List of Figures

1

Performance of the dot product routines versus the vector length 16
Varying input MSB exponent versus the vector length. These figures are obtained

as an average over 100 tests Lo oo 18
Varying input MSB exponent versus the vector length. These figures are the maxi-

mum values found over 100 tests Lo 18
Saturation occurring by varying input MSB exponent versus the vector length 19
FFT algorithm0 e 21

List of Tables

© 00 ~1 O O W N =

RASTA-PLP parameters used in all the experiments 5
Compiling options used in four different experiments 8
Run-times for a particular RASTA benchmark (in seconds) 9
Time percentage of the total running time for the different functions 10
Run times for the sparc20 experiment, with and without library functions (in seconds) 11
Order of magnitude of the output data ranges of stages of RASTA processing 17
Optimal exponents for several vector lengths 19
Execution time (in cycles) and utilization for some DFT32xN routines 22
Execution time (in cycles) and utilization for some DFTNx32 routines 22

27

Contents

1 Introduction 1
2 Torrent, TO and SPERT 1
2.1 Programming on SPERT 2
2.2 Simulating and profiling SPERT programs 3
3 RASTA-PLP speech analysis 3
3.1 J-Rasta o e e e e e 4
3.2 Typical Parameters. 5
3.3 Hardware platforms and software tools used 5

4 Mapping of speech front-end signal processing to high performance vector ar-

chitectures 7
4.1 Profile e e e 8
4.1.1 Dummy functions 11

4.2 Critical band analysis L 12
4.2.1 Dot Product Routines e 13

4.3 Precision e e e e s 16
4.4 FEFT . o 20
4.4.1 FExecution time and Processor utilization 21

4.5 Integration e 23
5 Future Work 24
6 Conclusions 24
7 Acknowledgements 24

26

[4] H. Hermansky. Perceptual linear predictive (PLP) analysis of speech. .J. Acoustic. Soc. Am.,
87(4):1738-1752, April 1990

[5] H. Hermansky and N. Morgan. RASTA processing of speech. IEEE Transactions on Speech
and Audio Processing, 2(4):578-589, October 1994

[6] N. Morgan. The Ring Array Processor (RAP): A multiprocessing peripheral for connectionist
applications. Journal of Parallel and Distributed Computing, 14:248-259, 1992.

[7] H. Bourlard and N. Morgan. Merging multilayer perceptrons & Hidden Markov Models: Some
experiments in continuous speech recognition. In E. Gelenbe, editor, Artificial Neural Networks:
Advances and Applications. North Holland Press, 1991.

[8] H. Bourlard and N. Morgan. Connectionist Speech Recognition - A Hybrid Approach. Kluwer
Academic Press, 1994.

[9] H. Hermansky, N. Morgan, A. Baya, and P. Kohn. RASTA-PLP speech analysis. ICST TR-91-
069, December 1991

[10] K. Asanovic and N. Morgan. Experimental determination of precision requirements for back-
propagation training of artificial neural networks. ICSI TR-91-036, October 1991

[11] D. Anguita and B. A. Gomes. MBP on T0: mixing floating- and fixed- point formats in BP
learning. ICST TR-94-038, August 1994

25

5 Future Work

Because so far only a part of the RASTA processing has been implemented on SPERT, a natural
next step is to conclude the implementation and carry out a global comparison, from the point of
view of functionalities and performance. In particular, it would be worthwhile to assess the impact
of a fixed point feature extractor on the recognition stage of the system. In other words, as long as
there is a nonzero error between fixed and floating point versions, we can not exclude a significance
of the error on the following stages of recognition.

6 Conclusions

This work is a pilot study on the problem of efficiently vectorizing speech processing algorithms.
We have considered the main computational characteristics of the RASTA-PLP processing and
their possible mapping over a vector fixed point microprocessor.

We found that a limited precision vectorized processing performs almost as well as the standard
floating point processing, whereas a significant improvement in time performance is obtained.
This work merely scratches the surface of the many issues in this area.

7 Acknowledgements

Special thanks to David Johnson for providing all the software environments and the simulators,
for assistance with them, for all the help and support and valuable comments, and for making his
experience and ideas readily available throughout.

Also, thanks to Warner Warren for the FFT and power spectrum routines and for useful contribu-
tions on speech processing, filter banks and precision, Eric Fosler for providing the WSJ0 database,
John Hauser for the log and exp functions, and other contributions to the Torrent libraries, Krste
Asanovic and Jim Beck for several interesting discussions on 70 architecture, and Nelson Morgan
for suggestions on the whole problem.

References

[1] J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck, D. Johnson, and N. Morgan. SPERT-
IT: a vector microprocessor system and its application to large problems in backpropagation

training. Submitted to NIPS 95
[2] K. Asanovic and D. Johnson. Torrent Architecture Manual

[3] K. Asanovic and J. beck. T0 Engineering data.

24

on precision.

4.5 Integration

The steps illustrated above have been integrated and a complete implementation has been carried
out on the simulator.

The processing is done frame by frame, as in the usual speech processing. The floating point input
data are converted into fixed point 16 bit numbers using an exponent value of 16 (because the input
data are 16 bit samples). The Hamming windowing has not been implemented for this experiment.
We used the FFT routines with 160 points. This choice has the advantage of not requiring zero
padding of input data, usual procedure with radix-2 FFT. After that, the SPERT version of power
spectrum is also used. After the power spectrum we have a 32 bit representation. Then we used
the 32 bit fixed point dot product routine to carry out the critical band analysis. We considered an
input exponent of 42 and an output exponent of 46. This is because the vector length of the dot
products to be executed ranges from 7 to 57, according to the parameters used. Then the optimal
choice (see Table 7) is to have:

expres — (expinp + expcoeff) =3

The critical band filters coefficients are in the range (0.0 - 1.0]. Again, the rule is to choose the
exponent as low as possible. The choice ezpcoef f = 0 is not possible because the extremes of the
range are not representable, so we chose expcoef f = 1. This led to the choice of input and resulting
exponents as stated before.

The dot product routine is called every time for every filter to be processed. Then the data are
converted again into a floating point representation.

Note that a SPERT board has been installed into the SPARCS5 (icsib29), with 0.5 Mbyte of memory
and clock rate at 40 MHz. Therefore the same implementation ran successfully on the true SPERT
board, other than on the simulators.

Note also that so far we have not implemented several parts of the complete RASTA processing,
most notably the temporal filtering and the cepstrum analysis. These are left as future work.

23

dft32 | dft64 | dft32x8 | dft32x16 | Tdft32x32
ideal 256 512 2048 4096 8192
actual 330 792 2742 5800 11720
%utilization | 78 65 74 71 70

Table 8: Execution time (in cycles) and utilization for some DFT32xN routines

dft8x32 | dft16x32 | Tdft32x32
ideal 1024 4096 8192
actual 1307 5816 11720
%utilization | 78 70 70

Table 9: Execution time (in cycles) and utilization for some DFTNx32 routines

The following tables list the execution times and processor utilization of the FFT routines. Table
8 lists the 32 point DFT32xN routines, whereas Table 9 lists the N point DFTNx32 routines.

The DFT32xN routines are instruction issue bound. Each routine has an inner loop which executes
4 vector load multiply accumulate operations. Thus, each pass through the inner loop requires min-
imum of 12 instruction cycles and and 16 execution cycles. This means that a perfectly balanced
inner loop would have no more than 16 instructions. Unfortunately, the required scaler memory
operations and loop control operations push the instruction count up to about 19, resulting in a
maximum utilization of 16/19 or 84%.

The DFTNx32 routines listed in the table are memory bandwidth bound. At present, there is
no way to control the alignment of input data, so 5 cycles are required to read each vector from
memory. This pushes the inner loop length up from 16 to 20, so the highest possible efficiency is
16/20 or %80. Again, this figure is further reduced by bookkeeping operations.

A power spectrum routine has also been implemented, squaring the real part and the imaginary
part and then summing up.

Concerning the numerical issue, all the computation is done with the exponent as low as possible.

If saturation occurs, the computation is executed again with a higher exponent. This might result
in a slow-down of the computation, and it also implies that obtainable performance could depend

22

fling stage which leaves the data in ascending order. The reordering step is

- For-instance, if one is using the DFT as intermediate in the computation of
‘ prrelation, then the reordering is skipped since one can always find an inverse

FFT compatible with ordering of the output data. Note that these routines are specifically designed

to ensure that most computations are carried out on length 32 vectors. Generally, SPERT routines

run most efficiently on vectors of maximum length, which is exactly 32.

The entire process is illustrated in Figure 5.

Figure 5: FFT algorithm

4.4.1 Execution time and Processor utilization

The minimum execution time for computing the FFT using the technique here described is (in
cycles):

256 N + 16 N2 + 24N

The first factor refers to the 32 point DFTs 15, the second term refers to 32 N-point DFTs, and
the third term refers to twiddle factors. The first two terms, 256N + 16N 2, represent the cost of
their respective operations computed at 100% processor utilization, omitting cycles used for loop
maintenance, subroutine overhead etc. The twiddle computation can only use one pipeline at time,
so the 24N figure represents the minimum cost at 50% utilization. We define the processor utiliza-
tion in the usual way, that is the ratio of the number of cycles in which the arithmetic pipelines
are used to the total number of available cycles in the routine.

15In the case of the DFT32xN the calculation requires 32 vector multiply accumulate operations, and each length 32
vector multiply accumulate requires 4 cycles when fully pipelined (i.e. 4 add cycles, 4 multiply cycles and 4 memory
cycles running concurrently). This done for 32 vectors yielding 128 cycles/row. Therefore, a complex-complex
transform requires at least 256 cycles/row, so we obtain a minimum of 256N cycles

21

fact having zeroes can cause discontinuities and exceptions in the following stages.

e Usually after an FFT, the DC components carry rather high values, often exceeding all the
other values by a considerable amount. As such components are irrelevant to the purposes
of the speech recognition systems, it could be useful to leave out such components. This can
reduce the range of the input of critical band analysis. For this and other reasons, an optional
highpass (45 Hz) filter has been introduced at the beginning of the RASTA processing.

e [t is always safe to choose the exponent proportional to the log of the vector length.

After the analysis of all these figures, we decided to implement the FFT using 16bit representation.
The following step, namely the power spectrum, is essentially a sum of squares. Therefore it forces
the conversion to a 32 bit representation. In fact the critical band analysis was carried out in a
32b representation. The following step is the logarithm, which causes a considerable decrease in
the range. Therefore after the logarithm we have again a 16b representation.

4.4 FFT

As shown in Section 4.1, Fast Fourier Transforms represent one of the most compute-intensive
section of the whole processing, so here was where effort was mostly concentrated.

In the following'® we describe a number of mixed radix FFT routines designed to run on the
SPERT architecture. These routines are designed keeping in mind the two main objectives, which
are to maximize computational efficiency, and maintain high numerical precision using fixed point
arithmetic. To this purpose, the following routines have been implemented: FFT32, FFT64, FFT96,
FFT160', FFT256, FFT512, FFT1024. The names of the routine refers to the number of points
on which the FFT is computed.

All these routines were implemented as full complex-complex transformations, so that they should
also be useful for correlations and convolutions. Moreover, very little additional computation is re-
quired to convert an N point complex-complex transform into a 2-N point real-complex transform.
Note that the mixed radix implementation can be a considerable advantage, because in many cases
the usual zero-padding of the input data could be no longer necessary.

All the routines follow the same basic procedure. First the data are split into length 32 vectors,
effectively organizing the data into a 32xN matrix. Then, an N point DFT is computed on each
row of the data matrix. The resulting 32 N-point DFT’s are then multiplied by the appropriate
twiddle factors. Next, N 32-point DFTs are computed on the columns of the resulting matrix.

*The FFT part has been studied, designed and developed by Warner Warren. It is reported here for sake of
completeness

14FFT128 is not present because the technique used to compute the FFT does not allow to compute the required
4 point DFT in an efficient manner

20

; - ; . et

snisnou ez

sm |-

Er—

L1200 0 (46 DOF bi0ancs Honvvee (et s06)

et

g0

e
pry

RANGES

Lowest negative value | Highest positive value | Lowest absolute value

Input data'! - 104 1
Hamming window - 104 10-2
Power spectrum - 1012 10-8
Critical band - 1012 103
Logarithm?2 - 103 103
Rasta temporal filter —-10! 101 10-°
Exponential - 10° 10-7
Equal loudness + cube root - 10! 10—4
Cepstrum —10! 10! 10-5

Table 6: Order of magnitude of the output data ranges of stages of RASTA processing

considerably wide. Take for example the output of the power spectrum. In this particular case
the range is 20 orders of magnitude wide, so apparently as much as 68 bit would be necessary to
properly represent these data. Naturally this is not possible with the SPERT architecture.

The following series of experiments investigate the effect of changing the exponent of the fixed
point input data and coefficients. The difference in accuracy between the fixed point routine and
an equivalent floating point routine is also investigated. The exponent of the MSB (sign bit) was
varied in the range 0-8 for a precision of 16 bits. For example, an MSB exponent of 1 would allow
data in the range +2. As what is relevant to the assembler routine is the difference:

resexp — (inplexp + inp2exp)

it was simpler to choose the two input exponents as zero and then to tune up by varying only
the output exponent. So random numbers in the range -1 - +1 have been used as input and as
coefficients. The same tests have been carried out on SPERT and on SPARC. Figure 2 and Figure
3 show the difference between the floating point result and the fixed point result, varying the MSB
exponent for several vector lengths. In the same condition we executed 100 tests. The two figures
report respectively the average difference and the maximum difference found for every particular
exponent.

Additionally, Figure 4 shows the number of tests with saturation flag set, during the same experi-
ments described above.

As expected, with a higher exponent the accuracy is lower, but no saturation occurs. Conversely,
with lower exponent the accuracy might be better, but more often saturation occurs. This partic-

17

et

e
e
i i
I I I I L e b 1051

———

RIOLLITICS 0 148 DOF bLoAncs onive:

Note that, if the saturation register is updated, a saturation flag is set. Such flag means fatal
intermediate saturation, and the result can be completely wrong (this is indicated by a “t” at the
end of the name of the routine). In other words, the exponents should be properly set in order to
avoid this case of not recoverable saturation.

In the fixed point case, the user must supply exponents for the operands and an exponent for the
result. These exponents are the exponents of the MSB (sign bit) of the number. Actually what
is relevant to the routine is only the difference between the result exponent and the operands ex-
ponents, because a multiplication is a sum in the exponents domain. So this difference contains
enough information to calculate the appropriate right shift to be taken.

To implement these dot product fixed point routines, other than all the observations already made
with regard to the integer routines, two more options have been considered:

e multiply, shift and accumulate. It is fast: all can be done in one operation because the fixed
point pipeline allows multiple operations. It might cause a considerable loss of precision,
because the shift is executed every time before the sum, whereas the sum can cause high
variations to compensate, so no saturation would happen on the final result. Anyway, this is
the way chosen for matrix vector multipliers.

e multiply and accumulate over 64 bit, and then shift. More precision is obtained, but this
method is surely slower.

So far the implementation has been carried out only for the first choice. A natural next step would be
the implementation of the second choice too, in order to make a performance/precision comparison.

These routines have been tested extensively using the random libraries to generate input data. The
results have been compared with analogous C routines. However, because of the saturation flag
issue, in some cases the results can be different. In fact, the saturation flags calculated in C and
assembler can be raised in different situations because of the different ways to calculate them. In
C the sum is executed element by element, whereas in assembler 32 elements are summed simul-
taneously, so that compensation can occur. It turns out that there are cases in which the flag is
raised for the C case, and not raised for the assembler case. Moreover, in the cases where are both
set, the results are not comparable, because both results are not correct.

Figure 1 indicates the performance of the routines for several vector lengths.

The run-time values in clock cycles have been obtained using the RTL simulator for TO.

15

e The most critical resource is memory, so try to keep the memory pipeline always busy.

e Pipeline the loops: that means to execute the first loads or other operations outside the loop,
then start the loop and finally execute the last operations outside the loop itself.

e Insert scalar instructions in between vector instructions. When the vector unit is busy, in
this way we manage to exploit the scalar arithmetic unit.

e It is always useful to put the short case (vector length less than 32) first for better cache
performance.

The global strategy followed to implement the dot product, in all the four cases described before,
has been the following (considering vectors of any length):

1. multiply the first 32 elements of the two vectors outside the loop,
2. multiply another slice of the vectors.

3. sum with the previous product and accumulate. Again step 2 until the end of the input
vectors is reached.

4. At this point the sum of all the elements of a vector length 32 must be found. It is possible
to do that with five vector add operations, by splitting the original 32 elements vector in two
halves of 16 elements, summing them up, and iterating on vectors of half the length until a
scalar is obtained.

Fixed point operations require a further analysis. The add and multiply fixed point instructions
are primarily used to implement scaled, rounded and clipped fixed point arithmetic. The necessary
information is supplied by a scalar register termed the “configuration register”. A saturation status
register vsat is updated by fixed point arithmetic operations. Note that, according to the values
of the configurations register, within the same operation, say add, it is possible to execute logic
operations, shift left and right, clipping, sign extension, rounding. Note also that, even for the
case of the integer routine, having to deal with sign problems, it is necessary to use fixed point
operations.

For the particular case of integer routines, the following choices have been made:

e for the multiply, the low half word is effectively unsigned, that means zero extended; the high
half word is signed, that means sign extended. No shifting or clipping is needed. The round
bit is added.

o for the add: shift left one of the arguments of 16 positions, then add. No rounding or clipping
is needed.

14

4.2.1 Dot Product Routines

To this purpose four dot product routines have been developed. The routines are different by the
kind of input they can take: integer 16 bit, integer 32 bit, fixed point 16 bit, fixed point 32 bit.
They can take as input 2 vectors of any but equal length. Every element of the vector is represented
by the number of bit indicated in the routine name. The output is a scalar also represented in
the same way. The names of the routines follow the usual naming convention of the whole Torrent
fx1ib library.

The following describes some of the issues encountered in the design and implementation phases
of these routines. Besides the specific case, this should be of interest for others T0 programmers,
having to deal with other algorithms to vectorize.

As usual, it has been necessary to separate the case of short vectors, having less than 32 elements,
from the case of long vectors. This is because the registers of the vector unit hold only 32 element
each 32b wide. Therefore, for longer vectors, it is necessary to work at slices of 32 elements at a time.

The TO CPU is a MIPS-II compatible 32b integer datapath. However, the multiplier within the
vector unit (VP0) can perform up to 8 16bX16b multiplies per cycle, so it can handle only 16b
data. Therefore in order to multiply 32b vectors it is necessary to split the multiplication in 4
steps, separating every data in the low and high halfword.

The code has been sheduled by hand in order to obtain optimal performance, paying attention to
interlocks, delay slots and structural hazards. In fact, even if all the CPU instructions take a single
cycle to issue, in many cases the results of the instructions are not available to the instruction is-
sued in the following cycle. This is valid for example for branches, loads, multiplies and divides. In
these cases, there is a minimum number of instructions that must be scheduled between dependent
instructions to avoid an interlock.

Another very common situation is represented by the vector unit hazards. TO has two vector
pipelines, VPO and VP1. All multiply instructions must execute in VPO, all other instructions can
be executed in either pipeline. Each of the two vector arithmetic unit completes 8 element opera-
tions per cycle: that means that is busy for 4 clock cycle when processing an arithmetic operation
of a vector of length 32. The CPU will stall if it tries to access a vector unit when its pipeline is
busy. The memory unit reads and writes 16 bytes per cycle into 8 ports of the vector register file:
when transferring contiguous vectors that means that it takes 8 cycles to move 32 words. The CPU
will stall if it tries to access the memory when the memory pipeline is busy.

Here are the general and heuristic criteria we used to schedule the code for this particular applica-
tion:

13

These figures show that a gain of more than 30% is possible in case of optimal and efficient im-
plementation of the library functions log, exp, sin, cos, pow on SPERT. A further improvement
should be considered due to the library calls present in the initialization part and not removed in
this experiment.

4.2 Critical band analysis

Currently the implementation of the critical band analysis involves the integration of the power
spectrum in sections. In particular, the spectrum is first warped along its frequency axis into the
Bark frequency €. The resulting warped power spectrum is then convolved with the power spec-
trum of the simulated critical band masking curve.

In practice, this turns out to be a body of dot products, of different lengths, and different starting
points in the input data. Considering the input spectrum as a vector, and the output data as
another vector, several choices are possible about how to carry out the implementation of this part
on SPERT. Note that the typical input frame length is 129 samples, and 18 samples as output, so
these are not the long vectors most useful to a vector machine.

In details these are the possible choices:

1. To implement it as many dot products. This requires the design and development of a bunch
of dot product routines, not yet present in the library. In fact it would be necessary to have
a routine for both the cases integer and fixed point, and for the 16b and 32b input. A further
better choice would be the implementation of an indexed dot product, capable of picking up
the data in a vector at selected indexes. Another good idea is to optimize these dot product
routines for short vectors.

2. To implement it as a matrix vector multiplication. The routine for the matrix-vector multiply
is already present in the library, but it is optimized for long vectors. This choice implies the
building up of a sparse matrix collecting all the coefficients required for the simulated critical
band masking curve. A further step would be to optimize the matrix-vector multiply routine
for shorter vectors.

Both the ways 1 and 2 present their own advantages and disadvantages. So far, only the first
approach has been followed, and the results illustrated in the following subsections. But it would
be interesting to carry out the implementation according to the second approach, and compare the
obtainable performance.

Another critical issue to be considered in dealing with this processing is the impact of reduced
input and coefficients precision. The effect of having fixed-point data, instead of floating point has
been investigated, and in particular the effect of changing the exponent and the precision of both
input and coefficients.

12

[RUN-TIME DIFFERENCE |

Library functions Dummy functions

28.0 19.1

Table 5: Run times for the sparc20 experiment, with and without library functions (in seconds)

starting points for the RASTA on SPERT project.

However, there is a considerably long queue of functions that, even for a very short time, still
occupy the CPU. These must be considered because for particular tasks SPERT can be slower than
a normal workstation, so these functions could increase their share of the total time. Moreover, if a
considerable optimization is obtained for the most compute-intensive functions, the non-optimized
will surely become more evident.

These figures should be interpretated with some caution. First, it is necessary to consider that are
time percentages of the total runtime. Choosing best optimization can result in a reduction of the
total runtime, and subsequentely in an increase of the percentage for some particular functions.
Besides that, it should be noted that times reported in successive identical runs may show variances
because of varying cache-hit ratios that result from sharing the cache with other processes.
Moreover, quantization errors are present. The granularity of the sampling affects the results, and
can also vary in successive identical runs.

Besides, care must be applied when profiling dynamically linked executables. It might be difficult
to get correct profile information on the functions of a linked library. For this reason, a natural next
step is to eliminate as much as possible the library functions, and analyse the differences in profile
information. In the next subsection we investigate the impact of removing the library functions.

4.1.1 Dummy functions

The dummy functions idea is to substitute the library functions present within the processing
with dummy functions, having no cost, and then to get again the profile information. We have
substituted the functions calls log, pow, exp, sin, cos, except those calls crucial for the initialization
phase. In the initialization the true functions are kept, to avoid issues of data consistency. This has
been carried out only for the sparc20 experiment described in the previous paragraph. The RASTA
benchmark is exactly the same of the benchmark described before: Log-RASTA over 25539 frames.
Table 4.1.1 shows the differences in running time between the case with library functions and the
case with dummy functions. Times reported have been calculated using the Unix utility time.

11

PROFILING RESULTS

H routine ‘ sparc ‘ solaris ‘ acc ‘ sunos H
FFT? 24.2 28.9 21.9 18.0
Audspec® 11.5 18.1 10.1 9.9
Log + Exp 9.1 6.7 7.0 3.0
Sin + Cos 8.8 7.3 5.8 11.0
Pow 5.6 5.2 4.5 22.8
MatxVect* 4.6 4.0 0.6 4.1
FORD?® 45 5.1 6.3 35
fftpow® 4.5 6.6 3.7 1.8
fill_frame” 3.4 4.0 3.1 4.1
filt® 2.9 0 2.9 0
Ipc_to_cep? 2.2 2.3 1.3 0.6
get_bindata 1.4 0.8 1.3 0
auto_to_Ipc!? 1.3 1.3 0.7 1.8
nl_audspec 0.9 0.5 1.0 0.6
post_audspec 0.9 1.0 0.2 0
rastaplp 0.8 0.2 0 0
rasta_filt 0.7 0.2 1.3 0
inverse_nonlin 0.3 0.2 1.3 0.6
Ipccep 0.3 0.2 0.5 0
powspec 0.3 0.2 0 0
read 0 0 5.1 0

Table 4: Time percentage of the total running time for the different functions

10

[RUN TIMES |

experiment time (seconds)
solaris 42.3
sparc20 28.0
sparc 41.8
acc 46.9

Table 3: Run-times for a particular RASTA benchmark (in seconds)

We can observe a relevant difference for the sparc20 experiment, of course due to the particular ar-
chitecture used and not strictly related to the compiling options selected. Comparing the sparc and
the solaris experiment, we can get an idea of the advantages obtainable using strongly optimizing
compiling options: in this case it is about 1.2%. Viceversa the native compiler Sun acc gives poor
performance compared to the others. Note that adding the options for debugging and compiling
results in an additional overload of about 10 %, occurred in every experiment.

Table 4 shows the results found for every profiling experiment. The most compute-intensive func-
tions are reported, each of them with a percentage time value. This represents the percentage of
the total running time of the program accounted for by the function. These figures are a result of
an average done over the data set and over the different options. However, no significant variations
between different data sets were seen. Instead, as shown below, there are relevant variations be-
tween one experiment and another.

The data are ordered in decreasing order according to the sparc experiment, which we suppose to
be the more valid and convincing of the four. The functions or routines are indicated with the
names of the original C source code: in some cases, a short description is provided.

These figures indicate that overall the FFT is the most compute-intensive function. For example,
considering again the sparc experiment, the FFT takes 24% of the total time. Note that the total
sum of the time percentage is not 100%, and the remaining amount (12%) is spent in profiling
activities. So we can state that the FFT occupies 28% of the total time, without profiling activities
on the machine.

Other than that, it should be noted that other functions, especially library functions like log, exp,
sin, cos, pow etc. also take a considerable amount of time. This should be taken into consideration
in order to efficiently implement these routines on SPERT, probably using lookup tables. Another
portion globally quite heavy is the audspec routine, that is the critical band analysis. From the
analysis of these figures we conclude to select the FFT and the critical band analysis (audspec) as

[PROFILING EXPERIMENTS

Label Machine OS Compiler Options
solaris Sparch(icsib29) SunOS 5.4 gee -DSUN4-DOS4-02-funroll-loops
sparc20 | Sparc20(anchorsteam) | SunOS 4.1.3 gee -DSUN4 -DOS4 -02 -funroll-loops
sparc Sparch (icsib29) SunOS 5.4 gec -DSUN4 -DOS4 -02 -funroll-
loops -finline-functions -mv8
acc Sparch (icsib29) SunOS 5.4 | /usr/local/lang -fast
/5C2.0.1/acc

Table 2: Compiling options used in four different experiments

of a vector architecture would not be very efficient. Another approach could be to vectorize the
computation extending across several frames at the same time. For example, because the vector
length characteristic for 70 is 32, it might be opportune to consider 32 frames at once. The latter
approach has the disadvantage of implying a total modification of the speech processing software
architecture, therefore adding a not necessary overhead. We decided to follow the first aproach, in
order to keep the problem simpler.

4.1 Profile

The first step was the analysis of RASTA code. The aim was to understand the distribution of the
code on the machine, and to locate the compute-intensive sections. Once identified, these compute-
intensive sections can be suitable elements to implement and optimize on the SPERT architecture.

The starting point was the original C-source code version of RASTA 2.0 running on a workstation.

A commercial RISC workstation was chosen to carry out this analysis. Several compiling options
have been examined, as well as various RASTA options and input parameters. We have used a
considerably large input data set, 4 Mbyte extracted from the Wall Street Journal (WSJ0) database.

Table 2 gives a description of the profiling experiments conducted: the label has been assigned only
to distinguish the different experiments.

Table 3 shows a comparison between the run times of the RASTA-PLP processing for the four
experiments described before. These result from a computation done over 25539 frames. The par-
ticular processing implemented was Log-RASTA. These figures are the result of an average taken
over 10 identical runs. Run times are calculated using the UNIX utility time.

4 Mapping of speech front-end signal processing to high perfor-
mance vector architectures

The problem of mapping the RASTA signal processing previously described on the SPERT archi-
tecture opens a number of issues, which the experiments described here attempt to address.

First of all, this work is particularly relevant because at the moment there is no efficient automatic
tool for implementing algorithms on the SPERT architecture. In fact the gcc compiler has been
ported to the TO0 processor, but it cannot generate vector instructions, and so is not capable to
access any of the functionalities of the vector unit. In other words, a true native SPERT compiler
is missing. Consequently, the only access to the T0 vector unit is either through library routines
or directly via the scheduling assembler. The second case is clearly more complex, but necessary
when no appropriate library routines are present. In this second case, it is necessary to do the
programming, the register allocation and the instruction scheduling by hand.

Besides, the SPERT architecture, whilst optimized for multi-layer perceptron tasks, should be able
to perform other kinds of computation efficiently. From this point of view, the RASTA process-
ing appears to be particularly interesting, because the involved computation is both complex and
varied. For example we found the typical IIR and FIR filters, FFT (Fast Fourier Transform) and
IDFT, and many mathematical functions like sin, cos, exp, log, pow. Besides that, there are matrix
vector multiplications, reordering algorithms and loops. Other than that, there are several I/O op-
erations (read and write from/to files). These I/O operations must be taken into account because
the SPERT architecture can be much more efficient compared to a workstation for particular tasks
(around one order of magnitude), but for others is surely slower. Therefore the issue of partitioning
the computation, that means execute some functions on SPERT and other functions on a normal
workstation, should be also considered.

Besides, the impact of having reduced input and coefficients precision should be evaluated. This
is due to the conversion from a floating point architecture to a fixed point architecture. Previous
studies already addressed this topic with regard to the multi-layer perceptron part of the system
[10, 11], whereas this is the first time this issue is considered for the signal processing part. Satu-
ration problems due to the fixed point arithmetic can occur, and should be carefully handled.

Another open question is how to vectorize the problem. There are two different approaches pos-
sible. The first approach is to consider the input frame as a vector, and then process it. This is
a very natural and simple choice, because usually the speech processing, as described before, is
done frame by frame. Note that, according to the parameters used along this experiment, a typical
frame is composed of 129 samples (usually of 16 bit each). This is not the case of extremely long
vectors typical of vector machines. This could tempt us to draw the conclusion that the choice

utilities.

non-linearly transformed critical band value.

This can be useful to process speech with significant additive noise. In fact the normal RASTA is
effective in diminishing spectral components that are additive in the logarithmic spectral domain,
as the spectral characteristics of the environment. However, uncorrelated additive noise compo-
nents are not removed. These can be successfully handled by the J-RASTA processing

3.2 Typical Parameters

As said before, all the parameters can be set accordingly to the particular experiments to be carried
out.
Table 1 lists the parameters used in this work, unless differently stated.

I PARAMETER VALUE |
Sampling frequency 8000 Hz
Window size 20 ms
Window step 10 ms
Window points 160
FFT points 256
Critical band filters 17
Model order 8

Table 1: RASTA-PLP parameters used in all the experiments

3.3 Hardware platforms and software tools used

The hardware platforms used have been a SPARCStation 5 located at ICSI facilities, with 32MB of
main memory and operating system SunOS 5.4. Later, a SPERT board has been installed within
the same workstation. This SPERT board has 0.5 Mbyte of memory and a clock speed of 40 MHz.

Concerning the software tools, we used the RTL and ISA simulators for SPERT, the gnu compiler,
assembler and debugger for SPERT, the SPERT libraries, the gprof utility, as well as other UNIX

introduced by frequency characteristics of the communication media.
The main steps of RASTA-PLP algorithm are listed below.

For each analysis frame:
1. compute the critical-band spectrum and take its logarithm;
2. filter the time trajectory of each transformed spectral component;
3. take the exponential function, yielding to the auditory spectrum;
4. add the equal loudness curve and raise to the power 0.33 to simulate the power law of hearing!;
5. compute the autoregressive all-pole modeling and the cepstral coefficients.

The parameters for all the different stages can be set accordingly to the particular experiments to
be carried out. Later we list the characteristic parameters used in this work.

The current implementation of the temporal filtering has chosen a fifth order FIR filter, and a first
order IIR filter. The single pole of the ITR has been set to 0.94. The filter is the same for every
spectral component. Note that the RASTA filter has a rather long time constant for the integration.
It means that the current analysis result depends on its history, i.e. on previous outputs stored
in the memory of the recursive RASTA filter. A further improvement of the RASTA algorithm,
namely J-RASTA, is described in the following paragraph.

A large test has been conducted on a speaker-independent telephone digit recognition using speech
that had been corrupted with convolutional noise. Experimental results from this test showed an
order of magnitude improvement in error rate over conventional spectral estimation techniques.

3.1 J-Rasta

For RASTA, the bandpass filtering is done in the log domain. An alternative is to use the J-family
of log-like curves:

y=log(1+ Jz)

where J is a constant that can appears to be optimally set when it is inversely proportional to the
noise power, (currently typically 1/3 of the inverse noise), z is the critical band value, and y is the

!The equal loudness curve is an approximation to the non equal sensitivity of human hearing at different fre-
quencies. The second operation simulates the non-linear relation between the intensity of sound and its perceived
loudness

than the fixed point library, but is useful for porting applications and for calculations that are not
time critical but would be difficult or time consuming to convert to fixed point.

After compilation and linking, a T0 executable is run on the SPERT board by invoking a “server”
program on the attached host. The server loads a small operating system “kernel” into T0O memory
followed by the T0 executable. While the T0 application runs, the server services I/O requests on
behalf of the TO process.

2.2 Simulating and profiling SPERT programs

Two simulators are available for running SPERT programs. The first of these, the ISA simulator,
can be used as a replacement for a SPERT board during program debugging. It provides all the
functionality of the real SPERT board (including operating system support), but at reduced speed
(in the order of 100,000 cycles/second).

Alternatively, the RTL simulator includes a full register level model of the TO chip. This results
in a reduced execution speed (approx. 1000 cycles/second), but provides an exact cycle by cycle
emulation of the real chip (including instruciton cache operation and interlocks). It can be used to
produce traces of sections of program execution, giving an in depth view into the performance of
programs at the instruction level.

3 RASTA-PLP speech analysis

The Perceptual Linear Predictive (PLP) [4] speech analysis technique is a widely used method based
on the short term spectrum of speech. This technique uses some concepts of the psychophysics of
hearing to derive an estimate of the auditory spectrum. However, this technique is vulnerable when
the short-term spectral values are modified by the frequency response of the communication chan-
nel. The group has developed the RelAtive SpecTrAl (RASTA) [5, 9] methodology which makes
PLP (and possibly also some other short-term spectrum based techniques) more robust to linear
spectral distorsions.

The main idea is to replace the short-term spectrum by a spectral estimate in which each frequency
channel is band-pass filtered by a filter with sharp spectral zero at zero frequency. Since any con-
stant or slowly varying component in each frequency channel is suppressed by this operation, the
new spectral estimate is less sensitive to slow variations in the short-term spectrum.

In particular, when the filtering is done in the logarithmic spectral domain, the suppressed con-
stant spectral components reflect the effect of the convolutive factors in the input speech signal,

heart of the SPERT system is the 70 chip. 70 has been combined with a high speed memory
system and interface circuitry to form a high performance computational subsystem that allows to
improve cost-performance over a commercial general purpose processor.

Although the SPERT system is capable of performing general purpose computation, its strength is
in the computationally intensive aspects of real world computing [1]. Some examples of applications
for which it is suited include speech recognition, image processing and data compression. It is a
good system for implementing techniques such as neural networks and digital filtering.

T0 and SPERT were developed jointly by the Computer Science Department of the University of
California at Berkeley (UCB) and the International Computer Science Institute (ICST).

2.1 Programming on SPERT

The SPERT software environment appears very similar to a conventional workstation environment.

The Torrent instruction set architecture is based on the MIPS-II instruction set, with extra copro-
cessor instructions added to access the vector unit functionalities. Most of the software environment
is based on GNU tools. The group has ported the gcc C/C++ compiler, modified the gdb sym-
bolic debugger to debug T0 programs remotely from the host, and enhanced the gas assembler to
understand the new vector instructions and to schedule code to avoid interlocks. It is also possible
to employ the GNU linker and other object code management utilities.

The only access to the T0 vector unit is either through library routines or directly via the scheduling
assembler. There is a quite extensive set of optimized vector library routines including fixed-point
matrix and vector operations, function approximation through linear interpolation, and IEEFE single
precision floating-point emulation. The majority of the routines are written in Torrent assembler,
although a parallel set of functions have been written in ANSI C to allow program development
and execution on workstations. Finally, there is a standard C library containing the usual utilities,
I/O and scalar math routines.

Among the most complete libraries there is the SPERT fx1ib library. This is a large collection
of hand coded assembler routines performing a wide variety of useful functions. fx1ib includes
memory operations, integer and floating point vector arithmetic, fixed point matrix/vector arith-
metic, function approximation and Fourier transforms. The £x1ib routines use the MIPS C calling
conventions and consequently can be called from both C and C+4. Portable versions written in C
are also available, allowing development of SPERT applications on workstations.

There is also an optimized IEEE floating point matrix/vector library. This is considerably slower

1 Introduction

A phoneme-based speaker independent continuous speech recognition system has been developed
by the Realization Group at ICSI. Acoustic information is first processed by a features extractor.

The system then utilizes a MLP (Multilayer Perceptron) to generate emission probabilities for a
hidden Markov model (HMM) speech recognizer [7].

The features extraction, accomplished by appropriate signal processing algorithms of high complex-
ity, represents the front-end of the system and therefore is a crucial stage for speech recognition
systems. The capability of operating in adverse conditions, with high background noise and differ-
ent channel characteristics, is one of the major goals when developing automatic speech recognition
systems for use in real world environments. In addition, the need for real-time performance and
the large amount of computation often require the use of specialized architectures.

The Torrent architecture [2], developed at ICSI, is a high performance vector architecture optimized
for neural networks and signal processing tasks. This paper is aimed to study the mapping of the
front-end part of speech recognition systems - a robust algorithm called RASTA-PLP (RelAtive
SpecTrAl - Perceptual Linear Predictive)[5] - to this architecture.

Currently the speech recognition system is partially implemented on SPARCstations and partially
on the RAP [6] (Ring Array Processor), another architecture previously developed by the group.
The long term aim is to implement the whole system on the new Torrent architecture. The work
described here is part of such large-scale effort.

Section 2 describes the characteristics of the Torrent architecture and its first implementation in
form of the SPERT board. This is followed in Section 3 by an analysis of the speech processing
algorithms. Finally, in Section 4 we discuss how to map a speech processing task to the system
and compare the resulting performance.

2 Torrent, TO and SPERT

Torrent is a vector architecture. It is based on the industry standard MIPS RISC microprocessor
with no-floating point unit and an additional fixed point vector unit.

T0 (Torrent0) is a single chip fixed point vector microprocessor, the first implementation of the
Torrent architecture. It can execute up to two operations per-cycle on 8 word vectors, or in other
words, compute 16 results in a single cycle. For more details concerning internal operation, perfor-
mance and interfaces, see [3].

SPERT is a low cost neural network and signal processing accelerator board for workstations. The

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 e Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Mapping of speech front-end
signal processing to high
performance vector architectures

Paola Moretto
TR-95-063
December 1995

Abstract

Front-end signal processing is a crucial stage for speech recognition systems. The capability
of operating in adverse conditions, with high background noise and different channel char-
acteristics, is one of the major goals when developing automatic speech recognition systems
for use in real world environments. In addition, the need for real-time performance and the
large amount of computation often require the use of specialized architectures. We describe
the study of the mapping of a fundamental part of speech recognition systems - a robust
speech front end algorithm called RASTA - to the Torrent architecture. This architecture,
developed at ICSI, is a high performance vector architecture optimized for signal processing
task. The mapping problem is particularly relevant because at the moment there is no effi-
cient automatic tool for implementing algorithms on the Spert architecture. An appropriate
algorithms analysis is shown, as well as the design of optimal library routines which allow to
fully exploit the vector architecture. Preliminary functional and performance comparisons
with more standard architectures are shown.

