
 Efficient Input Reordering for the DCT Based on a
Real-Valued Decimation in Time FFT

 by Rainer Storn1)

TR-95-061

September 1995

Abstract

The possibility of computing the Discrete Cosine Transform (DCT) of length N=2ν, ν integer, via an N-

point Discrete Fourier Transform (DFT) is widely known from the literature. In this correspondence it will
be demonstrated that this computation can be done in-place by just employing butterfly swaps if the input
reordering - necessary for the DCT computation via DFT - is combined with the bit-reverse scrambling
required by the decimation in time Fast Fourier Transform-algorithm.

__

1)International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704-1198, Suite 600, Tel.:
510-642-4274, Fax: 510-643-7684. E-mail: storn@icsi.berkeley.edu. On leave from Siemens AG, ZFE T
SN 2, Otto-Hahn-Ring 6, D-81739 Muenchen, Germany. Tel.: 01149-89-636-40502, Fax: 01149-89-636-
44577, E-mail:rainer.storn@zfe.siemens.de.

1

Introduction
The Discrete Cosine Transform (DCT) has a wide range of applications in image and signal processing
and many algorithms for its fast computation have been devised [1]-[4]. One particular attractive approach
is the computation via real valued Fast Fourier Transform (FFT) algorithms as the latter are very well
developed and high performance computer code is readily available [5]. However, the fact that the input
reordering required for this type of computation can be done in-place by just using butterfly swaps has not

been addressed so far. In case of transform lengths N=2ν, ν integer, Butterfly swaps mean that if data in

location P are moved to location Q then the data having previously been in Q have to be moved to P. This
paper elaborates this property and presents pertinent source code in C.

The DCT of an N-point real sequence xn is most often defined as [1]

C
N

x
n m

NN m
m

n
n

N

, cos
()= ⋅ +

��� ����
=

−

∑2 2 1
20

1ε π
for m=0, 1, ... , N-1 (1)

with εm

for m

otherwise

=
=

�� 	

	

1

2
0

1

(2)

The Discrete Fourier Transform (DFT)

F R j I f eN m N m N m n

j
nm

N

n

N

, , ,= + ⋅ = ⋅
−

=

−

∑
2

0

1 π

, for m=0, 1, ... , N-1 (3)

for which a huge body of fast computational algorithms exists can be utilized to compute the DCT by
employing the mapping found in [4]. It is defined by

f

x for n
N

x for
N

n N
n

n

N n

=
≤ ≤ −

���
�

+

���
�
 ≤ ≤ −

�
� 		

		 − −

2

2 2 1

0
1

2

1

2
1

(4)

yielding

C R
m

N
I

m

N

C R
m

N
I

m

N

for m
N

N m N m N m

N N m N m N m

, , ,

, , ,

(cos sin)

(sin cos)

, ,...,

= ⋅
��� ����

+ ⋅
��� ����

= ⋅
��� �� �

− ⋅
��� �� �

�
�		
� 		

= −

−

2
2 2

2
2 2

1 2
2

1

π π

π π
(5)

2

and C RN N, ,0 02= (6)

as well as C R
N

N
N

N
, ,
2 2

2= ⋅ . (7)

From (5), (6) and (7) it can clearly be seen that only half of the DFT outputs are required which is due to
the fact that fn is real and hence the DFT output values are conjugate complex. The computation of real-

valued FFT algorithms, especially for N=2ν, has been studied extensively in the literature an excellent

survey of which can be found in [5] and [6]. We will concentrate exclusively on the case N=2ν and on the

Cooley-Tukey or decimation in time approach. This kind of FFT requires its input values to be in bit-
reversed order which is well suited for an efficient in-place computation of the DCT, rendering a Fast
Cosine Transform (FCT). The input scrambling of the corresponding FCT for N=8 is depicted in fig. 1. The
scrambling consists of two passes, with the first pass representing the scrambling defined by eq. (4)
where the sequence xn is transformed into sequence fn.

The second pass performs the bit-reverse reordering which is required by the decimation in time FFT and
renders the sequence un.

7

6

5

4

3

2

1

0

1

6

5

2

3

4

7

0

111

110

101

100

011

010

001

000

001

110

101

010

011

100

111

000
xn fn un

Fig. 1: In-place reordering necessary for an 8-point FCT based on the decimation in time FFT.

If we define bitrevk(n) as the function which reverses the bit pattern of the binary representation of index n
with respect to k bits, we can define

u fn bitrev nk
= () . (8)

If we set n bitrev jk= ()

we obtain u f fbitrev j bitrev bitrev j jk k k() (())= = . (9)

3

Eqs. (8) and (9) define the swapability property of the bit reverse input reordering of the decimation in time
FFT.

By regarding the right part of Fig. 1 we observe that obviously not only the mapping of fn onto un but also
the mapping of xn onto un exhibits the swapability property. This means that

if um = xi

then ui = xm. (10)

In order to prove the swapability property let us first consider the indices n
N∈ −

���
�

��� ��
0

1

2
, . According to

(4) we can set index i in (10) to 2n, so that

x x fi n n= =2 . (11)

For convenience we will represent the index 2n as a string of k bits symbolized by "bits"0, where the
substring "bits" represents an arbitrary bit pattern consisting of k-1 bits. The least significant bit (LSB) of
the bitstring "bits"0 is always zero as 2n is an even number. With this new representation of indices we
can recast (11) into

x x fi bits bits= =" " " "0 0 . (12)

Note that in order to preserve the number of k bits we had to augment the index n of fn by a most
significant bit (MSB) of value zero. The addition of this MSB can be done without loss of generality.

Combining (9), (10) and (12) yields

u u x xm stib i bits= = =" " " "0 0 (13)

where "stib" represents the bit reversed (k-1)-bit string "bits". Due to symmetry properties it is eveident
that also

x x u um stib i bits= = =" " " "0 0 (14)

holds. Eqs. (13) and (14) show the swapability property for the above range of n.

To complete the proof of the swapability property we also have to consider the case for

n
N

N∈ +
���
�
 −

��� ��
1

2
1, where x x fi N n n= =− −2 2 1 . (15)

It is important to realize that 2N-2n-1 is just another way of representing the one's complement of 2n with
respect to k+1 bits. An alternative way of representation is 1 2

2 1compl nk+ () or 0 0" "bits in the string

notation. Using the above relationship we can recover n from 2N-2n-1 by taking the one's complement of
2N-2n-1 with respect to k+1 bits and dividing by two to eventually obtain

x x fi bits bits= =
0 0 0" " " " . (16)

Combining (9), (10) and (16) finally yields

u u u x xm stib stib i bits
= = = =" " " " " "0 0 0 0 0

. (17)

Again we can employ symmetry observations to verify that

x x x u um stib stib i bits
= = = =" " " " " "0 0 0 0 0

(18)

4

holds, which completes the proof.

With the above knowledge we can easily write an in-place FCT-algorithm where the reordering requires
nothing more than butterfly swaps if we utilize a real-valued FFT algorithms based on the decimation in
time approach. An example program in C is given below.

5

The Program Code Example in C

#include <stdio.h>
#include <math.h>

#define pi 3.14159265358979323846
#define pi2 6.28318530717958647692

#define MAX 1024 /* MAX = Maximum transform length */

/*-------------Type definitions-----------------------------------*/

float x[MAX]; /* array for real input and output */
float wr[MAX], wi[MAX]; /* FFT-coefficients */

/*-------------Deklarations---------------------------------------*/

void fct(float x[], float wr[], float wi[],
 int N, int nexp);
void twiddle(float wr[], float wi[], int N);

/*-------------Main program---------------------------------------*/

void main()
{
 int N, nexp, i;

 printf("\nType exponent: ");
 scanf("%d",&nexp);

/*--------Determine transform length N----------------------------*/
 N = 1;
 if (nexp > 0) /* N = 2**nexp */
 for (i=1; i<=nexp; i++)
 N = N*2;

/*--------Generate sequence in the time domain--------------------*/
 for (i=0; i<N; i++)
 {
 x[i] = cos(pi2*i/N);
 }

/*--------Compute twiddle factors of real-valued FFT--------------*/

 twiddle(wr, wi, N);

/*--------Fast Cosine Transform of input sequence-----------------*/

 fct(x, wr, wi, N, nexp);
 printf("\nFCT\n");
 for (i=0; i<N; i++)
 printf("x[%d] = %f \n",i,x[i]);
}

void fct(float x[], float wr[], float wi[],
 int N, int nexp)
/***
** **
** fct() computes a DCT via a real valued, in-place Cooley- **

6

** Tukey Radix-2 FFT. **
** Real input and output data are in array x[]. **
** Output will be in order **
** [re[0], re[1], ... , re[N/2], im[N/2-1], ... , im[1]] **
** after the FFT part is finished. The post computation yields **
** the DCT outputs in normal order. **
** The FFT program is mainly taken from "Real-Valued Fast Fourier **
** Transform Algorithms" by Sorensen, H.V. et alii, ASSP-35, **
** June 1987, pp. 849 - 863. **
** Ported and modified by Rainer Storn, **
** ICSI, 1947 Center Street, Berkeley, CA 94707 **
** E-mail: storn@icsi.berkeley.edu. **
** **
***/
{
 int i, i1, i2, i3, i4, j, k, n1, n2, no4, n4, adr, ee;
 int it2, jt2, ip21, jc;
 float xt, cc, ss, t1, t2;

/*---------Fill buffer array with the DFT/DCT-sequence---------*/
/*---------Do the reordering.----------------------------------*/
/*---------digit reverse counter-------------------------------*/

 j = 0;
 n1 = N-1;
 no2 = N/2;
 no4 = N/4;
 for (i=0; i<= no4; i++)
 {
 it2 = i*2;
 jt2 = j*2;
 if (it2 < jt2)
 {
 xt = x[jt2];
 x[jt2] = x[it2];
 x[it2] = xt;
 }
 ip21 = it2+1;
 jc = n1-jt2; /* complement */
 if (ip21 < jc)
 {
 xt = x[jc];
 x[jc] = x[ip21];
 x[ip21] = xt;
 }
 k = no4; /* small bit reversal */
 while (k < j+1)
 {
 j = j-k;
 k = k/2;
 }
 j = j+k;
 }

/*---------Start of real-valued FFT-part-----------------------*/
/*---------length two butterflies------------------------------*/

 for (i=0; i<N; i=i+2)
 {
 xt = x[i];
 x[i] = xt + x[i+1];
 x[i+1] = xt - x[i+1];
 }

/*---------other butterflies----------------------------------*/

7

 n2 = 1;
 for (k=2; k<=nexp; k++)
 {
 n4 = n2;
 n2 = 2*n4;
 n1 = 2*n2;
 ee = N/n1;
 for (i=0; i<N; i=i+n1)
 {
 xt = x[i];
 x[i] = xt + x[i+n2];
 x[i+n2] = xt - x[i+n2];
 x[i+n4+n2] = -x[i+n4+n2];
 adr = ee;
 for (j=1; j<= n4-1; j++) /* note that in the first run n4=1 */
 {
 i1 = i+j;
 i2 = i-j+n2;
 i3 = i+j+n2;
 i4 = i-j+n1;
 cc = wr[adr];
 ss = wi[adr];
 adr = adr + ee;
 t1 = x[i3]*cc + x[i4]*ss;
 t2 = x[i3]*ss - x[i4]*cc;
 x[i4] = x[i2] - t2;
 x[i3] = -x[i2] - t2;
 x[i2] = x[i1] - t1;
 x[i1] = x[i1] + t1;
 }
 }
 }

/*----------Post computation for DCT output-------------------------*/
/*----------Normalization factor 2/N.-------------------------------*/
/*----------(Exception is x[0] where sqrt(2)/N is the factor)-------*/

 x[0] = x[0]*sqrt(2.)/(float)N;
 for (i=1; i<N/2; i++)
 {
 ss = sin(pi*i*0.5/N);
 cc = cos(pi*i*0.5/N);
 xt = (x[i]*cc + x[N-i]*ss)*2/(float)N;
 x[N-i] = (x[i]*ss - x[N-i]*cc)*2/(float)N;
 x[i] = xt;
 }
 x[N/2] = x[N/2]*sqrt(2.)/(float)N;

}

void twiddle(float wr[], float wi[], int N)
/***
** **
** twiddle() calculates the twiddle factors for an **
** N-point FFT. **
** **
***/

{
 float inc;
 int i;

 inc = pi2/N;
 for (i=0; i<(N/2); i=i+1)

8

 {
 wr[i] = cos(inc*(float)i);
 wi[i] = sin(inc*(float)i);
 }
}

Conclusion
It has been demonstrated that a an N-point DCT with N=2ν can be computed efficiently via a real-valued
decimation in time FFT by just employing butterfly swaps for the input reordering. As computer code for
many real-valued FFT algorithms is publicly available, this way of DCT-computation becomes even more
attractive.

9

References

[1] Britanah, V., "On the Discrete Cosine Transform Computation", Signal processing 40 (1994), pp.
183-194.

[2] Lee, P.Z. and Huang, F.X., "Restructured Recursive DCT and DST Algorithms", IEEE Trans. Signal
Proc., Vol. 42, No. 7, July 1994, pp. 1600-1609.

[3] Wang, Z., "On Computing the Discrete Fourier and Cosine Transforms", IEEE Trans. ASSP, Vol.
ASSP-33, No. 4, Oct. 1985, pp. 1341-1344.

[4] Makhoul, J., A Fast Cosine Transform in One and Two Dimensions, IEEE Trans. ASSP, Vol. ASSP-
28, No. 1, Feb. 1980, pp. 27-34.

[5] Sorensen, H. et alii, Real-Valued Fast Fourier Transform Algorithms, IEEE Trans. ASSP, Vol.
ASSP-35, No. 6, June 1987, pp. 849-863.

[6] Mitra, S.K. and Kaiser, J.F., Handbook for Digital Signal Processing, John Wiley&Sons, 1993.

10

7

6

5

4

3

2

1

0

1

6

5

2

3

4

7

0

111

110

101

100

011

010

001

000

001

110

101

010

011

100

111

000
xn fn un

11

Fig. 1: In-place reordering necessary for an 8-point FCT based on the decimation in time FFT.

12

