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Abstract

For real-time communication services to achieve widespread usage, it is important
that the network services behave gracefully if any component(s) fail. While other
researchers have previously considered failure-handling for non-real-time communica-
tion as well as for unicast real-time communication, these failure-recovery techniques
must be reexamined in the light of the changes introduced by the new protocols and
services for supporting multi-party real-time communication. In this report, we de-
scribe techniques and mechanisms for maintaining network services for multi-party
real-time communication in the face of failures that may make parts of the network
inaccessible. The key goal is that the protocols should provide high performance in
the common case (i.e., in absence of failed components) and the network performance
should gracefully degrade in face of network failures; e.g., in the presence of network
faults, the routes selected may not be as good, the connection set-up may take a
little more time, or resource allocation may be less efficient. We describe appropriate
policies for storing state in the network, as well as the mechanisms for re-establishing
connectivity for previously established connections and to permit setting up new
connections to existing conferences. We also describe a redundancy-based approach,
using forward error correction (FEC), and dispersing the FEC’ed data among disjoint
routes. With these mechanisms, we can make multi-party real-time communication
protocols robust to single and/or multiple failures in the network, without diluting the
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strength of the performance guarantees offered, or sacrifing the system performance
in the common case, i.e., when all components work correctly.
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1 Introduction

The increasing speed of computer networks and the improvement of workstation ca-
pabilities are enabling a new class of distributed applications, those involving multi-
media data. It is widely believed that these applications should be supported in the
general framework of real-time communication [8, 17, 30, 31, 36, 37], which provides
predictable performance (e.g., end-to-end delay bounds for data delivery); typically,
the clients negotiate with the network service provider to obtain a desired Quality
of Service (QoS), which the provider guarantees. A number of schemes and proto-
cols have been proposed to provide real-time communication services. Most of the
schemes are connection-oriented, and reserve resources (bandwidth, buffers, and so
on) along the route of a real-time connection [8, 17, 26].

While failure handling and recovery for computer networks has been well-researched
for non-real-time communication, there is very little research in handling failure in
case of real-time communication. Also, the proposed solutions suffers from one or
more of several drawbacks:

e They may assume a very limited communication model. For example, [4, 34,
33, 35, 32| limit the treatment to simplex, unicast channels.

e They may dilute the level of performance guarantees. For example, RSVP[25,
29, 28, 42] uses a soft-state mechanism that provides a “best-effort” approach
to failure-handling. The failure-handling can be significantly delayed because
of the soft-state nature, and there are no mechanisms by which an end-user can
determine if the network is still supporting the performance that it requested,
or if, due to the failure re-routing algorithm followed, the required resources
were not available.

e They may design and optimize the system for handling failures [42, 6, 8, 7].
The common-case (i.e., with all components working correctly) performance
may suffer as a consequence.

For real-time communication services to achieve widespread usage, it is important
that the schemes and protocols allow the network’s management to provide a useful
and usable service; since all networks can fail (for example, due to operator error, due
to natural calamities, like earthquakes, or due to hardware and software crashes),
it is important that we incorporate useful failure-handling techniques in designing
multi-party real-time communication protocols.

This paper describes techniques that can be used to restore guaranteed perfor-
mance multicast channels, using the available unused network capacity, after single
and/or multiple link and node faults'. We assume a fail-stop model of system faults

TA system fails when its behavior deviates from its specified behavior and it therefore can not
provide the desired service. An error is that part of the system state which, unless appropriately
corrected, is liable to lead to subsequent failure. The cause of an error is a fault. In this discussion,



and failures [39, 27, 41]. Also, though our algorithms are optimized for high perfor-
mance under the common case that the components work correctly (as the failures
are rare events), the network should be able to gracefully handle multiple failures.
The paper is organized as follows. Section 2 describes the salient features of
the Tenet multi-party communication protocols that provide the background for the
research described here. In Section 3, we discuss some of the key ideas and con-
siderations that motivated us to the current design. Failure-handling mechanisms
encompass two related issue: maintaining distributed state in presence of failures in
the network, which we discuss in Section 4; and recovering multicast trees from node
and link failures, which we discuss in Section 5. We describe a hybrid mechanism in
Section 6 and then conclude this paper with a brief review of related work in Section 7.

2 Tenet protocols for multi-party real-time communication

In this paper, we illustrate our approach to failure-handling in the framework of
the Tenet multi-party real-time communication protocols [17]; though this discussion
is limited to the Tenet protocols, the underlying ideas and techniques are equally
applicable to other multi-party real-time communication protocols. Our previous
paper [5] describes the relevant aspects of the Tenet protocols; in this discussion, we
limit ourselves to discussing a few of their salient features. We first describe the Tenet
approach to real-time communication and follow the discussion with a description
of key issues that arise in multi-party settings. We will then describe two aspects
of the Tenet Suite 2: how state information is currently maintained, and how the
channels are set-up so as to meet the client-specified performance requirements. This
discussion thus sets the stage for describing our proposed mechanisms for handling
network failures in the Tenet Suite 2.

2.1 Tenet approach to real-time communication

The scheme on which the Tenet Suite 2 is based implements the multicast real-time
channel abstraction. This communication abstraction is defined as a simplex connec-
tion between a source and a set of destinations, capable of guaranteeing a given (and
possibly different) quality of service (QoS) to each destination in the set. A real-time
channel (“channel” for short in the sequel) is characterized in the Tenet schemes at
the network layer by a set of traffic specification parameters and, for each destina-
tion, a quadruple of QoS parameters that specify the desired end-to-end performance.
Scheme 2 allows channels to be established from the source or from the destinations;
we describe here, for brevity, only the former procedure.

When a client wants to set up a channel, it invokes the Real-Time Channel Ad-
ministration Protocol (RCAP) and passes to it suitable identifiers for the source and

we will sometimes use these terms interchangeably, as long as the appropriate meaning is clear from
the context.



the destinations, as well as the source’s traffic parameters and each destination’s QoS
parameters. RCAP gets a possible route for the channel from a Routing Server, and
issues a channel-establish message from the source. This message follows the given
route, replicating itself at each subtree vertex it encounters on its path, and sending
a copy of the message down each of the branches of that subtree. Admission tests
are performed at each server (where a server is a node or a link) reached by a copy
of the message; if any of the tests is unsuccessful, a channel-reject message is sent
back toward the source; if all tests are successful, a copy of the message is sent to the
next server on that path, until it reaches one of the destinations. Each destination
makes a final decision about the setup request for the new channel, and returns an
channel-accept or channel-reject message to the source. Messages of both types wait
for those from the destinations in the same subtree at the subtree’s vertex, where
they are merged with them before the resulting message is forwarded on the reverse
path toward the source.

Some resources had been tentatively reserved by the channel-establish message or
one of its replicas in each traversed server. When receiving the returning message(s),
which will generally contain both accepts and rejects from the various destinations in
the corresponding subtree, the server cancels those reservations (if all the replies are of
the channel-reject type) or adjusts them according to the information received from
each accepting destination. These adjustments are reflected in the return message
forwarded to the server immediately upstream, as well as in the amounts of resources
actually reserved in the server for the new channel. At the end of all this activity, the
source receives the results of the request within a single return message, and transmits
them to the client for evaluation and further action.

The channel so created, reaching the destinations that have accepted the request,
is now ready for immediate use and remains in existence until it is torn down explicitly
by the client or destroyed by an irrecoverable failure.

2.2 Multi-party issues in real-time communication

In this section, we discuss some of the issues in the design of network services for multi-
party communication; these issues arise primarily due to the multi-party nature of the
communication (e.g. multicasting, dynamic changes in the conference membership,
resource sharing etc. as described below).
Multicast groups: Many multi-party applications involve a large number of recip-
ients for each data stream; it is clear that multicasting can be used to reduce the
traffic on the network nodes and links thereby saving valuable network resources.
Now, a key component of the multi-party communication is the presence of mul-
tiple senders and receivers. A strawman multicast scheme would require that at
the connection establishment time, the sources specify the list of receivers. It is
unreasonable to require that in a large-scale distributed multimedia application (e.g.
computer-based-conferencing) the sender (or for that matter, any central application-
based authority) know about all the receivers; it is equally unreasonable to require



the receivers to know about all potential senders for that conference. It is important
that the network service support this decoupling between the different participants;
the network should provide the rendezvous among the participants interested in a
common “session”.

The realtime nature of the conference also favors this separation of the senders
and receivers. It is expected that different receivers will be heterogeneous, i.e. that
they will vary in their ability to handle the data, and the QoS requirements that
they may have. It is generally unreasonable to expect the senders to specify these
properties for all possible destinations of their data stream; this will also not scale
well to very large conferences.

Also, multi-party conferences tend to be long-lived; the presence of multiple
senders and receivers raises another issue: the membership in a multicast group
may be dynamic, i.e., receivers may join (or leave) to listen to a session while it is
in progress. It is important that the network service provide support for dynamic
changes in group membership.

For supporting the abovementioned aspects of multi-party communication, the

key abstraction is the real-time multicast group, also referred to as the Target Set
abstraction. This Target set abstraction is the real-time analog of the IP Hostgroup
abstraction, in that while an IP Hostgroup has, as members, the destinations inter-
ested in listening to a common “session”, the Target set members are these interested
destinations along with the requested bounds on end-to-end performance (e.g., end-
to-end delay, the jitter, i.e., variation in the delay etc.). A channel logically transmit
data from a particular sender to a Target Set; this amounts to transmitting the data
from that sender to all members of the Target set. Receivers can dynamically join
and leave a Target set; when they join a Target set, they start getting data on all
channels sending data to the Target set. In this manner, the Target sets support the
decoupling between the senders and the receivers and also provide the rendezvous
among them.
Resource sharing: Traditional real-time network systems (e.g., [17]) treat traffic
on different connections independently when determining their resource requirements;
for multi-party real-time communication, this results in inefficient over-allocation of
resources [22]. For example, consider an audio-conference of one hundred persons. In
the strawman proposal, the conference is set up by establishing one hundred multicast
channels, one from each speaker (sender) to all listeners (destinations). It is reasonable
to expect that only one person speak at any time. Along common sub-paths (for these
hundred channels) it would be sufficient to reserve resources for two audio channels
(to allow some over-speaking). Unfortunately, as per the traditional approach, if fifty
of these channels overlap along some common sub-path, the network would reserve
enough resources for fifty audio channels; this is clearly wasteful over-allocation. The
resource allocation can be reduced (and the allocation efficiency increases) if the
network clients can specify these resource sharing properties to the network and if
the network can use such information to reduce the resource allocation along common
sub-paths.



The Tenet Scheme 2 provides channels groups [23]; the resource sharing channel

groups allow the network clients to specify these resource sharing relationships to
the network. In the above example, the application would: (a) create a new channel
group, and (b) inform the network to include the hundred audio channels in this
channel group. The client would also inform the network that at any server in the
network, the aggregate resource allocation for all channels should not exceed two
audio channels. During channel establishment for these channels, at any server, the
admission test system can determine if it has already allocated resources for two audio
channels and if so, accept this new channel without allocating any more resources.
This mechanism fits in especially well with the rest of the Tenet scheme because it is
fully-distributed; different servers make this decision independently.
Advance reservations: Conferencing and other important distributed multi-party
multimedia applications would benefit from a network service the provides support
for advance reservations. The network service clients who wish to set up multimedia
multi-party meetings need to schedule those meetings in advance to make sure that
the participants will be able to attend, and would like to obtain assurances that the
network connections and the other required resources will be available for the entire
duration of the meeting. The Tenet Scheme 2 provides its users with the ability to
book network resources (far) in advance of their use[19, 21]; this advance booking
requires long-lived state in the network and it thus raises some interesting questions.
How is this state stored? If a link goes down, should we also reroute the advance-
reserved channels that are to traverse this link in the distant future? Do we need
separate mechanisms for handling advance reserved channels or can we effectively
re-use mechanisms designed for non-advance channels?

2.3 Tenet Suite 2: State information management and channel establish-
ment

We can now describe the two key components of the connection establishment and
management system for Real-time Channel Administration Protocol (RCAP) for the
Tenet Protocols Suite 2: state information management, and channel establishment.

In the Tenet Suite 2, the channel administration system consists of a set of RCAP
daemons, one on each node in the network, which communicate with each other via
reliable messages (using TCP connections). In this object-oriented design, the RCAP
tasks are carried out by the different objects in these RCAP daemons; some of these
objects store state information for managing multicast channels and groups, some
others perform admission tests and store resource allocation information, and others
provide routing and access control functionality. We now describe, as per the current
Suite 2 design and implementation, the objects that participate in state information
management and in channel establishment.

e Target Set Object: In Suite 2, there exists one Target Set object for every
Target Set (and thus, for each “conference session”). The conference organizer
requests the network to create a Target Set; then the destinations join the Target



Set and the senders establish channels to the Target Set. To join a Target Set,
the destination client sends a Join-message to the Target Set object. When the
Target Set object receives the Join-message, it stores the destination address
and the requested performance information; it also sends a message to the
already established channels to add this new destination to their destination
list.

Channel Object: In Suite 2, there exists one Channel object for every chan-
nel. As mentioned before, a channel sends data to members of a Target Set.
When a channel is created, the client also specifies the Target Set whose mem-
bers will receive the channel; in the current design, mainly due to efficiency
considerations, the Channel Object is co-located with the corresponding Target
Set object (i.e. at the same RCAP daemon/node). When a client wants to
establish a channel, it send an Establish-message to the corresponding Channel
Object; when a channel object receives an Fstablish-message , it obtains the
Target Set membership list from the Target Set object; it then sends this infor-
mation to the routing system, through the Routing Stub object, to obtain the
multicast route. It then sends an Fstablishment-request to the RCAP daemon
at the channel source for channel establishment.

Group Object: There exists one Group Object (also referred to as Sharing
Group object) for every resource sharing group; this group object maintains
information about the aggregate traffic specification for that sharing group.

Establishment Object: There exists one Establishment object at each RCAP
daemon. The Channel object sends the Fstablishment-request message to the
Establishment object at the channel source; the Establishment object contacts
the Local Resource Manager (LRM) to allocate resources (the LRM also de-
cides whether resource sharing can be used to reduce resource allocation, or to
accept new channels without allocating any more resources). The LRM returns
the local performance bounds to the Establishment object, which forwards the
Establishment-request message to downstream nodes; this establishment process
proceeds in the manner specified in Section 2.1.

Routing Stub Object: The RCAP daemon talks with the routing system
through the Routing Stub (RS) object; there is one such object at each RCAP
daemon. The RS object talks with the Routing Managers that form the dis-
tributed routing system. The routing system maintains a fair amount of state
in this system. First, for all established channels, the routing system keeps in-
formation about resource allocations and local performance bounds at all nodes
along the (multicast) channel route; this information is used for obtaining incre-
mental routes for supporting dynamic changes to the Target set membership.
Second, the routing system tries to maximize resource sharing gains by increas-
ing the common sub-path overlap for channels that can share resources. For



doing this, the routing system associates, with each Sharing Group, a “network
model”; the network model keeps information about the links traversed by the
channels belonging to that group. This also adds to the state information kept
by the routing system.

3 Key ideas and considerations

In this section, we describe the key ideas and considerations that motivated the design
of out failure-handling techniques and mechanisms. It is important that we distin-
guish between the design objectives and goals; the objective is to provide performance
guarantees for multi-party real-time communication; the goal is to handle failures in
the system. It is not acceptable that we soften the performance guarantees to provide
failure-handling. It is acceptable that if a network component fails, then some chan-
nels may not be able to recover to the previous level of Quality of Service; or if data
is lost for some reasonably small transition time; or if the network is partitioned,
some channels may not be able to recover from the consequent failures. However,
failure-handling techniques should not force us to dilute the performance guarantees
that we can offer to the clients when the network does not suffer from failures.

In our approach to designing failure-handling techniques, a key component is
failure-detection; in our approach, failures are explicitly discovered; this discovery
may result from either (a) a time-out occurring when a node contacts another to ob-
tain information or to carry out some tasks, or (b) as a result of a monitoring process,
under which all nodes periodically send messages to each other via TCP; nodes re-
ports failures to the network if the corresponding TCP connection is not established.
This discovery triggers the failure-handling mechanisms as well as the fault-handling
mechanisms that attempt to recover the network from the corresponding fault(s).

Two key ideas comprise our approach to designing failure-handling techniques for
multi-party real-time communication: fate-sharing, and the principle of optimality.

3.1 Fate-sharing

The fate-sharing principle was first described in [7]. The fate-sharing principle says
that it is acceptable to lose the state information associated with an entity if the
entity itself is lost at the same time; this principle can be used to make decisions
about the nodes where state information should be placed. For example, a channel
can not exist (or is useless) if the source node goes down; in this case, the fate-sharing
principle states that the critical state information associated with a channel should
be available (or reconstructible) at the channel source node. It should be noted that
this information may also be present at other nodes in the network (for performance
reasons, for example); the principle just requires that it be available at the source
node. Also, the fate-sharing principle does not rule out connection-oriented services;
it merely states that the connection state information should be available at the source
node.



3.2 Principle of optimality

An important principle is that we should optimize the design for the common case.
While the design should be robust to multiple failures in the network and it is desir-
able that the performance should degrade gracefully in the presence of failures, the
common case for network operation is the “no-failure” case; therefore, the protocols
should be designed for the highest performance if there are no failures in the network.

This principle implies that the network protocols may be designed, either explic-
itly or implicitly, to operate in two different modes: the “normal” (failure-free) mode
and the “failure” (in presence of failure(s)) mode. In the failure-free mode, the tech-
niques are chosen for high performance. However, when network components fail,
the network switches to failure-mode operation; in this mode, the techniques chosen
may not perform as well as the normal-mode techniques. These techniques would,
though, work well in a robust manner. Of course, we still need to make sure that the
normal mode operations respond to network failures by switching to the failure mode
techniques in a robust manner.

4 Managing state information in presence of faults

As we mentioned in Section 1, protocols for providing performance guarantees must
keep some state in the network; this state keeps track of the resources already allo-
cated to existing channels. Also, multi-party real-time communication requires the
network to maintain state information about the multicast groups, the group members
and their performance requirements, the existing channels, and the inter-relationships
among these channels. In Section 2, we described how some of this information is
maintained in the Tenet Suite 2; we also described, in Section 3, the fate-sharing
principle. In this section, we describe how the fate-sharing principle can be used in
setting policies for distributing the state information across the network nodes; this
distribution improves the accessibility of the desired state information in the presence
of faults in the network.

e Target Set: The Suite 2 implementation of Target Sets (a single, non-distributed
object maintaining all state information for a given Target Set) is clearly sus-
ceptible to failures in the network; if the node with the Target Set object goes
down, then no further connectivity for that Target Set is possible; new channels
can not be established because the corresponding Channel Objects will not be
able to obtain Target Set membership, and new destinations can not join a
Target Set because the corresponding Target Set object is not available. This
is clearly bad news.

The good news is that the problem is reasonably easy to rectify; the basic so-
lution follows from the fate-sharing principle. The fate-sharing principle would
suggest that the Target Set membership information (e.g., destination perfor-
mance parameters) be maintained with the corresponding destination nodes. In



this case, the performance parameters for a given Target Set member will be
available unless that destination node goes down; if a node goes down, then we
do not need the performance parameters for the members at that node.

The optimality principle would dictate that for normal-mode operations, we
should be able to obtain this information without necessarily querying all des-
tinations; this leads us to the second component of our solution. The (possibly
distributed) Target Set object maintains a “cache”; as long as the Target Set
object is available, it maintains correct, up-to-date information about the Tar-
get Set membership?; if the Target Set object becomes unavailable, the Target
Set members re-create the “cache” by creating a new copy of the Target Set
object, and filling in the state information about the members’ performance
requirements. Reliable, non-real-time multicast group management protocols
can be used to significantly simplify this task; For example, if IGMP is used,
the network can associate each Target Set with an [P HostGroup; all Target
Set members also listen to this Host Group for requests to provide the requisite
state information. If the “cache” becomes unavailable (for example, due to a
network partition) the cache can be recreated using standard distributed leader
election protocols[1, 38].

e Channel object: In the current Suite 2 implementation, the Channel object is
“co-located” with the Target Set object, i.e., the Channel Object for a channel
resides on the same network node that the Target Set object for the corre-
sponding Target Set resides. By the fate-sharing principle, the Channel Object
should be located at the channel source; this will ensure that the channel state
information is available as long as the channel source is available. We do not
need any other changes for maintaining the channel state.

¢ Resource sharing: Resource sharing information is stored at the correspond-
ing Sharing Group object. When a member channel is established, state is also
installed at the nodes along the channel route; the routing system also main-
tains state required to maximize the common sub-path overlap among channels
that can share resource allocations.

We do not need to make any changes for the resource sharing information. If
the sharing-related routing information is not available, the routing system can
still proceed; the routes generated may not be as good in optimizing overlaps
among member channels, but wherever these paths overlap, resource sharing
can be used to improve resource allocation efficiency. This follows the principle
that if some components fail, the performance may degrade but the protocols
will still work correctly.

If the Sharing Group object is not available, the channel establishment can still
proceed. If this SG object was available when another member channel was

2State information about the members’ performance parameters is thus duplicated



previously established, the resource sharing information will be available along
that channel’s path; this information can be used to share resource allocations
on common sub-paths. If the SG object becomes available later, the member
channels then established can share resource allocations with each other as well
as with channels previously established when the resource sharing information
was not available. Even if the SG object becomes permanently unavailable soon
after the initial creation, the protocols will work correctly; they will not be able
to use resource sharing to improve resource allocation efficiency. The principle
of optimality applies again.

Routing:

As we mentioned in Section 2, the routing system maintains, in addition to
the network-wide real-time load information required for setting up routing
tables, state information for already established channels: (a) the established
route and resource allocation for the current channel at each node along the
channel route; this information is used for incremental establishment for adding
new destinations which dynamically join the Target Set after that channel has
already been established; and (b) for each sharing group, the nodes and the
links in the network where resources have already been allocated, either for the
entire group or for some member channels.

As per fate-sharing principle, it would be useful to store the established route
and resource allocation information at the corresponding channel source; this
copy is then available as long as the channel source is available.

Advance reservations:

As mentioned in Section 2.2, the Tenet Protocol Suite 2 supports advance reser-
vation of network resources; these mechanisms are based on resource partitioning[18,
20]. The connection establishment signaling is the same for advance channels

as for non-advance reserved channels, with the only difference being in the the
Local Resource Managers (LRMs); these changes are described in [19, 21].

The resource allocation information, and the associated state, is long-lived for
advance-reserved channels; there are two alternatives for storing this informa-
tion: the simple alternative is to store the information at the same node(s) as
where this information would be stored for non-advance channels; the other al-
ternative is to store the information at other “central” and “more robust” nodes.
The second alternative requires more work, to maintain information about these
“robust” sites, and for protocols for moving information to and from these sites.
On the other hand, the first alternative is simpler, and it also maintains uni-
formity with the state storage and failure recovery for non-advance channels.
Due to these factors, we chose the first alternative. Another important con-
cern relates to the time when recovery should be attempted. First, the network
usually has a lot more time for recovering advance-reserved channels. Second,
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failure-recovery may not be necessary if fault-repair (for example, detecting and
replacing the faulty components) can reasonably be expected to finish before
the advance-reserved channel’s lifetime, it makes sense to not do any failure
recovery at all.

5 Recovering multicast trees from node and link failures

In the previous section, we described the mechanisms for maintaining the state infor-
mation in a robust, fault-tolerant manner. In this section, we describe the mechanisms
that can used to maintain and recover multicast transmission from failures in the net-
work. We present two approaches: (a) when the network detects a failure, it can try
to “repair” and “re-build” multicast trees to recover from link and node failures, or
(b) we can redundantly transmit data on multiple channels. These approaches are not
mutually exclusive; these can be used together to provide better tolerance to failures
in fault-prone networks.

5.1 Repairing existing multicast trees

We use the standard tree terminology in describing these mechanisms: root , prede-
cessor, successors, and descendants (the reflexive transitive closure of the successor
relationship). Also, we limit this discussion to mechanisms that recover one single
channel from an already detected failure®. [4, 34] describe some interesting interac-
tions when the network attempts to repair several unicast channels in parallel, and we
expect similar interactions with multicast trees. However, such discussion is outside
the scope of this report; we plan to investigate these interactions in the near future.

Due to link and system failures, a channel’s multicast tree may shrink or even
may be split in a number of subtrees. A node in a channel’s multicast tree is called
destination orphaned (or d-orphaned for short) if there is no destination in this node’s
set of descendants. A node is defined to be sender orphaned (or s-orphaned for short)
if the root of this node’s subtree is not the sender, i.e. there exists no path from
the sender to this node. Figure 1 and Figure 2 illustrate these concepts. We also
assume that control messages between nodes are transferred over reliable connections;
for example, in the Tenet Suite 2, the nodes exchange messages over TCP . These
connections guarantee ordered, unicast message delivery in the absence of link and
system failures.

5.1.1 Recovery for D-orphaned nodes

At every node in the network, the RCAP daemon maintains, for each channel that
passes through that node, the list of the node’s successors ( i.e., the node’s descendants
in the multicast tree) ; this list is called the successor-list for that channel. A node in
a channel’s multicast tree becomes d-orphaned if all of its successors are unavailable

3Many such recovery processes can proceed in parallel, independent of cach other
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or become d-orphaned themselves; the sole exception is that a destination node can
never be d-orphaned.

When a node learns (for example, through the monitoring process) that its neigh-
bor has become unavailable, it removes this neighbor from all the successor-lists that
the neighbor is on; it does the same when a d-orphaned message arrives from a neigh-
bor. In either case, the node should release the resources allocated at the outgoing
link to that neighbor. Also, a non-destination node becomes d-orphaned when its
successor-list becomes empty (and a destination node is never d-orphaned).

When a node becomes d-orphaned, the failure-recovery mechanisms at that node
should release the resources locally allocated to that channel. Also, the node should
send a d-orphaned message to its predecessor. The node can then remove all local
state information about that channel. With these steps, the node completes the
recovery for the d-orphaned state.

5.1.2 Recovery for S-orphaned nodes

A node becomes s-orphaned for a channel when either its parent becomes s-orphaned
or it can no longer get data from its parent. When a node becomes s-orphaned,
all its descendants also becomes s-orphaned. Fault-recovery for d-orphaned nodes is
simpler because it only requires reclaiming the allocated resources; on the other hand,
failure-recovery for s-orphaned nodes is more difficult because it requires routing and
allocating resources along a new “repair” path from the channel source. A key issue
in such failure-recovery is selecting the node which this new path will connect the
channel source to. We have a spectrum of choices for this selection: at one extreme,
we can select, for this failure-recovery, all destination nodes that are s-orphaned; at
the other extreme, for this failure-recovery, we can select the “root” s-orphaned node,
i.e., the s-orphaned node whose link to its parent failed.

e When the root s-orphaned node learns (again, for example, through the mon-
itoring process) that its parent has become unavailable, it sends a message to
all destinations in its sub-hierarchy, on receipt of which each destination inde-
pendently attempts to set up a path from the source to itself.

e When the root s-orphaned node learns that its parent has become unavailable,
it declares itself s-orphaned and tries to reconnect its entire sub-hierarchy by
re-establishing the channel along a new path from the source to itself.

As usual, there are pros and cons for these different policies. The advantage of
reconnecting sub-hierarchies is the efficiency of the entire rejoin procedure. Instead
of individually re-connecting each each destination in the disconnected sub-hierarchy,
the network attempts to re-connect only the root of the sub-hierarchy. In reasonably
well-designed networks under reasonable operating load, this procedure should suc-
ceed in most cases. If it fails, the network can delegate the re-connection responsibility
immediately to the destinations in the sub-hierarchy. Consequently, even in the fail-
ure case, only one extra re-connection operation has to be performed. The advantage
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of the second policy, which immediately transfers the re-connection responsibility to
the destinations in the sub-hierarchy, is that one might end up with better routes and
a more balanced network load.

There are several alternatives that can be examined as policy issues. A critical
issue relates to the steps that the failure-handling system should take if the first
attempt fails due to non-availability of resources. We will discuss these issues in
Section 6.

5.2 Redundancy based approaches

A simple, albeit expensive, solution would be to redundantly transmit data on two
separate, preferably disjoint channels; this would ensure tolerance to a single failure
in the network, though it would cost twice as much in the network resource allocation
as well as in data transmitted. Such redundancy based approaches are appropriate
in a network in which either the transmission capacity is relatively abundant, or for
applications where tolerance to failure is critical (tele-surgery?).

More generally, instead of directly sending multiple redundant copies of data on
separate channels, we could employ Forward Error Correction (FEC) techniques along
with multiple-channel reservations; for example, the can use FEC to send data on
five separate channels, where the data sent on any four channels would be enough
to reconstruct the original data stream. In this case, the application performs the
key failure-management related tasks, including FEC coding and decoding, as well as
creating additional redundant channels if increased protection is required, or if one of
the existing redundant channel fails due to a network failure. What is the network’s
role in this case?

All this application-level work would be quite useless without appropriate network
support. For example, with the current Internet routing protocols ([9, 2]), all channels
would follow the same multicast route to the respective destinations; thus, if any
node or link along this route was to fail, all the channels would fail together and this
redundancy would be absolutely useless.

Thus, for redundancy-based approaches to work, the network must provide addi-
tional support; in this case, the network should try its best to route these channels
along mutually disjoint routes. For such disjoint routing to work, the client has to
inform the network that these different channels are all due to the same FEC’ed
data stream. The clients can use the channel groups [23] to pass this information to
the network service. The network can then use this information to obtain mutually
disjoint routes.

We now present a simple example to illustrate this mechanism. Here, the appli-
cation creates five channels, say C1, C2, C3, C4, and C5, to transmit FEC’ed data
belonging to a single data stream. In this case, one sequence of calls can be:

o Create a Target Set, say TS. Also create a Channel Group, say CG, with disjoint
routing relationship.
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o Create channels C1, C2, C3, C4, and C5.
e Include these five channels (C1 ... C5) in the group CG.

e Request the network to establish these five channels (C1 ... C5).

When the network gets the establishment request, it knows that these five channels
are related in that as far as possible, they should be provided mutually disjoint routes.

6 A hybrid mechanism

We now discuss the alternative policies that the network can try if the initial failure-
recovery repair fails due to non-availability of network resources. If the initial re-
connection is attempted to the destination nodes directly, and that attempt fails, that
re-connection would probably fail again due to non-availability of network resources?.
On the other hand, if the root s-orphaned node fails in re-connecting itself, it is more
likely that re-connection to one of its descendants may succeed. In this case, the
root s-orphaned node can either (a) delegate this re-connection responsibility to its
immediate successors, (b) delegate the re-connection responsibility to the destination
nodes in its sub-tree, or (c) delegate the responsibility to the descendants at a certain
level in-between.

Also, after a (small) number of repeated re-connection attempts, the network
should give up on re-connecting these destinations and release all the allocated re-
sources accordingly.

One can expect that trade-offs among these different alternatives depend on the
network load and the properties of the multicast routing system. If the routing
system has enough information, it can suggest the policy that should be followed. For
example, during the initial re-connection attempt, the routing system could decide -
based on its information on the current network conditions - that the best fall-back
would be for the root s-orphaned node to immediately delegate the re-connection
responsibility to the final destinations.

We now describe a simple mechanism that can support the above-mentioned al-
ternatives; the appropriate policy can be chosen, and dynamically re-selected, by
modifying the relevant variables. Assume that each node maintains two variables:

e StartLevel: This variable specifies on which (relative) tree level the recon-
nection process starts. Assume that node N becomes s-orphaned due to the
unavailability of its predecessor node. Then StartLevel defines, where recon-
nection starts relative to N. If StartLevel equals 0, then reconnection starts at
N; if StartLevel equals 1, then reconnection starts at N’s successors. If the

*A repeated re-connection attempt can succeed either because the newer route is better than
the previously attempted one, or because in the meantime, some other channel released its resource
allocation. Neither is likely in the short repair time frame that we are interested in, especially as we
expect our routing system to provide a reasonably good route for the re-connection attempt.
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reconnection is to directly start at the destinations, the StartLevel is set to
infinity.

e RetryLevel: If re-connection attempt fails at node N, then RetryLevel specifies
on which tree level relative to N at which reconnection should be re-attempted.
For example, if RetrylLevel is set to 0, then N re-attempts reconnection, after a
small delay; if RetryLevel equals 1, then N’s successors retry. If RetryLevel is
set to infinity then only the descending destinations retry the reconnection.

Both variables can be set in the initial RCAP daemon configuration and can be set
and dynamically adapted by network management, in coordination with the routing
system, based on the feedback obtained from previous rerouting attempts.

In the following description, we assume that an s-orphaned message includes the
globally unique Channel Id along with “Level” information. When a node, say N,
learns that it has lost connectivity to its predecessor, it checks the local StartLevel
variable. If StartLevel equals 0, it immediately requests a connection from the source
to itself. Otherwise, an s-orphaned message is sent to N’s successors, with Level set
to (StartLevel - 1). After sending this message, N releases all resources and state
information associated with the corresponding channel.

When a node receives an s-orphaned message it checks whether the channel in-
dicated in the received message is (locally) still active. If the channel is not active
anymore, it concludes that this channel has suffered from multiple network failures
and other failure recovery is already in progress and it can safely ignore the current
s-orphaned message. Otherwise, its actions depend on whether it is a destination
node for the current multicast.

In the case the receiver is a non-destination node, it checks “Level” included in
the message. If Level equals 0, the node attempts re-connecting the channel source
to itself; else, it decreases Level by 1 and propagates the s-orphaned message with
the decremented Level value to all of its successors. After sending this message, the
receiver releases all resources and state information associated with the corresponding
channel.

If the receiving node is a destination, the node always attempts to re-connect
the channel source to itself. independent of the Level value included in the received
message. Also, if the node has any successors and the Level value is greater than 0,
the Level is decremented by one and included in the s-orphaned message(s) sent to
the current node’s successors.

If the re-connection attempt issued by node M fails, the node’s activity depends
on whether or not the node is a destination. If M is a destination, it periodically
tries re-connecting the channel source to itself till the re-connection procedure either
succeeds or returns the information that the channel does not exist anymore (or
some threshold on the number of unsuccessful trials is reached). To avoid that an
s-orphaned message is sent several times to its successors, N sets a flag in the local
channel state information when sending this message the first time.
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If M has any successors, it checks its RetryLevel value. If RetryLevel equals 0,
then M tries re-connecting the channel source to itself. Otherwise, it sets “Level” in
an s-orphaned message to (RetryLevel - 1) and sends this message to its successors.
After sending this message, M releases all resources and state information associated
with the corresponding channel.

By appropriately setting StartLevel and RetryLevel, we can support a wide variety
of policies.

7 Related work

Fault-handling has been extensively investigated in telecommunication networks. [16]
discusses fault-recovery in telecommunication networks against a layered model: the
highest is the switched layer where the unit of communication and fault-recovery is
the call and the recovery action is to simply update the routing tables around the
faults, with existing calls redialed by the end-systems; the next layer is the cross-
connect layer where the units of communication and recovery are trunks (e.g., T1 or
T3) where the recovery action is to reroute remaining trunks around the faults so as
to meet the bandwidth requirements of the flows and the recovery mechanisms are
based on pre-computation, and running dynamic distributed algorithms[4, 34, 3].
The ST family of protocols (ST, ST-II, ST2+) provide connection-oriented multicast-
based real-time communication service [24, 11, 12, 13, 14, 15, 36, 40]; the latest pro-
tocol specification (ST24) is described in [10]. The ST2+ protocol does not directly
support any Multicast Group abstraction (IP multicasting has the HostGroup ab-
straction, the Tenet multi-party protocols have the Target Set abstraction); any such
abstraction must be supported by higher-layer protocols and thus any recovery for
such Multicast Group information is outside the scope of ST2+. Similarly, ST2+ ex-
pects the “application” to provide the Sharing Group information each time a channel
is to be established; it does not maintain such information itself. Consequently, ST2+
is not responsible for recovering such information; this simplifies ST2+ protocol sig-
nificantly but adds to the overhead in the higher-layer protocols. For detecting link
and node failures, the ST2+ agents (similar to RCAP daemons) periodically exchange
“HELLO” messages; if a timeout occurs at an ST2+ agent, it infers that either the
next node is down or the link has failed and then it initiates the recovery mechanisms.
For Tenet Protocol Suite 1, [4, 34, 3] describe fault-handling and recovery mecha-
nisms for simplex, unicast channels with performance guarantees. The unicast nature
of communication considerably simplified their task; they did not have to consider
multiple destinations; nor did they have any multicast group or resource sharing group
information to recover. They proposed techniques for rerouting simplex connections
around failed links, while maintaining the performance guarantees promised to these
connections. They contrasted the performance of local rerouting techniques (where
the nodes adjacent to the faulty node try to reroute the connection) with that of global
rerouting techniques (where the new route is computed from the channel source to
the channel destination), and also proposed intermediate, “hybrid” techniques. When
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a node or a link fails, the system tries to recover, in parallel, the different channels
that traverse the failed component; these authors also observed interactions among
these different parallel recovery attempts. The different channel recovery processes
compete for the same set of resources, resulting in poor system performance (number
of successfully rerouted connections). These experiments also showed that delaying
some of these recovery processes can lead to better overall system performance.

When the DARPA Internet protocols were designed, the most important goal
was that the Internet should continue to supply communication service even when
the networks and gateways were failing. The fate-sharing principle was extensively
used to protect the network from multiple intermediate failures. The network layer
protocol (IP) was designed to provide a basic datagram-oriented service on top of
which multiple protocols could co-exist to provide a variety of services, both reliable
and unreliable. The reliable transport layer protocol (TCP) was designed to store all
connection-related state at the end-nodes; also, each packet carries all information
required to route it to the destination. As no network state is stored at any intermedi-
ate nodes and because the underlying network protocol (IP) transparently re-routes
the datagram in the presence of network faults, the TCP/IP set provides reliable
communication service in presence of multiple network faults. Of course, this task
is considerably simplified because these protocols do not provide any performance
guarantees.

For providing performance guarantees, the IETF researchers designed Resource
reSerVation Protocol (RSVP) [42]. The fate-sharing principle is also used extensively
in RSVP design; RSVP also uses a soft-state approach to make the protocol robust
against network faults. In this soft-state approach, a time-out is associated with all
state information stored at intermediate nodes; the end-nodes must periodically re-
fresh the state information for long-lived sessions. The RSVP designers limited the
protocol to resource reservation state set-up only; the other issues, including routing,
packet scheduling disciplines, and admission control, are handled by other protocols.
In the current implementation, RSVP works on top of IP multicasting; IGMP main-
tains the multicast group membership and the IP multicasting also provides multicast
routing. When a new sender wants to set up a flow® to a multicast group, its sends
a “PATH message” to that multicast group and starts sending data. All destination
(members of a multicast group) reply to the PATH message by sending a “RESERV
message” back to the senders®. In this soft-state system, the PATH and the RESERV
messages are periodically re-sent; when an intermediate node receives any such mes-
sage, it stores (or refreshed) the relevant state information, along with the associated
time-out. IP multicast routing transparently reroutes the messages around any faults
in the network; the state is re-established along any new sub-paths.

The key difference between the RSVP approach and the approach the we described
is that RSVP is designed primarily to operate well in the presence of multiple failures;

5The term “flow” is roughly equivalent to the term channel as used in this paper.
6The traffic overhead is reduced by merging the different messages that belong to the same
multicast group.
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we designed our protocols to provide highest possible performance in the absence of
failures, and yet providing correct service, with possibly degraded performance, when
some components fail. For soft-state protocols, the network management must set the
refresh interval carefully: if the refresh interval is too small, the traffic overhead for the
messages becomes excessively high; if this interval is too high, the network will take
a lot of time in reacting to failures, and it can also result in significantly higher losses
in network resource allocation along old, stale sub-paths when the flow is rerouted.
With these soft-state mechanisms, failure-handling becomes completely transparent;
however, it is possible that the failure-handling mechanisms’ performance may be
degraded due to the same synchronization and competition phenomena as observed
in [3, 4, 34]. Also, the clients have no way of determining if they are indeed receiving
the performance guarantees that they requested.

8 Summary

We have presented a fully-distributed scheme for maintaining network services for
multi-party real-time communication in the face of failures that may make parts of
the network inaccessible. In our scheme design, the key goal was that the protocols
should provide high performance in the common case and the network performance
should gracefully degrade in face of network failures; e.g., in the presence of network
faults, the routes selected may not be as good, the connection set-up may take a
little more time, or resource allocation may be less efficient. We described the fate-
sharing based policies for storing state in the network, as well as the mechanisms
for the network to re-establish connectivity for already established connections and
to permit setting up new connections to existing conferences. We also described a
redundancy-based approach, using forward error correction (FEC), and dispersing
the FEC’ed data among disjoint routes. We thus demonstrate the feasibility of build-
ing robust protocols for multi-party real-time communication, without diluting the
strength of the performance guarantees offered, or sacrifing the system performance
in the common case, i.e., when all components work correctly.

Acknowledgment

The authors would like to thank Mark Moran for many useful discussions. This re-
search was supported by the National Science Foundation and the Defense Advanced
Research Projects Agency (DARPA) under Cooperative Agreement NCR-8919038
with the Corporation for National Research Initiatives, by AT&T Bell Laboratories,
Tektronix, Digital Equipment Corporation, Hitachi, Ltd., Mitsubishi Electric Re-
search Laboratories, Pacific Bell, and the International Computer Science Institute.
The views and conclusions contained in this document are those of the authors, and
should not be interpreted as representing official policies, either expressed or implied,
of the U.S. Government or any of the sponsoring organizations.

19



References

1]

[10]

[11]

Hosame Abu-Amara and Jahnavi Lokre. Election in asynchronous complete
networks with intermittent link failures. IEEFE Transactions on Communications,

1994.
Tony Ballardine, Paul Francis, and Jon Crowcroft. Core Based Trees (CBT):

an architecture for scalable inter-domain multicast routing. In Proceedings of

SIGCOMM 93, San Francisco, CA, September 1993.

Anindo Banerjea. Fault management for real-time networks. PhD dissertation,
University of California at Berkeley, December 1994.

Anindo Banerjea, Colin Parris, and Domenico Ferrari. Recovering guaranteed
performance service connections from single and multiple faults. Technical Re-
port TR-93-066, International Computer Science Institute, Berkeley, California,
November 1993.

Riccardo Bettati, Domenico Ferrari, Amit Gupta, Wendy Heffner, Wingwai
Howe, Quyen Nguyen, Mark Moran, and Raj Yavatkar. Connection establish-
ment for multi-party real-time communication. In Proceedings of Fifth Inter-
national Workshop on Network and Operating Systems Support for Distributed
Audio and Video, Durham, NH, April 1994.

Robert Braden, David Clark, and Scott Shenker. Integrated services in the
internet architecture: an overview. Request for Comments (Informational) RFC
1633, Internet Engineering Task Force, June 1994.

David Clark. The design philosophy of the DARPA internet protocols. In Pro-
ceedings of ACM SIGCOMM’SS, pages 106114, Stanford, CA, August 1988.

David Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applica-
tions in an integrated services packet network: Architecture and mechanism. In
Proceedings of ACM SIGCOMM’92, pages 14-26, Baltimore, Maryland, August
1992.

Stephan E. Deering. Multicast routing in a datagram internetwork. PhD disser-
tation, Stanford University, December 1991.

L. Delgrossi and L. Berger. Internet stream protocol version 2 (ST2) protocol
specification - version ST2+. Request for Comments (Standard) RFC 1819,
Internet Engineering Task Force, August 1995.

Luca Delgrossi, Christian Halstrick, Ralf Guido Herrtwich, and Heinrich
Stuttgen. HeiTP: a transport protocol for ST-II. In  Proceedings of
GLOBECOMM, pages 1369-1373 (40.02), Orlando, Florida, December 1992.
IEEE.

20



[12]

[13]

[14]

[15]

[21]

[22]

Luca Delgrossi, Ralf Guido Herrtwich, and Frank Oliver Hoffmann. An imple-
mentation of ST-II for the Heidelberg transport system. Journal of Internet-
working Research and Experience, September 1993.

Luca Delgrossi, Ralf Guido Herrtwich, Frank Oliver Hoffmann, and Sibylle
Schaller. Receiver-initiated communication with ST-II. preliminary version,
September 1993.

Luca Delgrossi, Ralf Guido Herrtwich, Carsten Vogt, and Lars C. Wolf. Reser-
vation protocols for internetworks: a comparison of ST-II and RSVP — extended
abstract. In Fourth International Workshop on Network and Operating System
Support for Digital Audio and Video, 1993.

Luca Delgrossi, Ralf Guido Herrtwich, Carsten Vogt, and Lars C. Wolf. Reser-
vation protocols for internetworks: A comparison of ST-1I and RSVP. In Pro-
ceedings of the 4th International Workshop on Network and Operating System
Support for Digital Audio and Video, pages 199-207, Lancaster, U.K., November
1993. Lancaster University.

Robert Doverspike. A multi-layered model for survivability in inter-LATA trans-
port networks. In Proceedings of GLOBECOMM, Phoenix, AZ, December 1991.
IEEE.

Domenico Ferrari, Anindo Banerjea, and Hui Zhang. Network support for mul-
timedia: a discussion of the Tenet approach. Computer Networks and ISDN
Systems, pages 1267-1280, July 1994.

Domenico Ferrari and Amit Gupta. Resource partitioning in real-time commu-
nication. In Proceedings of IEEFE Symposium on Global Data Networking, pages
128-135, Cairo, Egypt, December 1993.

Domenico Ferrari, Amit Gupta, and Giorgio Ventre. Distributed advance reser-
vation of real-time connections. In Proceedings of Fifth International Workshop
on Network and Operating Systems Support for Distributed Audio and Video,
Durham, NH, April 1995.

Amit Gupta and Domenico Ferrari. Resource partitioning for multi-party real-
time communication. Technical Report TR-94-061, International Computer
Science Institute, Berkeley, California, November 1994. Also to appear in
IEEE/ACM Transactions on Networking, October 1995.

Amit Gupta and Domenico Ferrari. Admission control for advance-reserved real-

time connections. In Proceedings of IELEE HPCS 95, Mystic, CT, August 1995.

Amit Gupta, Winnie Howe, Mark Moran, and Quyen Nguyen. Resource sharing
in multi-party realtime communication. In Proceedings of INFOCOM 95, Boston,
MA. April 1995.

21



23]

[24]

[25]

[26]

[29]

[30]

[31]

32]

33]

Amit Gupta and Mark Moran. Channel groups: A unifying abstraction for
specifying inter-stream relationships. Technical Report TR-93-015, International
Computer Science Institute, Berkeley, California, March 1993.

Ralf Guido Herrtwich and Luca Delgrossi. Beyond ST-II: fulfilling the require-
ments of multimedia communication. In Third International Workshop on net-
work and operating system support for digital audio and video, pages 23-29, San
Diego, California, November 1992. ITEEE Computer and Communications Soci-
eties.

Sugih Jamin, Peter Dantzig, Scott Shenker, and Lixia Zhang. A measurement-
based admission control algorithm for integrated services packet networks. In

Proceedings of SIGCOMM 95, Cambridge, MA, August 1995.

A. Lazar and C. Pacifici. Control of resources in broadband networks with quality
of service guarantees. [FFKE Communication Magazine, pages 66-73, October

1991.

K. Marzullo and F. Schmuck. Supplying high availability with a standard network
file system. In Proceedings of DCS, pages 447-455, San Jose, Calif., June 1988.

Danny Mitzel, Deborah Estrin, Scott Shenker, and Lixia Zhang. An architectural
comparison of ST-II and RSVP. In Proceedings of INFOCOM 9/, Toronto,
CANADA, June 1994.

Danny Mitzel and Scott Shenker. Asymptotic resource consumption in multicast
reservation styles. In Proceedings of SIGCOMM 9/, London, UK, September
1994.

Mark Moran and Riccardo Gusella. System support for efficient dynamically-
configurable multi-party interactive multimedia applications. In Proceedings of
Third International Workshop on Network and Operating System Support for
Digital Audio and Video, pages 143-156, San Diego, CA, November 1992.

Abhay Kumar J. Parekh. A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks. PhD dissertation, Massachusetts Insti-
tute of Technology, February 1992.

Colin Paris, Hui Zhang, and Domenico Ferrari. A mechanism for dynamic re-
route of real-time channels. Technical Report TR-92-053, International Com-

puter Science Institute, Berkeley, California, April 1992.

Colin Parris. Dynamic connection management for real-time networks. PhD
dissertation, University of California at Berkeley, August 1994.

22



[34]

[35]

[36]

37]

38]

[39]

[40]

[41]

[42]

Colin Parris and Anindo Banerjea. An investigation into fault recovery in guaran-
teed performance service connections. Technical Report TR-93-054, International
Computer Science Institute, Berkeley, California, October 1993.

Colin Parris, Hui Zhang, and Domenico Ferrari. Dynamic management of guar-
anteed performance multimedia connections, April 1993. to appear in ACM
Journal of Multimedia Systems.

Craig Partridge and Stephen Pink. An implementation of the revised internet
stream protocol (ST-2). In Journal of Internetworking Research and Fxperience,

pages 27-54, 1992.

Jean Ramaekers and Giorgio Ventre. Client-network interaction in a real-time
communication environment. In Proceedings of GLOBECOMM 92, pages 1140—
1144, Orlando, Florida, December 1992.

K. V.S. Ramarao. Commitment in a partitioned distributed database. In H. Bo-
ral and P.-A. Larson, editors, Proceedings of SIGMOD 1988, pages 371-378,
Chicago, Illinois, June 1988. ACM Press.

R. Schlichting and F. Schneider. Fail stop processors: An approach to designing
fault-tolerant computing systems. ACM Transactions on Computer Systems,

1(3):222-238, 1983.

Claudio Topolcic. Experimental internet stream protocol, version 2 (ST-II),

October 1990. RFC 1190.

Yih-Kuen Tsay and Rajive L. Bagrodia. Fault-tolerant algorithms for fair inter-
process synchronization. IEEFE Transactions on Parallel and Distributed Systems,

5(6), June 1994.

Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.
RSVP: A new resource reservation protocol. IEEFE Networks Magazine, 31(9):8-
18, September 1993.

23



