Dynamic Resource Migration for
Multiparty Real-Time

Communication

Riccardo Bettati* and Amit Gupta
{bettati,amit}@icsi.berkeley.edu

The Tenet Group
University of California at Berkeley, and
International Computer Science Institute
TR-95-060
October 1995

Abstract

With long-lived multi-party connections, resource allocation subsystems in dis-
tributed real-time systems or communication networks must be aware of dynamically
changing network load in order to reduce call-blocking probabilities. We describe a
distributed mechanism to dynamically reallocate (“migrate”) resources without ad-
versely affecting the performance that established connections receive. In addition to
allowing systems to dynamically adapt to load, this mechanism allows for distributed
relaxation of resources (i.e. the adjustment of overallocation of resources due to con-
servative assumptions at connection establishment time) for multicast connections.
We describe how dynamic resource migration is incorporated in the Tenet Scheme 2
protocols for multiparty real-time communication.

*Now at: Department of Computer Science, Texas A&M University, 301 H.R. Bright Building,
College Station, TX 77843-3112. Tel: (409) 845-5469. Fax: (409) 847-8578

i

1 Introduction

The increasing speed of computer networks and the improvement of workstation ca-
pabilities are enabling a new class of distributed applications, those involving mul-
timedia data. It is widely believed that these applications should be supported in
the general framework of real-time communication [1, 2, 3, 4, 5, 6], which provides
predictable performance (e.g., end-to-end delay bounds for data delivery); typically,
the clients negotiate with the network service provider to obtain a desired Quality of
Service (QoS), which the provider guarantees. A number of schemes and protocols
have been proposed to provide real-time communication services. Most of the schemes
are connection-oriented, and reserve resources (bandwidth, buffers, and so on) along
the route of a real-time connection [1, 2, 7]. QoS guarantees cannot be provided if
the network does not check for saturation before accepting new channels. Thus, the
network must perform admission control to ensure that the guarantees are met.

This resource reservation is an on-line process; whenever the establishment of a
new channel is requested, the routing system computes the “best” route (according
to some optimality criteria that may be based on current workload, residual capacity,
future traffic characterization and blocking probability computation). The signalling
protocol then contacts the local resource managers (LRMs) at each server' along the
channel route to allocate resources. For services that provide bounds on end-to-end
delay, at least three distinct approaches are possible:

e The LRM allocates resources based on the current workload. The amount of
resources allocated does not depend on the end-to-end performance parameters
that the client requires. This is the approach that RSVP takes [9].

e The LRM provides, to the signalling protocol, a range of feasible resource al-
locations; in a separate pass, the signalling protocol chooses the final resource

allocation. This is the approach followed in OPWA [11].

e In a first pass, the LRM makes a tentative resource allocation. The signalling
protocol then determines the end-to-end performance provided at the current
allocation levels; if this exceeds the performance bounds requested by the clients,
the signalling protocol can, in the second pass (called relazation pass), inform
the LRM to reduce (relax) the resource allocations [8, 10] appropriately. This
is the approach that the Tenet protocols have taken [8].

With the first approach, the resource allocation decisions for a channel are obliv-
ious of the channel’s end-to-end performance bounds. This may lead to inefficien-
cies in resource allocations, as well as the network not meeting the end-to-end per-
formance bounds. A “smart” resource allocation mechanism that understands the

LA server here refers to a node or a link.

end-to-end performance bounds can, in principle, make better resource allocation
decisions, thereby meeting the performance bounds for more channels.

With the second approach, the key problem is in managing the information and
in limiting the combinatorial explosion of choices and alternatives. One approach [11]
is to insist that the information be provided as a function of a set of parameters (e.g.,
that the local delay bound will be of the form a + g, where a and b are provided by
the LRM, which also provides bounds for values of). The signalling protocol then
accumulates this information to obtain the feasible set for end-to-end performance
parameters, decides the performance bounds that the channel will obtain (this de-
cision may be based on further interactions with the clients) and inform the LLRMs
accordingly.

With both the second and the third approaches, a critical problem is that the
network load changes dynamically; hence it is desirable that the network be able
to dynamically adapt the resource allocation decisions to the dynamically varying
workload; this can lead to significant reduction in call blocking probabilities for con-
nection acceptance. It can also make simpler initial resource allocation mechanisms
much more attractive; these simpler mechanisms in turn make channel set-up fast
and scalable.

Of course, such dynamic changes should not adversely affect the performance that
the active channels receive; it is desirable that distortions, if any, be small. In any
case such distortions should be within the performance bounds specified by the client.

In this paper, we will describe a set of mechanisms (referred to as Dynamic Re-
source Migration, or DRM) that dynamically change resource allocations (thereby
“migrating” resources from node-to-node in the network) in a manner in which re-
sources are freed around the congested parts of the network and such migration does
not adversely impact the performance guarantees made to the service clients.

This paper is organized in the following manner. Section 2 describes Tenet Ap-
proach real-time communication, in particular multi-party real-time communication.
We discuss the basic mechanisms for dynamic resource reallocation in Section 3. In
Section 4, we discuss how these mechanisms can be incorporated into distributed
schemes for appropriate load balancing in real-time networks. We conclude this dis-
cussion in Section 5 with a summary and an outlook on future work.

2 Background

In this paper, we illustrate our approach to dynamic resource migration (DRM) in the
framework of the Tenet multi-party real-time communication protocols [2]; though
this discussion is limited to the Tenet protocols, the underlying ideas and techniques
are equally applicable to other multi-party real-time communication protocols. Our
previous paper [10] describes the relevant aspects of Tenet; in this discussion, we
limit ourselves to discussing a few of its salient features. We first describe the Tenet
approach to real-time communication and follow the discussion with a description

of key issues that arise in multi-party settings. We will then describe two aspects
of the Tenet Suite 2: how state information is currently maintained, and how the
channels are set-up so as to meet the client-specified performance requirements. This
discussion thus sets the stage for describing our proposed mechanisms for dynamically
migrating resources in the Tenet Suite 2.

2.1 The Tenet Approach to Real-Time Communication

The scheme on which the Tenet Suite 2 is based implements the multicast real-time
channel abstraction. This communication abstraction is defined as a simplex connec-
tion between a source and a set of destinations, capable of guaranteeing a given (and
possibly different) quality of service (QoS) to each destination. A real-time channel
(“channel” for short) is characterized in the Tenet schemes at the network layer by a
set of traffic specification parameters and, for each destination, a quadruple of QoS
parameters that specify the desired end-to-end performance. Scheme 2 allows chan-
nels to be established from the source or from the destinations; we describe here, for
brevity, only the former procedure.

When a client wants to set up a channel, it invokes the Real-Time Channel Ad-
ministration Protocol (RCAP) and passes to it suitable identifiers for the source and
the destinations, as well as the source’s traffic parameters and each destination’s QoS
parameters. RCAP gets a possible route for the channel from a Routing Server, and
issues a channel-establish message from the source. This message follows the given
route, replicating itself at each branch node it encounters on its path, and sending
a copy of the message down each of the branches of that subtree. Admission tests
are performed at each server that is reached by a copy of the message; if any of the
tests is unsuccessful, a channel-reject message is return to the source; if all tests are
successful, a copy of the message is sent to the next server on that path, until it
reaches one of the destinations. Each destination makes a final decision about the
establish request for the new channel, and returns an channel-accept or channel-reject
message to the source. Messages of both types wait for those from the destinations
in the same subtree at the subtree’s branch node, where they are merged before the
resulting message is forwarded on the reverse path toward the source.

Some resources had been tentatively reserved by the channel-establish message or
one of its replica in each traversed server. When receiving the returning message(s),
which will generally contain both accepts and rejects from the various destinations
in the corresponding subtree, the server cancels those reservations (if all the replies
are of the channel-reject type) or adjusts them according to the information received
from each accepting destination. The process of adjusting the resource requirements
and reducing them to satisfy the needs of accepting destinations is called resource
relazation. These adjustments are reflected in the return message forwarded to the
server immediately upstream, as well as in the amounts of resources actually reserved
in the server for the new channel. At the end of this process, the source receives the

results of the request in a single return message, and transmits them to the client for
evaluation and further action.

The newly created channel reaches all destinations that have accepted the estab-
lishment request and is now ready for immediate use. It remains in existence until it
is torn down by the client.

2.2 Multi-Party Issues in Real-Time Communication

Many multi-party applications involve a large number of recipients for each data
stream; it is clear that multicasting can be used to reduce the traffic on the network
nodes and links thereby saving valuable network resources.

A key component of the multi-party communication is the presence of multiple
senders and receivers. A strawman multicast scheme would require that at the connec-
tion establishment time, the sources specify the list of receivers. It is unreasonable to
require that in a large-scale distributed multimedia application (e.g. computer-based-
conferencing) the sender (or for that matter, any central application-based authority)
knows about all the receivers; it is equally unreasonable to require the receivers to
know about all potential senders for that conference. It is important that the net-
work service supports this decoupling between the different participants; the network
should provide the rendezvous among the participants interested in a common “ses-
sion”.

The realtime nature of the conference also favors this separation of the senders
and receivers. It is expected that different receivers will be heterogeneous, i.e. that
they will vary both in their ability to handle the data, and in the QoS requirements
they may have. It is generally unreasonable to expect the senders to specify these
properties for all possible destinations of their data stream; this will also not scale
well to larger conferences.

Multi-party conferences tend to be long-lived, i.e., participants may join (or leave)
a session while it is in progress. It is important that the network service provide
support for dynamic changes in the group of participants.

For supporting the abovementioned aspects of multi-party communication, the
key abstraction is the real-time multicast group, also referred to as the target set ab-
straction. This target set abstraction is the real-time analog of the IP hostgroup
abstraction, in that while an IP hostgroup has, as members, the destinations inter-
ested in listening to a common “session”, the target set members are these interested
destinations along with the requested bounds on end-to-end performance (e.g., end-
to-end delay, the jitter, i.e., variation in the delay etc.). A channel logically transmit
data from a particular sender to a target set; this amounts to transmitting the data
from that sender to all members of the target set. Receivers can dynamically join and
leave a target set; when they join a target set, they start getting data on all channels
sending data to the target set. In this manner, the target sets support the decoupling
between the senders and the receivers and also provide the rendezvous among them.

Traditional real-time network systems (e.g., [2]) treat traffic on different connec-
tions independently when determining their resource requirements. For multi-party
real-time communication, this results in inefficient over-allocation of resources [12].
For example, consider an audio-conference of one hundred persons. In the strawman
proposal, the conference is set up by establishing one hundred multicast channels,
one from each speaker (sender) to all listeners (destinations). It is reasonable to ex-
pect that only one person speaks at any time. Along common sub-paths (for these
hundred channels) it would be sufficient to reserve resources for two audio channels
(to allow some over-speaking). Thus, the resource allocation can be reduced (and the
allocation efficiency increases) if the network clients can specify these resource sharing
properties to the network and if the network can use such information to reduce the
resource allocation along common sub-paths.

The Tenet Scheme 2 provides channels groups [13]; the resource sharing channel
groups allow the network clients to specify these resource sharing relationships to
the network. In the above example, the application would: (a) create a new channel
group, and (b) inform the network to include the hundred audio channels in this
channel group. The client would also inform the network that at any server in the
network, the aggregate resource allocation for all channels should not exceed two
audio channels. During channel establishment for these channels, at any server, the
admission test system can determine if it has already allocated resources for two audio
channels and if so, accept this new channel without allocating any more resources.
This mechanism fits in especially well with the rest of the Tenet scheme because it is
fully-distributed; different servers make this decision independently.

2.3 Resource Allocation for Multiparty Real-Time Communication

The two-pass resource allocation procedure for channel establishment described in
Section 2.1 has proven effective for two-party communication settings with unicast
channels. Its commitment of resources at establishment time makes it inappropri-
ate, though, for longer-lasting multiparty sessions, which experience a dynamically
changing environment during their lifetime: on one side, the load of the network
changes; on the other, the number of participants, or even their geographic distribu-
tion, dynamically varies. A more appropriate resource allocation scheme would allow
to reconsider the commitment of resources made at channel establishment time to
adapt to both changes in the load of the underlying network and in the participant
population connected to the channel.

Typically, the decision of how much of a particular resource to allocate to the
new channel at a node is not a local one. In general, resource requirements are
interdependent across nodes. The additive behavior of local delays is the simplest
example of such an interdependence: a decrease in priority allocation at one node
(causing an increase of the local delay) has to be compensated by an increase of
priority at another node (which decreases the local delay at that node) to maintain the

overall end-to-end delay. Generally, interdependencies are more subtle. For instance,
the priority assigned to a channel at a node defines the amount of jitter introduced
to packets of that channel by that particular node. Hence, the amount of priority
resource allocated to the channel at the node controls the amount of buffer needed
by the next nodes downstream to make up for the introduced jitter. (In the following
discussion, we will use this simple relation between allocated priority resource on a
node and the required buffer resource on the nodes directly downstream to illustrate
the interdependence of resource requirements across nodes.)

When it comes to relaxing the tentative resource allocations, a global relaxation
scheme must be used in order to account for these interdependencies in resource
requirements. In the case of unicast channels, the relaxation can be done locally, based
on a combination of (1) information contained in the establishment-accept message
flowing back to the source, and (2) an implicit global relaxation policy.

Such a scheme can not be used for multicast real-time channels because the inter-
dependence between a branch node and its descendants effectively introduces interde-
pendence relations between resource allocations across the subtrees. More specifically,
the amount of resources that can be relaxed in the nodes in one subtree depends on
the resource requirements in another subtree, and vice versa. This can not be resolved
in the two-pass scheme described earlier, but would require an exponential number
of passes. The cost of channel establishment for any non-trivial multi-party real-time
channel would be non-acceptable.

With the proper resource reallocation procedures in place, it is possible to apply
a very conservative relaxation scheme (for instance, no relaxation at all) during the
establishment. Once the channel is established, resource reallocation can then be
used to dynamically relax the resource requirements.

3 Mechanism

In a dynamic resource reallocation scheme, nodes must be able to renegotiate resource
allocations at any point during the lifetime of an established channel. For example,
after a channel has been established, a number of nodes on it can become heavily
loaded due to other, newly established channels, and require resources to be reallo-
cated. In other cases, the participants (and their performance requirements) of the
session using the channel may change enough to warrant a reconsideration of the re-
sources allocated to the channel at establishment time. In order to be efficient, and to
reduce the granularity of change to which such a scheme can adapt, the renegotiations
must be light-weight. Thus, the number of nodes involved in a renegotiation must be
kept small. An example of the opposite approach is Dynamic Channel Management
(DCM) [14], where the renegotiation consists of a re-establishment of the entire chan-
nel. Although particular attention is given in this scheme to minimizing transient
over-allocation of resources during the re-establishment process, DCM is not easily
scalable, in particular for multicast channels. In designing a dynamic resource allo-

cation scheme, it is important to ensure that the QoS guarantees provided by active
channels (including the channel being reallocated the resources for) are not affected
by the resource reallocation process, neither during nor after the reallocation. In this
section, we describe a local resource reallocation mechanism, which allows to dynam-
ically reallocate resources while involving only a small number of nodes; in fact, three
adjacent nodes participate for unicast portions of the channel (we call them primary,
secondary, and tertiary node, N,, N5, and Ny, respectively), and O(N) nodes partic-
ipate when primary or secondary nodes with out-degree N are involved. In addition,
dynamic resource reallocation does not affect the QoS guarantees provided to the
receivers.

In the following, we describe the steps involved in resource renegotiation. For
sake of simplicity of argument, we will assume a rate-controlled fixed-priority (RCSP)
scheduling discipline [15] on all the nodes. With the appropriate modifications, the de-
scription below is valid for other scheduling disciplines as well, such as jitter-controlled
earliest-deadline-first (J-EDD) [16], stop-and-go [17], hierarchical round robin [18],
and combinations thereof.

Three types of resource reallocation can be distinguished, depending on the loca-
tion in the multicast tree:

1. Resource reallocation in a unicast portion of the multicast: None of the partic-
ipating nodes is a branch node or a receiver node.

2. Resource reallocation involving branch nodes: At least one participating node
forwards data to more than one successor in the multicast tree.

3. Resource reallocation involving a receiver node: At least one participating node
serves a receiver.

Before describing the reallocation steps in more detail, we define some terms: Let
the nodes along a particular path of an established channel C be labeled (N, Na, ..., Ny,).
Before the reallocation, each node N; has allocated buffer space B;, a scheduling pri-
ority ¢; to channel C| resulting in a worst-case delay d; for packets on C'. The value
of d; depends on the scheduling algorithm used, and is typically determined by time-
demand analysis. The amount of buffer space that must be allocated for C' at node

N; is defined by [15]:
di—1 d;
Bi - P ’

where X,,;, and P are the worst-case packet inter-arrival time and worst-case packet

length, respectively.

In the following, we describe the reallocation process in detail. We first describe
the unicast case to present the general idea of the procedure. In Section 3.2 we show
how the basic procedure is extended to branching portions of the multicast tree. In
Section 3.3 we illustrate how the same procedure is used to effectively “trade in”

O
OO
O

Figure 1: Unicast Portion of a Multicast Tree.

L

()
NI
O

e

excessive QoS (typically slack) at the receiver for allocated resources, thus allowing
the realization of resource relaxation through dynamic reallocation.

In the following descriptions we ommit formal proofs that the reallocation process
does not violate QoS guarantees of active channels. We note however, that it is easy
to verify that at no time the end-to-end delay or the jitter are increased during the
reallocation.

3.1 Resource Reallocation in a Unicast Portion of the Multicast Tree

The simplest case for resource reallocation is the case when none of the participating
nodes i1s a branch node of the multicast tree. Figure 1 illustrates this case: The
reallocation procedure consists of four steps, which we describe in the following for
the case of reducing the load on N, by reducing the priority ¢, and increasing ¢,:

Step 1: Increase priority on Ny: Set s to be the lowest priority that guarantees a
local delay ds < ds + d, — d,, where d, denotes the local delay bound on N,
after the priority reduction.

Step 2: Increase buffer size on Ny: Set

B, = ({chﬂ ! {XiD }

Step 3: Decrease priority on N,: Set the priority on N, to be qu.

Step 4: Decrease buffer size on Ny: Set

B, = (uﬂ * {X”)P |

Figure 2 illustrates this form of resource reallocation: Before the reallocation,
packets of channel C' are served at high priority on node N, and on low priority on

H H H H
ﬂ% D@ qup qus
B, T B: B, B,

(a) Before Reallocation. (b) After Reallocation.

Figure 2: Resource Reallocation on Unicast Portion of Multicast Tree.

node N,. This reflects on the local worst-case delays and on the buffer sizes: both
the the local worst-case delay and the buffer requirement on N, are smaller than on
N;. After the reallocation, the scheduling priority of C' on N, is reduced, causing
the worst-case delay to increase. This is compensated by the increased priority on
N;. While increasing the priority on N; reduces the buffer requirements on Ny, the
reduced priority on N, causes the buffer requirements on N; to increase. Overall, this
example illustrates how resource reallocation can balance the resource requirements.

To conclude, we note that on N, the resource reallocation in this case affects the
buffer requirements only. Therefore, this reallocation scheme also works when N; is
a branch node in the multicast tree.

3.2 Resource Reallocation Involving Branch Nodes

When a branch node participates in the reallocation, this affects all its successors
as well. This is illustrated in Figure 3, where the branch node N, is the primary
node of a resource reallocation. We note that in this example some of the secondary
nodes (N{V and N{?)) are branch nodes too. In the following, we define A; to be the
set of all secondary nodes N, N{? . . and N to be the set of all tertiary nodes
Nt(l),Nt(Q), In other words, N, denotes the set of all successors of the primary
node, and N; the set of all successors of nodes in N,. The resource reallocation
procedure, for the case of a reduction of the priority ¢, on node N,, looks as follows:

Step 1: Increase the priority on nodes in ./ys: On all N, set q;g") to be the lowest
() <) 4 d, —d,, where d, denotes the

priority that guarantees a local delay d 5
local delay bound on N, after the priority reduction.

Step 2: Increase the buffer size on nodes in N,: On all N in N, set

. d)
Bl = P P

S

|

|

|

J

I . |
|

|

|

:

)

) ¢

=

) ¢

G

|
|
|
L
-
|
|
|
L

Figure 3: A Branching Portion of the Multicast Tree.

Step 3: Decrease priority on N,: Set the priority on N, to be <Z>p.

Step 4: Decrease buffer sizes on nodes in N;: On all Nt(i) in \V;, set

» J
B(Z) = u P

Figure 4 illustrates this procedure for the example of a primary branch node with
two successors, N{!) and N(?): Before the reallocation, the priorities assigned to the
two secondary nodes are medium to low, whereas the primary node has assigned
a high priority to the channel. The reduction of priority on the primary node is

d
Xmin

compensated by an appropriate increase of priority and buffer requirements on both
secondary nodes.

3.3 Resource Reallocation Involving a Receiver Node

Receiver nodes (i.e. nodes that host a receiver of the channel) play a special role in
the resource reallocation scheme. We remember that during the final acceptance test
at establishment time, the receiver makes the final decision about the acceptance of a
channel by testing the performance it provides. For instance, the receiver node tests
(1) the delay by comparing the end-to-end delay to the sum of local delays along the
path from the source (the difference, if positive, is called the slack s; of node N;),
and (2) the jitter of the channel to be established. As we will see, slack can later be
“traded in” while the channel is active, during future resource reallocations. Resource
reallocation involving receiver nodes comes in two forms, depending on whether the
receiver is on the primary or the secondary node. We describe the simpler reallocation
procedure for the case of the receiver node being the primary node: In this case, the

10

e—d,— ——d,—

L

Tma® s Tms® A

(a) Before Reallocation. (b) After Reallocation.

Figure 4: Resource Reallocation Involving a Branch Node.

slack in the receiver node can be used to trade for a reduction of the priority at the
primary node. The reallocation procedure in the case of a reduction of priority ¢,
looks as follows:

Step 1: Decrease slack on N,: Set 5, := s, + d, — ch, where ch denotes the local
delay bound on N, after the priority reduction.

Step 2: Decrease priority on N,: Set the priority on N, to be qu.

We notice that during this reallocation procedure, no buffers are reallocated.

Figure 5 illustrates the reallocation procedure for the case of a receiver node reduc-
ing the scheduling priority. Figure 5(b) shows how the reduced scheduling priority
increases the worst-case delay bound on N,, which in this case is the receiver node.
This is compensated by reducing the available slack s, in the application.

3.4 Resource Reallocation Protocol

We have described the resource reallocation procedure under the assumption that the
necessary resources are available when the procedure is invoked. This must be insured
by an appropriate procotol. In addition, the resource reallocation must abort properly
in the case of failures or when resources unexpectedly become unavailable. We use a
two-phase-commit protocol to ensure this atomicity of the reallocation process.
During the first phase, the participating nodes agree to tentatively reserve the
required resources for the resource reallocation to take place. If some node does not

11

H H
ﬂ é Application D 5 Application
b P
) 0 =5
| |
Sp ~—3p p-dp—
(a) Before Reallocation. (b) After Reallocation.

Figure 5: Resource Reallocation on a Receiver Node.

have the necessary resources, it can deny to participate in the reallocation process, and
thus force the reallocation to abort after the first phase. If the first phase completes
successfully, all participating nodes have reserved the necessary resources, and the
reallocation process can proceed.

During the second phase of the reallocation process, the actual reallocation is
performed as described in the earlier sections. After the second phase, the newly
allocated resources are committed to the channels. Since the reallocation process is
confined to adjacent nodes, the communication overhead caused by this scheme is
small.

4 Policies

The overall goal of the mechanisms described in the last section is to minimize the
number of channel establishment requests that cannot be accepted because of lack
of resources along the channel route (i.e. minimize the call-blocking probability).
In the absence of a routing subsystem that has detailed knowledge about the loca-
tion of resources, a good initial policy to minimize the call-blocking probability is
to evenly distribute the available resources over the nodes in the network. We note
that such “load-balancing” schemes in systems with multiple resource classes (band-
width, scheduling priorities, buffers, etc.) on one side, and multi-metric performance
requirements (delay, jitter, loss probability, etc.) on the other, is an area of research
that needs much further investigation.

In this section we will use a very simple policy to illustrate, using an example,
the use of the resource reallocation mechanisms described earlier. For simplicity of
discussion, we assume that buffer space at the nodes is not a limiting factor, and
therefore we balance the priority resource only. We define the residual capacity of
a node as the amount of available resources at that node. The residual capacity
directly reflects the blocking probability caused by the resource availability at the

12

node. A balancing policy will therefore try to equalize the residual capacities of
adjacent nodes by appropriately reallocate resources (in our case, priority resource).
In a simple scheme, for example, a node N, with small residual capacity initiates a
resource reallocation round with an adjacent node N with larger residual capacity (or
a set NV of such nodes, if it is a branch node,) if, for an established channel C, ¢, is
larger than ¢,. By decreasing ¢, while increasing ¢,, N, and Vs agree on “migrating”
priority resources from N, to N,.

The example in Figure 6 illustrates how such a simple policy can be used to replace
resource relaxation by a dynamic resource reallocation scheme. In this example,
the establishment process did not relax the resource allocations during the reverse
pass of the establishment process; hence, resources are overallocated along the entire
multicast channel. This results in (1) QoS guarantees at the receiver nodes (in this
example slack) that exceed by far the performance requirements requested by the
clients and, thus, (2) unduly low residual capacities at the nodes along the channel.

Immediately after the establishment of the channel, the receiver nodes trade in
the excessive slack for reductions in scheduling priority. Since the application App,
at node N; has more slack available hat App; on N5, node N; can reduce the priority
for the channel more aggressively.

The priority reduction at the receiver nodes generates a gradient, which ripples
back to the sender, eventually spreading out the resource requirements along the
multicast channel. The node N; is not able to trade in all the slack in one step,
even by reducing the priority ¢; to zero. During later reallocations with its neighbor
node Ng, node N7 increases the priority again, and is able to trade in the rest of the
slack. The result of this repeated resource reallocation process is a channel with fully
relaxed resource allocations.

5 Conclusion and Future Work

In this paper we have described Dynamic Resource Migration, a resource reallocation
scheme for real-time connections in internetworks. The presented approach allows to
reallocate resources, thus having them “migrate” between nodes, without affecting
the timing guarantees provided to the clients by the active real-time connections.
The scheme is currently being implemented as a component of the control subsys-
tem of Tenet Suite 2, the implementation of the Tenet Scheme 2 protocols for real-
time multi-party communication. We are currently investigating the performance of
simple gradient-based distributed load-balancing approaches in distributed real-time
systems. This work ties in to the larger framework of load-balancing schemes for
systems with multiple resource classes and multi-metric performance requirements.
The resource sharing schemes described in Section 2.2 complicate the design of
reallocation policies further, since they introduce interdependencies between other-
wise unrelated channels, if the channels are members of the same sharing group.
We will explore combinations of local, gradient-based approaches with more global,

13

®
&)

@ @ @
- I — —
t t t t
Ny Ny N3 Ny
@ @
b b
= t t —_—— t
Ns Ne N7

(b) Priority Levels as Result of Reallocations.

Figure 6: Dynamic Resource Reallocation as a Method for Resource Relaxation.

potentially off-line techniques to account for such interdependencies.

Acknowledgment

This research was supported by the National Science Foundation and the Defense
Advanced Research Projects Agency (DARPA) under Cooperative Agreement NCR-
8919038 with the Corporation for National Research Initiatives, by AT&T Bell Labo-
ratories, Digital Equipment Corporation, Hitachi, Litd., Mitsubishi Electric Research
Laboratories, Pacific Bell, Tektronix Inc., and the International Computer Science
Institute. The views and conclusions contained in this document are those of the au-
thors, and should not be interpreted as representing official policies, either expressed
or implied, of the U.S. Government or any of the sponsoring organizations.

References

[1] David Clark, Scott Shenker and Lixia Zhang. Supporting Real-Time Applica-
tions in an Integrated Services Packet Network: Architecture and Mechanism.

14

[11]

[12]

In Proceedings of ACM SIGCOMM’92, pages 1426, Baltimore, Maryland, Au-
gust 1992.

Domenico Ferrari, Anindo Banerjea and Hui Zhang. Network Support for Mul-
timedia: A Discussion of the Tenet Approach. In Computer Network and ISDN
Systems, pages 1267-1280, July 1994.

Mark Moran and Riccardo Gusella. System Support for Efficient Dynamically-
Configurable Multi-Party Interactive Multimedia Applications. In Proceedings of
the Third International Workshop on Network and Operating System Support for
Digital Audio and Video, pages 143-156, San Diego, CA, November 1992.

Abhay Kumar J. Parekh. A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks. PhD Dissertation, Massachusetts Insti-
tute of Technology, February 1992.

Craig Partridge and Stephen Pink. An Implementation of the Revised Internet
Stream Protocol (ST-2). In Journal of Internetworking Research and Fxperience,

pages 27-54, 1992.

Jean Ramaekers and Giorgio Ventre. Client-Network Interaction in a Real-Time
Communication Environment. In Proceedings of GLOBECOMM’92, pages 1140-
1144, Orlando, Florida, December 1992.

Lazar, A. and C. Pacifici. Control of Resources in Broadband Networks with
Quality of Service Guarantees. In IEEFE Communication Magazine, pages 66-73,
October 1991.

Bruce Mah. A Mechanism for Administration of Real-Time Channels. Tech. Re-
port UCB/CSD-93-735, University of California, Berkeley, CA, March 1993.

Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker and Daniel Zappala.
RSVP: A New Resource Reservation Protocol. In IEEE Networks Magazine, Vol.
31, No. 9, pages 8-18, September 1993.

Riccardo Bettati, Domenico Ferrari, Amit Gupta, Wendy Heffner, Winnie Howe,
Mark Moran, Quyen Nguyen and Raj Yavatkar. Connection Establishment for
Multi-Party Real-Time Communication. In Proceedings of the 5th International
Workshop on Network and Operating System Support for Digital Audio and
Video, Durham, NH, April 1995.

Scott Shenker and Lee Breslau. Two Aspects of Reservation Establishment. In
Proceedings of SIGCOMM 95, Cambridge, MA, August 1995.

Amit Gupta, Winnie Howe, Mark Moran, and Quyen Nguyen. Resource Shar-
ing in Multi-Party Realtime Communication. In Proceedings of INFOCOM 95,
Boston, MA, April 1995.

15

[13]

[14]

[18]

Amit Gupta and Mark Moran. Channel Groups: A Unifying abstraction for spec-
ifying inter-stream relationships. Tech. Report TR-93-015, International Com-
puter Science Institute, Berkeley, CA, March 1993.

Colin Parris, Hui Zhang, and Domenico Ferrari. Dynamic Management of Guar-
anteed Performance Multimedia Connections. To appear in ACM Journal of
Multimedia Systems.

Hui Zhang and Domenico Ferrari. Rate-Controlled Static Priority Queueing. In
Proceedings of IEKKE INFOCOM’93, pages 539-546, San Francisco, California,
April 1993.

Domenico Ferrari. Design and Applications of a Delay Jitter Control Scheme for
Packet-Switching Internetworks. In Computer Communications 15(6):367-373,
July-August 1992.

S. Jamaloddin Golestani. A Stop-and-Go Queueing Framework for Congestion
Management. In em Proceedings of ACM SIGCOMM’90, pages 8-18, Philadel-

phia, Pennsylvania, September 1990.

Charles R. Kalmanek, Hemant Kanakia, and Srinivasan Keshav. Rate Controlled
Servers for Very High-Speed Networks. In IEEE Global Telecommunications Con-
ference, pages 300.3.1-300.3.9, San Diego, California, December 1990.

16

