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Abstract
In the modern world, the importance of information can be hardly overestimated.
Information also plays a prominent role in scientific computations. A branch of com-
putational complexity which deals with problems for which information is partial,
noisy, and priced is called information-based complexity.

In most of the work on information—based complexity, the emphasis was on partial
and exact information. We concentrate our attention on noisy information. We
consider deterministic and random noise. The analysis of noisy information leads to
a variety of new algorithms and complexity results.

This short survey has a reach extension in the form of a monograph ‘Noisy In-
formation and Computational Complexity’, to be published in Cambridge University
Press.

*Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Poland.



1 Introduction

In the process of doing scientific computations we always rely on some information.
In practice, this information is typically noisy, i.e., contaminated by error. Sources
of noise include: previous computations, inexact measurements, transmission errors,
arithmetic limitations, an adversary’s lies.

Problems with noisy information have always attracted attention from researchers
in many different scientific fields. There is also a vast literature, especially in statistics,
where noisy information is analyzed from different perspectives.

In this short survey, noisy information is studied in the context of the computa-
tional complexity of solving mathematical problems.

Computational complexity focuses on the intrinsic difficulty of problems as mea-
sured by the minimal amount of time, memory, or elementary operations necessary to
solve them. Information-based complezity (IBC) is a branch of computational com-
plexity that deals with problems for which the available information is: partial, noisy,
and priced.

Information being partial means that the problem is not uniquely determined by
the given information. Information is noisy since it may be contaminated by error.
Information is priced since we must pay for getting it. These assumptions distinguish
IBC from combinatorial complexity, where information is complete, exact, and free.

Since information is partial and noisy, only approximate solutions are possible.
One of the main goals of IBC is to find the complexity of the problem, i.e., the
intrinsic cost of computing an approximation with given accuracy. Approximations
are obtained by algorithms that use some information. Those solving the problem
with minimal cost are of special importance and are called optimal.

Partial, noisy and priced information is typical of many problems arising in dif-
ferent scientific fields. These include, for instance, signal processing, control theory,
computer vision, and numerical analysis. As a rule, a digital computer is used to
perform scientific computations. A computer can only use a finite set of numbers.
Usually, these numbers cannot be entered exactly into the computer’s memory. Hence,
problems described by infinitely many parameters can be ‘solved’ only using partial
and noisy information.

The theory of optimal algorithms for solving problems with partial information
has a long history. It can be traced back to the late forties when Kiefer, Sard,
and Nikolskij wrote pioneering papers. A systematic and unified approach to such
problems was first presented by J.F. Traub and H. WozZniakowski in the monograph A
General Theory of Optimal Algorithms, Academic Press, 1980. This was an important
stage in the development of the theory of IBC.

The monograph was followed by Information, Uncertainty, Complexity, Addison-
Wesley, 1983, and Information-Based Complexity, Academic Press, 1988, both au-
thored by J.F. Traub, G.W. Wasilkowski, and H. Wozniakowski. Computational

complexity of approximately solved problems is also studied in Problem Complexity



and Method Efficiency in Optimization by A.S. Nemirovski and D.B. Yudin, Wiley
and Sons, 1983, Deterministic and Stochastic Error Bounds in Numerical Analysis by
E. Novak, Springer Verlag, 1988, and The Computational Complezity of Differential
and Integral Equations by A.G. Werschulz, Oxford University Press, 1991.

Relatively few IBC papers study noisy information. One reason is the technical
difficulty of its analysis. A second reason is that even if we are primarily interested
in noisy information, the results on exact information establish a benchmark. All
negative results for exact information are also applicable for the noisy case. On
the other hand, it is not clear whether positive results for exact information have a
counterpart for noisy information.

In the mathematical literature, the word ‘noise’ is used mainly by statisticians
to mean random error that contaminates experimental observations. We also want
to study deterministic error. Therefore by noise, we mean random or deterministic
error. Moreover, in our model, the source of the information is not important. We
may say that ‘information is observed’ or that it is ‘computed’.

We also stress that the case of exact information is not excluded, either in the
model or in most results. Exact information is obtained as a special case by setting
the noise level to zero. This permits us to study the dependence of the results on the
noise level, and to compare the noisy and exact information cases.

The general IBC model covers a large variety of problems. We are mainly inter-
ested in linear problems, i.e., problems which can be described in terms of approximat-
ing a linear operator from noisy information about values of some linear functionals.
Examples include function approximation and integration, where information is given
by noisy function values.

In general, optimal algorithms and problem complexity depend on the setting.
The setting is specified by the way the error and cost of an algorithm are defined. We
study: worst case setting, average case setting, mived settings, and asymptotic setting.
In the worst case setting, the error and cost are defined by their worst performance. In
the average case setting, we consider the average error and cost. The mixed settings
are obtained by combining the worst and average cases. In the asymptotic setting,
we are interested in the asymptotic behavior of algorithms. Other settings such as
probabilistic or randomized settings are also important and will be involved in the
topics of future research.

2 Worst case setting

Let
S:F—=3d

be a linear operator acting between a linear space F' and a normed space (¢ (both over
IR). Our aim is to approximate elements S(f) for f belonging to a subset £ C F. An
approximation is constructed based on some information about f. This information



is given as a vector of the form

y:N(f>+$’ (1>

where N : FF' — Y = IR" is a linear operator. Hence, y is a perturbed value of exact
information N(f). The vector = represents noise. We assume that z is bounded in a

norm,
2]y < 6.

Knowing information y about f, the approximation is given as ¢(y), where the trans-
formation

p:Y =G

is called an algorithm. In the worst case setting, the error of an algorithm is defined
by its worst behavior with respect to f and z, i.e.,

(N8, ) = sup sup [[S(f) = o(N(f) + )]
fEE ||z|ly <6

where || - || is the norm in G.

Our first goal is to find optimal algorithms, that minimize the error for given
information,

(N, 6) = ir(;f e"(N,b,0).

We are especially interested in existence of optimal algorithms which have a simple
form, e.g. which are linear or affine. This holds, for instance, if S is a functional.

Theorem 1 (Magaril-1l'yaev and Osipenko, 1991) Let S be a linear functional. If
the set E is convex then there exists an affine algorithm which is optimal.

In this case we also have the following nice formula for the optimal error:
(N, ) = sup{S(h) : h e (E—E)/2,|N(h)|y < 6}.
If § is arbitrary and E is a ball,
E={feF:|flr=<1},

then (almost) optimal approximations are provided by spline algorithms. These are
algorithms of the form pu(y) = S(s(y)), where s(y) is a spline element, which can
be defined in different ways. For instance,

s(y) = argmin{|[ fllr: |ly = N(/)lly < &}

(ordinary spline), or
= in || f||? - N 2
s(y) = arg min A f|l- + [ly — N(/)lly

(smoothing spline). In the latter case, A is a nonnegative parameter. (For simplicity,
we assume that the minima above are attained.)
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Theorem 2 (Kacewicz and Plaskota, 1991) For the ordinary spline algorithm we
have

e"T(N, 6, pep1) < 2r°7(N, 6).

A similar theorem (but with a different constant) can be shown for smoothing
splines. It turns out that in some cases smoothing splines are (strictly) optimal.

Theorem 3 (Melkman and Micchelli, 1979) If || - ||r, || - ||, and || - ||y are Hilbert
norms, then there exists A € [0, +o00] such that the smoothing spline algorithm with
parameter X is optimal. Moreover,

PR (N, 8) = sup{ IS+ 1Bl < L, [N(A)ly < 6.

Note that in this case g is a linear algorithm. The following lemma says about
the optimal choice of .

Lemma 1 (Plaskota, 1995b) Let S be a compact operator. Let {¢;} be a complete
orthonormal basis of N*N, and let n; be the corresponding eigenvalues. Then the
optimal \* minimizes

¢(}\) = sup <S(£j)7g>2 A>0

llgll=1 j>1 Aty

and r¥°(N,6) = \/10(X*). If S is a functional then

¢(}\) — Z SQ(&)

AT

b

So far we have assumed that information is fixed. Now, we assume that not only
algorithms, but also information can vary. More precisely, information is collected by
noisy computations (or observations) of functionals belonging to some class A, i.e.,
Y= [y1,Y2,.-.,Yn|, where

yi = Li(f) + s,
L; € A. In the model with varying information, it is natural to ask for optimal
information. For given n and 6§, we want to minimize the error r"°*( N, §) with respect
to N = [Ly,...,L,], where L; € A. This problem has been solved in several cases.
We give two examples.

Assume first that S is a compact operator. Denote by Ay > Ay > -+ > 0 the
dominating eigenvalues of the operator S*S. Let

A=AL: ||L][F <1},

and let |||y = ||-||2 be the Euclidean norm in IR", i.e., the information noise satisfies



Theorem 4 (Plaskota, 1995b) For approximation of a compact operator the minimal
ETTOT 1S GIVEN A4S

602 2
P (n, 8) = JA + S50 = et

=1

Actually, this problem has been solved more generally, assuming that ||z||y is a
weighted Euclidean norm, ||z|3, = 37, 5{217?. Optimal information is also known.
It relies on observations of some particular functionals belonging to the subspace
spanned by the eigenelements of 5*S corresponding to the first n eigenvalues Ay, ..., A,.
In particular, it turns out that neither the optimal information nor optimal algorithm
depends on the noise level é, see Theorems 2.8.1 and 2.8.2 in Plaskota (1995b).

Let us now consider the optimal information in a function space. We assume that
E is the class of 1-Lipschitz functions f : [0,1] — IR. Information is given by noisy
function values at n points ¢;, and the noise

|z = |yi — f(t:)] < 6, 1<i<n.

Without loss of generality w assume that 0 < é; < --- < §,. Denote A, = [61,...,6,].
We consider the approximation problem, S = App : E — C([0,1]), App(f) = f, and
integration, S(f) = Int(f) = [ f(u)du.

Theorem 5 (Plaskota, 1995b) For approzimation and integration of Lipschitz func-
tions we have

rwor(AApp’ An> —

(
(

where k is the largest integer satisfying 1 < k < n and o, < %(% + Z§=1 6;). The
optimal information consists of k observations at

ol el

)
oy

1

r*(Int, A,) =

o=

1 k

5T >0
7=1

1 k

5T >4
7=1

- k i1
t:-‘=2Zk1(%+Z‘5f)_2(;5j)_5“ 1<i<k
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From the point of view of practical computations it is important that the algo-
rithms not only give approximate solutions with small error, but also that their cost
is small. Our model of computation is based, roughly speaking, on the following three
postulates:

e the arithmetic operations and comparisons over the reals are allowed and any
such an operation costs unity,



e linear operations (addition, multiplication by a scalar) in the space & are allowed
and cost g > 1, and

e obtaining noisy value of a functional with accuracy § costs ¢(é), where ¢ is a
cost function.

Thus, in our general model we assume that we can select not only the func-
tionals, but also accuracies with which we observe them. Moreover, the functionals
L;, the accuracies §;, and the total number n of observations can be chosen adap-
tively, depending on results of previous observations. Formally, this means that
Li() = Li(591,- -y yic1) € A, 6 = 6(y1,---,Yi—1), and the space Y of information
values may consist of vectors with different number of components. Such information
is called adaptive. If the functionals, accuracies, and their number are given a priori,
information is nonadaptive.

Note that different cost functions correspond to different practical situations. For
instance, the function c(6) = ¢o for § > &y, and ¢(é) = 400 for 0 < § < &, cor-
responds to the case when all observations are performed with the same precision
8o. The function ¢(é) = log 1/6 corresponds, roughly speaking, to the cost of storing
information with absolute accuracy é, in the fixed point arithmetic, etc.

For a given operator N, accuracy A, and algorithm ¢, let

cost™ (N, A, ) = sup cost(N, A, ¢, y)
Yy

be the cost of obtaining the approximation for the ‘hardest’ information y. (It consists
of the information cost of obtaining y and combinatory cost of computing ¢(y).) The
quantity

comp"(g) = inf{cost™ (N, A, p): N, A, ¢ such that e""(N, A, p) < e}

is called the e—complexity of the problem.

It turns out that if observations are performed with a fixed accuracy, |y; — L;(f)] <
o, then the (worst case) complexity is often infinite.

Theorem 6 (Plaskota, 1995b) Let E be the unit ball in a norm || - ||F. Suppose
that only observations with fixed accuracy 69 are allowed, and there exists an ele-
ment h* € F such that h* ¢ ker S and |L(h*)] < 1, VL € A. Then, for ¢ <
min{do, |17 HIS()]| we have

comp"(g) = +oo0.

If arbitrary accuracies are possible, complexity is usually finite, though it may be
large. We now give two examples. Consider first the approximation and integration
problems, as in Theorem 5.



Theorem 7 (Plaskota, 1995b) Let the cost function be given as c(6) = 677, where
qg>0. Then

1\ 711
comp" ' (App, ) < comp”(Int, ) < (2) , e — 0.
In the second example we have multivariate approximation. Let F be the unit
cube in the Banach space F' of functions f : D = [0,1]¢ — IR, which are r times
continuously differentiable, with the norm

9 f(t)
(@z1)k - D)k

| fllF = max  sup

05k1+...+kd:2 teD ’

where ¢ = (t1,...,¢?). The problem is to approximate f in the sup—norm, based on
its noisy values at some points.

Theorem 8 (Kacewicz and Plaskota, 1990) If ¢(1/x) tends to +oo polynomially, as
x — 400, then for multivariate approximation we have

comp™(e) < c(e)e ™, e — 0.

dfr

Optimal information uses n < &*/" equispaced observations with accuracy 6 < ¢, and

piecewise polynomial approximation is optimal.

Hence, in this case we have the curse of dimensionality, since the complexity
depends exponentially on d.

3 Average case setting

In the average case setting, we assume that the elements f as well as the information
noise x are (Gaussian random variables, and we are interested in minimization of
the expected error of algorithms. More precisely, F' is a separable Banach space
equipped with a zero mean Gaussian measure p whose correlation operator C, is
positive definite. Information is given by (1), however, the noise z is now the n—
dimensional random variable with normal distribution,

z~m=N(0,0Y),

where the covariance matrix ¥ = X7 > 0. The parameter o represents the noise level
and hence corresponds do ¢ from the worst case.

The problem is to approximate S(f), where S : F' — (7 is a linear continuous
operator and (5 is a separable Hilbert space. The error of an algorithm ¢ is defined

as
1/2

e (Noo.o) = ([ [ IS() = (N () + o) Pr(am(ap)
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In the average case, optimal algorithms are given as ¢(y) = S(m(y)), where
m(y) is the mean element of the conditional distribution on F', given information y.
Moreover, these algorithms can be interpreted as smoothing spline algorithms, which
was well known is some special cases, see, e.g., Wahba (1990). Here we cite a general
result. Let H C F be the Hilbert space such that the pair {H, F'} is an abstract
Wiener space for the measure p. Recall that then for two functionals Ly, L, € F* we
have

/F Li(f)La(f)p(df ) = (ha, ha)m,

where h; is the representer of L; in H, i.e., L;(f) = (f,hi)u, Vf € H,© = 1,2. Let
(-, )y = (X71(),-)2. Define a spline algorithm as psp(y) = S(s(y)), where

s(y) = argmino®| fl[r + [ly = N(/)lly- (2)

Note that ¢gp corresponds to the smoothing spline algorithm from the worst case

with parameter A = o2,

Theorem 9 (Plaskota, 1995b) In the average case setting, the spline algorithm pop
is optimal.

This fact allows us to establish a correspondence between the worst and average
case settings. To do this, consider the following two problems.

1. Approximate S(f) for f € E C F from information y = N(f) + z, where
lelly < 6.

2. Approximate S(f), where f € F has Gaussian distribution g, from information
y=N(f)+z,z~N(0,0c).

Theorem 10 (Plaskota) Let {H, F'} be an abstract Wiener space and E the unit ball
in H. If 6 = o then the spline algorithm p is optimal for the problem (2) in the
average case setting, e*8(N, o, psp1) = r*V8(N, o), and almost optimal for the problem
(1) in the worst case setting, €Y'(N, 8, 1) < V21V (N, §). Furthermore,

r*r(N,6) < V21r*8(N, o).
If S is a functional then
reV8(N, o) < r"(N,8) < \/ﬁravg(N,U).

Let us now consider the problem of optimal information. First, assume that X
is the identity matrix, and information relies on n noisy observations of functionals
from the class

A={Le F: ||L|g= sup |L(f)] <1},
I #1l=1
where H is the Hilbert space for the measure p. Let Ay > Ay > --- > 0 be the
dominating eigenvalues of the operator SC,5* : G — (. (Recall that we have



Theorem 11 (Plaskota, 1990) For approzimation of continuous operators we have

1/2+3 1/2
Tavg(n’0.> — (0.2 (Z )‘ ) + Z . ) ’

2
n—l—ak Plarnt

where k is the largest integer satisfying 1 < k < n and
PE AT Vs
n+ o2k

This theorem has a generalization to the case when ¥ is a diagonal matrix, i.e.,
when observations are performed with different variances. We also know formulas for
the optimal information, see Plaskota (1993a).

As the second example, consider the function approximation and integration in the
classical Wiener space. More precisely, we assume that F'is the space of continuous
functions f : [0,1] — IR such that f(0) = 0, and ¢ = w is the classical Wiener measure
on F. The problem App relies on approximating a function in £Ly—norm, while Int on
computing fy f(u)du. Information is given as noisy function values, where the noise
of different observations is independent and its variance equals o2.

Theorem 12 (Plaskota, 1992) For the approzimation and integration on the Wiener
space we have

s 1 52 1/4
( pp,O’Tl) ~ W"'pn R )

1 2 1/2
an(Int g n) ~ m + qTL (%) ;

where pu, 4q € [V3/3,1]

We now give formulas for the e—complexity of the two problems above. We assume
the model of computation as in the worst case setting. The only difference is that
observations are contaminated by random noise, and ¢(c) denotes the cost of one
observation with variance o2. Information (which can be adaptive or nonadaptive) is
identified with the pair N, Y, where N denotes the selection of functionals and ¥ the
selection of variances. The cost of obtaining approximations is given by the average
cost,

cost™8(N, X, ) :/Ycost(N,Z,ap,y)/Ll(dy),

where p is the a priori distribution of y (induced by the distributions of f and z).
The e-complexity is defined as

comp®*®(e) = inf{cost®™ (N, X, p) : N, X, ¢ such that e*®(N, X, ¢) < e}.
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While adaptive information is not better than nonadaptive information in the
worst case setting (at least for convex and symmetric sets F, see, e.g., Corollary
2.7.1 in Plaskota (1995b)), the situation is quite different in the average case setting.
It turns out that the use of varying cardinality can sometimes significantly reduce
the cost of obtaining the e—approximation, see Plaskota (1993b). However, provided
some additional assumptions are satisfied, adaption does not help in the average
case setting, either. Namely, let ic(¢) be the minimal cost of obtaining nonadaptive
information from which it is possible to construct an approximation with error at
most €.

Theorem 13 (Plaskota, 1995a) Let o = [ ||S(f)||*pe(df). Suppose that ic(\/2) is a

semi—convezx function of ¢ on the interval [0,eq|, i.e., there exists 0 < o < [ and a
convex function h :[0,¢] — [0, +00] such that

ah(e) <ic(ve) < Bh(e), V0 <& <.

Then

comp®'8(e) > %ic(e), V0 < e < &q.

The assumptions of this theorem hold for many problems. In particular, they
are satisfied by the two problems considered below. We start with approximation of
continuous operators from Theorem 11.

Theorem 14 (Plaskota, 1995a) Suppose that the eigenvalues of SC,S* satisfy

In®5\" .
Aj < ; , j — 00,

where p > 1 and s > 0. Let the cost function ¢(c) = (1 +072)1, ¢ > 0. Then

(1/¢)% (p—1)q>1,
comp™¥(c) < (1/)/*=V(In1/e)letp/E=1) (p —1)q = 1,
(1/)?/ =1 (In1/e)se/(>=1) 0<(p—1)¢ <1,

g — 0.

This theorem applies, for instance, to Lo—approximation of multivariate functions
with respect to a Wiener sheet measure.

Let us now consider the function approximation and integration in the classical
Wiener space, as in Theorem 12. Recall that in this case information is restricted to
noisy function values.

10



Theorem 15 (Plaskota, 1995b) Suppose that the cost function c¢(o) = o=2, or that
only observations with fized variance o > 0 are allowed. Then, for the function
approximation and integration problems, we have

comp™8(App,c) xe™*  and comp™¥(Int,c) x e,

g — 0.

Note that, unlike in the worst case, in the average case setting we can reduce the
error to an arbitrary level using observations with fixed variance.

4 Mixed settings

Mixed settings are obtained by combining the deterministic assumptions of the worst
case setting with stochastic assumptions of the average case setting.

In the first mixed setting (worst—average case setting), we assume that the problem
elements f have deterministic character, f € E C F (as in the worst case), while the
information noise has random character, i.e., x ~ 7 = AN(0,0%%) (as in the average
case). The error of an algorithm is defined as

(Vo) = sup ([ S0 = (N () + )P

In this setting, the main results are on optimal algorithms for approximating linear
functionals S. It turns out that even if the set F is convex, optimal algorithms
are in this case nonlinear (comp. with Theorem 1). However, affine algorithms are
not much worse. This important fact was shown by Donoho (1994) who used some
additional assumptions. The following theorem is a generalization of that result.
Let ri¢*(N,o0) and r¥-2(N, o) be the optimal errors of affine and arbitrary (even

nonlinear) algorithms, respectively.

Theorem 16 (Plaskota, 1995b) If S is a linear functional and E is a conver set,
then

1<M§1,11...

T orvsa(N,o)

In the proof of this theorem, one shows a relation between optimal algorithms in
the mixed and worst case settings, in which the noise ||z]|} = (X712, ) < 2. This
relation reads as follows.

Theorem 17 (Plaskota, 1995b) For any o there exists 6 = 6(o) such that the same
affine algorithm is optimal in the mized and worst case settings. And vice versa. For
any 6 there exists o = o(§) such that the same affine algorithm is optimal in both
settings.
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The situation becomes much more complicated if S is a linear operator and not
a functional. (Almost) optimal algorithms are known only for some special cases, see

e.g., Nussbaum (1985), Donoho et al. (1995).

In the second mixed setting (average—worst case setting) we assume that F' is a
separable Banach space with a Gaussian measure g (as in the average case setting),
and that the noise satisfies ||z|y < 6 (as in the worst case setting). We will assume
that || - ||y is the Hilbert norm induced by a matrix ¥ = X7 > 0. The error of
algorithms is given by the formula

1/2
i) = ([ sup S0~ AN +olulah))

ll=lly <é

Similarly to the first mixed setting, the main results are on approximating linear
continuous functionals. As we can easily convince ourselves, the optimal algorithms
are again nonlinear. However, linear algorithms (which are now as powerful as affine
algorithms) are not much worse. Let ri-" (N, é) and r257(N, §) be the minimal errors
of linear and nonlinear algorithms, respectively.

Theorem 18 (Plaskota, 1994) For approzimating functionals with respect to a Gaus-
stan measure we have
FY(N, b
< Thin (V20) 1,49...
ra=w(N_§)
Again, the proof uses a correspondence between the optimal linear algorithms in
the mixed setting and in the average case setting, where z ~ N(0,5%Y).

Theorem 19 (Plaskota, 1994) For any é there exists o = o(6) such that the same
linear algorithm is optimal in the mixed setting and in the average case setting. And
vice versa. For any o there exists & = 6(o) such that the same linear algorithm is
optimal in both settings.

This and earlier cited relations show some kind of equivalence of the four different
settings: worst case, average case, and mixed, for approximating linear functionals.

5 Asymptotic setting

The asymptotic setting has somewhat different character. While earlier we wanted to
minimize the error of algorithms for a given set F (or for a given measure y), now we
fix the problem element f € F' and want to construct not a single, but a sequence of
approximations that converge to the solution S(f) as fast as possible. One may hope
that with such an approach it is possible to find a sequence of information N and
algorithms ™ such that the error ||S(f) —¢™(N™(f)+ z")|| tends to zero much faster

12



than the sequence of corresponding minimal (worst case or average case) errors. We
shall show that this is not always true.

In the asymptotic setting it is convenient to assume that information is given as
an infinite sequence y = [y1,y2,...] € IR*, where

yi:Li(f;yla-"ayi—1>+xia 121,

|z;| < 6i(y1,...,yi—1). Note that the functionals L; as well as accuracies §; may be
chosen adaptively. For information y, a sequence of successive approximations is given
as {¢"(y")}, where y" = [y1,...,yn] and " : IR™ — ( is the n-th algorithm.

If F'is a normed space, we denote by r°"(N,, A,) the optimal worst case error with
respect to the unit ball in ' and nonadaptive observations of the first n functionals
Li(+;z1,. .., zi—1) with accuracies 6;(z1, ..., zi—1).

Theorem 20 (Kacewicz and Plaskota, 1993) Let F' be a Banach space, S : F — G
a linear operator and L;(-;y1,...,yi—1) continuous linear functionals. Then, for any
positive sequence {1,} converging to zero, the set

n—oo anxor(Ny, Ay)

< 400, Yy information about f}

has empty interior, i.e., it does not contain any ball in F.

This theorem establishes an equivalence of the asymptotic setting with determin-
istic information noise, and the worst case setting. We note that the convergence
r"°r(N,, A,) is attained by spline algorithms, and the optimal convergence (in the
case of varying information) by some nonadaptive information.

Consider now the case when the information noise is random. More precisely,
assume that noise of successive observations is independent and z; ~ A (0, c?), where
o; = 0i(y1,...,yi—1). Also, assume that F'is a separable Banach space equipped with
a zero mean (Gaussian measure, S is linear continuous, and ' is a separable Hilbert
space.

Let 7, be the spline algorithm (2) corresponding to the first n observations.
Then we have the following theorems showing equivalence of the asymptotic setting
with random information noise and the average case setting. (The theorems below
are generalizations of the results from Wasilkowski and WozZniakowski (1987), where
exact information is studied.)

Theorem 21 (Plaskota, 1995b) For arbitrary sequence of algorithms {¢"},
Prob (hm ||S(f) — (H‘Qn (y )H — 0) =0.
n=eo ||S(f) — iyl

(Here, the probability is taken with respect to the a priori measure on F' X IR* which
is induced by p and the distribution of noise.)
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Denote by r2'8(N,, X, ) the optimal average error that can be achieved using the
first n observations of the functionals L;(+; z1, ..., z;—1) with variances c?(z1, ..., zi_1).

Theorem 22 (Plaskota, 1995b) For any sequence {¢"} we have

n—oo T?LVg(ij, Zy)

=0 or —I-OO) = 0.
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