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Abstract

We compare nonadaptive and adaptive designs for estimating linear functionals
in the (minimax) statistical setting. It is known that adaptive designs are no better
in the worst case setting for convex and symmetric classes, as well as in the average
case setting with Gaussian distributions.

In the statistical setting, the opposite is true. Namely, adaptive designs can be
significantly better. Moreover, using adaptive designs one can obtain much better
estimators for noisy data than for exact data. These results hold because adaption
and noisy data make the Monte Carlo simulation possible.
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1 Introduction

Many interesting results have been recently obtained for the minimax statistical set-
ting of estimating linear functionals over convex and symmetric classes. One of the
most important results is due to Donoho (1994) who proved, under mild assumptions,
that linear estimators are within 11,1...% of being optimal among all nonlinear es-
timators. He also gave formulas for the optimal linear estimators. This was done by
establishing a relation between the minimax statistical setting and the problem of
optimal recoveryin the worst case setting. Optimality properties of linear estimators
in the worst case setting have been known before, see, e.g., Smolyak (1965), Sukharev
(1986), Magaril-1'yaev and Osipenko (1991). Hence, Donoho’s results for statistical
estimation correspond to those of Smolyak and others for optimal recovery in the
worst case setting. We add that for classes given as balls in Hilbert spaces, the same
results can be obtained by using relations between the statistical and the average case
settings with Gaussian distributions, see Plaskota (1996).

The relations between optimal estimators in the statistical, worst and average case
settings mentioned above hold for estimators using fixed, nonadaptive designs. It is
now natural to ask whether similar relations hold for adaptive designs.

Adaptive designs have been studied in the worst and average case settings. The
question how much adaption helps is one of the fundamental problems in information-
based complexity, see, e.g., Traub et al. (1988) and Plaskota (1996). In particular, it
is known that adaption does not help in the worst case setting for convex and sym-
metric classes, and, under some additional assumptions, in the average case setting
for Gaussian distributions, see Section 3. (This also holds for approximating linear
operators. On the other hand, for some nonlinear operators adaption is exponentially
more powerful in the worst and average case settings.)

How about adaption in the statistical setting? Remarkably, there is not much on
this subject in the statistical literature. It is, however, known that adaption does not
help asymptotically for nonparametric regression, see Golubev (1992).

This discussion may lead us to the conjecture that for convex and symmetric
classes adaption does not help in the statistical setting. However, the opposite is
true. More precisely, we provide a simple and natural example which reveals the
following two important and rather surprising things:

e Adaptive designs can be exponentially better than nonadaptive designs in the
statistical setting for convex and symmetric classes.

o In the statistical setting one can sometimes obtain much better estimators using
noisy data rather than exact data.

These results hold because adaption in the statistical setting makes the Monte Carlo
simulation possible, and for many problems the error of the Monte Carlo (random-
ized) method is much smaller than the error of any non-randomized (even adaptive)
method.



We now comment on the result that noisy data may lead to smaller errors than
exact data. For noisy data, the error is defined, in particular, by taking an average
with respect to noise. For exact data, the average over noise disappears and we are
back in the worst case error setting. Hence, noisy and exact data really correspond
to the different error settings and this change makes the result possible.

The problem for which adaption is significantly better in the statistical setting
is multivariate integration of Lipschitz functions. However, from the proof it will be
clear that similar results hold for other problems for which randomized algorithms
are better than non-randomized ones. It would be interesting to verify whether this
is the only reason why adaption helps in the statistical setting. In other words: can
adaption help in the statistical setting for problems for which randomization does not
help? The answer is unknown.

2 Nonadaptive and adaptive designs

Let X be a linear space of real functions defined on a domain D, and let F' be a
subclass of X. We assume that F' is convezr and symmetric (with respect to zero).
Suppose that for an (unknown) f € F we observe data y = [y1,...,y,] € IR,

yi = f(t:) + @, 1 <4 <n, (1)

where ¢; € D and = = [zy,...,2,] is the white noise vector, i.e., z; ~;q N(0,0?).
We stress that we also allow o = 0 which corresponds to the exact (non—noisy) data.
Our aim is to estimate the value S(f), where S is a linear functional over X. An
estimator is of the form S,(f,z) = ¢(y), i.e., it only uses the data y.

In the statistical setting, the error of 5, is given as

RSt(Smeo') = ilelg(Ez(S(f) - Sn(f’x))2)1/2v

where E, denotes the expectation over z. Here T,, = {t;}"_, is the design.

Although this is not the only way of defining the error, this definition has been
most often used in the statistical literature, see, e.g., Sacks and Ylvisaker (1978),
Speckman (1979), Ibragimov and Hasminski (1984), Nussbaum (1985), Donoho (1994),
Donoho et al. (1995).

In (1) we assume that the design points 7,, are given in advance. One of possible
and natural generalizations is to assume that the successive observations are per-
formed for points which are chosen adaptively depending on the results of previous
observations. That is, we now have

yz:f(tz(ylaay2—1)>+xza 1 SZ Sna (2)

where z; ~;;4 N(O, o?) and t; : IR*-! — D are measurable mappings. Such a design
will be called adaptive.



Remark 1 Throughout this paper we assume, for simplicity, that the number n of
observations in any adaptive design is fized. Sometimes it is reasonable to consider
adaptive designs with varying n depending on y;’s; see also Remark 3.

Our aim is to compare the power of adaptive and nonadaptive designs. Define

Rst

non

(n,o) = inf{R(S,,T,,0) : S, arbitrary, T,, nonadaptive }
as the minimal error that can be achieved for n nonadaptive observations, and

So(n,a) =inf{R(S,, T,,o) : S, arbitrary, T), adaptive }

adp

as the corresponding minimal error for n adaptive observations. Clearly,

Ztip(('% J) S Rffon(”’ J)'

3 Adaptive designs in different settings

Adaptive designs have been studied in the worst and average cases settings. The
following sample results are typical and important.

3.1 Worst case setting

Suppose that the noise in (1) and (2) is deterministic rather than random, and we
know that x is bounded in a norm, i.e., ||z|| < é. Define the error of an estimator 5,
as the worst case error,

Rwor(SnaTn76> = Sup sup |S(f) - Sn(fax>|

feF||z||<s

Then for the respective nth minimal errors we have

WOI‘(n7 6) — RWOI‘(n’ 6>’

adp non

see, e.g., Bakhvalov (1971), Gal and Micchelli (1980), Traub and WozZniakowski
(1980), Traub et al. (1983).

3.2 Average case setting

Assume that data are again of the form (1) or (2), but the function f is now the
realization of a zero mean Gaussian stochastic process on . The error of 5, is
defined as the expected (average) error over both f and the noise z, i.e.,

R*8(S,,T,,0) = (EsE.(S(f) — Sn(f,x))2)1/2.
Assuming additionally that the functional S is continuous, we have

RyE(n,0) = Rive(n,0),

adp non

see, e.g., Kadane et al. (1988), Plaskota (1996).

Thus adaption does not help in both the worst case and average case settings.
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Remark 2 For S being a linear operator, adaption still does not (essentially) help.
Namely, we have R3§:(n,§) > L Ruo(n,§) and RyE(n,0) = R28(n,0).

adp non adp non

Remark 3 In the average case setting, it is reasonable to consider adaptive designs
with varying n. For such designs, adaption usually does not help for linear S, see,

e.g., Wasilkowski (1986) and Plaskota (1996). However, counterexamples where the
opposite is true are also known, see Plaskota (1993).

3.3 Statistical setting

As already mentioned in the introduction, adaption does not help in the statistical
setting for the nonparametric regression. The result reads as follows, see Golubev
(1992).

Let F' be the Sobolev class of functions f : [0,1] — IR of regularity r such that

T

> /01<f“><u>>2du <.

k=0

Suppose that instead of a functional, we want to estimate the function f in the
Lo—norm. That is, the error of an estimator f,(u,z) is now given as

RSy, T,,0) = sup(E, /Ol(f(u) — fn(u,x))2du)1/2.

fEF

Then
thp(n’ J) ~ Rffon(“’ 0-)7 as n — 4oo.

(Here a,, ~ b, means that lim,_., a,/b, = 1.) Moreover, optimal design is given by
equidistant points.

4 Adaption may help in the statistical setting

We now present a problem of multivariate integration for which adaption is exponen-
tially better in the statistical setting.
Let D =[0,1]? with d > 2. Let F be the class of 1-Lipschitz functions, i.e.,

|f(u1) - f(U2)| < ||U1 — U2||oo, Yuy,ug € D.

Obviously, F' is convex and symmetric. Suppose we want to estimate the integral of

/s
S() = [ flu)du,
using data (1) or (2). Then we have the following result. (Below a,, < b, means that

there exist constants 0 < a < b < +o0 such that for all n we have a < a,/b, < b,
Vn.)



Theorem 1 For estimating the integral of a real 1-Lipschitz function defined on the
d-dimensional unit cube we have

Rst -1/d

non(n7 J) x n

and
n~Ye for 0 =0

st _
Radp(nva) - { n—1/2 fOT‘ c>0 "’

as n — +oo.

Hence, for nonadaptive designs the minimal error is of order n=/¢ which strongly
depends on the dimension d. Actually, in this case we have the curse of dimension-
ality, since we have to perform exponentially (in d) many observations to reduce the
error to a desired level. Note that the behavior of RS (n, o) is the same for exact as
well as for noisy data.

However, the situation drastically changes if we allow adaptive observations. For
exact data the error is still proportional to n='/? but for noisy data the minimal
error of adaptive estimators surprisingly reduces to n='/? and is independent of d. In
particular, the curse of dimensionality vanishes, and for large d it is much better to
deal with noisy than exact data.

Why is this possible? The idea is very simple. Assume that we have noisy data,
i.e., 0 > 0. If we make two observations at the same point and subtract their results,
we will obtain a Gaussian random variable with known distribution. Hence, the
statistical setting with non—zero noise provides us with an additional tool which is the
random number generator. This tool together with adaption allows us to implement
randomized algorithms and, in particular, the classical Monte Carlo method. For
multivariate integration the expected error of Monte Carlo is much smaller than that
of non-randomized methods, and we are done.

The formal proof of the theorem follows.

5 Proof

The case of exact data, ¢ = 0, corresponds to the worst case setting with exact data
(6 = 0). Hence, using the well known results from the worst case, see, e.g., Novak

(1988), we obtain
R (n,0) = R, (n,0) < n~Y/4,

non adp

Moreover, the equispaced design T* = {t*} and the arithmetic mean

n

Sif.) = D7) + )

=1

have error proportional to n=1/4,



Let o > 0. Consider first a nonadaptive design T,, = {¢;}”_, and a linear estimator

Sa(fyz) = D wil f(t:) + @),
i=1
where w;’s are some reals. Then

RS, Tpy0) = (R(S,, Tn, 002 + 023 w?)'? > R (n,0).

=1

On the other hand, we have
RY(S:, T, 0) = (RY(S5, T2, 002 + 0 /n)/* < n~!/2,

as n — 400. To complete the proof of the nonadaptive case, it suffices to show that
the error of order n='/? cannot be reduced by using nonlinear estimators.

Indeed, let ¢ > 0 be such that B (n,0) > e¢n~'/4 ¥n. Then we can select h, € F
satisfying h,(t;) = 0, 1 <7 <n, and S(h,) > en~14 Tt is clear that the error will
not increase if the set F' is replaced by the interval [—h,, h,]. For such a ‘reduced’
problem the data consist of pure noise, y; = z;, Vi, and such data are known to be
useless. Zero is the best estimator among all nonlinear estimators, and the error is at
least S(h,) which is larger than cn='/4

We now construct an adaptive design and an estimator with error proportional to

n~'/2, Assume without loss of generality that n = k(2d + 1). Let

, as claimed.

0w) = 5o [ expl{—u/20t)) du

The adaptive design T = {¢;}7_, with ¢; = (¢},...,1%) € IR, is given as follows. Let
s = 2kd. Weset t; =(0,...,0) for 1 < <s, and

ti+i =v (y2d(i—1)+2j - y2d(z‘—1)+2j—1)
for 1 <1<k, 1<j<d. Asthe estimator we take

k

S (Fs0) = 1 (T hasi) + )
i=1
We claim that R**(S*, T** o) < n='/2. Indeed, for any 1 <7 <sand 1 <j <d
the difference xf = Yad(i-1)+2; — Y2d(i—1)+2j—1 has the zero mean normal distribution
with variance 202. Hence, tf = ;/)(azf) is distributed uniformly on the unit interval, and
the design points ts44,...,t, are distributed uniformly on the cube D. Our estimator
is then nothing but the classical Monte Carlo method, see, e.g., Novak (1988), applied



to noisy data. We obtain that for any f € F

2

B(SU) = S7) = e ([ = 3 ew) + 20

= % (/D A (u)du — (/;f(u)du)2) +%2
_ a(f) +o?
0

where

Oﬁoz(f)gsup{/D]ﬂ(u)du: fEF,/Df(u)z()}<1.

Since k = n/(2d + 1), the error R*(S:*, T*, o) is proportional to n='/2 as claimed.

The lower bound for R**(n, o) is provided by the following argument. Consider
the simpler problem of estimating the integral of a 0-Lipschitz (constant) function.
This is equivalent to estimating a real parameter from its n noisy observations with
variance o2. It is well known that for such estimation the minimal error is just o n=1/2,
The proof is complete.

Remark 4 The method S7*,T* constructed in the proof uses the ‘continuous’ version
of the Monte Carlo, i.e., the points are selected randomly from the whole unit cube.
The same error bounds can be obtained by using a ‘discrete’ Monte Carlo, where
selection is made from a grid of cardinality at least proportional to n®.

Remark 5 We showed that
RSt(S:L*,T;*,O') < cn_1/2,

where ¢ = ¢(o,d) = ((o* + 1)(2d + 1))'/2. One can get rid of the dependence on d
by generating all random sample points from only one random number yo = y; — ya,
yi = f(0) + 2, 1 = 1,2, i.e., using only 2 instead of 2kd ‘preliminary’ observations.
In the latter case the constant c is roughly (o + 1)'/2.

Moreover, we will still have a similar upper bound if those two observations are
made at different points, but sufficiently close to each other. Hence, the main result
also holds in the case when repeated observations are not allowed.
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