Efficient Input Reordering for the DCT Based on a Real-Valued Decimation in Time FFT

by Rainer Storn ${ }^{1)}$
TR-95-061
September 1995

Abstract

The possibility of computing the Discrete Cosine Transform (DCT) of length $\mathrm{N}=2^{v}$, v integer, via an N point Discrete Fourier Transform (DFT) is widely known from the literature. In this correspondence it will be demonstrated that this computation can be done in-place by just employing butterfly swaps if the input reordering - necessary for the DCT computation via DFT - is combined with the bit-reverse scrambling required by the decimation in time Fast Fourier Transform-algorithm.

[^0]
Introduction

The Discrete Cosine Transform (DCT) has a wide range of applications in image and signal processing and many algorithms for its fast computation have been devised [1]-[4]. One particular attractive approach is the computation via real valued Fast Fourier Transform (FFT) algorithms as the latter are very well developed and high performance computer code is readily available [5]. However, the fact that the input reordering required for this type of computation can be done in-place by just using butterfly swaps has not been addressed so far. In case of transform lengths $N=2^{v}, v$ integer, Butterfly swaps mean that if data in location P are moved to location Q then the data having previously been in Q have to be moved to P. This paper elaborates this property and presents pertinent source code in C.

The DCT of an N-point real sequence x_{n} is most often defined as [1]

$$
\begin{equation*}
C_{N, m}=\frac{2 \varepsilon_{m}}{N} \sum_{n=0}^{N-1} x_{n} \cdot \cos \left(\frac{\pi(2 n+1) m}{2 N}\right) \quad \text { for } \mathrm{m}=0,1, \ldots, \mathrm{~N}-1 \tag{1}
\end{equation*}
$$

with $\quad \varepsilon_{m}= \begin{cases}\frac{1}{\sqrt{2}} & \text { for } m=0 \\ 1 & \text { otherwise }\end{cases}$

The Discrete Fourier Transform (DFT)

$$
\begin{equation*}
F_{N, m}=R_{N, m}+j \cdot I_{N, m}=\sum_{n=0}^{N-1} f_{n} \cdot e^{-j \frac{2 \pi n m}{N}}, \quad \text { for } \mathrm{m}=0,1, \ldots, \mathrm{~N}-1 \tag{3}
\end{equation*}
$$

for which a huge body of fast computational algorithms exists can be utilized to compute the DCT by employing the mapping found in [4]. It is defined by

$$
f_{n}=\left\{\begin{array}{lll}
x_{2 n} & \text { for } & 0 \leq n \leq\left\lfloor\frac{N-1}{2}\right\rfloor \tag{4}\\
x_{2 N-2 n-1} & \text { for } & \left\lfloor\frac{N+1}{2}\right\rfloor \leq n \leq N-1
\end{array}\right.
$$

yielding

$$
\left.\begin{array}{l}
C_{N, m}=2\left(R_{N, m} \cdot \cos \left(\frac{\pi m}{2 N}\right)+I_{N, m} \cdot \sin \left(\frac{\pi m}{2 N}\right)\right) \tag{5}\\
C_{N, N-m}=2\left(R_{N, m} \cdot \sin \left(\frac{\pi m}{2 N}\right)-I_{N, m} \cdot \cos \left(\frac{\pi m}{2 N}\right)\right)
\end{array}\right\} \text { for } \quad m=1,2, \ldots, \frac{N}{2}-1
$$

and

$$
\begin{equation*}
C_{N, 0}=2 R_{N, 0} \tag{6}
\end{equation*}
$$

as well as

$$
\begin{equation*}
C_{N, \frac{N}{2}}=\sqrt{2} \cdot R_{N, \frac{N}{2}} \tag{7}
\end{equation*}
$$

From (5), (6) and (7) it can clearly be seen that only half of the DFT outputs are required which is due to the fact that f_{n} is real and hence the DFT output values are conjugate complex. The computation of realvalued FFT algorithms, especially for $\mathrm{N}=2^{V}$, has been studied extensively in the literature an excellent survey of which can be found in [5] and [6]. We will concentrate exclusively on the case $\mathrm{N}=2^{\mathrm{V}}$ and on the Cooley-Tukey or decimation in time approach. This kind of FFT requires its input values to be in bitreversed order which is well suited for an efficient in-place computation of the DCT, rendering a Fast Cosine Transform (FCT). The input scrambling of the corresponding FCT for $\mathrm{N}=8$ is depicted in fig. 1. The scrambling consists of two passes, with the first pass representing the scrambling defined by eq. (4) where the sequence x_{n} is transformed into sequence f_{n}.

The second pass performs the bit-reverse reordering which is required by the decimation in time FFT and renders the sequence u_{n}.

Fig. 1: In-place reordering necessary for an 8-point FCT based on the decimation in time FFT.

If we define $\operatorname{bitrev}_{k}(n)$ as the function which reverses the bit pattern of the binary representation of index n with respect to k bits, we can define

$$
\begin{equation*}
u_{n}=f_{\text {bitrev }_{k}(n)} \tag{8}
\end{equation*}
$$

If we set

$$
n=\operatorname{bitrev}_{k}(j)
$$

we obtain

$$
\begin{equation*}
u_{\text {bitrev }_{k}(j)}=f_{\text {bitrev }_{k}\left(\text { bitrev }_{k}(j)\right)}=f_{j} \tag{9}
\end{equation*}
$$

Eqs. (8) and (9) define the swapability property of the bit reverse input reordering of the decimation in time FFT.

By regarding the right part of Fig. 1 we observe that obviously not only the mapping of f_{n} onto u_{n} but also the mapping of x_{n} onto u_{n} exhibits the swapability property. This means that

$$
\begin{array}{ll}
\text { if } & u_{m}=x_{i} \\
\text { then } & u_{i}=x_{m} . \tag{10}
\end{array}
$$

In order to prove the swapability property let us first consider the indices $\left.n \in\left[0, \frac{N-1}{2}\right]\right]$. According to (4) we can set index i in (10) to 2 n , so that

$$
\begin{equation*}
x_{i}=x_{2 n}=f_{n} . \tag{11}
\end{equation*}
$$

For convenience we will represent the index 2 n as a string of k bits symbolized by "bits" 0 , where the substring "bits" represents an arbitrary bit pattern consisting of k - 1 bits. The least significant bit (LSB) of the bitstring "bits" 0 is always zero as 2 n is an even number. With this new representation of indices we can recast (11) into

$$
\begin{equation*}
x_{i}=x_{\text {"bits"0 }}=f_{0 \text { "bists" }} . \tag{12}
\end{equation*}
$$

Note that in order to preserve the number of k bits we had to augment the index n of f_{n} by a most significant bit (MSB) of value zero. The addition of this MSB can be done without loss of generality.
Combining (9), (10) and (12) yields

$$
\begin{equation*}
u_{m}=u_{u_{\text {stib"0 }}}=x_{i}=x_{\text {" } b i t s " 0} \tag{13}
\end{equation*}
$$

where "stib" represents the bit reversed (k -1)-bit string "bits". Due to symmetry properties it is eveident that also

$$
\begin{equation*}
x_{m}=x_{\text {"ssib"0 }}=u_{i}=u_{\text {"bits"0 }} \tag{14}
\end{equation*}
$$

holds. Eqs. (13) and (14) show the swapability property for the above range of n.
To complete the proof of the swapability property we also have to consider the case for
$n \in\left[\left\lfloor\frac{N+1}{2}\right\rfloor, N-1\right]$ where $\quad x_{i}=x_{2 N-2 n-1}=f_{n}$.
It is important to realize that $2 \mathrm{~N}-2 \mathrm{n}-1$ is just another way of representing the one's complement of 2 n with respect to $\mathrm{k}+1$ bits. An alternative way of representation is $1 \operatorname{compl}_{2^{k+1}}(2 n)$ or $\overline{0 " b i t s " 0}$ in the string notation. Using the above relationship we can recover n from $2 N-2 n-1$ by taking the one's complement of $2 \mathrm{~N}-2 \mathrm{n}-1$ with respect to $\mathrm{k}+1$ bits and dividing by two to eventually obtain

$$
\begin{equation*}
x_{i}=x_{\overline{0^{" b i s i s " 0}}}=f_{0 \text { "biss" }} \tag{16}
\end{equation*}
$$

Combining (9), (10) and (16) finally yields

$$
\begin{equation*}
u_{m}=u_{\text {"stib"0 }}=u_{0 \text { "stib"0 }}=x_{i}=x_{\overline{0^{" b i t s} " 0}} . \tag{17}
\end{equation*}
$$

Again we can employ symmetry observations to verify that
holds, which completes the proof.
With the above knowledge we can easily write an in-place FCT-algorithm where the reordering requires nothing more than butterfly swaps if we utilize a real-valued FFT algorithms based on the decimation in time approach. An example program in C is given below.

The Program Code Example in C

```
#include <stdio.h>
#include <math.h>
#define pi 3.14159265358979323846
#define pi2 6.28318530717958647692
#define MAX 1024 /* MAX = Maximum transform length */
/*-------------Type definitions-------------------------------------------*/
float x[MAX]; /* array for real input and output */
float wr[MAX], wi[MAX]; /* FFT-coefficients */
/*--------------Deklarations----------------------------------------------*/
void fct(float x[], float wr[], float wi[],
    int N, int nexp);
void twiddle(float wr[], float wi[], int N);
/*-------------Main program----------------------------------------------------
void main()
{
    int N, nexp, i;
    printf("\nType exponent: ");
    scanf("%d",&nexp);
/*--------Determine transform length N--------------------------------------
    N = 1;
    if (nexp > 0) /* N = 2**nexp */
        for (i=1; i<=nexp; i++)
            N = N*2;
/*--------Generate sequence in the time domain-----------------------*/
    for (i=0; i<N; i++)
        {
            x[i] = cos(pi2*i/N);
        }
/*--------Compute twiddle factors of real-valued FFT---------------*/
    twiddle(wr, wi, N);
/*--------Fast Cosine Transform of input sequence----------------------*/
    fct(x, wr, wi, N, nexp);
    printf("\nFCT\n");
    for (i=0; i<N; i++)
        printf("x[%d] = %f \n",i,x[i]);
}
void fct(float x[], float wr[], float wi[],
                        int N, int nexp)
/********************************************************************
**
** fct() computes a DCT via a real valued, in-place Cooley- **
```

```
** Tukey Radix-2 FFT.
** Real input and output data are in array x[].
** Output will be in order
** [re[0], re[1], ... , re[N/2], im[N/2-1], ... , im[1]]
** after the FFT part is finished. The post computation vields
** the DCT outputs in normal order.
** The FFT program is mainly taken from "Real-Valued Fast Fourier **
** Transform Algorithms" by Sorensen, H.V. et alii, ASSP-35, **
** June 1987, pp. 849-863.
** Ported and modified by Rainer Storn,
** ICSI, 1947 Center Street, Berkeley, CA 94707
** E-mail: storn@icsi.berkeley.edu.
**
***************************************************************************/
{
    int i, i1, i2, i3, i4, j, k, n1, n2, no4, n4, adr, ee;
    int it2, jt2, ip21, jc;
    float xt, cc, ss, t1, t2;
/*---------Fill buffer array with the DFT/DCT-sequence---------*/
/*---------Do the reordering.---------------------------------------*/
/*----------digit reverse counter---------------------------------------*/
    j = 0;
    n1 = N-1;
    no2 = N/2;
    no4 = N/4;
    for (i=0; i<= no4; i++)
    {
        it2 = i*2;
        jt2 = j*2;
        if (it2 < jt2)
        {
            xt = x[jt2];
            x[jt2] = x[it2];
            x[it2] = xt;
        }
        ip21 = it2+1;
        jc = n1-jt2; /* complement */
        if (ip21 < jc)
            {
            xt = x[jc];
            x[jc] = x[ip21];
            x[ip21] = xt;
        }
        k = no4; /* small bit reversal */
        while (k < j+1)
            {
                j = j-k;
            k = k/2;
            }
            j = j+k;
    }
/*---------Start of real-valued FFT-part-------------------------------*/
/*---------length two butterflies--------------------------------------*/
    for (i=0; i<N; i=i+2)
    {
            xt = x[i];
            x[i] = xt + x[i+1];
            x[i+1] = xt - x[i+1];
    }
/*---------other butterflies----------------------------------------*/
```

```
    n2 = 1;
    for (k=2; k<=nexp; k++)
{
    n4 = n2;
    n2 = 2*n4;
    n1 = 2*n2;
    ee = N/n1;
    for (i=0; i<N; i=i+n1)
    {
        xt = x[i];
        x[i] = xt + x[i+n2];
        x[i+n2] = xt - x[i+n2];
        x[i+n4+n2] = -x[i+n4+n2];
        adr = ee;
        for (j=1; j<= n4-1; j++) /* note that in the first run n4=1 */
        {
            i1 = i+j;
            i2 = i-j+n2;
            i3 = i+j+n2;
            i4 = i-j+n1;
            cc = wr[adr];
            ss = wi[adr];
            adr = adr + ee;
            t1 = x[i3]*cc + x[i4]*ss;
            t2 = x[i3]*ss - x[i4]*cc;
            x[i4] = x[i2] - t2;
            x[i3] = -x[i2] - t2;
            x[i2] = x[i1] - t1;
            x[i1] = x[i1] + t1;
        }
    }
}
/*----------Post computation for DCT output-------------------------------*/
/*----------Normalization factor 2/N.--------------------------------------*/
/*----------(Exception is x[0] where sqrt(2)/N is the factor)-------*/
    x[0] = x[0]*sqrt(2.)/(float)N;
    for (i=1; i<N/2; i++)
    {
        ss = sin(pi*i*0.5/N);
        cc = cos(pi*i*0.5/N);
        xt = (x[i]*cc + x[N-i]*ss)*2/(float)N;
        x[N-i] = (x[i]*ss - x[N-i]*CC)*2/(float)N;
        x[i] = xt;
}
    x[N/2] = x[N/2]*sqrt(2.)/(float)N;
}
void twiddle(float wr[], float wi[], int N)
/*******************************************************
** **
** twiddle() calculates the twiddle factors for an **
** N-point FFT.
    **
** **
**********************************************************/
{
    float inc;
    int i;
    inc = pi2/N;
    for (i=0; i<(N/2); i=i+1)
```

```
    {
        wr[i] = cos(inc*(float)i);
        wi[i] = sin(inc*(float)i);
    }
}
```


Conclusion

It has been demonstrated that a an N -point DCT with $\mathrm{N}=2^{V}$ can be computed efficiently via a real-valued decimation in time FFT by just employing butterfly swaps for the input reordering. As computer code for many real-valued FFT algorithms is publicly available, this way of DCT-computation becomes even more attractive.

References

[1] Britanah, V., "On the Discrete Cosine Transform Computation", Signal processing 40 (1994), pp. 183-194.
[2] Lee, P.Z. and Huang, F.X., "Restructured Recursive DCT and DST Algorithms", IEEE Trans. Signal Proc., Vol. 42, No. 7, July 1994, pp. 1600-1609.
[3] Wang, Z., "On Computing the Discrete Fourier and Cosine Transforms", IEEE Trans. ASSP, Vol. ASSP-33, No. 4, Oct. 1985, pp. 1341-1344.
[4] Makhoul, J., A Fast Cosine Transform in One and Two Dimensions, IEEE Trans. ASSP, Vol. ASSP28, No. 1, Feb. 1980, pp. 27-34.
[5] Sorensen, H. et alii, Real-Valued Fast Fourier Transform Algorithms, IEEE Trans. ASSP, Vol. ASSP-35, No. 6, June 1987, pp. 849-863.
[6] Mitra, S.K. and Kaiser, J.F., Handbook for Digital Signal Processing, John Wiley\&Sons, 1993.

Fig. 1: In-place reordering necessary for an 8-point FCT based on the decimation in time FFT.

[^0]: ${ }^{1)}$ International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704-1198, Suite 600, Tel.: 510-642-4274, Fax: 510-643-7684. E-mail: storn@icsi.berkeley.edu. On leave from Siemens AG, ZFE T SN 2, Otto-Hahn-Ring 6, D-81739 Muenchen, Germany. Tel.: 01149-89-636-40502, Fax: 01149-89-63644577, E-mail:rainer.storn@zfe.siemens.de.

