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Abstract

Some of the benefits of object-oriented programming such as extensibility and reusabil-

ity are fundamentally based on inheritance and late binding. Dynamic dispatching
is not only time consuming but it also prevents the usage of some optimization tech-
niques such as inlining or interprocedural analysis. The situation is even more severe
for languages supporting multi-methods, where dispatching is not only performed
based on the type of the receiver, but also based on the types of the arguments. The
most efficient way to perform dynamic dispatching is to avoid it as often as possible,
without restricting the use of multi-methods. In this paper it is shown how this goal
can be achieved through static analysis. We present a technique which discards all
method calls which can be statically bound. Furthermore, even if a method can-
not be statically bound, we derive information which will at run time speed up the
dispatching process considerably.

*on leave from: FH Wiesbaden, Fachbereich Informatik, Kurt-Schumacher-Ring 3, 65197 Wiesbaden,
Germany, turau@informatik.fh-wiesbaden.de

'ICST- GMD - Integrated Publication and Information Systems Institute, Dolivostr.15 64293 Darmstadt,
Germany, chen@darmstadt.gmd.de



i



1 Introduction

Some of the benefits of object-oriented programming such as extensibility and reusability
are fundamentally based on inheritance and late binding. The price for these techniques
is sometimes a significant performance overhead. Dynamic dispatching is not only time
consuming but it also prevents the usage of some optimization techniques such as inlining or
interprocedural analysis. The situation is even more severe for languages supporting multi-
methods, where dispatching is not only performed based on the type of the receiver, but
also based on the types of the arguments. Even so there are techniques available to reduce
the complexity of multi-method dispatch, they still have the above mentioned disadvantages
[1, 2]. It is therefore worth seeking for mechanisms to avoid dynamic dispatching for multi-
methods as often as possible without restricting the use of them. This will also be of benefit
for languages not supporting multi-methods within the framework of the language, because
the technique of specialization used to optimize object-oriented languages in general may
lead to the need of multi-methods at an internal level [5].

One of the goals of optimization techniques for multi-methods should be the recognition
of all cases where methods can be statically bound. In this paper it is shown how this
goal can be achieved for statically typed languages. We present a technique which discards
all method calls which can be statically bound. Furthermore, even if a method cannot be
statically bound, we derive information which will at run time speed up the dispatching
process considerably. This information consists either of a small set of methods among
the dispatched method will be selected or of a subset of the arguments, which at run time
decide which method to be dispatched. In any case the process of selecting the appropriate
method is speeded up.

Research into optimization of dispatching can be divided into two directions: Techniques to
determine when a method call can be statically bound and efficient algorithms for perform-
ing method selection at run time. While the first direction tries to minimize the number of
dynamic dispatches, the second tries to perform the dispatching with small time and space
requirements.

Static class analysis tries to narrow down the range of classes of objects stored in a variable.
If the class of the receiver of a single dispatched method call or the classes of the arguments
of a multi-method call can be determined uniquely, then the method call can be realized
by a static function call. In case the receiver’s class can be narrowed down to a small set,
then the method call can be realized by type-case expressions, where each case results in a
static function call [6].

Profile-guided receiver class prediction receives its information about classes of receivers by
monitoring the execution of a program. This way statistics are gathered and based on these
type-case expressions are inserted into the code, given preference to classes which occurred
more often. Then the program is recompiled [7, 9].

Research into the second direction can be classified into dynamic and static techniques.
Dynamic techniques are based on caches and their organization [10, 8]. Static techniques



usually aim at finding data structures which are both time and space efficient. Compressing
dispatch tables is one possibility [1].

The above mentioned techniques are available for single and multi dispatched methods,
even so things are much more complicated in the second case. In a previous paper we
have presented a technique for dispatching based on automata which is suitable for multi-
methods [2, 11]. The used lookup automaton realizes dispatch without needing a lot of time
and space resources. The space requirements are in no case larger then those reported in

[1].

The outline of this paper is as follows. In section 2 we present the overall approach. In
section 3 we briefly review the concept of the lookup automaton. In section 4 the techniques
to detect invocations which can be bound statically is presented and in section 5 the dynamic
dispatching is described.

2 Overview of the compilation process

In the following we describe the overall approach for handling multi-methods at compile
time. The compiler constructs for each multi-method a lookup automaton (LUA). This
construction is described in the following section. During the translation of the actual
code the following steps are performed when a multi-method invocation m(ty,...,%,) is
encountered.

1. The static types T; of the parameters t; are determined. The run time types must be
subtypes of these types.

2. Using the LUA for the multi-method m the compiler determines whether there are
methods applicable for this invocation. It is also possible to detect ambiguities at this
moment.

3. A check is accomplished, whether this call can be bound statically.

4. If the method can not be bound at this time, the compiler determines a start state g;
in the LUA at which simulation starts at run time and the corresponding argument
number ¢.

5. Based on the result of the last step the following alternatives are available:

(a) A special LUA to be used at run time for that invocation is build.
(b) A type-case expression is generated to perform method selection at run time.

(c) The general LUA for method m is used at run time.

The first two steps have been covered in [2]. The aim of this paper is to present an efficient
algorithm for the remaining steps. Especially we demonstrate how steps 3 and 4 can be
performed using the LUA. Finally we demonstrate how the last step can be realized. The
notation of this paper follows [2].



3 The lookup automaton LUA

Let (7,=) be a type hierarchy possibly with multiple inheritance, in which the types are
ordered either globally or by a local type ordering. Furthermore let M be a set of multi-
methods with name m and arity n. For clarity of exposition, the methods in M are called

mi,...,m;. A method m;(T},...,T) is applicable for a method invocation m(T},...,T,),
iff '
T, < Ty, forall k=1,...n.
Let my(T},...,T!) and mj(le, ...,T7) be two applicable methods for an invocation
m(Tl, .. 7Tn)

Then m; is more specific then m; for this call, if the following holds: let £ be the first
position in which the types of the formal arguments of m; and m; differ, then T]f; precedes
sz (with respect to T} for local type ordering). Using this definition the applicable types
for an invocation are totally ordered and a most specific method exists, if an applicable
method exists at all. The task of the dispatcher is to select the most specific method for
each invocation or to signal an error in case no method is applicable.

There are other alternative definitions which order the applicable methods only partially.
When there are several methods applicable an error message ambiguous is signaled [4]. Our
approach can also be used for this definition [3]. Figure 1 shows an example we will use
in this paper. The type hierarchy consists of 8 types which are ordered using a local type
ordering. There are three multi-methods my, my and ms.
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Figure 1: A type hierarchy and a set of multi-methods.

A LUA is a deterministic finite automaton D = (Q, X, 6, qo, I'), where @) is a finite set of
states, X is a set of input symbols, § is a state transition function, ¢q is the start state and
F C @ is the set of accepting states. In our case the input symbols are the types of 7 and
each accepting state is labeled with a particular multi-method. If the dispatcher detects a
method call m(Ty,...,T,), where the T; are the actual types at run time, then dispatching
is performed as follows: simulation of the LUA starts at state ¢p and the argument types
are read from left to right. If a state has no transition for a given type, then an error is



signaled, otherwise an accepting state ¢ is reached and the label of ¢ is the most specific
method for this invocation.

Simulation starts at the start state with the first argument type. Let 6(q,-) be the set
of labels of the transitions at state ¢, i.e. the types which do not lead to an error. Let
LUB(T,q) be the least upper bound of type 7" in 6(q,-). If the simulation is at state ¢
and the next argument type is 7', then simulation follows transition LU B(T,q). Figure 2
shows the LUA for the above example. Let m(E, H,C, F') be a method invocation, where
E,H,C,F are the run time types. Then LUB(FE,qy) = C, so we proceed to state gz. Then
LUB(H,q;) = F, hence we proceed to state gs. Continuing the procedure we arrive at the
accepting state ¢y3. This is labeled with method ms, hence this method will be dispatched.
Note that the construction guarantees, that the LU B‘s are either unique or do not exist.
In the latter case a type error has occurred.
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Figure 2: An example LUA.

The LUA can be used for statically and dynamically typed languages. It has several ad-
vantages. In [2] it is proven, that the number of states of the LUA is minimal under certain
conditions. It can be implemented with standard automaton techniques or by a multi-
dimensional array. This is done by collecting the types at each level of the automaton into
sets and the entry of the corresponding cell will be the method to be dispatched. In our
example it will be a 2 X 5 X 2 X 2 array. In a 2-dimensional array for each type and position
the corresponding set number is recorded. This way dispatching consists of a few array
accesses. The size of the array is in no case larger then those constructed in [1].

4 Binding methods statically

In statically typed languages single dispatching can be performed rather efficiently (for
example through virtual function tables in C++). Furthermore in some cases it is possible
to eliminate dynamic dispatching by binding methods statically. These cases can be found
through static analysis. This can also be done for multi-methods as we show in this section.

For statically checking types of method calls, two cases must be distinguished:



1. The compiler accepts method calls, for which there exist at least one method, which
is applicable for some subtypes of the arguments.

2. The compiler accepts only method calls, for which there is an applicable method for
all subtype combinations of the arguments.

In the first case, there may still be errors at run time (i.e. no method applicable). In the
second case there can be no run time errors. For our example an invocation m(A, A, A, A)
would be accepted in the first case but not in the second case. Our technique can handle
both cases, but as we will see dispatching is easier to handle in the second case.

To understand our approach consider again our example. Suppose that at compile time, it is
known that the types of the arguments will be subtypes of C', E, E, F respectively. Then it is
straight forward to check with the help of the LUA, that my will always be dispatched. This
can be done by checking that each argument (independently of its run time type) selects
a unique transition at each state reached. Hence in that case mg can be bound statically.
More generally, the following observation can be made: A method call m(1,...,T%) can
be bound statically iff for all types 77,..., T} with T/ < T; the corresponding invocations
lead to the dispatch of the same method. This leads to the following definition.

Definition. A method invocation is called statically safe, if all legal run-time arguments
will lead to the dispatching of the same method implementation.

In the above example all possible invocations take the same path in the LUA. But there are
cases in which an invocation is statically safe, but there is no unique path in the LUA. For
example if the types of the formal arguments will be subtypes of C', D, B, F’, then consider
the actual argument types C, G, B, F' and F, D, B, F'. In both cases the method mg will be
dispatched, but during the LUA simulation different paths are chosen.

Our goal was to detect all statically safe method invocations. The LUA can be utilized to
perform this task. The principle idea is very simple: to test whether a method invocation
m(T1,...,T,) is statically safe, simulate the LUA for all possible invocations m(77,...,T}),
with 77 < T; for all i = 1,..., n. If they all lead to the same method, then the invocation is
clearly statically safe. A brute force approach is to inefficient, since the number of subtype
combinations is growing exponentially. We can do better if we exploit the information

encoded in the LUA.

The above described procedure corresponds basically to the simulation of the LUA as a
nondeterministic finite automaton. If all cases result in the same method, then the invoca-
tion is statically safe. There are techniques available for transforming a nondeterministic
finite automaton into a deterministic one. But this is to costly at this point. Note that the
LUA has more the structure of an acyclic graph, after n transitions an accepting state is
always reached. Therefore basic search techniques are more appropriate.

There are basically two approaches: depth first and breadth first. The first possibility has
the advantage, that the search can be interrupted as soon as two different methods are
encountered. Since the LUA is not a tree, precautions have to be taken, so that no states
are unnecessarily processed twice.



Using the breadth first search each level is calculated individually. This way it is easy to
guarantee that each state is processed only once. But the search has to proceed to the last
level, to decide whether a unique method is found. At first sight this seems to be a possible
overhead, but even in the case that the method is not statically safe, dispatching can be
made easier.

During the breadth first search we record at each level the number of states. Consider the
case in which the states in the last level are not labeled with the same method (i.e. the
method is not statically safe). Let k be the last level, where there is only one state g. Then
all dispatch paths will pass through this state q. Therefore it is obvious, that the first k&
arguments are not relevant for dispatching. If & = n then the call is statically safe. If £ < n
then simulation can start at run time at the unique state ¢ using the argument number
k+ 1. Only if £ = 0 nothing can be saved.

As an example consider the method invocation m(C, £, A, A). Breadth first search shows,
that the call might result in the dispatching of my or ms. Hence the call is not statically
safe. But we note during the breadth first search, that all paths pass through state gs. The
run time types of the first two arguments are not relevant in this case and simulating the
LUA can start with the third argument starting at state g¢g.

More formally, let Qo to @), be the sets of states at level 0,...,n respectively, which are
encountered during the simulation of the LUA as a nondeterministic finite automaton for
the method invocation m(7y,...,T,). Then

QOI {qO} and QZI U {6(Q7T)|T5TZ} for i = 17"'7”'
9€Qi—1

Some calculations can be saved by introducing the set

wlg, T)=46(q,T")|3T" X Tst. T' = LUB(T",q)}

Then
Q; = U w(q,T;) fori=1,...,n.
9€Qi—1
The task is to calculate w(q,T’). Let T, = LUB(T,q),T" < T and 7' = LUB(T",q). Then
since é(q, -) is glb-closed, we have T" < T,. Hence

w(g,T) S{6(q, T') | T" 2 T,}.

If T € 6(q,-), then T, = T and we have equality in the above formula. So consider the
case T' ¢ 6(q,-). Then w(q,T) can be a proper subset of the second set. In this case it is
necessary to check the subtypes of 7' to see which one does contribute to w(q,7’).

In order to calculate @);, it is necessary to take the union of the w(q,7;) where ¢ ranges
over ();_1. To calculate this union efficiently, a bit-array L, is build for each relevant state
q at level 7 — 1 to represent w(q,T;). The length of L, is equal to the number of states in
the LUA of that level. Then L,[j] = 1 iff the j-th state of that level is in w(q,T;). Now



calculating the @); can be performed with binary OR-operations. Note that within each
level the arrays have the same length, but they may be of different length at different levels.

Consider the case that a call can not be bound statically. Let maz be the largest index such
that |Qmaz| = 1, i.e. |Q:] > 1 for all i > maz. Then maz < n and simulating the LUA at
run time can start at state ¢, where Q0 = {¢}, with argument number maz + 1. Hence,
if a method call cannot be bound statically, the compiler generates a pair (¢, 1), indicating
that at run time the simulation starts with the ¢-th argument at state g.

For the above example there are 751 legal dispatch cases. Of those 580 (77%) can be
bound statically. For 45 (5%) (for example (C,C, B, B)) dispatching can start with the
second argument. Only the remaining 126 cases (for example (A, B, B, B)) the full dynamic
dispatching is necessary.

5 Dynamic Dispatch

Even in the case of a statically typed languages not all method invocations can be bound
statically. But the standard lookup automaton can be further compressed.

Let us consider first the case where the compiler accepts only method calls, for which there
is an applicable method for all subtype combinations of the arguments. In this case some
of the states can be pruned. In particular let ¢ be a state from which all paths lead to the
same accepting state ¢,. Then the state ¢ can be removed and all the transitions going
into this state are redirected into g,. The reason is, that we know that the type checking
guarantees, that at these states no errors can occur and therefore the unique transition is
chosen. In Figure 2 for example the states ¢1,¢3 and ¢7 can be removed.
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Figure 3: An example LUA.

Removing states is best done from right to left. This way a considerable number of states
can be removed. To illustrate this we consider again our example from the first section.
Figure 3 shows the pruned LUA for the above example. From the 11 non accepting states 7
could be removed. This compression is also reflected in the implementation based on arrays
(a2X 4 x2x 2 arrays is sufficient).



If the dynamic LUA is small enough, it can be coded into the source code. In this case the
dispatch mechanism is in the code. The same compression can also be used for the first
option of type checking. But in this case the run time system must check, whether the run
time types of the arguments conform to the argument types of the selected method.

Now consider again the case when a method call can not be bound statically, but simulating
the LUA needs not to start at state ¢o. In this case there are 2 possibilities:

e Build a special LUA.

e Include the code for dispatching in the compiled code.

Consider again our example and the method call m(C, F, A, A). Then Q2 = {¢g} and
|@Q3] = |Q4] = 2. Hence dispatching can start with the third argument at state gs.

Figure 4: LUA with start state ¢g.

The first possibility leads to the LUA shown in Figure 4. Note that pruning can be used
for such a LUA.

The code for this LUA is shown in Figure 5 at the left. Here T; denotes the run time type
of i-th argument. At the right of this figure the array implementation is depicted. The top
array holds the relation between the types and the sets and the bottom array holds the
actual method addresses.

if T3 < B then

case T4 subtype of A|\B|C|D|FE|F|G|H
F: call ms 3112112 ]1]2]|1
B: call my 410121010 ]2]1]2

else
ERROR

else

if T4 < F then 1 2
call ms 1|{mg| O

else 2| m3 | mg
ERROR

Figure 5: Realization of the LUA of Figure 4.



The code can directly be derived from the corresponding automaton in the following way:
at each state ¢ calculate for each transition with label T the set

Cr={T"eT | T=LUB(T' q)}.

Note that these sets are disjoint. The different transitions are then realized by type-case
expressions based on these sets. Note that Cr C SUB(T). In case equality holds, the
type-case expression can be expressed with the help of the subtype relation. This is done in
the above example. Note the invocation m(C, F, A, A) is not legal, if the second option for
type checking is used. In general the code for the second option can be derived from from
the code fpr the first option by noting, that we can always move one case into the else-part.

Generating this code naturally increases the code of an application program, but it also
allows other optimization techniques such as interprocedural analysis to be applied.

6 Other related work

The only other work on static analysis for multi-methods that we are aware of is the work
of Dean et. al. [6]. Their approach consists of calculating for each multi-method m the
so called applies-to tuples. This set consists of all tuples of types, for which m will be
dispatched. For each method invocation, they calculate a set which consists of all tuples
of subtypes of the types of the invocation. Then they calculate the intersection of this set
with each applies-to tuple. A method can be statically bound, if all but one intersection
are empty. The problem with this approach is, that the calculation of the applies-to tuples
and the intersections can be very expensive. The main reason is that the applies-to tuples
are given as unions of other sets of tuples. Therefore it is necessary to form intersections of
unions. In case a method cannot be bound statically, they do not exploit partial result as
we do.

7 Conclusion

In this paper we have presented a new technique to improve the efficiency of dispatching
multi-methods. All cases in which a method invocation can be statically bound are detected.
Furthermore, even if a method cannot be statically bound, we derive information which will
at run time speed up the dispatching process considerably. The algorithms are based on a
lookup automaton which we have presented previously. Even in the case of cross product
patterns, for which the LUA needs a large amount of space, many methods can be bound
statically [2, 1]. The next step is to implement the algorithm and to test real examples to
measure the effects and to have means to decide in which cases it is better to realize the
LUA by type-case expressions.
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