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Abstract

A result of Roquette [3] states that if D is an absolutely irreducible representation
of a p-group G over the field of complex numbers, then D can be realized in K(x(g) |
g € (), where y is the character of D and K = Q or K = Q() according to whether
p # 2 or p = 2. Based on Baum and Clausen’s [1] algorithm for computing the
irreducible representations of supersolvable groups, we give an elementary proof of a
theorem which, among other well-known facts on representations of p-groups, implies
Roquette’s result.
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1 Introduction and Preliminaries

A matrix representation D of a finite group G over a field L is said to be realizable over
a subfield M of L if there exists an invertible matrix T such that TD(g)T™" has entries
in M for all ¢ € G. Denoting by x the character of D and by M(x) the character field
M(x(g)| g € G)of D over M, it is easily seen that any subfield L’ of L containing M such
that D is realizable over L' contains M(), see below. An arbitrary representation of an
arbitrary group G may not be realizable over its character field. If GG is a p-group, however,
it was proved by Roquette [3] that any irreducible representation of G with character x is
realizable over K(x) where K = Q if G has odd order and K = Q(¢) otherwise. We obtain
this result as a corollary to the main theorem of this paper, which also implies that K(x)
is always a cyclotomic field, thereby proving that nontrivial irreducible representations of
QG always have degree p*(p — 1) for some a.

The proof of the main theorem is elementary in the sense that it only uses some basic
knowledge about the representation theory of finite groups, as well as some simple results
on cyclotomic fields. For the convenience of the reader all the results we need are gathered
in the rest of this section.

1.1 Monomial Matrices

A regular matrix A is called monomial, if it has in each row and in each column exactly one

nonzero entry. Hence, any monomial m X m-matrix is of the form Pdiag(aq,...,am),
where P, is the permutation matrix corresponding to the permutation = € S5,,, and
diag (a1, ...,a,) is the diagonal matrix with the nonzero diagonal entries a1,...,a,. A

monomial matrix is called e-monomial, if its nonzero entries are eth roots of unity. For
instance, the n X n-identity matrix I, is 1-monomial. An mn X mn-matrix A is called
block e-monomial if there exists a permutation 7 of {0,...,m—1} and e-monomial matrices
Ag, ..., Ap_1 such that A= (P, ® In)(@:-iglAi), where @ denotes the Kronecker product.
By abuse of notation, we will in the sequel abbreviate P, ® I,, simply by =, if m and n are
clear from the context.

LEmMMA 1. Let m and n be integers, Ag,...,Ap_1,Bo,...,Bn_1, and Xo,..., X,,_1 be e-
monomial n X n-matrices over a field L, 1 = cg,¢q,...,¢pn_1 be nonzero elements of L, 7,
T, and o be permutations of the set {0,...,m — 1}, and A := 7(®A;), B := n(®B;), and
N = o(®cX;).

(1) For p > 1 any solution x of z? B? = C? is a pe-th root of unity.
(2) Suppose that NAN~' = B and that T is an m-cycle. Then all the ¢; are eth roots of
unity belonging to the field generated by the entries of the A;, B;, and X;.

PrOOF. (1)is obvious, so we concentrate on (2). The condition NAN~! = B is equivalent
to the matrix equation

p—1 p—1
T ( @ chXTkAkcllek_l) —o 5o < @ ng) .
The ¢,x, can be computed recursively, starting with ¢g = 1, by dividing by eth roots of
unity. As 7 is an m-cycle, this gives all the ¢;, and the proof is complete. O



1.2 Representations and Algebraic Conjugacy

We recall some basic facts about representations of finite groups. Let G be a finite group,
L be a field of characteristic zero, and A be a matrix representation of LG. A can be
considered as a matrix representation of L'G for any field extension L’ of I in an obvious
manner. We call A absolutely irreducible iff it is irreducible as a matrix representation of
G over an algebraic closure of L. For a subfield M of L we define defp;(A) as the smallest
subfield of I containing M which contains all the entries of all A(g), g € G. If x denotes
the character of A, then the character field M(x) of A is defined as M(x(g) | g € G).
Obviously, M(x) is always contained in defys(A). If o is a field and X := (z;;) € L™",
we define X7 := (acf]), where z7; is the image of z;; under o. Analogously, A” is defined
as A% by A%(g) := A(g)? for all ¢ € G. Clearly, A” is a representation of LG which is
(absolutely) irreducible iff A is. Furthermore, if A ~ &, then A% ~ ¢ where ~ denotes
equivalence of representations over L.

From now on suppose that L is a splitting field of G of characteristic zero which is a cyclic
galois extension of a subfield M. Let o be a fixed generator of this group. For an irreducible
representation A of LG we are interested in those subfields M’ of L containing M such that
A is realizable over M’ i.e., such that there exists A’ ~ A with defy(A’) = M’. Any
such M’ contains M(x), where x denotes the character of A. Indeed, if 7 is a generator
of Gal(L/M'), then A" = A’ hence x(¢9)" = x(g) for all ¢ € G, which implies that
M(x)" = M(x).

Suppose now that F is an irreducible representation of MG, which is not necessarily
absolutely irreducible, and consider / as a representation of LG. Let D be an irreducible
constituent of F over L. As F° = F, D is also an irreducible constituent of F for all
i. Let x denote the character of D, and let m := [M(x): M]. Then D, D7, .. L, D" are
pairwise inequivalent and hence, A := D P D G ---P D" is a constituent of F. If D is
realizable over its character field M(x), then A is realizable over M. Postponing the proof
of this for a moment, we see that the following holds.

ProrosiTiON 2. The notation being as above, suppose that all the irreducible representa-
tions of LG are realizable over their character fields. If I is an irreducible representation
of MG, then there exists an irreducible representation D of LG such that I ~ @?;BID”Z,
where m is the degree of the character field of D over M.

Proor. By the discussions preceding the proposition it suffices to show the following: if
L' is a field extension of degree m of M contained in L, 7 is a generator of Gal(L'/M), and
D is an irreducible representation of L'G, then A := @7 ' D" is realizable over M. Let

- i m—1 . . .
w be a primitive element of the extension L’ D M, and C := ((w])T ) . (' is invertible.

1=0
Let d be the degree of D, and T := €' ® I;. Then it is easily checked that for all g € G the
matrix T71A(g)T has coefficients in M. O

Now let N be a normal subgroup of GG of prime index such that L is also a splitting field
of N, and let F" and F’ be representations of LN. The intertwining space Int (F, F') is the
L-space defined as the set of all those matrices X over L such that X F(v) = F'(v)X for
all v € N. This space contains an invertible matrix iff F' ~ F”.

In the sequel, we denote by F' | GG the induction of F' to (G along the set (1,g,...,g771)
of representatives. If F is an absolutely irreducible representation of N, then so is the



representation /¥ defined by F9(v) := F(gvg™'). Obviously, (F | G)? = F’ | G, and
(F9)7 = (F7)0.

There is an intimate connection between the set of irreducible representations of G and
that of N to which we refer in the sequel as Clifford Theory. The main results we need are
summarized in the following.

THEOREM 3. Notation being as above, suppose that F is an irreducible representation of

LN. Then we have the following:
(1) If F9 ~ F, then I’ has p inequivalent irreducible extensions D(()F), ..., D
ducible representations of LG.

(F)
p—1

to irre-

(2) If F o F9, then Ap := F' T G is an irreducible representation of LG, and Ap | N =
Bl 17

(3) The set formed by all DZ(»F) and all Ap, where F ranges over a set of pairwise in-
equivalent irreducible matriz representations of LN, is a set of pairwise inequivalent
irreducible matriz representations of LG.

A simple proof of this theorem can be found, e.g., in the book by Clausen and Baum [2].

1.3 Hilbert’s Theorem 90

Let L be a cyclic field extension of M and let the corresponding Galois group be generated
by o, say. If [L: M] = m and S € GL(m, L), then we define the relative norm of S with
respect to o by N,(5) := 5o 598 I m = 1, then this is the norm of field elements in
the usual sense, and is in particular independent of o; for this reason we also write Ny, /5
for N, if m = 1. Note however that if m > 1, then the norm of S does not even need to
belong to M™*"™. The following theorem, due to Speiser [5], is a generalization of Hilbert’s
Theorem 90.

THEOREM 4. Assume that L/M has a cyclic Galois group generated by o and let S €
GL(n, L). There exists T € GL(n, L) such that S =TT if and only if N,(5) = I,.

An easy alternative proof of this theorem can be found in Serre’s book [4].

1.4 Cyclotomic Fields

For an integer n let L, denote the cyclotomic field generated over Q by a primitive nth root
of unity. For instance, Ly, = Q, and Ly = Q(¢). We denote by p(L,) the set of roots of
unity contained in L,. Hence, u(L,) is the group of (2n)th roots of unity if n is odd, and
it is the group of nth roots of unity of n is even. In the following we set K := Q if p # 2
and K := Ly =Q)if p=2. For 1 <d < nlet loa = [Lpd: K].

It is well-known that (Z/p"Z)* ~ Gal(L,»/Q) canonically, the isomorphism being ¢
(0.:C +— (°), where ( is a primitive p"th root of unity. Consequently, L,» is a cyclic
extension of K of degree £,». We let v denote an element of (Z/p"Z)* such that the Galois
group Gal(L,n/K) is generated by o,. Identifying v with an integer, we see that for any
d < n the highest power of p dividing 'yZPd —1is p?. (Otherwise, 0., would generate a proper

subgroup of Gal(L,»/K).)



LEMMA 5. With the above notation the following hold:
(1) If M is a subfield of Lyn of index p, then M = Ln-1.
(2) Let n > m and suppose that Lym O K. Then Ny, /1, m (#(Lpn)) = p(Lym).

(3) Let L := Lyn, M := L,n for some m < n such that M D K, d be an integer > 1,
S € L be p*-monomial, and o be a generator of Gal(Lyn/Lym). If No(S) = cly
for some ¢ € L, then there exist some a € u(L) and some T € GL(d, L) such that
T=17T7 = af.

Proor. Part (1) is obvious.

(2) Let L := Lyn and M := Lym. Then A := [M: K| = {,m. Hence M is the fixed field
of o and 1 1= Npja(€) = ¢*, where s = (77" = 1)/(3% — 1) = (75" — 1)/(75" — 1)
and ( is a primitive p"th root of unity. As the highest p-power dividing s is p"~™, nis a
primitive p”th root of unity. This yields the assertion for p = 2. For p # 2 we still have to
show that Nz 3;(—1) = —1. But this is clear, since Ny, /p/(—1) = (M = 1,

(3) The product of two p”-monomial matrices is again p”-monomial, hence ¢ is a p”th
root of unity. Since N,(9)7 = SN,(9)57!, we see that ¢ € M, hence ¢ € u(M). By Pat (2)
of this lemma there exists a € p(L) such that Nz (a) = ¢7'. Hence, N,(aS) = I, and
Hilbert’s Theorem 90 implies the existence of T'. O

2 The Main Theorem

During this section we assume that G is a group of order p™, where p is a prime and
n>1,that 7 := (G = G, > Gp_1 > -+ > Gy = {1}) is a chief series of G with factors
G;/Gi—1 =: (9iGi-1), and that 7; := (G; > Gi—1 > --- > Gg) for 0 < ¢ < n. We work with
a fixed generator ¢ of Gal(L,»/K).

THEOREM 6. With the above notation there exists for all 1 < 1 < n a set F; of pairwise
inequivalent absolutely irreducible matriz representations of LynG; with the following prop-
erties:

(1) All F € F; are p'-monomial and their degree is a power of p. Moreover, defx(F)
is a cyclotomic field for all F' € F; which equals Q if and only if I is the trivial
representation.

(2) Fori< j<mn let m; € SymF; be the permutation satisfying I'% ~ w;F. Then for all
I € F the space Int (F% ,7;I") is generated by a p'-monomial matriz X;r satisfying
defr (X;r) C defg(F).

(3) Let 6; € SymF; be the permutation defined by I ~ &;F. Then Int (F7,6,F) is
generated by a p*-monomial matrix Mg.

(4) For F' € F; with character x the degree [defx(F"): K(x)] divides the degree of F, hence
1S a p-power.

(5) For I' € F with character x the field K(x) is a cyclotomic field. In case p # 2 this
field is equal to Q if and only if F is the trivial representation.



This theorem implies the following well-known results.

CoRroLLARY 7. (ROQUETTE [3]) An absolutely irreducible representation of G with char-
acter x is always realizable over K(x).

Proor. Since M := K(x) is a cyclotomic field contained in L := Ly» by Theorem 6(5),
the Galois group of L over M is cyclic and generated by an element 7, say. I/ and F” have
the same character, hence they are equivalent. Switching to an equivalent representation,
we see by Theorem 6(3) that Int (I, F'7) is generated by a p”-monomial matrix 5, say. As
N.-(5) € Int(F, F'), we obtain N.(5) = ¢l for some ¢ € L, where f is the degree of F.
Replacing S by an appropriate multiple if necessary, we conclude from Lemma 5(3) that
there exists T € GL(f, L) such that S = (T7)"'T. Hence TFT™' = T7F(T7)~', which
shows that I is realizable over K(x). O

COROLLARY 8. Any nontrivial irreducible representation of a p-group over Q has degree
p*(p— 1) for some a € N.

Proor. For p = 2 the assertion is obvious by part (1) of the above theorem. So assume
that p # 2. Let A be a nontrivial irreducible representation of QG and view A as a
representation of L,G. By Proposition 2 there exists an irreducible representation D of
L,G such that A ~ @7, D", where m = [Q(x): Q], x being the character of D, and & is a
generator of the Galois group of Q(x) over Q. In particular, the degree of A is m times that
of D. As Q(x) is a cyclotomic field unequal to Q@ by Theorem 6(5), we obtain m = p’(p—1)
for some b and the assertion follows by Theorem 6(1). O

The rest of this section is devoted to the proof of the above theorem. Note first that
part (5) of the theorem is a consequence of parts (1) and (4) by Lemma 5(1). So we are left
with the proof of parts (1)—(4). For this we use induction on ¢. The case ¢ = 0 being trivial,
let us discuss the induction step ¢ — 1 — 7. Let ' € F;_1. There exist two possibilities for
the conjugate representation F9:: either F9 ~ F or F9 o F.

Suppose that F'9¢ ~ F. By Clifford Theory (Theorem 3) F' has p inequivalent absolutely

irreducible extensions D(()F), .. -7Dg(£)1- Let D be such an extension and X := D(g;). Then
X € Int (F9%, F) and X? = F(g7). Hence there exist p solutions c, ..., c,—; of the matrix

equation ?X, = F(g") and D](CF) is given by D,(CF) | Gi_1 = F and D](CF)(gi) = ¢ X;F for
0 < k < p. By Lemma 1(1) and the induction hypothesis the ¢; are p'th roots of unity.
Hence these irreducible representations are p'-monomial, and their field of definition is a
cyclotomic field contained in L. For p # 2 this field is equal to Q iff defx(F) equals Q
and ¢ € Q. By the induction hypothesis this means that I is the trivial representation of

GG;—1 and ¢ = 1, which in turn implies that D]gF) is the trivial representation of Gj;.

Now suppose that F9 « F. By Clifford Theory F' | G; is irreducible and (F' T G;) |
Gi_1 = @i;éFgf. Let 7, € Sym F,;,_1 be such that F9 ~ 7, F for I € F;. As JALN TZkF,
we obtain Xj 1= X, x—1p---X;p € Int (Fgf,TfF). We set X := @, X and define the
representation D := ﬁF by D(a):= X(F | G;)(a)X ! for all « € G;. Note that

p—1

(D | Gica)(b) = X(F 1 Gy | Gioa)(0)X ™' = P (rFF)(b) (1)

k=0



for b € G;_1. Obviously, D is p'-monomial (even pi_l—monomial) as X and F are such, and

its degree is p times that of F'. Hence the induction hypothesis implies that D has p-power
degree. Moreover, the p'-monomiality of D implies that its field of definition is a cyclotomic
field. If it is equal to Q, then the field of definition of F is also equal to Q, which means
that £ is the trivial representation by the induction hypothesis. But this is a contradiction,
since 9 o4 F by assumption.

We define F; as the set formed by all D](CF) for those F € F,_q1 such that F9% ~ F
and all Dg for those I € F;_1 such that F9 o F. By Theorem 3 F; is a set of pairwise
inequivalent irreducible matrix representations of ;. This settles part (1) of the theorem.

For i < j < nlet m; € SymF; be such that D% ~ 7n;D and 7; € Sym F;_; be such
that F9 ~ 7 F. If D = D](CF) for some F' € F;_; and some k, then ;D must be an
extension of 7;/" and we can put X;p := X;r. Note that by the induction hypothesis X;p
is p'~'-monomial and defg(X;p) C defg (F) C defg (D).

Suppose now that D = Dp for some I’ € F;_y. Then ;D is the unique A € F; such
that A | G;_; contains ;. By (1) we have m;D = @2;2)7';“(1) for some ® € F,_;. There is
some permutation p of {0,...,p— 1} such that 7;F} = ®,;. By Schur’s Lemma there exist
nonzero cg, ..., c,—1 such that

p—1
X;p=p- (EB Cka) € Int (DgJ,TjD),

k=0

where X}, := X;r,. We may suppose that ¢y = 1. Since
X;pD% (gi)X]'_Dl = (r;D)(g:),

Lemma 1(2) implies that the ¢; are p'th roots of unity and hence X;p is p'-monomial.
(Note that (7;D)(g;) = (0,...,p — 1) times a suitable matrix.) It remains to prove that
defr (X;p) C defg (D). To this end, notice that defgx(F') = defK(ng]‘) forall 0 < 7 < p,
hence the induction hypothesis implies that defx (') = defg (7;F"), which yields defx (X;r) C
defr (F). We infer that

defg (D) = defg (F). (2)

The same argument yields defx(Xj) C defg(F'), hence Lemma 1(2) gives defrx(X;p) C
defg (F') = defg (D). This settles part (2) of the theorem.

The proof of the third part is quite similar to that of the second. Namely, if D = D](CF)
for some F' € F;_q, then one can set Mp := Mg. If D = Dg, then 6;D | G;_1 = EBTZ»]WI), for
some ® € F;,_;. Putting F} := TZ»kF and @, := Tf@, we see exactly as above that there exist
p*~1th roots of unity co, . . ., cp—1 such that Mp =p (@Z;écka), where X, € Int (F/, ® 1),
and p is the permutation of {0,...,p — 1} satisfying 6;_1 Fy = ® .

Let us now proceed with the proof of (4). Suppose that D = D](CF) for some F € F,_4
and some k. Clearly, /" and D are of the same degree. Let y denote the character of D, and
1 denote that of F. Let £ := [defg(D): def (F)], ¢ := [K(x): K(¢)], m := [defx (F): K ()],
and n := [K(v): K]. Clearly, ¢ is the smallest positive integer such that D™ = p.
As F°"" = F and Int (D", D) C Int (F°""", F) = Int (F, F), we see that D*""" = D



and hence ¢ divides ¢. By the induction hypothesis m divides the degree of F’. Hence
[defr(D): K(x)] = ml/q divides the degree of I as it divides m.

If D = Dp and y denotes as above the character of D, then K(x) C K(v). Let
denote a generator of Gal(K(1)/K(x)). If F® ~ F, then 3 is the identity and hence
K(¢) = K(x). If FP o I, then there exists a nonzero j such that F% ~ P9 as DP ~ D.
Hence FP" ~ F9 ~ F, and P is the identity which shows that [K(v): K(x)] = p. Since
defg (D) = defg (F') by (2), we deduce from the induction hypothesis that [defx(D): K(x)]
divides pdeg I’ = deg D, and the proof of Theorem 6 is complete.
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