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Abstract

Psychoacoustic studies show that human listeners are sensitive to speaking rate variations
[32]. Automatic speech recognition (ASR) systems are even more affected by the changes
in rate, as double to quadruple word recognition error rates of average speakers have been
observed for fast speakers on many ASR systems [24]. In thiswork, we have studied the
causes of higher error and concluded that both the acoustic-phonetic and the phonological
differences are sources of higher word error rates. We have also studied various measures
for quantifying rate of speech (ROS), and used simple methodsfor estimating the speaking
rate of anovel utterance using ASR technology. We have implemented mechanisms that
make our ASR system more robust to fast speech. Using our ROS estimator to identify
fast sentences in the test set, our rate-dependent system has 24.5% fewer errors on the
fastest sentences and 6.2% fewer errors on all sentences of the WSJ93 evaluation set
relative to the baseline HMM/MLP system. These results were achieved using some gross
approximations. adjustment for one rate over an entire utterance, hand-tweaked rather than
optimal transition parameters, and quantization of rate effects to two levels (fast and not
fast).



1 Motivation

Anyone who has attended a public auction knows that there are differences in speaking
rate between speakers. Miller et a. [16] have shown that the articulation rate varies quite
considerably within and across speakers. These rate alterations modify the acoustic fine
structure of individual syllables and affect propertiesthat convey segmental information for
both consonants and vowels [27]. Furthermore, listeners are extremely sensitive to these
variations and they treat the segmentally relevant acoustic properties in a rate-dependent
manner [32]. Fast speaking rates can make speech hard to understand for people (especially
for the elderly). There have even been attempts to make engineering products that slow
down fast speech [29].

ASR systems, even more than people, are sensitive to rate of speech (ROS) differences.
For example, in arecent Nationa Institute of Standardsand Technology’s(NIST) evaluation
of the Wall Street Journal (WSJ) task in November 1993, al the participating systems had
about 2-3 time higher word error rates on the two fastest speakers than on the normal
speakers (see figuresin [24] and Figure 1).
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Figure 1: Rate of speech vs. word error rate for WSJ0-93 5K evaluation set. Each point represents one of the
ten test speakers.

In an earlier NIST evaluation of the Resource Management task (RM) in September of
1992, thisstrong ROS effect wasa so observed. The participating systemsin that evaluation
had 2-4 times more error on the fastest (and one of the slowest!) speakers [25]. This
observation naturally raises the following two questions. why do ASR systems perform
significantly worse on fast speakers? And what can we do to alleviate these problems?
Although fast speech has caused problems for ASR systems for some time, this issue has
not been received much attentionin the ASR literature. Thiswork attemptsto provide some
preliminary answers to these questions.

LAlthough very slow speakers can also have high error rates, inthiswork we have limited our investigation
to fast speakers.



In Section 2, we discuss work by othersin thisarea. In Section 3, we briefly describe
ICSI’s basic ASR technology and the databases we use for this study. In Section 4, we
discussdifferent criteriafor calculating ROS, and in Section 5 we report on the experiments
we have performed to decide which method most consi stently characterizes ROS. In Section
6 we report our analysis of fast speech, and in Section 7 we discuss the mechanisms we
have implemented for making our ASR system more robust to fast speech. In Section 9
we provide a brief summary of our work, and conclude the paper by suggesting future
directionsin Section 10.

2 Reated Work

Although speaking rate has been a problem for ASR systems for some years, there has
been very little attention devoted to this topic. The only other previously published work
on thisissue that we know of isthat of Siegler and Stern [31]. Intheir work, they proposed
measuring ROS based on phones/second using a mean of rates formula?. They used
forced alignment on the correct word transcription to determine the phone segmentation
and durations, and implemented three methods for compensating for fast speech errorsin
the WSJ1 corpus:

1. Modification of the acoustic models. Siegler and Stern developed a rate-specific
codebook by performing Baum-Welch codebook re-estimation for fast speech. The
performance with this adapted codebook did not improve for fast speech compared
to the baseline.

2. Modification of HMM state transition probabilities. They observed that vowel dura
tion, for example, isdifferent for normal and fast speech. The transition probabilities
of theword model swere adapted to the fastest 1000 sentencesin WSJ1; improvement
for the fast test sentences was about 4-6%.

3. Modification of the pronunciation dictionary: intra- and inter-word transformations.
Since the deletion of unstressed vowels are common in fast speech, the recognition
dictionary was changed to eliminate the schwa between two consonants, as well
as all the non-initial and non-final schwas. Neither of these changes significantly
changed the overall word error rate. They also observed that function words such
as THE, AND, TO, A, OF, IN, THAT, WERE, ARE and | represented 55% of al
word deletions errors, even though they only represented 20% of the words in the
transcripts. Since 33% of the merges were of the form“X Y” ->“X” and “X Y” ->
“Z”, they added compound wordssuch as“IN_THE” to thedictionary with adifferent
pronunciation than each word separately. The recognition accuracy did not improve
with this modification, either.

2Thismethod is discussed in Section 4.4.



To estimate the ROS of a novel utterance without knowing the transcript a priori,
they proposed using the recognition system’s hypothesi s containing alignment information.
Their estimate of the ROS was monotonically related to the ROS cal culated with the correct
sentence transcription, athough it was negatively biased. All their reported improvements
were with the ROS cal culated given the correct sentence transcriptions, however.

Theideas discussed in this report were devel oped independently in the same timeframe
asthework of Siegler and Stern [31].

3 System and Databases

For our study, we use the HMM/MLP Hybrid System and the TIMIT and the Wall Street
Journal (WSJ) databases.

3.1 HMM/MLP Hybrid System

We use ICSI’s hybrid HMM/MLP speech recognition system (explained in [2]). The main
idea of the HMM/MLP method is to train a multi-layer perceptron (MLP) (typically using
arelative entropy error criterion) for phonemic classification; such anet can be used as an
estimator of posterior class probabilities and, when divided by class priors, can estimate
scaled likelihoods. For recognition, we use a decoder called YO (described in [28]), which
uses a single density per phone HMM with repeated states for a ssmple durational model.
ICSI used this system to participate in the WSJ 93 and RM 92 NIST evaluations, and the
behavior of the system on the fastest speakers was similar to that of the other systems
(Figurel).

Since similar rate of speech effects have been observed for recognizers incorporating
mixtures of Gaussians [24, 25, 31], we think it likely that the conclusions of our work will
be useful in those systems as well.

3.2 TheTIMIT Database

The TIMIT [4, 13, 21] read-speech database was collected by Texas Instruments (TI1)
and was automatically phonetically labeled, and later hand-checked by the students at the
Massachusetts I nstitute of Technology (MIT). It is available on CD-ROM from NIST, and
comprisestwo subsets: the TRAIN andthe TEST set. There areatotal of 630 speakers (462
TRAIN, and 168 TEST), each uttering 10 sentences. There are three sentence types. SA
sentences (2 per speaker), SX (5 per speaker) and Sl (3 per speaker). Thetwo SA sentences
are the same for all speakers and are often used for calibration but not for training; the SX
sentences are specifically designed to provide a good coverage of pairs of phones, and the
Sl sentences are selected from existing written sources to add diversity to the corpus. Each
of the SX sentences is spoken by seven speakers but each Sl sentence occurs only once.
There are dmost twice as many male asfemalesin the TIMIT database.



TIMIT is a particularly good test-bed for our experiments because it is hand-labeled.
If a database is not hand-labeled (in case of WS, for instance) we must generate phonetic
labels through a forced alignment procedure. However, this may introduce a bias into
the experiments. if the “normal” word (or phone) models do not match fast speech (due
to phone omission, for example), the phonetic labels will not be 100% accurate. With
hand-labeled TIMIT, thisis not as much of a concern. Even though hand-labels may differ
from one expert to another, they still provide the best approximation to the “ground truth”.

Finaly we must note that TIMIT is generally considered a phone recognition task as
opposed to aword recognitiontask. Not only isthetraining set too small toreliably estimate
agrammar for the test set, but there are also many out of vocabulary words in the test set
that do not appear in the training set.

3.3 TheWall Street Journal/North American Business News Database

This database was recorded by various sites, and is available on CD-ROM from NIST
[26]. In our study, we use WSJO, which is a subset of the training data. There are 84
training speakersin the WSJO short-term training set (a.k.a. SI-84), each uttering 50 or 100
sentences. The average length of each sentence is about 7.4 seconds, and there are 15.3
hours of training data in SI-84. The training set is relatively gender-balanced, and each
speaker reads a different set of sentences from the Wall Street Journal daily newspaper.

An advantage of the WSJ database for our experimentsis that it is a continuous word
recognition task, as opposed to TIMIT which is generally regarded as a phone recognition
task. Also, the size and the phonetic variability of WSJ corpusallows usto experiment with
duration as well as pronunciation modeling for fast speech.

4 |ssuesin Measuring Rate of Speech (ROS)

To improve robustness to speaking rate, we first need a consistent measure for quantifying
speaking rate. In the course of our study, we noticed a lack of consensus in the literature
on how to quantify speaking rate. It has been our experience that choosing one ROS metric
over others can lead to significant differencesin experimental results.

Various measures of ROS have been used by different researchers. Crystal and House
[3] usethetotal reading time of thetext to distinguish fast and dlow talkers. Similarly, Ohno
and Fujisaki [23] calculatealocal speech ratewith respect to agiven target utterance. These
measures are only useful if the talkers are reading identical texts, and are useless outside
the laboratory environment. Clearly, one important requirement of our ROS measure isthe
ability to calculateit for anovel utterance.

In the next few subsections, we will discuss the following issues for calculating ROS:

e Treatment of mid-sentence silences

e Granularity of calculating ROS



¢ Unitsof ROS
e Formulafor calculating ROS
e Using ASR technology to estimate ROS

In the next section, we will report on our experiments to determine the most reliable
method of ROS estimation.

41 Treatment of Mid-Sentence Silences

Speaking rateis composed of two elements: the rate at which the speech itself is produced,
or articulation rate, and the number and duration of pauses in the utterance, known as
pause rate [16]. The psychoacoustic studies have established that for human listeners, the
perceived changes in speaking rate that occur both within and across speakers are largely
due to changes in pause rate, with the articulation rate varying relatively less [5, 6]. The
articulation rate nevertheless varies quite considerably within and across speakers [16].

Although both pause rate and articul ation rate are important components of speech rate,
we are concerned that the duration of the silence periods may be dependent on factors other
than speech rate. We argue for defining the rate of speech (ROS) as the articulation rate
alone. To judtify this, in Section 5 we will compare the reliability of a measure which
preserves mid-sentence silences with one that excludes them.

4.2 TheGranularity of Calculating ROS

Should ROS be cal cul ated per speaker or per sentence? The advantage of theformer isthat it
allowsthe grouping of speakersinto “fast” and “slow” speakers, whichisintuitive. That is,
it iscons stent with the human notion of categorizing speakersasfast (e.g., auctioneers) and
dow (e.g., one'sgrandmother). The disadvantageisthat for agiven speaker, the ROSvaries
considerably across and within sentences [16]. I magine a speaker who, at the beginning of
the recording session, succeeds in sustaining a normal speed, but by the end of the session,
speeds up hisher speaking rate due to impatience or fatigue. Labeling all the sentences
of this speaker as “medium fast” may cause anomalies in the observations. This problem
is more of an issue for a corpus such as WSJ0, where each speaker utters about 50-100
sentences, than for TIMIT, where each speaker utters 10 sentences. In Section 5.2.1 we
will measure the intra-speaker ROS variabilitiesfor TIMIT.

Miller et. a. [16] have shown that there are ROS variations even within an utterance.
There is some evidence that commonly used words, or function words are pronounced
the most carelessly [12]. Having listened to many sentences, we have also noticed many
rate changes in the middle of the sentence, particularly for the common expressions. One
may argue that perhaps a sentence is too coarse of a unit for the ROS calculation, and
ROS should be calculated either per phone, per syllable, or per 1 second segments. One
problem with per phone measures is the following: the average duration of phones varies
greatly, for example for TIMIT the average duration of /ow/ is 128 msec while the average
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duration of /k/ is 50 msec. Calculating an instantaneous rate for each of these phones may
be mideading. However, since the phone rate averaged over an entire utterance provides a
smoothed, though coarse, measure, we decided this was a good choice for afirst attempt.
In any case, for applications which require phone rate determination, we suggest a way to
calculate this rate more reliably in Section 10. For this work, we have chosen a sentence
level granularity, because not only isit awell defined unit providing a good approximation
to the overall speed of the sentence, but it may well be sufficient for many ASR applications,
particularly those with short utterances.

4.3 Unitsof ROS

In some studies| 24, 34] the ROS has been measured based on words/minute (or per second).
Although words/second is a smpler unit to calculate, it is coarser than phones/second
and may cause inaccuracies. Consider the two perennia favorite examples of speech
researchers. “How to wreck a nice beach” and “How to recognize speech”. If we use
words/second as unit, these two sentences which have nearly identical phonetic structure,
spoken at the same speaking rate, will be labeled with widely varying ROSs.

Choosing words/second as ROS unitsis particularly problematic if ROS is measured on
aper sentence basis. Siegler and Stern [31] show a correlation of 0.50 between ROS based
on words/second and phones/second for WSJ1 training sentences. The correlation between
words/second and phones/second measure increases when more than one sentence is used
for ROS calculation; in other words, when we calculate an average over a larger number
of words, according to the law of large numbers, we get an estimate that is closer to the
real mean. We have observed a correlation of 0.75 between these two metrics when ROS
is measured for eight sentences of TIMIT (per speaker). The correlation between these
two metrics improves to 0.99 when we used 40 sentences (per speaker) of WSJO0 for ROS
measurement.

In many psycho-acoustic experiments, syllables/second has been used as the ROS unit
[5, 15, 7]. Since automatic labeling in ASR systems is often based on phones and not
syllables, and since phones are of even finer granularity than syllables, phones seem to be
the most logical choice for ROS calculation unit for common ASR systems at thistime.

44 Formulafor Calculating ROS

There are (at least) two waysto calculate the rate of speech of an utterance. One measure
isthe inverse of mean duration (IMD), where the total number of phonesis divided by the
total duration of the utterance[19] asin:
n
S — 1

ROSmap > duration; @D
where nisthe total number of phones, and duration; isthe duration of each phone: inthe
sentence. The second measure is the mean of rates (MR) formulation, where first an ROS



for each phonein the sentence is calculated, and then these phone rates are averaged to get
the ROS for the utterance [31], that is:

> rate;
n

ROSyvRr =

(2
where rate; is defined as 7—— for each phone.

Aswenotedin Section 4.2, theaverageduration of phonesvary widely. TheMR measure
accentuates the differences between the average phone duration and, in case of very short
phones, drastically boosts the ROS. In other words, the MR measure is dominated by the
high instantaneous rate of short phones, while the IMD measure is relatively unaffected.
We discuss the merits of these two methodsin Section 5.

45 Using ASR Technology to Estimate the ROS

In Section 4.3 we discussed the merits of calculating ROS based on words/second unit vs.
phones/second unit. Since we have chosen phones/second as units, we need to know the
number of phones and their duration for each sentence. Unlike TIMIT, most ASR corpora
are not phonetically hand-labeled, so we need another method to determine the phonetic
labeling. Forced alignment is the method most commonly used for this purpose. Given the
correct word level transcription of the sentence, we can use the forced alignment method
to estimate the number and the duration of phones in the sentence. If we have multiple
pronunciations for a particular word, or if there is a mismatch between the word model
and actualy what was said (due to phone omission, for example) the phonetic duration
estimation may not be accurate. Since we are calculating ROS over the whole utterance,
minor inaccuracies will not have a strong effect.

How can we estimate the ROS of sentences for which we do not have the correct word
level transcription? There are (at least) two possible options. One is to perform word
recognition on the novel utterance and use the hypothesized word transcription for forced
alignment (also suggested by [31]). The advantage of this method is that we can rely on
higher level knowledge (i.e., language model) to get amore accurate phonetic segmentation.
One drawback may be that we enforce a particular pronunciation of a word, even if the
“fast” pronunciation is different from the normal word-model due to phone omission, for
example. Another drawback is that incorrect word recognition can lead to the incorrect
phonetic segmentation. The second option is to perform phone recognition for the novel
utterance and usethe state transition information (or if a particular decoder does not provide
state transition information, forced alignment on the phone string hypothesis may be used).
The advantage of this method isthat we can estimate the ROS for any novel utterance, even
if we do not have aword model to represent it. Another advantageisthat substitution errors
in the phone classification do not affect the ROS measure. The drawback of both of the
above methods is that their accuracy depends on the accuracy of the ASR system, which
may be poorer for rapid speech. We will report our study of these methodsin Section 5.



5 Experimentsin Choosing an ROS Measure

5.1 Measurements

As we have discussed so far, there are many criteria for choosing an ROS measure, and
we need to determine the measure with the most consistency and reliability. Since TIMIT
is the only corpus that we have available that is both phonetically hand transcribed and
phoneticaly rich®, we use it for determining the ROS measure of choice. In the next
subsections we discuss the method we used to measure ROS based on discussions in
Section 4.5.

5.1.1 Calculating ROSfrom Phonetic Hand Transcription

For all 5040 TIMIT training and testing sentences, we used the phone transcription (*.phn)
files to calculate the ROS. These files mark the beginning and ending sample number of
each phone, as well as the phonetic assignment. Note that TIMIT has been sampled at

num(samples)

16KHz, S0 num(secs) = = ge=*. For example, the phonetic hand transcription for

sentence mtcs08-s11972, with the word transcription “ Perfect he thought,” is:

0 2180 h#

2180 3120 p
3120 4678 er
4678 6070 f
6070 7160 i X
7160 8710 kcl
8710 9360 t
9360 10360 pau
10360 11540 hh
11540 12440 iy
12440 14230 th
14230 17080 ao
17080 21420 tcl
21420 25760 h#

Table 18 in the Appendix explains the phonetic transcription symbols. Note that h#
is the phonetic label for the beginning and ending silence and pau is the phonetic |abel
for middle silence or pause. Since the beginning and ending silence duration contain no
inherent information about the speech, we always exclude them for ROS cal cul ation. Based
on this convention, the above sentence has 12 total phones, and 11 non-mid-silence phones.
We calculated the ROS for the entire TIMIT train and test sets with and without the mid-
silences, using both the IMD and MR formulas discussed in Section 4.4. These valuesfor
our sample sentence are shown in Table 1.

3By phonetically rich we mean that there are many instances of a phone appearing in different phonetic
contexts, as opposed to, say, adigitstask, where phone/m/ does not appear at all.
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| TheROSInfo for Phonetic Hand Transcription Method |
| | With Mid-silences | Without Mid-silences |

Num. Phones 12 11

Duration (secs) 1.20 114
ROSimD 9.98 9.65
ROSmR 12.83 1254

Table 1: The ROS for sentence mtcs08-si1972 fromthe TIMIT training set, using the phonetic hand segmen-
tation.

5.1.2 Calculating ROSfrom Correct Word Transcription

In order to determine the phonetic segmentation using word transcriptions, we used aforced
Viterbi aignment. The forced Viterbi alignment is a dynamic programming algorithm that
calculates a phonetic segmentation of the utterance given a particular word transcription.
The phonetic likelihoods needed for the aignment procedure were generated by running
a feed-forward pass for the TIMIT extracted features (PLP12 [8] and energy feature as
well astheir deltas) through a multi-layer perceptron (MLP), which was previoudly trained
and cross-validated on similar features extracted from the TIMIT hand segmented data.
The MLP had 1000 hidden units, 61 outputs (one for each phone), and 234 inputs (26
inputs* 9 frame window); it was trained using a relative entropy error criterion to estimate
the phonetic posterior probabilities. The phonetic posterior probabilities were divided by
the phonetic priors to obtain the phonetic likelihoods that were used in the forced Viterbi
alignment.

The forced Viterbi alignment finds a phonetic segmentation for each utterance. For our
example sentence, mtcs08-s11972, thisalignment is:

10 59 perfect ppppper er er er er er er er er er
fffffffff ixixixixix kcl kcl kcl kcl kcl
kcl kcl kcl kcl kcl kcl t h# h# h# h# h# h# h# h# h#

60 74 he hh hh hh hh hh hh hh hh iy iy iy iy iy iy iy

75 152 thought th th th th th th th th ao ao ao ao ao
ao ao ao ao ao ao ao a0 ao ao ao ao ao ao ao ao tcl
ch h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h#

The first two numbers for each word represent the beginning and ending frame, and the
repeated values are the phonetic labels for each 20 msec (overlapping by 10 msecs) frame.
Note that for this particular example, the middle sentence pause is recognized as / h#/

9



| TheROSInfofor Correct Word TranscriptionMethod |
| | With Mid-silences | Without Mid-silences |

Num. Phones 12 12
Duration (secs) 0.87 0.87
ROSimD 13.79 13.79
ROSmR 34.52 3452

Table 2: The ROS for sentence mtcs08-s11972 from the TIMIT training set, using the correct word transcrip-
tion.

and not / pau/ , therefore they will be excluded when cal culating the ROS, explaining why
the values in the columns “With Mid-silences’ and “Without Mid-silences’ are identical.
The ROS values for our example sentence are reported in Table 2. We notice that for this
sentence the ROS g is over twice as large as the ROSryp. Upon closer inspection, we
see some phone label s with duration of one frame (in the word “thought”, /tcl/ for example)
which have ahigh instantaneous phone ROS, and will boost the overall ROS of the sentence.
Also, comparing the resultsin Tables 1 and 2, we note that the RO S1yyp measured using
both methods are smilar, while the RO Sy, r caculated using the correct word method is
over twice as large as the RO S, r measured using the phonetic hand-labeling.
Using the alignment data, we calculated the ROS for all TIMIT sentences.

5.1.3 Calculating ROS from Hypothesized Word Transcription

The method of calculating ROS using hypothesized word transcriptionsis very similar to
the one discussed in Section 5.1.2, except that we need to perform a word recognition in
order to obtain the hypothesized word sequence. Our example sentence was recognized as
“perfect results’ by our system, and the phonetic alignment we get from the forced Viterbi
alignment follows:

10 66 perfect ppp pper er er er er er er er er er
fffffffff ixixixixix kel kel kcl kcl kcl
kcl kcl kcl kcl kcl kel t h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h#

67 152 results r r iy iy iy iyiyiyzzzzzzzz
z ah ah ah ah ah ah ahahahah! I I I I I | I | tcl
tcl tcl tcl tcl tcl tcl tcl tcl tcl tcl tcl s h# h#
h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h# h#

One caveat of this method is that the quality of the results depends on the word recog-
nition accuracy and the complexity of the task. Thisis a problem particularly for TIMIT
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| ROS Infofor Hypothesized Word Transcription Method |
| | With Mid-silences | Without Mid-silences |

Num. Phones 13 13
Duration (secs) 0.90 0.90
ROSimp 14.44 14.44
ROSmR 29.03 29.03

Table 3: The ROS for sentence mtcs08-si1972 from the TIMIT training set, using the hypothesized word
transcription.

because it isadifficult word recognition task and the results are generally poor. For exam-
ple, using asimple word-pair grammar that only includes the training set words, our word
recognizer has about 80% error®. If we instead use aword-pair grammar derived from the
TIMIT training and test set (ak.a. cheating grammar), the word recognition error for the
1344 test sentencesisabout 26%. A more sophisticated grammar, with probabilities derived
from a much larger database would probably improve the word recognition accuracy and
thereby the accuracy of the measured ROS.

Note that for our example sentencein Table 3, the RO S, p measure varied about 45%,
whilethe RO Sy/r varied about 126% compared to the ROSs cal culated using the phonetic
hand transcriptions.

5.14 Calculating ROSfrom Hypothesized Phonetic Transcription

Since our decoder did not explicitly provide state path information, we performed a phone
recognitionon TIMIT and used the hypothesized phonetranscriptionsfor forced alignment.
For phone recognition, we used single state models, and the transition probabilities were
calculated to match the average phone durations.

The phonetic hand transcription of our example sentenceis
h# per f ix kcl t pau hh iy th ao tcl h#
and it isrecognized as
h# p er f axr kcl t pau hh iy s ao tcl h#.
The phonetic alignment resulting from the forced Viterbi procedureis as follows:

0 8 h# h# h# h# h# h# h# h# h# h# h#

9 14 p pPpppppp

15 24 er er er er er er er er er er er er

25 33 f ffffffffff

34 38 axr axr axr axr axr axr axr

39 48 kcl kcl kcl kcl kel kcl kcl kcl kcl kc
kel kcl

49 55t tttttttt

56 65 pau pau pau pau pau pau pau pau pau pau

4This grammar was used for recognizing our example sentence mtcs08-si1972.
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| ROSInfofor Hypothesized Phone Transcription Method |
| | With Mid-silences | Without Mid-silences |

Num. Phones 12 11
Duration (secs) 1.06 0.96
ROSimp 11.32 15.09
ROSmR 11.46 15.55

Table 4: The ROS for sentence mtcs08-si1972 from the TIMIT training set, using the hypothesized phone

transcription.

pau pau

66 67 hh hh hh hh

68 74 iy iy iyiyiyiyiyiyiy

75 83 s S SSSSSSSS S

84 102 ao ao ao ao ao ao ao ao ao ao ao ao ao
ao ao ao ao ao ao ao ao

103 114 tcl tcl tcl tcl tcl tcl tcl tcl tcl tcl
tcl tcl tcl tcl

115 152 h# h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h# h# h# h# h# h# h# h# h# h#
h# h# h#

Table 4 shows the ROS for each condition. Note that since the mid-sentence pause
was identified correctly as/ pau/ and not as/ h#/ , the ROSs for “with mid-silence” and
“without mid-silence” condition are different. At least for this example, ROS /g iSvery
different than the one calculated using the correct word transcription.

The phone recognition error on all 5040 sentences of TIMIT is28.7%, and the error for
the 1344 test sentencesis 31.8%, and for the core NIST test set (last 200) is 34.0%.

5.2 Observations

As we mentioned earlier, we are looking for an ROS measure that can be reliably and
accurately estimated. First, we calculated the ROS using the phonetic hand segmentation,
and defined it as the “correct” ROS. Then, we calculated the ROS using the methods
discussed above and estimate the “goodness’ of the ROS measure by its correlation with
the “correct” measure.

5.2.1 Didributions

We plotted the histograms of the distributions of the hand-transcribed ROS measure. Our
first observation is that the distribution represents a Gaussian distribution very well. For
ROSphn—COTT—IMD 68.3% and 95.6%, and for ROSphn—corr—MR 70.2% and 95.0% of the
data lies between one and two standard deviations from the mean, respectively. Aswe see

12



in Figure 2, the ROS distribution resulting from the MR formula has a larger mean and
standard deviation compared to the one calculated using the IMD formula. The reason
for this difference, as we discussed in Section 5.1.2, is that very short phones have a high
instantaneous phone rate, which boosts the overall ROS of the sentence using MR.

The ROS histogram for TIMIT based on IMD and MR formulas
200 T mT T T T

180F mean=13.86 e mean=19.76 :
std=2.00 N std=3.09

| NHHHHHHHMM ‘

5 10 15 20 25 30 35 40
ROS in phones/second based on phonetic hand labels

[N

'

o
T

Number of sentences
= =
Iy [} [ee] o N
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T T T T T

Figure 2: Histogram of rate of speech for TIMIT sentences. The values in the curve on the left have been
measured using the IMD formula and the ones on the right using the MR formula.

We al so plotted the distribution of the ROS for the male and femal e sentences separately
(see Figures 3 and 4). We see that the mean ROS for male sentences is 2.76% higher than
the mean ROS for female sentences. This differenceis significant on the p < 0.001 level®.
This rate difference has been previously observed in a study of American vowels duration
by Hillenbrand et al. [9]:

"The pattern of durational differencesamong the vowelsisvery similar to that
observed in connected speech. Our vowel durations from /hVd/ syllables are
two-thirdslonger than those measured in connected speech by Black (1949), but
correlate strongly (r=0.91) with the connected speech data. There were signifi-
cant differencesin vowel duration acrossthethreetalker groups (F[2,33]=9.04,
p<0.001). Neuman-Kewlspost-hoc analyses showed significantly shorter dura-
tions for the men when compared to either the women or the children. Longer
durations for the children were expected based on numerous developmental

SAlthoughit seems that on average males speak faster than females, it is debatable whether the amount of
information content transferred per second is any higher.
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studies (e.g., Smith, 1978; Kent and Forner, 1980) but the differences between
the men and the women were not expected. We do not have an explanation for
this finding and do not know if these male-female duration differences would
also be seen in conversational speech samples.”

We aso looked at the intra-speaker ROS variability. Based on the phonetic hand tran-
scriptionsand theIMD formul a, we have measured the mean ROSfor the 630 TIMIT speak-
ersto range between [9.56, 17.73] phones/sec, standard deviation [0.44, 3.17] phones/sec,
and the coefficient of variation (where coefficient of variation is the standard deviation
divided by the mean) ranges between [3.29%, 22.87%].

The ROS histogram for TIMIT FEMALE based on phonetic hand labels
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Figure 3: Histogram of rate of speech for TIMIT femal e sentences, based on the phonetic hand transcriptions
and the IMD formula

For completeness, we include similar plots from the WSJ database (see Figures 5, 6,
and 7). The average RO Sy p for the mae speakers in WSJ0 is 4.02% higher than the
average for the femal e speakers.

5.2.2 Corredation of the ROSMeasures

We generated correlation coefficients between each of the ROS measurement methods
and the ROS hand-labeled values. The relevant values are shown in Table 5. We have
only included the comparisons with the change of a single experimenta variable; for
example, itisjustified to compare RO.S,4y—hyp—1mp With RO S b —corr— 1 p , @nd Ot with
ROS,hn—corr—mr. Even for thephonetically hand-transcribed data, the correlation between
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The ROS histogram for TIMIT MALE based on phonetic hand labels
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Figure 4: Histogram of rate of speech for TIMIT male sentences, based on the phonetic hand transcriptions
and the IMD formula

The ROS histogram for WSJO-train based on foreced Viterbi on correct words
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Figure 5: Histogram of rate of speech for WSJ0 training sentences. The values in the curve on the left have
been measured using the IMD formula and the ones on the right using the MR formula.
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The ROS histogram for WSJO—-train FEMALE based on correct words
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Figure 6: Histogram of rate of speech for WSJ0 training female sentences, based on the correct word
transcriptionsand the IMD formula.

The ROS histogram for WSJO-train MALE based on correct words
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Figure 7: Histogram of rate of speech for WSJO training mal e sentences, based on the correct word transcrip-
tionsand the IMD formula.

16



the ROSs calculated using the IMD and MR formulas is not very high, for example, for
TIMIT /O(ROSphn—corr—IMDa ROSphn—corT—MR) =0.77.

| Corr. Coeff. of Different ROS Measures with the Phonetically Hand Transcribed ROS |

IMD formula MR Formula
ROS Method W/O Mid-sil | W Mid-sil || W/O Mid-sil | W Mid-sil
Wrd Correct 0.88 0.87 0.40 0.40
Phn hypothesized 0.84 0.83 0.61 0.60

Table 5: Correlation coefficients for the 1344 TIMIT test sentences between various methods of calculating
the ROS with the phonetically hand transcribed calculated ROS.

As we see in Table 5, the ROSs measured using the MR formula are consistently less
correlated with the phonetically hand transcribed ROS. The IMD formula seems to be
a more reliable way of estimating the ROS of a sentence. Also, taking out the middle
silence seems to make the ROS estimation dightly more consistent. Using the correct word
transcription method seems to be superior to using hypothesized phone transcriptions for
the IMD formula, and theinverseistrue for the MR formula. Perhaps using lexical models
derived from the data results in a phonetic segmentation with some short phones, which
strongly affect the MR and not the IMD measure. Wewill come back to thispoint in Section
8.

Note that we have not used the hypothesized word transcription method for ROS cal-
culation, because we think that this method is particularly unsuitable for TIMIT. TIMIT is
primarily a phone recognition task since the test sentences tend to have many previously
unseen word pairs, for which we have no language model information. Wewill revisit these
methods for WSJ0 in Section 7.1.

5.3 A Final Note on ROS M easurement

As discussed in the sections above, ROS is not an absolute measure and depends on the
calculation method. Furthermore, the size of the phone-set and the alignment procedure can
cause differencesin the measured ROS. As an illustration of this point, consider sentence
011c0201 from the WSO training set, with the word transcription “ The sale of the hotels
is part of holiday’s strategy to sell off assets and concentrate on property management.”
Table 6 shows the segmentation and labeling for this sentence using ICSI’s HMM/MLP
hybrid system and CMU’s SPHINX-II recognition system [10]6. If we employ the IMD
formulafor calculating ROS, using ICSI’s segmentation we get 16.94 phones/second and
using CMU'’s segmentation we get 14.21 phones/sec. One main reason for this difference
is that there are more phonetic labels used in the ICSI alignment. Specificaly, for each
stop consonant, the ICSI alignment is based on two labels: one for the closure and one
for the stop phone (see column 11 of Table 6, for example), resulting in 10 more closure
phone-labels for the ICSI alignment.

5Thanksto Matt Siegler for the raw CMU data.
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Order [ ICSI'sAlignment [[ CMU’s Alignment |
| Phone | Frames [[ Phone | Frames |

Order [ ICSI'sAlignment [| CMU’s Alignment | ‘
| Phone | Frames [| Phone | Frames |

47 S 11 EH 4
0 DH 2 DH 6

48 EH 6 TS 17
1 IH 7 AX 6

49 L 8 AX 4
2 S 11 S 12

50 AO 8 N 5
3 EY 7 EY 8

51 F 6 DD 4
4 L 10 L 10
5 = 5 AX 7 52 H# 6 K 7

53 AE 13 AA 9
6 \ 4 \ 6

54 S 11 N 3
7 DH 2 DH 3

55 AX 4 S 7
8 AX 10 AX 8

56 TCL 8 AX 3
9 HH 3 HH 4 =7 S 5 N 3
10 ow 9 ow 9

58 HH 4 T 10
11 TCL 5 T 11

59 IX 3 R 4
12 T 8 EH 8

60 N 5 EY 8
13 EH 6 L 20

61 KCL 4 D 4
14 L 22 Z 14

62 K 8 AO 8
15 Z 11 IX 6

63 AA 9 N 4
16 H# 5 Z 9

64 N 2 P 11
17 IX 5 P 9

65 S 7 R 3
18 4 6 AA 6

66 AX 4 AA 6
19 PCL 5 R 3
20 P 5 D 3 67 N 2 P 6

68 TCL 2 AXR 7
21 AA 6 AX 4

69 T 9 DX 4
22 R 3 \ 6

70 R 4 Y 9
23 TCL 3 HH 8

71 EY 6 M 6
24 AXR 4 AA 4

72 TCL 6 AE 8
25 Y 7 L 9

73 AH 7 N 3
26 HH 6 AX 3

74 N 3 IX 9
27 AA 6 D 5

75 PCL 5 JH 9
28 L 5 EY 7

76 P 7 M 6
29 AX 6 Z 6

7 R 2 AX 8
30 DCL 3 S 6

78 AA 7 N 5
31 D 1 T 6

79 PCL 5 D 8
32 EY 10 R 3

80 P 1 SILE 34
33 4 5 AE 10

81 AXR 6
34 S 5 DX 3 & DeL 3
35 TCL 3 AX 5

83 D 1
36 T 3 JH 9 84 Y 5
37 R 6 Y 13 85 v 5
38 AE 8 T 6 56 AE 5
39 DX 1 AX 5 57 N 3
40 IH 4 S 11 8 X =
41 DCL 4 EH 5

89 JH 12
42 JH 8 L 5 50 v 5
43 Y 11 AO 10 o1 X 3
44 TCL 5 F 6 5 N 5
45 T 2 AE 19
46 IX 5 S 12 93 TCL !

94 H# 33

Table 6: The automatic aignment for sentence 011¢c0201 from the WSJ0 training set for ICSI’s HMM/MLP
hybrid system and CMU’s SPHINX-II recognition system.
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Note that neither alignment is “more correct” for ROS calculation; we simply wish to
demonstrate that ROS is a phone-set dependent measure.

6 Analysisof Fast Speech

From psycho-acoustic experiments [22] we know that when the speaking rate becomes
too fast, the production of speech sounds changes, the duration of sounds and syllables
generaly becomes very short, or phones get omitted altogether. We have considered two
reasons for the higher error rate of faster speakers. First, due to increased coarticulation
effects, the spectral features of fast speech may be inherently different from normal speech,
and if so, these differences must be reflected in the extracted features (acoustic-phonetic
causes). Phonological causes are the second potential culprit: the norma word models
may be unsuitable for fast speech because of phonemic durational mismatches (durational
errors) or phone omission (deletion errors). In the following sections, we describe our
investigation of these two hypotheses using the TIMIT and the WSJ corpora.

Speech Signal N’\elte;/uvgar‘lk HMM Recognized
Signal Processing Prob. Estimator Decoder Text
(MLP)

—="CAT"

BIAS

K
Acoustic- | pitferent Phonetic probability Phonological |Durational | | Deletional
Phonetic | extracted estimation Causes? Errors? Errors?
Causes? features? deterioration?

Figure 8: Potentia causes of error in fast speech.

6.1 Arethe Spectral FeaturesDifferent?

If shorter phoneme durations increase coarticulation effects, the spectral characteristics
must be different for each sound, and the difference should be reflected in the extracted
features. Therefore, we should be able to train a classifier to distinguish between fast and
dow phonesbased onthe extracted features. Thisform of non-parametric hypothesistesting
can be useful for such multi-dimensional investigations.

In order to eliminate any word model effects (due to automatic labeling and alignment),
weusedthehand-labeled TIMIT databaseand chose 400 sentencesfromthe Sl & SX training
sentences, 100 for each combination of { fastest, slowest} x {male, female}. Then we
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calculated the PLP12 & energy features and their deltas [8] (a total of 26 features) for
each 20 msec window of speech, overlapped every 10 msec. We trained atwo-layer neurd
network (26 input, 50 hidden, and 2 output units) using the back-propagation algorithm and
softmax error criterion for each phone on fast and dow speakers extracted features. To
eliminate gender variabilities, we trained one classifier on female and one on male speakers
for each phone. We exploited our limited data using a jack-knifing approach, by training
on 90% of the data and testing on the remaining 10% for each of theten possible splits. For
each split we reported the average classification accuracy on all the the holdout test frames.

We calculated the mean classification accuracy for each phone, averaged over both
genders and the 10 jack-knifed test scores (see Table 7). The overall mean classification
accuracy, averaged over all phones, was 73% (significantly higher than chance) for atotal
of 120K framesof data. For some phones, such as/uw/, /uh/, /en/, loy/, law/, lux/, Iyl laol,
low/, /hh/, and /ay/ (mostly diphthongs and glides) the classification score was between
80-90%. This difference makes sense especially in the light of psycho-acoustical studies
that suggest diphthongs and glides are most affected by ROS variations [14]. The most
difficult phones for speed discrimination were, unsurprisingly, the silence phones, closures,
stops, and some fricatives. The training criteria and the architecture of the net could have
probably been changed to optimize the discrimination accuracy, but since our objective was
only to see that such discrimination was possible, such tunings were not performed.

We then conducted another two sets of net trainings. one only using PLP and energy
features (without deltas) to see whether the speed discrimination was possible without use
of any dynamic information, and another one only with delta PLP and energy features,
to see if the discrimination was possible from the dynamic information alone. Again, we
trained two-layer neural networks with 13 input, 93 hidden’, and 2 output units on each
phone to discriminate between fast and slow sentences. The mean classification accuracy
averaged over all phonesfor the features only condition was about 72% and for the deltas
only experiment was about 67% (for details see Tables 8 and 9). From these experiments
we conclude that deltainformation is not necessary for discrimination between individual
frames of fast and dlow speech for particular phones, and furthermore, the discrimination
is more difficult when using only delta (dynamic) information. Perhaps the differences
between fast and slow speech frames primarily lie in the differences in the steady state
information.

It is evident that features for fast and ow sounds are different. The next question is
whether this difference is causing the higher recognition error rate for fast speakers. We
tested this hypothesis by examining the error of the MLP phonetic probability estimator
for each frame. In order to see this genera trend between ROS and the errors of the MLP
better, we grouped the sentences in ROS bins with size oros, and boundaries [pros +
noros, kros + (n + 1)oros], and calculated the average frame error for each bin (see
Figure 9). We see that for sentences which lie outside i ros + oros, the frame error is at
least 2 absolute percentage points, or 6 relative percentage points higher.

"To keep the number of parameters roughly the same, we increased the number of hidden unitsfrom 50 to
93 to compensate for the decrease of input unitsfrom 26 to 13.
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[ PHONE | BROAD CAT. [ PercentCorr. Discr. | Number Of Frames |

h# sl 55.9 7451
tel sl 615 1577
kel sl 62.3 1316
dcl sl 62.9 1093
pcl sl 63.0 932
S fric 63.2 3427
k stop 63.3 1055
z fric 63.4 1534
bcl sl 65.2 707
d stop 65.3 319
t stop 65.3 973
ix vowel 65.5 1879
f fric 66.0 1120
g stop 66.3 210
p stop 67.1 567
th fric 67.4 439
dh fric 67.6 517
I liq 67.7 1616
gcl sl 68.0 425
n nasal 68.5 1816
sh fric 70.2 838
b stop 70.6 209
r liq 70.8 1376
ax vowel 70.8 864
iy vowel 70.8 2296
ih vowel 711 1787
w liq 718 737
q Ell 729 894
dx stop 734 232
v fric 74.4 619
eng nasal 75.0 9*
m nasal 75.7 1202
ch fric 75.8 337
ae vowel 76.3 1789
ah vowel 76.4 1166
eh vowel 76.5 1637
aa vowel 76.9 1652
epi sl 77.0 205
jh fric 772 351
ey vowel 772 1470
pau sl 772 1075
ng nasal 775 356
er vowel 779 1103
hv fric 78.6 277
axr vowel 78.7 1015
ay vowel 79.2 1508
e liq 80.1 416
hh fric 80.7 292
ow vowel 81.3 1243
a0 vowel 81.7 1300
y lig 83.2 309
ux vowel 845 677
aw vowel 84.9 665
oy vowel 85.4 305
en nasal 88.2 210
uh vowel 88.4 224
ax-h vowel 89.6 48*
zh fric 90.0 87*
uw vowel 90.1 213
nx nasal 91.6 94 *
em nasal 100.0 31~

Table 7: Discrimination scoresfor fast vs. ow phonesof TIMIT training set using both PL P and energy and
their deltas as features. Each discrimination score is an average of the 10 jack-knifing experimentsfor males
and females. The* next to some columns means there were lessthan 100 frames of datafor these phonesand
theresults are deemed unreliable.
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[ PHONE | BROAD CAT. [ PercentCorr. Discr. | Number Of Frames |

h# sl 55.4 7451
dcl sl 59.7 1093
t stop 60.4 973
kel sl 60.5 1316
k stop 60.6 1055
tel sl 60.6 1577
pcl sl 61.3 932
d stop 61.4 319
z fric 61.6 1534
f fric 61.8 1120
s fric 62.0 3427
bcl sl 62.7 707
ix vowel 62.9 1879
p stop 63.2 567
g stop 63.8 210
gcl sl 64.4 425
I liq 65.8 1616
sh fric 66.0 838
q Ell 66.0 894
th fric 66.2 439
dh fric 66.2 517
n nasal 67.2 1816
r liq 67.3 1376
ax vowel 68.1 864
dx stop 68.5 232
v fric 68.7 619
ih vowel 68.9 1787
iy vowel 69.7 2296
b stop 69.8 209
w liq 70.9 737
epi sl 70.9 205
ch fric 715 337
jh fric 724 351
ng nasal 72.8 356
ey vowel 732 1470
pau sl 73.6 1075
axr vowel 73.6 1015
er vowel 739 1103
vowel 739 1166

hv fric 745 277
m nasal 74.9 1202
eng nasal 75.0 9*
hh fric 75.6 292
eh vowel 76.1 1637
e liq 771 416
aa vowel 774 1652
ae vowel 78.3 1789
ay vowel 78.8 1508
EY) vowel 79.2 1300
y liq 79.8 309
ow vowel 80.0 1243
oy vowel 83.4 305
en nasal 83.8 210
ux vowel 838 677
aw vowel 84.4 665
zh fric 85.4 87*
ax-h vowel 85.6 48*
nx nasal 87.0 94 *
uh vowel 88.0 224
uw vowel 88.8 213
em nasal 100.0 31~

Table 8: Discrimination scores for fast vs. slow phones of TIMIT training set using only PLP and energy
(without delta) features. Each discrimination score isan average of the 10 jack-knifing experiments for males
and females. The* next to some columns means there were lessthan 100 frames of datafor these phonesand
theresults are deemed unreliable.
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[ PHONE | BROAD CAT. [ PercentCorr. Discr. | Number Of Frames |

h# Ell 54.6 7451
ix vowel 58.6 1879
S fric 59.5 3427
ih vowel 59.7 1787
r liq 60.4 1376
z fric 60.7 1534

EY) vowel 60.8 1300
I liq 61.0 1616
w liq 61.1 737

ax vowel 61.1 864
ae vowel 61.2 1789
iy vowel 61.3 2296

dcl Ell 615 1093

tel Ell 61.6 1577
aa vowel 61.6 1652
k stop 61.9 1055
g stop 62.1 210

pcl Ell 62.4 932
n nasal 62.5 1816
er vowel 62.6 1103
sh fric 62.9 838

kel Ell 63.2 1316
m nasal 63.3 1202
t stop 635 973

ey vowel 64.0 1470

gcl Ell 64.2 425

eh vowel 64.3 1637

ay vowel 64.7 1508

ah vowel 64.8 1166

bcl Ell 65.0 707
f fric 65.0 1120
q Ell 65.3 894

axr vowel 65.4 1015
th fric 65.4 439

epi Ell 65.7 205
d stop 65.9 319
oy vowel 66.1 305

dh fric 66.1 517
v fric 66.5 619
ng nasal 67.5 356
b stop 68.0 209

pau Ell 68.6 1075

ow vowel 68.8 1243
jh fric 68.8 351

aw vowel 69.0 665
p stop 69.1 567
e liq 70.3 416
en nasal 70.6 210

dx stop 71.0 232
ux vowel 713 677
hv fric 715 277
ch fric 72.8 337
zh fric 733 87*
hh fric 73.6 292
y liq 74.4 309

eng nasal 75.0 9*

uw vowel 75.2 213
uh vowel 76.3 224
nx nasal 785 94 *

ax-h vowel 78.8 48*
em nasal 975 31~

Table 9: Discrimination scores for fast vs. slow phones of TIMIT training set using delta PLP and energy
(without PLP and energy features themselves) as features. Each discrimination score is an average of the 10
jack-knifing experiments for males and females. The* next to some columns means there were less than 100
frames of data for these phones and the results are deemed unreliable.
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F%eéte of Speech vs. Average Frame Error for TIMIT test speakers
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Figure 9: Rate of speech vs. MLP frame error for TIMIT test sentences. Each point represents the average
error for agiven ROS bin. The numbers on the graph denote the number of sentences in each bin.

6.2 A Closer Look at theWord Models

Thenext questioniswhether the higher error rateisdueto amismatch with theword models.
One hypothesis is that the implicit durational models in our recognizer do not match the
durations used by fast speakers. We have observed that fast speakers tend to favor shorter
phone durations and viol ate phonemic minimum duration requirements (durational errors),
and also omit phonesin their pronunciations altogether (deletion errors).

We transcribed a total of 25 sentences for five fast speakers in the WSJ-93 devel-
opment and evaluation sets by hand and compared their pronunciations with what our
single-pronunciation word models predict. We aligned each transcribed word with its cor-
responding word-model phonetic sequence, using dynamic programming with a distance
metric based on the number of phonetic features (e.g., consonant, frontness, height) that
differ between two phones, producing a deletion error score.

As noted before, our word models (as with many other systems) have a minimum
duration constraint, which require that each phone be repeated for at |east » states.® For the
five transcribed speakers, we also calculated a duration error score which represents how
often the transcribed phoneswere shorter than the minimum durationintheword model. We
did not observe a strong correlation between ROS and overall alignment error rate. There
were, however, weak correlations between ROS and either of duration and deletion errors.
When the two error sources were summed, we found a stronger correlation with ROS. This
suggests that both unusually short sounds and deleted sounds may be measurable sources
of error in our speech recognizer. However, since we had very limited hand transcribed
data, we repeated this experiment onthe TIMIT database. Similar to theanalysisin 6.1, we
divided the sentences into ROS bins, each %aRO s wide. There was amost no correlation
between ROS and deletion errors alone® (Figure 10). The correlation between ROS and
durational errors was significantly higher at 0.84 (Figure 11). Combining the deletion and

8The value of n in our system is calculated as half of the back-off triphone context-dependent average
duration of aphone, estimated from the training data.
9For calculating the correl ation, we disregarded the bins with less than five sentences.
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duration errors, the correlation increases to 0.93 (Figure 12).

10

Average Percent of Deleted Phones

Rate of Speech vs. Average TIMIT Phone Deletion Rate
T T T T

Correlation: -0.068434

61
40 9475 35 26
16 ., %0 °38%

1
o

o o

o®©

10 1!
Phones/Second

20 25

Figure 10: Rate of speech vs. average deletion errors for TIMIT training sentences. The integers on the
plot represent the number of sentences in each ROS bin. Binswith less than five sentences were ignored for

calculating the correlation coefficient.
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Figure 11: Rate of speech vs. average duration errors for TIMIT training sentences. The integers on the
plot represent the number of sentences in each ROS bin. Binswith less than five sentences were ignored for

calculating the correlation coefficient.

The effect of deletion errors alone appears to be minor.

Perhaps we do not see a

consistent correlation between ROS and deletion errors because phone deletion occurs
selectively given a particular phone context. This is an argument for applying deletion
modeling rulesjudicioudly (Section 7.4).

From these observations we conclude that the combination of unusually short sounds
and deleted sounds are measurable sources of error in our speech recognizer. We will
suggest antidotesin Section 7.3.
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Rate of Speech vs. Average TIMIT Deletion and Duration Error Rate
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Figure 12: Rate of speech vs. average duration & deletion errorsfor TIMIT training sentences. The integers
on the plot represent the number of sentences in each ROS bin. Bins with less than five sentences were
ignored for cal culating the correlation coefficient.

7 Some*“Antidotes’ Against Fast Speech Errors

In the following two sections, we discuss our experimentsin trying to alleviate the higher
error rates of fast speech. Figure 13 shows the outline of these experiments and Figure 14
showsthe over-all structure of our experimental ASR system. All the experimentswere run
on the WSJ0 corpus, and we have used the WSJO-93 eval uation set for our tests because two
of theten speakersinthistest set arevery fast speakersand they provide agood benchmark.
Our baseline WSJ0 recognizer is a gender-independent system, with context-independent
and one phone per state word models, and utilizes a 5K bigram grammar. It has 16.1%
word error for the WSJ0-93 evaluation set.

Speech Signal N’\ét%(r)?lk HMM Recognized
Signal Processing Prob. Estimator Decoder Text
(MLP)
o L = CAT"
L

ACOUSt_i C- | Adapting the MLP Phonological | Duration Pronunciation

Phonetic to fast speech Adaptation | Modeling Modeling

Adaptation

Figure 13: Potential compensations for errors caused by fast speech.
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Figure 14: The over-all structure of our rapid-speech-tuned ASR system.

7.1 Usingan ROS Estimator

In Section 4.5, we discussed the meritsof variouswaysof cal culating the ROSfor asentence
without phonetic hand transcription. We concluded (for TIMIT) that in the absence of
phonetic hand transcription, using the correct word transcriptions was the best method for
calculating ROS, followed by the hypothesized phone transcriptions. Here, we briefly look
at how each of the methods operate on the WSJ0-93 eval uation set and choose aset of “fast”
sentences.

ROS for WSJ0-eval93, correct vs. recognized words, formula 1
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Figure 15: The plot shows the relationship between the correct word transcription method with the hypoth-
esized word transcription for the WSJ0-93 Eval sentences, based on the IMD formula. The dashed linesare
drawn at p + 1.650.

We see in Figures 16 and 15 that the ROS calculated using the hypothesized word
transcriptions has higher correlation with the ROS calculated using the correct word tran-
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ROS for WSJ0-eval93, correct words vs. recognized phones, formula 1
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Figure 16: The plot shows the relationship between the correct word transcription method with the hy-
pothesized phone transcription for the WSJO-93 Eval sentences. The dashed lines are drawn at p + 1.650.

scriptions than using the hypothesized phone transcriptions, which is contrary to what we
observed for TIMIT in Table 5. Each dot on the Figures 16 and 15 represents one of the
sentencesinthetest set. The sentencesto theright of thevertical line(drawnat i+ 1.65x* o)
arethe sentences deemed fast by the correct word transcription method. The sentenceslying
above the horizontal line (also drawn at i + 1.65x* o) arethe onesthe ROS estimators chose
asfast. In each case, the sentences lying in the fourth quadrant are the fast sentences that
are missed. We see that more fast sentences are missed for the hypothesized phone case
than in the hypothesized word. Perhaps for a tasks where the word recognition accuracy
is acceptable, hypothesized words provide a better technique than hypothesized phones for
estimating the ROS. This may be because the word models provide a constraint in addition
to the acoustic-phonetic information which helps to determine phone boundaries. Yet, a
phone recognition pass can be faster and may be an acceptable alternative.

7.2 Acoustic-Phonetic Modeling: Retraining The MLP

Based on our observationsin Section 6.1, we decided to adapt our MLP phonetic estimator
to fast speech. We chose the fastest 5% of the sentences based on three criteria

e ROS calculated based on the correct word transcription, without taking out the silence
durations (corr-wrd-Wsil)

e ROS calculated based on the correct word transcription (corr-wrd)

¢ ROS calculated based on the hypothesized phone transcription (hyp-phn)

Thefirst and last experiments, using corr-wrd-Wsil and hyp-phn as criteriaare reported
here for completeness. These experimentswere run prior to our study of the ROS measures,
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which showed that these two methods are not optimal. Roughly one third of the sentences
chosen by these two criteriaand the corr-wrd criterion were different.

The ROS cutoff for each casewas i + 1.65¢0, or 16.17, 17.34, and 16.15 phones/second
for each case, respectively. Our 4000 hidden unit MLP was previoudy trained on all
of WSJ0. We adapted this net to the top 5% fast sentences of the training set (360 fast
sentences'®) by retraining the net for three more epochs, at decreasing learning rates of
0.008, 0.004, and 0.002. This is a schedule that we have previoudly found useful for this
kind of retraining.

We tested this adapted net on the WSJ0-93 evaluation set. We looked at the word
recognition error rate of fast sentences with ROS > ' and slow and medium sentences
with ROS < C, where C, the cutoff, was either defined to be i + 1.650 (Table 10) or
i+ 1.000 (Table 11).

Relative Improvement in Word Error for WSJ-93 Eval Set

| |
| Net Adapt. Crit. || Criteriafor Choosing Fast Sentences over i + 1.65¢ |
| | Correct Word (idedlized) || Hyp. Phone || Hyp. Word |
| | 33fast | overal | 17 fast | overal || 21fast | overal |
corr-wrd-Wsil 16.7 5.6 15.5 1.2 10.2 1.9
corr-wrd 26 12 21 0.6 -53 -6
hyp-phn 52 19 88 06 42 06

Table 10: The table shows the percent improvement in recognitionword error for the WS3-93 Evaluation set,
after retraining the acoustic probability estimator. Each row shows adifferent criterionfor retrainingthe MLP
(seetext for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-columnisthe improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

Relative Improvement in Word Error for WSJ-93 Eval Set

| |
| Net Adapt. Crit. || Criteriafor Choosing Fast Sentences over i + 1.000 |
| | Correct Word (idealized) | Hyp. Phone [ Hyp. Word |
| || 50fast | overal || 44fast | overdl || 37fast | overdl |
corr-wrd-Wsil 15.0 6.8 10.9 31 14.4 4.3
corr-wrd 5.8 25 24 0.6 59 19
hyp-phn 65 31 9.0 25 9 19

Table 11: The table shows the percent improvement in recognitionword error for the WS3-93 Evaluation set,
after retraining the acoustic probability estimator. Each row shows adifferent criterionfor retrainingthe MLP
(seetext for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-columnisthe improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

1OFor thefirst experiment 367 sentences were above the “fast” cutoff and were sdl ected.
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From Tables 10 and 11 we conclude that by lowering the ROS cutoff from 1.65¢ to
1.000 and thereby alowing more sentences to benefit from the fast-speech modification,
the overall improvement for the test set increases. The second observation is that the corr-
wrd-Wall criterion for choosing the fast sentences for adapting the MLP has outperformed
the other two criteria. Thismay berelated to thefirst observation: perhaps choosing thetop
5% fastest sentences for training (which corresponds to the sentences with a ROS greater
than 1.650 + p) is too restrictive and the threshold should be relaxed. In the case of the
corr-wrd-Wail criterion, which does not exclude begin, end, or middle silences, the ROS
calculation is not as precise as the other criteria and some “medium fast” sentences may
have been used for the adaptation. In any case, it isinteresting to note that simply adapting
the MLP to fast speech for afew epochs can improve robustness to other fast sentences. We
must note that there are many other methods of adapting an MLP that were not explored
further. Some of these approachesarediscussed in[20, 1] may be used for better adaptation.

A fina observation from Tables 10 and 11 is that estimating the ROS of the test
sentences using the correct word transcription improved the performance more than using
the hypothesized words, and the latter wasin turn better than using the hypothesi zed phones.
Thisisin line with what we had predicted in Section 7.1.

7.3 Duration Modeling

We have investigated methods of adjusting the durational models of phones in order to
compensate for ROS effects. Our current phone model, shown in Figure 17.a, requires a
minimal duration constraint. For phones that are shorter than the minimum duration, this
constraint will sharply decrease the probability of the phone (and consequently, the word
which contains the phone) representing the acoustic inpui.

0.5 0.5 0.5 05 0.5
0.5 0.5 0.5 8 0.58 0.5
——| —=| —= — —

a. Regular word model for "at"

03 03 03 03 03 05 05 05

b. Scaled Exit Probabilities c. Scaled Durations

05 05 05 0.5
0.1 0.1 0.1 0.3 0.3 . .
ORON® 0s 05 05 s
0.9 0.9 0.9 8 0.78 0.7 %9898%
—| —=| —= —= —

d. Graded Scaling of the Probabilities e. Scaled Vowel Durations

Figure 17: Examples of word modelsfor “at”.

In Figure 17.b, we show a model in which we have scaled the probabilities of each
HMM state to favor leaving rather than staying in each state. In Table 12 we report cases
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in which we scaled the exit probability from 0.4 to 0.95. Increasing the exit probability to
0.9 provides the best overall improvement for the test sentences.

Relative Improvement in Word Error for WSJ-93 Eval Set

| |
| Lex. Adapt. Crit. || The Criteriafor Choosing Fast Sentences over i + 1.000 |
| | Correct Word (idedlized) || Hyp. Phone || Hyp. Word |
| | 50fast | overall | 44fast | overal || 37fast | overal |
probshift 0.4 -6.8 -2.4 -7.1 -1.8 -7.4 -1.8
probshift 0.6 10.2 4.3 71 1.8 81 2.4
probshift 0.7 125 55 6.6 1.8 10.0 31
probshift 0.75 12.9 55 5.6 1.8 10.0 31
probshift 0.8 14.9 6.8 10.9 31 12.2 3.7
probshift 0.85 15.3 6.8 9.0 2.4 111 31
probshift 0.9 17.3 7.4 14.2 3.7 12.2 3.7
probshift 0.95 11.9 55 9.9 2.4 7.4 2.4

Table 12: The table shows the percent improvement in recognitionword error for the WS3-93 Evaluation set,
after retraining the acoustic probability estimator. Each row shows adifferent criterionfor retrainingthe MLP
(seetext for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-columnisthe improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

We know that in fast speech, the duration of vowel s changes the most, while the duration
of stopsis relatively constant. Therefore, a variation on the above modification is to 1)
increase the exit probability of only vowels, 2) increase the exit probability of all phones,
except for the stops, and 3) increase the exit probabilities in a graded scale with stops
a the bottom of the scale, vowels on top, and all other phones graded in between. The
grading scheme was developed using the knowledge that certain manners of articulation
(e.g. vowels) are more likely to shorten in fast speech than others (e.g. stops) [14]. The
exit probabilities of each phone were set in an articulation manner dependent fashion; for
example, in the 0.7-0.9 lexicon, the assigned probabilities are reported in table 13.

The scale factor is a subjective measure of relative duration change for the particular

| Manner | Scaling Factor | Probability |

Stops 0.0 0.70
Affricates 0.2 0.74
Fricatives 0.2 0.74

Nasals 04 0.80

Liquids 0.7 0.84

Glides 0.7 0.84

Vowels 1.0 0.90

Table 13: The scaing factor in the left column is a subjective measure of relative duration change for a
particular manner of articulation; the right column is a mapping from the scaling factor to the probability
range [0.7,0.9].
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manner of articulation. Although the scale factors have not been optimized, this scaling
method shows promise for handling fast speech.

Table 14 shows the results of these variations. The third scheme proved to be the best:
increasing the exit probability of the vowelsto 0.9 and the stops to 0.7, and the rest of the
phones between 0.7 and 0.9.

Relative Improvement in Word Error for WSJ-93 Eval Set

| |
| Lex. Adapt. Crit. || Criteriafor Choosing Fast Sentences over i« + 1.000 |
| | Correct Word (idealized) || Hyp. Phone [ Hyp. Word |
| || 50fast | overal || 44fast | overal || 37fast | overdl |
vowprobshift 0.6 -1.3 -.6 4 .6 4 .6
vowprobshift 0.7 6.4 31 33 1.2 7.0 18
vowprobshift 0.8 -85 -3.7 -11.3 -24 -11.4 -3.1
nostopprobshift 0.7 11.2 4.9 85 24 9.2 24
nostopprobshift 0.8 12.9 55 6.6 1.8 10 31
nostopprobshift 0.9 18.7 8.0 8.0 1.8 125 3.7
gradedshift 0.5-0.7 8.8 3.7 6.6 1.8 8.1 24
gradedshift 0.5-0.9 18.0 8.0 13.2 31 16.6 4.9
gradedshift 0.7-0.9 244 10.5 232 5.6 22.6 6.2

Table 14: The table shows the percent improvement in recognition word error for the WS3-93 Evaluation set,
after retraining the acoustic probability estimator. Each row shows adifferent criterionfor retrainingthe MLP
(seetext for explanation). The column categories correspond to each of the three ways of estimating the ROS
during recognition. The first sub-column isthe improvement of the fast sentences (which are over the cutoff)
relative to the baseline system, and the number in the second sub-column is the percent relative improvement
for the overall recognition score (215 sents).

An alternative would be to smply reduce the minimum phone durations. We tried this
in both phone-independent (Figure 17.c) and phone-specific (Figure 17.€) duration scaling
experiments. For the phone-independent models, experiments were conducted where 0.5
to 5 frames were subtracted from the average back-off trigram context-dependent duration
of each phone. This resulted in an average of 0.25 to 2.5 state deletions in the minimum
duration of phone models. The results are reported in Table 15. The best overall results
were obtained by deducting 4 frames from the average vowel duration.

The best overall improvements in this section were obtained with the graded exit
probability scaling 0.7-0.9 scheme. Assuming an ideal ROS detector (which knows about
the correct word transcription), the relative improvement on the fastest 50 sentences is
24.5% and the relative overall improvement is 10.6%. Using amore realistic ROS detector
based on the hypothesized words, the fast and overal relative improvements are 22.6%
and 6.2% respectively, and using the hypothesized phones for ROS calculation, the relative
improvements are 23.2% and 5.6% respectively.

7.4 Pronunciation Modeling
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Relative Improvement in Word Error for WSJ-93 Eval Set

| |
| Lex. Adapt. Crit. || Criteriafor Choosing Fast Sentences over i + 1.00c |
| | Correct Word (idedlized) || Hyp. Phone || Hyp. Word |
| | 50fast | overall | 44fast | overal || 37fast | overal |
mindur 0.5 4.0 1.8 3.7 1.2 4.0 1.2
mindur 1.0 57 24 2.3 .6 59 1.8
mindur 2.0 51 24 3.7 1.2 51 1.8
mindur 3.0 2.3 1.2 -5.2 -1.2 v .6
vowmindur 1.0 3.0 12 37 1.2 51 1.8
vowmindur 2.0 6.1 24 2.3 .6 6.2 1.8
vowmindur 3.0 6.8 31 3.3 1.2 7.0 1.8
vowmindur 4.0 7.4 31 14 .6 6.2 1.8
vowmindur 5.0 3.7 18 -4 0.0 4.8 1.2

Table 15: The table shows the percent improvement in recognition word error for WS3-93 Evaluation set.
Each row shows a different adaptation criterion for the ML P (see text for explanation). The column categories
correspond to each of the three ways of estimating the ROS. The first sub-column isimprovement of the fast
sentences (which are over the cutoff) rel ative to the baseline system, and the number in the second sub-column
isthe percent improvement for the overall recognition score.

Finally, we introduced aternate pronunciations into our word models which represent the
phone reduction and deletion effects often seen in fast speech [35, 36, 37, 11]. These pro-
nunciations were generated by twenty surface-phonological rules (Table 18) applied to the
base (singlepronunciation) lexicon. Theserulesprovided an average of 2.41 pronunciations
per word for the 5k WSJ test set lexicon. The results of running with this lexicon and the
adapted net were insignificantly worse than the base system. However, when performing
an error analysis on the results, we noted that the differencein error rate on a sentence-by-
sentence basis between the two systems varied widely; for some sentences the base lexicon
did much better, and for others, the deletion lexicon removed up to 75% of the errors. It
has been reported by other researchers [12, 31] that modifying the word models by using
pronunciation rules has not resulted in any improvements for fast speech. One reason may
be that these reductions and del etions are more often observed in conversational than read
speech. Another possibility isthat the rules must be applied judicioudly to a subset of words
(to function words, for example), instead of the whole lexicon. Finaly, rules may need to
be applied at morelimited times, depending, for instance, on more local rate estimates, and
on previous words or phones.

7.5 Merging The Solutions

We combined the most promising of the above approaches by using the phonetic probabili-
ties from the adapted net and the ROS-tuned lexicon (Figure 17.b) for decoding (see Table
16).

In some cases, the merged system, i.e., the adapted net combined with the adapted
lexicon, outperformed each of the two adaptations alone. For example, using the net
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Name | Rule | Example |
Reductions

Syllabic n [axix] n— en button

Syllabic m [axix] m — em bottom

Syllabic | [axix] | — € bottle

Syllabicr [axix] r — axr butter
Flapping [tcl dcl] [td]— dx /V __[ax ix axr] button
Flapping-r [tcl dcl] [td]— dx /V r — [ax ix axr] barter
H-voicing hh — hv /[+voice] — [+voice] ahead
L-deletion | — @ __y[axixaxr] million
Gliding iy —y/__[axixaxr] colonial
Nasal-del etion [nmng] — @/ __[-voice -consonant] rant!!
Function words

h-deletion h— @/ #__ he, him

w-deletion wW— @ #__ will, would

dh-deletion dh— @/ #_ this, those
Dental-deletion [tcl dcl] [t d] — @/ [+vowel] __ [thdh] breadth
Final dental-deletion | ([tcl dcl]) [t d] — @/ [+cons +continuant] __ # | soft (as)
Slur ax — @/ [+consonant] __ [r | n] [+vowel] camera
Stressed Slur [+vowel +stress| r — er warts
Pre-stress Contraction | ax — @/ [+cons] __ [+cons] [+vowel +stress] | senility
Ruh-reduction r ax — er /[-word bdry] __ [-word bdry] separ able
Transitional Stops*?

t-introduction @— tcl / [+denta +nasal] __ [+fricative] prin[t]ce

t-deletion [tcl] — @/ [+denta +nasal] __ [+fricative] prints

Figure 18: The table shows the twenty surface-phonological reduction and deletion rules with which we
modified our base (single) pronunciation lexicon.

adapted based onthe corr-word-Wsil ROS criterion and thelexicon with 0.9 probability shift
outperforms either of the two schemes. However, the lexicon with the graded probability
shift 0.7-0.9, which has proved to be the best modification so far, degrades when combined
with the output of the adapted net. Perhaps both modifications are making up for the
same fast speech differences, and when combined together, may do “over-modification”.
Generally speaking, at this point we have not worked out the ideal combination of these
strategies.

8 Discussion

We have discussed methods that result in significant improvements (p < 0.01) for fast
sentences. Our findings contradict earlier results by Siegler and Stern [31]. We think the
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| Relative Improvement in Word Error for WSJ-93 Eval Set

|

| Net Adapt. Crit. | Lex. Adapt. Crit. || Criteriafor Choosing Fast Sentences over i + 1.00c |

| | Correct Word (idedlized) || Hyp. Phone [ Hyp. Word |

| | 50fast | overal | 44fast | overal || 37fast | overal |
corr-wrd-Wsil gradedshift 0.7-0.9 224 9.9 10.9 31 19.2 55
corr-wrd-Wsil gradedshift 0.5-0.7 14.6 6.2 6.6 18 14.0 3.7
corr-wrd-Wsil gradedshift 0.5-0.9 210 9.3 11.8 31 174 49
corr-wrd-Wsil probshift 0.8 18.0 8.0 15.6 37 151 43
corr-wrd-Wsil probshift 0.85 19.3 8.6 15.6 37 14.0 37
corr-wrd-Wsil probshift 0.9 18.7 8.0 184 4.9 14.0 37
corr-wrd gradedshift 0.7-0.9 13.9 6.2 5.2 12 11.1 31
corr-wrd probshift 0.9 9.5 4.3 A 18 74 24
hyp-phn gradedshift 0.7-09 || 129 55 9.0 24 125 | 37
hyp-phn probshift 0.9 12.9 55 12.3 31 133 37

Table 16: The table shows the percent improvement in recognition word error for WS3-93 Evaluation set.
Each row shows a different adaptation criterion for the ML P (see text for explanation). The column categories
correspond to each of the three ways of estimating the ROS. The first sub-column isimprovement of the fast
sentences (which are over the cutoff) rel ative to the baseline system, and the number in the second sub-column
isthe percent improvement for the overall recognition score.

differences in our findings are mostly due to the measure we have used for quantifying
ROS. Siggler and Stern use the MR formula, while we have chosen the IMD formula. If
we use the MR formula for choosing fast sentences in the WSJ0-93 evaluation set, only
thirteen sentences are chosen asfast, with C' = i+ 1.650 (see Figures 19 and 20, compared
to Figures 15 and 16). Table 17 shows the effects of our best adaptation technique when
either the MR or the IMD measures are used for choosing fast test sentences. We see that
the hypothesized phone method for MR is better than the other two measures, which is
consistent with the correlation coefficients we observed in Section 5.2.2. Siegler and Stern
used the MR measure in combination with the correct and hypothesized word transcription
method for calculating ROS, which may partly explain why their improvements were not
significant.

Relative Percent Improvement in W.E.R. for WSF}93 Eval,C' = u + 1.00* ¢

IMD Measure MR Measure
ROS Estimation Criteria fast | overall (215 sents) fast | overall (215 sents)
Correct Word (idedlized) || 24.4% (50 sents) 10.5% 16.1% (13 sents) 2.5%
Hypothesized Word 22.6% (37 sents) 6.2% 22.6% (7 fast) 1.9%
Hypothesized Phone 23.2% (44 sents) 5.6% 11.5% (58 fast) 3.7%

Table 17: The table shows the percent improvement in recognition word error for the WSJ-93 Eval uation set
for the IMD vs. the MR measure. The “fast” sub-column is improvement of the fast sentences (which are
over the cutoff) relative to the baseline system, and the “overall” sub-columnis the percent improvement for
thewhole test set.
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ROS for WSJO-eval93, correct vs. recognized words, MR formula
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Figure 19: The plot shows the relationship between the correct word transcription method with the hypoth-
esized word transcription for the WSJ0-93 Eval sentences, based on the MR formula. The dashed lines are
drawn at p + 1.000 and p + 1.650.
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esized phone transcription for the WSJ0-93 Eval sentences, based on the MR formula. The dashed linesare
drawn at p 4+ 1.000 and p + 1.650.
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9 Conclusions

We have studied various methods of measuring ROS for the purposes of ASR. We discussed
the merits of various ways of calculating the ROS for a sentence without phonetic hand
transcription. We concluded that in the absence of phonetic hand transcription, using
the correct word transcriptions was the best method for calculating ROS, followed by the
hypothesi zed word and phonetranscriptions. If theword recognition accuracy isacceptable,
the ROS calculation based on the hypothesized word method is superior to hypothesized
phone method; otherwise, the latter may be better than the former.

We also conducted a number of exploratory experimentsto determinethe likely sources
of speech recognition errors due to unusually fast speech. We believe that the spectral
features of fast and slow sounds are different, since we have been able to train classifiersto
discriminate the two classes with ahigh degree ( > 85% for some vowels) of accuracy. This
spectral difference does seem to cause higher phonetic probability estimation error rates.
We also have observed an association between inappropriate word models for fast speech
(due to exceptionally short phone duration or deletion) and recognition error rate.

We also implemented modifications to our ASR system to make it more robust to fast
speech. We adapted our ML P phonetic probability estimator and changed the word models
in our lexicon to better model the durations of fast speech. The modification with the
most performance gain was obtained by modifying transitional probabilities, wherethe exit
probabilitiesfor the vowelswereincreased to 0.9, the stopsto 0.7, and the rest of the phones
gradually between 0.7 and 0.9. Assuming an ideal ROS estimator (which knows about the
correct word transcription), the relative improvements for both fast and all sentences were
significant, with p < 0.01 and p < 0.05 respectively. The relative improvement on the
fast sentences were aso significant (p < 0.01) when ROS was estimated based on the
hypothesized words and phones method. The hypothesized words criterion was dightly
better than hypothesized phones criterion in estimating the ROS of anovel sentence.

10 Future Directions

We suggest the following areas for future work:

e Broad category phone recognition may provide a less expensive (in terms of time
and resources) aternative than phone recognition for ROS estimation. It isour guess
that the accuracy of ROS estimates using the former method would be very similar
to ROS calculated using the latter, since we have observed that the reduced errors
in broad phonetic category recognition are mostly due to a reduced substitution rate,
which does not affect the ROS measure.

e For applications where ROS must be measured in a smaller granularity than of a
sentence, ROS may be measured per phone, per 1 second intervals, or per group of
gyllables. Digtributions of this variable may be sufficient, or perhaps phone-specific
measures may be required. For instance, the duration of a phone in a given utterance

37



may be compared to the average (perhaps the context dependent average) duration of
a phone, and a standardized Z value may be calculated to determine how the phone
duration compares to the ideal phone. Since phone recognition is more error prone
than broad category phone class recognition, thelatter may be performed on the novel
utterance instead. To get a smoothed estimate of the ROS variations along the whole
utterance, the ROS may be calculated successively for overlapping time windows.

¢ Although rule-based pronunciation modeling did not reduce overal word error, we
observed strong effectsin thedetailed error analysis. 1t may bethat theimprovements
are cancelled when applied indiscriminately to all words. thisavenue of research still
seems like alikely source of improvements for conversational speech.

e Adapting the acoustic models and the word model durations improved the error for
fast sentences. Combining the two methods, though, was not aways beneficial.
Studying the interaction between these two adaptations may lead to better robustness
techniques. Inparticular, weare considering the use of adiscriminant HMM approach
[2] to simultaneously learn the acoustic and phonetic dependencies on rate.

e Even though using hypothesized phone transcriptions is a dightly inferior method
to using hypothesized word transcriptions when the word recognition accuracy is
acceptable, the former may be used as a faster, less expensive aternative. It is also
possible to develop a general ROS detector for any given speech data, for demo
purposes, for example.

Asafinal note, although some of theimprovements may seem insignificant with respect
toalargecollection of sentences, an ROS-tuned system increasesrobustnessto fast speakers,
for whom the system might fail seriously. For example, for the fastest sentence in WSJO-93
evaluation set, our baseline system has a word error of 40%. The ROS-tuned system,
however, reduces this error to 20%, effectively reducing the word errors by 50%. This
reduced degradation for the extreme cases could help user acceptance of ASR technology.
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11 Appendix

Phonesin the TIMIT Database

TIMIT | IPA | Example || TIMIT | IPA Example
pcl p° | (pclosure) bel b° | (bclosure)
tcl t° (t closure) dcl d° (d closure)
kcl k® | (k closure) gcl ¢° | (gclosure)

p p pea b b bee

t t tea d d day

k K key 9 9 gay

q 7 bat dx r dirty
ch t] choke ih dz joke
f f fish % v vote
th 0 thin dh 0 then
S S sound z z Z00
sh ] shout zh 3 azure
m m moon n n noon
em m bottom en n button
ng 1 sing eng 1) | Washington
nx r winner e I: bottle
I | like r r right
w w wire y y yes
hh h hay hv h ahead
er 3 bird axr G butter
iy i beet ih L bit
ey e bait eh € bet
ae & bat aa a father
ao o) bought ah A but
ow 0 boat uh @ book
uw u boot ux U toot
aw a® about ay a? bite
oy Y boy ax-h ) suspect
ax 9 about iX 1 debit
epi (epen. sil.) pau (pause)
h# (silence)

Table 18: Phone Types Used
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