liq 74.4 309

eng nasal 75.0 9 *
uw vowel 75.2 213
uh vowel 76.3 224
nx nasal 78.5 94 *

ax-h vowel 78.8 48 *
em nasal 97.5 31 *

Table 9: Discrimination scores for fast vs. slow phones of TIMIT training set using delta PLP and energy
(without PLP and energy features themselves) as features. Each discrimination score is an average of the 10
jack-knifing experiments for males and females. The * next to some columns means there were less than 100
frames of data for these phones and the results are deemed unreliable.
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Figure 9: Rate of speech vs. MLP frame error for TIMIT test sentences. Each point represents the average
error for a given ROS bin. The numbers on the graph denote the number of sentences in each bin.

6.2 A Closer Look at the Word Models

The next question is whether the higher error rate is due to a mismatch with the word models.
One hypothesis is that the implicit durational models in our recognizer do not match the
durations used by fast speakers. We have observed that fast speakers tend to favor shorter
phone durations and violate phonemic minimum duration requirements (durational errors),
and also omit phones in their pronunciations altogether (deletion errors).

We transcribed a total of 25 sentences for five fast speakers in the WSJ-93 devel-
opment and evaluation sets by hand and compared their pronunciations with what our
single-pronunciation word models predict. We aligned each transcribed word with its cor-
responding word-model phonetic sequence, using dynamic programming with a distance
metric based on the number of phonetic features (e.g., consonant, frontness, height) that
differ between two phones, producing a deletion error score.

As noted before, our word models (as with many other systems) have a minimum
duration constraint, which require that each phone be repeated for at least � states.8 For the
five transcribed speakers, we also calculated a duration error score which represents how
often the transcribed phones were shorter than the minimum duration in the word model. We
did not observe a strong correlation between ROS and overall alignment error rate. There
were, however, weak correlations between ROS and either of duration and deletion errors.
When the two error sources were summed, we found a stronger correlation with ROS. This
suggests that both unusually short sounds and deleted sounds may be measurable sources
of error in our speech recognizer. However, since we had very limited hand transcribed
data, we repeated this experiment on the TIMIT database. Similar to the analysis in 6.1, we
divided the sentences into ROS bins, each 1

2
� � � � wide. There was almost no correlation

between ROS and deletion errors alone9 (Figure 10). The correlation between ROS and
durational errors was significantly higher at 0.84 (Figure 11). Combining the deletion and

8The value of � in our system is calculated as half of the back-off triphone context-dependent average
duration of a phone, estimated from the training data.

9For calculating the correlation, we disregarded the bins with less than five sentences.
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duration errors, the correlation increases to 0.93 (Figure 12).
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Figure 10: Rate of speech vs. average deletion errors for TIMIT training sentences. The integers on the
plot represent the number of sentences in each ROS bin. Bins with less than five sentences were ignored for
calculating the correlation coefficient.
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Figure 11: Rate of speech vs. average duration errors for TIMIT training sentences. The integers on the
plot represent the number of sentences in each ROS bin. Bins with less than five sentences were ignored for
calculating the correlation coefficient.

The effect of deletion errors alone appears to be minor. Perhaps we do not see a
consistent correlation between ROS and deletion errors because phone deletion occurs
selectively given a particular phone context. This is an argument for applying deletion
modeling rules judiciously (Section 7.4).

From these observations we conclude that the combination of unusually short sounds
and deleted sounds are measurable sources of error in our speech recognizer. We will
suggest antidotes in Section 7.3.
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Figure 12: Rate of speech vs. average duration & deletion errors for TIMIT training sentences. The integers
on the plot represent the number of sentences in each ROS bin. Bins with less than five sentences were
ignored for calculating the correlation coefficient.

7 Some “Antidotes” Against Fast Speech Errors

In the following two sections, we discuss our experiments in trying to alleviate the higher
error rates of fast speech. Figure 13 shows the outline of these experiments and Figure 14
shows the over-all structure of our experimental ASR system. All the experiments were run
on the WSJ0 corpus, and we have used the WSJ0-93 evaluation set for our tests because two
of the ten speakers in this test set are very fast speakers and they provide a good benchmark.
Our baseline WSJ0 recognizer is a gender-independent system, with context-independent
and one phone per state word models, and utilizes a 5K bigram grammar. It has 16.1%
word error for the WSJ0-93 evaluation set.

Signal
Processing

: :

Neural
Network

Prob. Estimator
(MLP)

Decoder

HMM

C A T

Text

Recognized
Signal
Speech

"CAT"

Phonological
Adaptation

Duration

Modeling

Pronunciation

Modelingto fast speech
Adapting the MLPAcoustic-

Phonetic
Adaptation

Figure 13: Potential compensations for errors caused by fast speech.
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Figure 14: The over-all structure of our rapid-speech-tuned ASR system.

7.1 Using an ROS Estimator

In Section 4.5, we discussed the merits of various ways of calculating the ROS for a sentence
without phonetic hand transcription. We concluded (for TIMIT) that in the absence of
phonetic hand transcription, using the correct word transcriptions was the best method for
calculating ROS, followed by the hypothesized phone transcriptions. Here, we briefly look
at how each of the methods operate on the WSJ0-93 evaluation set and choose a set of “fast”
sentences.
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Figure 15: The plot shows the relationship between the correct word transcription method with the hypoth-
esized word transcription for the WSJ0-93 Eval sentences, based on the IMD formula. The dashed lines are
drawn at ��� 1 � 65 � .

We see in Figures 16 and 15 that the ROS calculated using the hypothesized word
transcriptions has higher correlation with the ROS calculated using the correct word tran-
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Figure 16: The plot shows the relationship between the correct word transcription method with the hy-
pothesized phone transcription for the WSJ0-93 Eval sentences. The dashed lines are drawn at � � 1 � 65 � .

scriptions than using the hypothesized phone transcriptions, which is contrary to what we
observed for TIMIT in Table 5. Each dot on the Figures 16 and 15 represents one of the
sentences in the test set. The sentences to the right of the vertical line (drawn at

� � 1 � 65
	 � )

are the sentences deemed fast by the correct word transcription method. The sentences lying
above the horizontal line (also drawn at

� � 1 � 65
	 � ) are the ones the ROS estimators chose

as fast. In each case, the sentences lying in the fourth quadrant are the fast sentences that
are missed. We see that more fast sentences are missed for the hypothesized phone case
than in the hypothesized word. Perhaps for a tasks where the word recognition accuracy
is acceptable, hypothesized words provide a better technique than hypothesized phones for
estimating the ROS. This may be because the word models provide a constraint in addition
to the acoustic-phonetic information which helps to determine phone boundaries. Yet, a
phone recognition pass can be faster and may be an acceptable alternative.

7.2 Acoustic-Phonetic Modeling: Retraining The MLP

Based on our observations in Section 6.1, we decided to adapt our MLP phonetic estimator
to fast speech. We chose the fastest 5% of the sentences based on three criteria:

� ROS calculated based on the correct word transcription, without taking out the silence
durations (corr-wrd-Wsil)

� ROS calculated based on the correct word transcription (corr-wrd)

� ROS calculated based on the hypothesized phone transcription (hyp-phn)

The first and last experiments, using corr-wrd-Wsil and hyp-phn as criteria are reported
here for completeness. These experiments were run prior to our study of the ROS measures,
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which showed that these two methods are not optimal. Roughly one third of the sentences
chosen by these two criteria and the corr-wrd criterion were different.

The ROS cutoff for each case was
� � 1 � 65 � , or 16.17, 17.34, and 16.15 phones/second

for each case, respectively. Our 4000 hidden unit MLP was previously trained on all
of WSJ0. We adapted this net to the top 5% fast sentences of the training set (360 fast
sentences10) by retraining the net for three more epochs, at decreasing learning rates of
0.008, 0.004, and 0.002. This is a schedule that we have previously found useful for this
kind of retraining.

We tested this adapted net on the WSJ0-93 evaluation set. We looked at the word
recognition error rate of fast sentences with

����� ��� and slow and medium sentences
with

����� � � , where C, the cutoff, was either defined to be
� � 1 � 65 � (Table 10) or� � 1 � 00 � (Table 11).

Relative Improvement in Word Error for WSJ-93 Eval Set

Net Adapt. Crit. Criteria for Choosing Fast Sentences over ��� 1 � 65 �

Correct Word (idealized) Hyp. Phone Hyp. Word

33 fast overall 17 fast overall 21 fast overall

corr-wrd-Wsil 16.7 5.6 15.5 1.2 10.2 1.9
corr-wrd 2.6 1.2 2.1 0.6 -5.3 -.6
hyp-phn 5.2 1.9 8.8 0.6 4.2 0.6

Table 10: The table shows the percent improvement in recognition word error for the WSJ-93 Evaluation set,
after retraining the acoustic probabilityestimator. Each row shows a different criterion for retraining the MLP
(see text for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-column is the improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

Relative Improvement in Word Error for WSJ-93 Eval Set

Net Adapt. Crit. Criteria for Choosing Fast Sentences over ��� 1 � 00 �

Correct Word (idealized) Hyp. Phone Hyp. Word

50 fast overall 44 fast overall 37 fast overall

corr-wrd-Wsil 15.0 6.8 10.9 3.1 14.4 4.3
corr-wrd 5.8 2.5 2.4 0.6 5.9 1.9
hyp-phn 6.5 3.1 9.0 2.5 .9 1.9

Table 11: The table shows the percent improvement in recognition word error for the WSJ-93 Evaluation set,
after retraining the acoustic probabilityestimator. Each row shows a different criterion for retraining the MLP
(see text for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-column is the improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

10For the first experiment 367 sentences were above the “fast” cutoff and were selected.
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From Tables 10 and 11 we conclude that by lowering the ROS cutoff from 1 � 65 � to
1 � 00 � and thereby allowing more sentences to benefit from the fast-speech modification,
the overall improvement for the test set increases. The second observation is that the corr-
wrd-Wsil criterion for choosing the fast sentences for adapting the MLP has outperformed
the other two criteria. This may be related to the first observation: perhaps choosing the top
5% fastest sentences for training (which corresponds to the sentences with a ROS greater
than 1 � 65 � � �

) is too restrictive and the threshold should be relaxed. In the case of the
corr-wrd-Wsil criterion, which does not exclude begin, end, or middle silences, the ROS
calculation is not as precise as the other criteria and some “medium fast” sentences may
have been used for the adaptation. In any case, it is interesting to note that simply adapting
the MLP to fast speech for a few epochs can improve robustness to other fast sentences. We
must note that there are many other methods of adapting an MLP that were not explored
further. Some of these approaches are discussed in [20, 1] may be used for better adaptation.

A final observation from Tables 10 and 11 is that estimating the ROS of the test
sentences using the correct word transcription improved the performance more than using
the hypothesized words, and the latter was in turn better than using the hypothesized phones.
This is in line with what we had predicted in Section 7.1.

7.3 Duration Modeling

We have investigated methods of adjusting the durational models of phones in order to
compensate for ROS effects. Our current phone model, shown in Figure 17.a, requires a
minimal duration constraint. For phones that are shorter than the minimum duration, this
constraint will sharply decrease the probability of the phone (and consequently, the word
which contains the phone) representing the acoustic input.
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Figure 17: Examples of word models for “at”.

In Figure 17.b, we show a model in which we have scaled the probabilities of each
HMM state to favor leaving rather than staying in each state. In Table 12 we report cases
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in which we scaled the exit probability from 0.4 to 0.95. Increasing the exit probability to
0.9 provides the best overall improvement for the test sentences.

Relative Improvement in Word Error for WSJ-93 Eval Set

Lex. Adapt. Crit. The Criteria for Choosing Fast Sentences over � � 1 � 00 �

Correct Word (idealized) Hyp. Phone Hyp. Word

50 fast overall 44 fast overall 37 fast overall

probshift 0.4 -6.8 -2.4 -7.1 -1.8 -7.4 -1.8
probshift 0.6 10.2 4.3 7.1 1.8 8.1 2.4
probshift 0.7 12.5 5.5 6.6 1.8 10.0 3.1

probshift 0.75 12.9 5.5 5.6 1.8 10.0 3.1
probshift 0.8 14.9 6.8 10.9 3.1 12.2 3.7

probshift 0.85 15.3 6.8 9.0 2.4 11.1 3.1
probshift 0.9 17.3 7.4 14.2 3.7 12.2 3.7

probshift 0.95 11.9 5.5 9.9 2.4 7.4 2.4

Table 12: The table shows the percent improvement in recognition word error for the WSJ-93 Evaluation set,
after retraining the acoustic probabilityestimator. Each row shows a different criterion for retraining the MLP
(see text for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-column is the improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

We know that in fast speech, the duration of vowels changes the most, while the duration
of stops is relatively constant. Therefore, a variation on the above modification is to 1)
increase the exit probability of only vowels, 2) increase the exit probability of all phones,
except for the stops, and 3) increase the exit probabilities in a graded scale with stops
at the bottom of the scale, vowels on top, and all other phones graded in between. The
grading scheme was developed using the knowledge that certain manners of articulation
(e.g. vowels) are more likely to shorten in fast speech than others (e.g. stops) [14]. The
exit probabilities of each phone were set in an articulation manner dependent fashion; for
example, in the 0.7-0.9 lexicon, the assigned probabilities are reported in table 13.

The scale factor is a subjective measure of relative duration change for the particular

Manner Scaling Factor Probability

Stops 0.0 0.70
Affricates 0.2 0.74
Fricatives 0.2 0.74

Nasals 0.4 0.80
Liquids 0.7 0.84
Glides 0.7 0.84
Vowels 1.0 0.90

Table 13: The scaling factor in the left column is a subjective measure of relative duration change for a
particular manner of articulation; the right column is a mapping from the scaling factor to the probability
range [0.7,0.9].
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manner of articulation. Although the scale factors have not been optimized, this scaling
method shows promise for handling fast speech.

Table 14 shows the results of these variations. The third scheme proved to be the best:
increasing the exit probability of the vowels to 0.9 and the stops to 0.7, and the rest of the
phones between 0.7 and 0.9.

Relative Improvement in Word Error for WSJ-93 Eval Set

Lex. Adapt. Crit. Criteria for Choosing Fast Sentences over � � 1 � 00 �

Correct Word (idealized) Hyp. Phone Hyp. Word

50 fast overall 44 fast overall 37 fast overall

vowprobshift 0.6 -1.3 -.6 .4 .6 .7 .6
vowprobshift 0.7 6.4 3.1 3.3 1.2 7.0 1.8
vowprobshift 0.8 -8.5 -3.7 -11.3 -2.4 -11.4 -3.1

nostopprobshift 0.7 11.2 4.9 8.5 2.4 9.2 2.4
nostopprobshift 0.8 12.9 5.5 6.6 1.8 10 3.1
nostopprobshift 0.9 18.7 8.0 8.0 1.8 12.5 3.7

gradedshift 0.5-0.7 8.8 3.7 6.6 1.8 8.1 2.4
gradedshift 0.5-0.9 18.0 8.0 13.2 3.1 16.6 4.9
gradedshift 0.7-0.9 24.4 10.5 23.2 5.6 22.6 6.2

Table 14: The table shows the percent improvement in recognition word error for the WSJ-93 Evaluation set,
after retraining the acoustic probabilityestimator. Each row shows a different criterion for retraining the MLP
(see text for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-column is the improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

An alternative would be to simply reduce the minimum phone durations. We tried this
in both phone-independent (Figure 17.c) and phone-specific (Figure 17.e) duration scaling
experiments. For the phone-independent models, experiments were conducted where 0.5
to 5 frames were subtracted from the average back-off trigram context-dependent duration
of each phone. This resulted in an average of 0.25 to 2.5 state deletions in the minimum
duration of phone models. The results are reported in Table 15. The best overall results
were obtained by deducting 4 frames from the average vowel duration.

The best overall improvements in this section were obtained with the graded exit
probability scaling 0.7-0.9 scheme. Assuming an ideal ROS detector (which knows about
the correct word transcription), the relative improvement on the fastest 50 sentences is
24.5% and the relative overall improvement is 10.6%. Using a more realistic ROS detector
based on the hypothesized words, the fast and overall relative improvements are 22.6%
and 6.2% respectively, and using the hypothesized phones for ROS calculation, the relative
improvements are 23.2% and 5.6% respectively.

7.4 Pronunciation Modeling
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Relative Improvement in Word Error for WSJ-93 Eval Set

Lex. Adapt. Crit. Criteria for Choosing Fast Sentences over ��� 1 � 00 �

Correct Word (idealized) Hyp. Phone Hyp. Word

50 fast overall 44 fast overall 37 fast overall

mindur 0.5 4.0 1.8 3.7 1.2 4.0 1.2
mindur 1.0 5.7 2.4 2.3 .6 5.9 1.8
mindur 2.0 5.1 2.4 3.7 1.2 5.1 1.8
mindur 3.0 2.3 1.2 -5.2 -1.2 .7 .6

vowmindur 1.0 3.0 1.2 3.7 1.2 5.1 1.8
vowmindur 2.0 6.1 2.4 2.3 .6 6.2 1.8
vowmindur 3.0 6.8 3.1 3.3 1.2 7.0 1.8
vowmindur 4.0 7.4 3.1 1.4 .6 6.2 1.8
vowmindur 5.0 3.7 1.8 -.4 0.0 4.8 1.2

Table 15: The table shows the percent improvement in recognition word error for WSJ-93 Evaluation set.
Each row shows a different adaptation criterion for the MLP (see text for explanation). The column categories
correspond to each of the three ways of estimating the ROS. The first sub-column is improvement of the fast
sentences (which are over the cutoff) relative to the baseline system, and the number in the second sub-column
is the percent improvement for the overall recognition score.

Finally, we introduced alternate pronunciations into our word models which represent the
phone reduction and deletion effects often seen in fast speech [35, 36, 37, 11]. These pro-
nunciations were generated by twenty surface-phonological rules (Table 18) applied to the
base (single pronunciation) lexicon. These rules provided an average of 2.41 pronunciations
per word for the 5k WSJ test set lexicon. The results of running with this lexicon and the
adapted net were insignificantly worse than the base system. However, when performing
an error analysis on the results, we noted that the difference in error rate on a sentence-by-
sentence basis between the two systems varied widely; for some sentences the base lexicon
did much better, and for others, the deletion lexicon removed up to 75% of the errors. It
has been reported by other researchers [12, 31] that modifying the word models by using
pronunciation rules has not resulted in any improvements for fast speech. One reason may
be that these reductions and deletions are more often observed in conversational than read
speech. Another possibility is that the rules must be applied judiciously to a subset of words
(to function words, for example), instead of the whole lexicon. Finally, rules may need to
be applied at more limited times, depending, for instance, on more local rate estimates, and
on previous words or phones.

7.5 Merging The Solutions

We combined the most promising of the above approaches by using the phonetic probabili-
ties from the adapted net and the ROS-tuned lexicon (Figure 17.b) for decoding (see Table
16).

In some cases, the merged system, i.e., the adapted net combined with the adapted
lexicon, outperformed each of the two adaptations alone. For example, using the net
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Name Rule Example

Reductions
Syllabic n [ax ix] n � en button
Syllabic m [ax ix] m � em bottom
Syllabic l [ax ix] l � el bottle
Syllabic r [ax ix] r � axr butter

Flapping [tcl dcl] [t d] � dx /V [ax ix axr] button
Flapping-r [tcl dcl] [t d] � dx /V r [ax ix axr] barter
H-voicing hh � hv / [+voice] [+voice] ahead
L-deletion l � Ø/ y [ax ix axr] million
Gliding iy � y / [ax ix axr] colonial
Nasal-deletion [n m ng] � Ø/ [-voice -consonant] rant11

Function words
h-deletion h � Ø/ # he, him
w-deletion w � Ø/ # will, would
dh-deletion dh � Ø/ # this, those

Dental-deletion [tcl dcl] [t d] � Ø/ [+vowel] [th dh] breadth
Final dental-deletion ([tcl dcl]) [t d] � Ø/ [+cons +continuant] # soft (as)
Slur ax � Ø/ [+consonant] [r l n] [+vowel] camera
Stressed Slur [+vowel +stress] r � er warts
Pre-stress Contraction ax � Ø/ [+cons] [+cons] [+vowel +stress] senility
Ruh-reduction r ax � er / [-word bdry] [-word bdry] separable
Transitional Stops12

t-introduction Ø � tcl / [+dental +nasal] [+fricative] prin[t]ce
t-deletion [tcl] � Ø/ [+dental +nasal] [+fricative] prints

Figure 18: The table shows the twenty surface-phonological reduction and deletion rules with which we
modified our base (single) pronunciation lexicon.

adapted based on the corr-word-Wsil ROS criterion and the lexicon with 0.9 probability shift
outperforms either of the two schemes. However, the lexicon with the graded probability
shift 0.7-0.9, which has proved to be the best modification so far, degrades when combined
with the output of the adapted net. Perhaps both modifications are making up for the
same fast speech differences, and when combined together, may do “over-modification”.
Generally speaking, at this point we have not worked out the ideal combination of these
strategies.

8 Discussion

We have discussed methods that result in significant improvements (� � 0 � 01) for fast
sentences. Our findings contradict earlier results by Siegler and Stern [31]. We think the
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Relative Improvement in Word Error for WSJ-93 Eval Set

Net Adapt. Crit. Lex. Adapt. Crit. Criteria for Choosing Fast Sentences over ��� 1 � 00 �

Correct Word (idealized) Hyp. Phone Hyp. Word

50 fast overall 44 fast overall 37 fast overall

corr-wrd-Wsil gradedshift 0.7-0.9 22.4 9.9 10.9 3.1 19.2 5.5
corr-wrd-Wsil gradedshift 0.5-0.7 14.6 6.2 6.6 1.8 14.0 3.7
corr-wrd-Wsil gradedshift 0.5-0.9 21.0 9.3 11.8 3.1 17.4 4.9
corr-wrd-Wsil probshift 0.8 18.0 8.0 15.6 3.7 15.1 4.3
corr-wrd-Wsil probshift 0.85 19.3 8.6 15.6 3.7 14.0 3.7
corr-wrd-Wsil probshift 0.9 18.7 8.0 18.4 4.9 14.0 3.7

corr-wrd gradedshift 0.7-0.9 13.9 6.2 5.2 1.2 11.1 3.1
corr-wrd probshift 0.9 9.5 4.3 .1 1.8 7.4 2.4

hyp-phn gradedshift 0.7-0.9 12.9 5.5 9.0 2.4 12.5 3.7
hyp-phn probshift 0.9 12.9 5.5 12.3 3.1 13.3 3.7

Table 16: The table shows the percent improvement in recognition word error for WSJ-93 Evaluation set.
Each row shows a different adaptation criterion for the MLP (see text for explanation). The column categories
correspond to each of the three ways of estimating the ROS. The first sub-column is improvement of the fast
sentences (which are over the cutoff) relative to the baseline system, and the number in the second sub-column
is the percent improvement for the overall recognition score.

differences in our findings are mostly due to the measure we have used for quantifying
ROS. Siegler and Stern use the MR formula, while we have chosen the IMD formula. If
we use the MR formula for choosing fast sentences in the WSJ0-93 evaluation set, only
thirteen sentences are chosen as fast, with �


 � � 1 � 65 � (see Figures 19 and 20, compared
to Figures 15 and 16). Table 17 shows the effects of our best adaptation technique when
either the MR or the IMD measures are used for choosing fast test sentences. We see that
the hypothesized phone method for MR is better than the other two measures, which is
consistent with the correlation coefficients we observed in Section 5.2.2. Siegler and Stern
used the MR measure in combination with the correct and hypothesized word transcription
method for calculating ROS, which may partly explain why their improvements were not
significant.

Relative Percent Improvement in W.E.R. for WSJ-93 Eval,
��� � � 1 � 00 � �

IMD Measure MR Measure
ROS Estimation Criteria fast overall (215 sents) fast overall (215 sents)

Correct Word (idealized) 24.4% (50 sents) 10.5% 16.1% (13 sents) 2.5%
Hypothesized Word 22.6% (37 sents) 6.2% 22.6% (7 fast) 1.9%
Hypothesized Phone 23.2% (44 sents) 5.6% 11.5% (58 fast) 3.7%

Table 17: The table shows the percent improvement in recognition word error for the WSJ-93 Evaluation set
for the IMD vs. the MR measure. The “fast” sub-column is improvement of the fast sentences (which are
over the cutoff) relative to the baseline system, and the “overall” sub-column is the percent improvement for
the whole test set.
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Figure 19: The plot shows the relationship between the correct word transcription method with the hypoth-
esized word transcription for the WSJ0-93 Eval sentences, based on the MR formula. The dashed lines are
drawn at ��� 1 � 00 � and � � 1 � 65 � .
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Figure 20: The plot shows the relationship between the correct word transcription method with the hypoth-
esized phone transcription for the WSJ0-93 Eval sentences, based on the MR formula. The dashed lines are
drawn at ��� 1 � 00 � and � � 1 � 65 � .
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9 Conclusions

We have studied various methods of measuring ROS for the purposes of ASR. We discussed
the merits of various ways of calculating the ROS for a sentence without phonetic hand
transcription. We concluded that in the absence of phonetic hand transcription, using
the correct word transcriptions was the best method for calculating ROS, followed by the
hypothesized word and phone transcriptions. If the word recognition accuracy is acceptable,
the ROS calculation based on the hypothesized word method is superior to hypothesized
phone method; otherwise, the latter may be better than the former.

We also conducted a number of exploratory experiments to determine the likely sources
of speech recognition errors due to unusually fast speech. We believe that the spectral
features of fast and slow sounds are different, since we have been able to train classifiers to
discriminate the two classes with a high degree (

�
85% for some vowels) of accuracy. This

spectral difference does seem to cause higher phonetic probability estimation error rates.
We also have observed an association between inappropriate word models for fast speech
(due to exceptionally short phone duration or deletion) and recognition error rate.

We also implemented modifications to our ASR system to make it more robust to fast
speech. We adapted our MLP phonetic probability estimator and changed the word models
in our lexicon to better model the durations of fast speech. The modification with the
most performance gain was obtained by modifying transitional probabilities, where the exit
probabilities for the vowels were increased to 0.9, the stops to 0.7, and the rest of the phones
gradually between 0.7 and 0.9. Assuming an ideal ROS estimator (which knows about the
correct word transcription), the relative improvements for both fast and all sentences were
significant, with � � 0 � 01 and � � 0 � 05 respectively. The relative improvement on the
fast sentences were also significant (� � 0 � 01) when ROS was estimated based on the
hypothesized words and phones method. The hypothesized words criterion was slightly
better than hypothesized phones criterion in estimating the ROS of a novel sentence.

10 Future Directions

We suggest the following areas for future work:

� Broad category phone recognition may provide a less expensive (in terms of time
and resources) alternative than phone recognition for ROS estimation. It is our guess
that the accuracy of ROS estimates using the former method would be very similar
to ROS calculated using the latter, since we have observed that the reduced errors
in broad phonetic category recognition are mostly due to a reduced substitution rate,
which does not affect the ROS measure.

� For applications where ROS must be measured in a smaller granularity than of a
sentence, ROS may be measured per phone, per 1 second intervals, or per group of
syllables. Distributions of this variable may be sufficient, or perhaps phone-specific
measures may be required. For instance, the duration of a phone in a given utterance
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may be compared to the average (perhaps the context dependent average) duration of
a phone, and a standardized

�
value may be calculated to determine how the phone

duration compares to the ideal phone. Since phone recognition is more error prone
than broad category phone class recognition, the latter may be performed on the novel
utterance instead. To get a smoothed estimate of the ROS variations along the whole
utterance, the ROS may be calculated successively for overlapping time windows.

� Although rule-based pronunciation modeling did not reduce overall word error, we
observed strong effects in the detailed error analysis. It may be that the improvements
are cancelled when applied indiscriminately to all words. this avenue of research still
seems like a likely source of improvements for conversational speech.

� Adapting the acoustic models and the word model durations improved the error for
fast sentences. Combining the two methods, though, was not always beneficial.
Studying the interaction between these two adaptations may lead to better robustness
techniques. In particular, we are considering the use of a discriminant HMM approach
[2] to simultaneously learn the acoustic and phonetic dependencies on rate.

� Even though using hypothesized phone transcriptions is a slightly inferior method
to using hypothesized word transcriptions when the word recognition accuracy is
acceptable, the former may be used as a faster, less expensive alternative. It is also
possible to develop a general ROS detector for any given speech data, for demo
purposes, for example.

As a final note, although some of the improvements may seem insignificant with respect
to a large collection of sentences, an ROS-tuned system increases robustness to fast speakers,
for whom the system might fail seriously. For example, for the fastest sentence in WSJ0-93
evaluation set, our baseline system has a word error of 40%. The ROS-tuned system,
however, reduces this error to 20%, effectively reducing the word errors by 50%. This
reduced degradation for the extreme cases could help user acceptance of ASR technology.
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11 Appendix

Phones in the TIMIT Database

TIMIT IPA Example TIMIT IPA Example
pcl po (p closure) bcl bo (b closure)
tcl to (t closure) dcl do (d closure)
kcl ko (k closure) gcl go (g closure)
p p pea b b bee
t t tea d d day
k k key g g gay
q

�
bat dx � dirty

ch t � choke jh dz joke
f f fish v v vote
th � thin dh � then
s s sound z z zoo
sh � shout zh � azure
m m moon n n noon
em m� bottom en n� button
ng � sing eng � � Washington

nx ˜� winner el l� bottle
l l like r r right
w w wire y y yes
hh h hay hv � ahead
er 	 bird axr 
 butter
iy i beet ih � bit
ey e bait eh � bet
ae æ bat aa  father
ao � bought ah � but
ow o boat uh � book
uw u boot ux ü toot
aw �� about ay �� bite
oy ��� boy ax-h � � suspect
ax � about ix � debit
epi (epen. sil.) pau (pause)
h# (silence)

Table 18: Phone Types Used
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